blob: 15b4865d22f8ec102e5dd2f86d5835c8d524f612 [file] [log] [blame]
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "LoopVectorizationPlanner.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanHelpers.h"
#include "VPlanPatternMatch.h"
#include "VPlanTransforms.h"
#include "VPlanUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include <cassert>
#include <string>
using namespace llvm;
using namespace llvm::VPlanPatternMatch;
namespace llvm {
extern cl::opt<bool> EnableVPlanNativePath;
}
extern cl::opt<unsigned> ForceTargetInstructionCost;
static cl::opt<bool> PrintVPlansInDotFormat(
"vplan-print-in-dot-format", cl::Hidden,
cl::desc("Use dot format instead of plain text when dumping VPlans"));
#define DEBUG_TYPE "loop-vectorize"
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPRecipeBase &R) {
const VPBasicBlock *Parent = R.getParent();
VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr);
R.print(OS, "", SlotTracker);
return OS;
}
#endif
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
const ElementCount &VF) const {
switch (LaneKind) {
case VPLane::Kind::ScalableLast:
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
Builder.getInt32(VF.getKnownMinValue() - Lane));
case VPLane::Kind::First:
return Builder.getInt32(Lane);
}
llvm_unreachable("Unknown lane kind");
}
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
if (Def)
Def->addDefinedValue(this);
}
VPValue::~VPValue() {
assert(Users.empty() && "trying to delete a VPValue with remaining users");
if (Def)
Def->removeDefinedValue(this);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
R->print(OS, "", SlotTracker);
else
printAsOperand(OS, SlotTracker);
}
void VPValue::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), SlotTracker);
dbgs() << "\n";
}
void VPDef::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), "", SlotTracker);
dbgs() << "\n";
}
#endif
VPRecipeBase *VPValue::getDefiningRecipe() {
return cast_or_null<VPRecipeBase>(Def);
}
const VPRecipeBase *VPValue::getDefiningRecipe() const {
return cast_or_null<VPRecipeBase>(Def);
}
// Get the top-most entry block of \p Start. This is the entry block of the
// containing VPlan. This function is templated to support both const and non-const blocks
template <typename T> static T *getPlanEntry(T *Start) {
T *Next = Start;
T *Current = Start;
while ((Next = Next->getParent()))
Current = Next;
SmallSetVector<T *, 8> WorkList;
WorkList.insert(Current);
for (unsigned i = 0; i < WorkList.size(); i++) {
T *Current = WorkList[i];
if (Current->getNumPredecessors() == 0)
return Current;
auto &Predecessors = Current->getPredecessors();
WorkList.insert_range(Predecessors);
}
llvm_unreachable("VPlan without any entry node without predecessors");
}
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
void VPBlockBase::setPlan(VPlan *ParentPlan) {
assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
Plan = ParentPlan;
}
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
if (!Successors.empty() || !Parent)
return this;
assert(Parent->getExiting() == this &&
"Block w/o successors not the exiting block of its parent.");
return Parent->getEnclosingBlockWithSuccessors();
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
if (!Predecessors.empty() || !Parent)
return this;
assert(Parent->getEntry() == this &&
"Block w/o predecessors not the entry of its parent.");
return Parent->getEnclosingBlockWithPredecessors();
}
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
iterator It = begin();
while (It != end() && It->isPhi())
It++;
return It;
}
VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
ElementCount VF, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
IRBuilderBase &Builder, VPlan *Plan,
Loop *CurrentParentLoop, Type *CanonicalIVTy)
: TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan),
CurrentParentLoop(CurrentParentLoop), TypeAnalysis(CanonicalIVTy),
VPDT(*Plan) {}
Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) {
if (Def->isLiveIn())
return Def->getLiveInIRValue();
if (hasScalarValue(Def, Lane))
return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
if (!Lane.isFirstLane() && vputils::isSingleScalar(Def) &&
hasScalarValue(Def, VPLane::getFirstLane())) {
return Data.VPV2Scalars[Def][0];
}
assert(hasVectorValue(Def));
auto *VecPart = Data.VPV2Vector[Def];
if (!VecPart->getType()->isVectorTy()) {
assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
return VecPart;
}
// TODO: Cache created scalar values.
Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
// set(Def, Extract, Instance);
return Extract;
}
Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) {
if (NeedsScalar) {
assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
!vputils::onlyFirstLaneUsed(Def) ||
(hasScalarValue(Def, VPLane(0)) &&
Data.VPV2Scalars[Def].size() == 1)) &&
"Trying to access a single scalar per part but has multiple scalars "
"per part.");
return get(Def, VPLane(0));
}
// If Values have been set for this Def return the one relevant for \p Part.
if (hasVectorValue(Def))
return Data.VPV2Vector[Def];
auto GetBroadcastInstrs = [this, Def](Value *V) {
bool SafeToHoist =
!Def->hasDefiningRecipe() ||
VPDT.properlyDominates(Def->getDefiningRecipe()->getParent(),
Plan->getVectorPreheader());
if (VF.isScalar())
return V;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist) {
BasicBlock *LoopVectorPreHeader =
CFG.VPBB2IRBB[Plan->getVectorPreheader()];
if (LoopVectorPreHeader)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
}
// Place the code for broadcasting invariant variables in the new preheader.
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
};
if (!hasScalarValue(Def, {0})) {
assert(Def->isLiveIn() && "expected a live-in");
Value *IRV = Def->getLiveInIRValue();
Value *B = GetBroadcastInstrs(IRV);
set(Def, B);
return B;
}
Value *ScalarValue = get(Def, VPLane(0));
// If we aren't vectorizing, we can just copy the scalar map values over
// to the vector map.
if (VF.isScalar()) {
set(Def, ScalarValue);
return ScalarValue;
}
bool IsSingleScalar = vputils::isSingleScalar(Def);
VPLane LastLane(IsSingleScalar ? 0 : VF.getKnownMinValue() - 1);
// Check if there is a scalar value for the selected lane.
if (!hasScalarValue(Def, LastLane)) {
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
// VPExpandSCEVRecipes can also be a single scalar.
assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
"unexpected recipe found to be invariant");
IsSingleScalar = true;
LastLane = 0;
}
auto *LastInst = cast<Instruction>(get(Def, LastLane));
// Set the insert point after the last scalarized instruction or after the
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
// will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP = isa<PHINode>(LastInst)
? LastInst->getParent()->getFirstNonPHIIt()
: std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero. Otherwise, we
// construct the vector values using insertelement instructions. Since the
// resulting vectors are stored in State, we will only generate the
// insertelements once.
Value *VectorValue = nullptr;
if (IsSingleScalar) {
VectorValue = GetBroadcastInstrs(ScalarValue);
set(Def, VectorValue);
} else {
// Initialize packing with insertelements to start from undef.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Value *Undef = PoisonValue::get(toVectorizedTy(LastInst->getType(), VF));
set(Def, Undef);
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
packScalarIntoVectorizedValue(Def, Lane);
VectorValue = get(Def);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
void VPTransformState::setDebugLocFrom(DebugLoc DL) {
const DILocation *DIL = DL;
// When a FSDiscriminator is enabled, we don't need to add the multiply
// factors to the discriminators.
if (DIL &&
Builder.GetInsertBlock()
->getParent()
->shouldEmitDebugInfoForProfiling() &&
!EnableFSDiscriminator) {
// FIXME: For scalable vectors, assume vscale=1.
unsigned UF = Plan->getUF();
auto NewDIL =
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
if (NewDIL)
Builder.SetCurrentDebugLocation(*NewDIL);
else
LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL->getLine());
} else
Builder.SetCurrentDebugLocation(DIL);
}
void VPTransformState::packScalarIntoVectorizedValue(const VPValue *Def,
const VPLane &Lane) {
Value *ScalarInst = get(Def, Lane);
Value *WideValue = get(Def);
Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF);
if (auto *StructTy = dyn_cast<StructType>(WideValue->getType())) {
// We must handle each element of a vectorized struct type.
for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) {
Value *ScalarValue = Builder.CreateExtractValue(ScalarInst, I);
Value *VectorValue = Builder.CreateExtractValue(WideValue, I);
VectorValue =
Builder.CreateInsertElement(VectorValue, ScalarValue, LaneExpr);
WideValue = Builder.CreateInsertValue(WideValue, VectorValue, I);
}
} else {
WideValue = Builder.CreateInsertElement(WideValue, ScalarInst, LaneExpr);
}
set(Def, WideValue);
}
BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) {
auto &CFG = State.CFG;
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
BasicBlock *PrevBB = CFG.PrevBB;
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
PrevBB->getParent(), CFG.ExitBB);
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
return NewBB;
}
void VPBasicBlock::connectToPredecessors(VPTransformState &State) {
auto &CFG = State.CFG;
BasicBlock *NewBB = CFG.VPBB2IRBB[this];
// Register NewBB in its loop. In innermost loops its the same for all
// BB's.
Loop *ParentLoop = State.CurrentParentLoop;
// If this block has a sole successor that is an exit block or is an exit
// block itself then it needs adding to the same parent loop as the exit
// block.
VPBlockBase *SuccOrExitVPB = getSingleSuccessor();
SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this;
if (State.Plan->isExitBlock(SuccOrExitVPB)) {
ParentLoop = State.LI->getLoopFor(
cast<VPIRBasicBlock>(SuccOrExitVPB)->getIRBasicBlock());
}
if (ParentLoop && !State.LI->getLoopFor(NewBB))
ParentLoop->addBasicBlockToLoop(NewBB, *State.LI);
// Hook up the new basic block to its predecessors.
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
auto *PredBBTerminator = PredBB->getTerminator();
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
if (isa<UnreachableInst>(PredBBTerminator)) {
assert(PredVPSuccessors.size() == 1 &&
"Predecessor ending w/o branch must have single successor.");
DebugLoc DL = PredBBTerminator->getDebugLoc();
PredBBTerminator->eraseFromParent();
auto *Br = BranchInst::Create(NewBB, PredBB);
Br->setDebugLoc(DL);
} else if (TermBr && !TermBr->isConditional()) {
TermBr->setSuccessor(0, NewBB);
} else {
// Set each forward successor here when it is created, excluding
// backedges. A backward successor is set when the branch is created.
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert((TermBr && (!TermBr->getSuccessor(idx) ||
(isa<VPIRBasicBlock>(this) &&
TermBr->getSuccessor(idx) == NewBB))) &&
"Trying to reset an existing successor block.");
TermBr->setSuccessor(idx, NewBB);
}
CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
}
}
void VPIRBasicBlock::execute(VPTransformState *State) {
assert(getHierarchicalSuccessors().size() <= 2 &&
"VPIRBasicBlock can have at most two successors at the moment!");
State->Builder.SetInsertPoint(IRBB->getTerminator());
State->CFG.PrevBB = IRBB;
State->CFG.VPBB2IRBB[this] = IRBB;
executeRecipes(State, IRBB);
// Create a branch instruction to terminate IRBB if one was not created yet
// and is needed.
if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
auto *Br = State->Builder.CreateBr(IRBB);
Br->setOperand(0, nullptr);
IRBB->getTerminator()->eraseFromParent();
} else {
assert(
(getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
"other blocks must be terminated by a branch");
}
connectToPredecessors(*State);
}
VPIRBasicBlock *VPIRBasicBlock::clone() {
auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
for (VPRecipeBase &R : Recipes)
NewBlock->appendRecipe(R.clone());
return NewBlock;
}
void VPBasicBlock::execute(VPTransformState *State) {
bool Replica = bool(State->Lane);
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
auto IsReplicateRegion = [](VPBlockBase *BB) {
auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
return R && R->isReplicator();
};
// 1. Create an IR basic block.
if ((Replica && this == getParent()->getEntry()) ||
IsReplicateRegion(getSingleHierarchicalPredecessor())) {
// Reuse the previous basic block if the current VPBB is either
// * the entry to a replicate region, or
// * the exit of a replicate region.
State->CFG.VPBB2IRBB[this] = NewBB;
} else {
NewBB = createEmptyBasicBlock(*State);
State->Builder.SetInsertPoint(NewBB);
// Temporarily terminate with unreachable until CFG is rewired.
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
State->Builder.SetInsertPoint(Terminator);
State->CFG.PrevBB = NewBB;
State->CFG.VPBB2IRBB[this] = NewBB;
connectToPredecessors(*State);
}
// 2. Fill the IR basic block with IR instructions.
executeRecipes(State, NewBB);
}
VPBasicBlock *VPBasicBlock::clone() {
auto *NewBlock = getPlan()->createVPBasicBlock(getName());
for (VPRecipeBase &R : *this)
NewBlock->appendRecipe(R.clone());
return NewBlock;
}
void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
<< " in BB:" << BB->getName() << '\n');
State->CFG.PrevVPBB = this;
for (VPRecipeBase &Recipe : Recipes) {
State->setDebugLocFrom(Recipe.getDebugLoc());
Recipe.execute(*State);
}
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
}
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
assert((SplitAt == end() || SplitAt->getParent() == this) &&
"can only split at a position in the same block");
// Create new empty block after the block to split.
auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
VPBlockUtils::insertBlockAfter(SplitBlock, this);
// Finally, move the recipes starting at SplitAt to new block.
for (VPRecipeBase &ToMove :
make_early_inc_range(make_range(SplitAt, this->end())))
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
return SplitBlock;
}
/// Return the enclosing loop region for region \p P. The templated version is
/// used to support both const and non-const block arguments.
template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
if (P && P->isReplicator()) {
P = P->getParent();
// Multiple loop regions can be nested, but replicate regions can only be
// nested inside a loop region or must be outside any other region.
assert((!P || !P->isReplicator()) && "unexpected nested replicate regions");
}
return P;
}
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
return getEnclosingLoopRegionForRegion(getParent());
}
const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
return getEnclosingLoopRegionForRegion(getParent());
}
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
if (VPBB->empty()) {
assert(
VPBB->getNumSuccessors() < 2 &&
"block with multiple successors doesn't have a recipe as terminator");
return false;
}
const VPRecipeBase *R = &VPBB->back();
bool IsSwitch = isa<VPInstruction>(R) &&
cast<VPInstruction>(R)->getOpcode() == Instruction::Switch;
bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
match(R, m_BranchOnCond(m_VPValue())) ||
match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
(void)IsCondBranch;
(void)IsSwitch;
if (VPBB->getNumSuccessors() == 2 ||
(VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
assert((IsCondBranch || IsSwitch) &&
"block with multiple successors not terminated by "
"conditional branch nor switch recipe");
return true;
}
if (VPBB->getNumSuccessors() > 2) {
assert(IsSwitch && "block with more than 2 successors not terminated by "
"a switch recipe");
return true;
}
assert(
!IsCondBranch &&
"block with 0 or 1 successors terminated by conditional branch recipe");
return false;
}
VPRecipeBase *VPBasicBlock::getTerminator() {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
const VPRecipeBase *VPBasicBlock::getTerminator() const {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
bool VPBasicBlock::isExiting() const {
return getParent() && getParent()->getExitingBasicBlock() == this;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPBlockBase::print(raw_ostream &O) const {
VPSlotTracker SlotTracker(getPlan());
print(O, "", SlotTracker);
}
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
if (getSuccessors().empty()) {
O << Indent << "No successors\n";
} else {
O << Indent << "Successor(s): ";
ListSeparator LS;
for (auto *Succ : getSuccessors())
O << LS << Succ->getName();
O << '\n';
}
}
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << getName() << ":\n";
auto RecipeIndent = Indent + " ";
for (const VPRecipeBase &Recipe : *this) {
Recipe.print(O, RecipeIndent, SlotTracker);
O << '\n';
}
printSuccessors(O, Indent);
}
#endif
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
// Remapping of operands must be done separately. Returns a pair with the new
// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
// region, return nullptr for the exiting block.
static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
VPBlockBase *Exiting = nullptr;
bool InRegion = Entry->getParent();
// First, clone blocks reachable from Entry.
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
VPBlockBase *NewBB = BB->clone();
Old2NewVPBlocks[BB] = NewBB;
if (InRegion && BB->getNumSuccessors() == 0) {
assert(!Exiting && "Multiple exiting blocks?");
Exiting = BB;
}
}
assert((!InRegion || Exiting) && "regions must have a single exiting block");
// Second, update the predecessors & successors of the cloned blocks.
for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
VPBlockBase *NewBB = Old2NewVPBlocks[BB];
SmallVector<VPBlockBase *> NewPreds;
for (VPBlockBase *Pred : BB->getPredecessors()) {
NewPreds.push_back(Old2NewVPBlocks[Pred]);
}
NewBB->setPredecessors(NewPreds);
SmallVector<VPBlockBase *> NewSuccs;
for (VPBlockBase *Succ : BB->successors()) {
NewSuccs.push_back(Old2NewVPBlocks[Succ]);
}
NewBB->setSuccessors(NewSuccs);
}
#if !defined(NDEBUG)
// Verify that the order of predecessors and successors matches in the cloned
// version.
for (const auto &[OldBB, NewBB] :
zip(vp_depth_first_shallow(Entry),
vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
for (const auto &[OldPred, NewPred] :
zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
for (const auto &[OldSucc, NewSucc] :
zip(OldBB->successors(), NewBB->successors()))
assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
}
#endif
return std::make_pair(Old2NewVPBlocks[Entry],
Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
}
VPRegionBlock *VPRegionBlock::clone() {
const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
getName(), isReplicator());
for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
Block->setParent(NewRegion);
return NewRegion;
}
void VPRegionBlock::execute(VPTransformState *State) {
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(Entry);
if (!isReplicator()) {
// Create and register the new vector loop.
Loop *PrevParentLoop = State->CurrentParentLoop;
State->CurrentParentLoop = State->LI->AllocateLoop();
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (PrevParentLoop)
PrevParentLoop->addChildLoop(State->CurrentParentLoop);
else
State->LI->addTopLevelLoop(State->CurrentParentLoop);
// Visit the VPBlocks connected to "this", starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
State->CurrentParentLoop = PrevParentLoop;
return;
}
assert(!State->Lane && "Replicating a Region with non-null instance.");
// Enter replicating mode.
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
State->Lane = VPLane(0);
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
++Lane) {
State->Lane = VPLane(Lane, VPLane::Kind::First);
// Visit the VPBlocks connected to \p this, starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
}
// Exit replicating mode.
State->Lane.reset();
}
InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
InstructionCost Cost = 0;
for (VPRecipeBase &R : Recipes)
Cost += R.cost(VF, Ctx);
return Cost;
}
const VPBasicBlock *VPBasicBlock::getCFGPredecessor(unsigned Idx) const {
const VPBlockBase *Pred = nullptr;
if (getNumPredecessors() > 0) {
Pred = getPredecessors()[Idx];
} else {
auto *Region = getParent();
assert(Region && !Region->isReplicator() && Region->getEntry() == this &&
"must be in the entry block of a non-replicate region");
assert(Idx < 2 && Region->getNumPredecessors() == 1 &&
"loop region has a single predecessor (preheader), its entry block "
"has 2 incoming blocks");
// Idx == 0 selects the predecessor of the region, Idx == 1 selects the
// region itself whose exiting block feeds the phi across the backedge.
Pred = Idx == 0 ? Region->getSinglePredecessor() : Region;
}
return Pred->getExitingBasicBlock();
}
InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
if (!isReplicator()) {
InstructionCost Cost = 0;
for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
Cost += Block->cost(VF, Ctx);
InstructionCost BackedgeCost =
ForceTargetInstructionCost.getNumOccurrences()
? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
: Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
<< ": vector loop backedge\n");
Cost += BackedgeCost;
return Cost;
}
// Compute the cost of a replicate region. Replicating isn't supported for
// scalable vectors, return an invalid cost for them.
// TODO: Discard scalable VPlans with replicate recipes earlier after
// construction.
if (VF.isScalable())
return InstructionCost::getInvalid();
// First compute the cost of the conditionally executed recipes, followed by
// account for the branching cost, except if the mask is a header mask or
// uniform condition.
using namespace llvm::VPlanPatternMatch;
VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
InstructionCost ThenCost = Then->cost(VF, Ctx);
// For the scalar case, we may not always execute the original predicated
// block, Thus, scale the block's cost by the probability of executing it.
if (VF.isScalar())
return ThenCost / getPredBlockCostDivisor(Ctx.CostKind);
return ThenCost;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
auto NewIndent = Indent + " ";
for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
O << '\n';
BlockBase->print(O, NewIndent, SlotTracker);
}
O << Indent << "}\n";
printSuccessors(O, Indent);
}
#endif
VPlan::VPlan(Loop *L) {
setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
ScalarHeader = createVPIRBasicBlock(L->getHeader());
SmallVector<BasicBlock *> IRExitBlocks;
L->getUniqueExitBlocks(IRExitBlocks);
for (BasicBlock *EB : IRExitBlocks)
ExitBlocks.push_back(createVPIRBasicBlock(EB));
}
VPlan::~VPlan() {
VPValue DummyValue;
for (auto *VPB : CreatedBlocks) {
if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
// Replace all operands of recipes and all VPValues defined in VPBB with
// DummyValue so the block can be deleted.
for (VPRecipeBase &R : *VPBB) {
for (auto *Def : R.definedValues())
Def->replaceAllUsesWith(&DummyValue);
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
R.setOperand(I, &DummyValue);
}
}
delete VPB;
}
for (VPValue *VPV : getLiveIns())
delete VPV;
if (BackedgeTakenCount)
delete BackedgeTakenCount;
}
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
VPTransformState &State) {
Type *TCTy = TripCountV->getType();
// Check if the backedge taken count is needed, and if so build it.
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
"trip.count.minus.1");
BackedgeTakenCount->setUnderlyingValue(TCMO);
}
VectorTripCount.setUnderlyingValue(VectorTripCountV);
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
// FIXME: Model VF * UF computation completely in VPlan.
unsigned UF = getUF();
if (VF.getNumUsers()) {
Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
VF.setUnderlyingValue(RuntimeVF);
VFxUF.setUnderlyingValue(
UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
: RuntimeVF);
} else {
VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
}
}
VPIRBasicBlock *VPlan::getExitBlock(BasicBlock *IRBB) const {
auto Iter = find_if(getExitBlocks(), [IRBB](const VPIRBasicBlock *VPIRBB) {
return VPIRBB->getIRBasicBlock() == IRBB;
});
assert(Iter != getExitBlocks().end() && "no exit block found");
return *Iter;
}
bool VPlan::isExitBlock(VPBlockBase *VPBB) {
return is_contained(ExitBlocks, VPBB);
}
/// Generate the code inside the preheader and body of the vectorized loop.
/// Assumes a single pre-header basic-block was created for this. Introduce
/// additional basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
// Initialize CFG state.
State->CFG.PrevVPBB = nullptr;
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
// Update VPDominatorTree since VPBasicBlock may be removed after State was
// constructed.
State->VPDT.recalculate(*this);
// Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
State->CFG.DTU.applyUpdates(
{{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
<< ", UF=" << getUF() << '\n');
setName("Final VPlan");
LLVM_DEBUG(dump());
// Disconnect scalar preheader and scalar header, as the dominator tree edge
// will be updated as part of VPlan execution. This allows keeping the DTU
// logic generic during VPlan execution.
BasicBlock *ScalarPh = State->CFG.ExitBB;
State->CFG.DTU.applyUpdates(
{{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
Entry);
// Generate code for the VPlan, in parts of the vector skeleton, loop body and
// successor blocks including the middle, exit and scalar preheader blocks.
for (VPBlockBase *Block : RPOT)
Block->execute(State);
State->CFG.DTU.flush();
auto *LoopRegion = getVectorLoopRegion();
if (!LoopRegion)
return;
VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
// Fix the latch value of canonical, reduction and first-order recurrences
// phis in the vector loop.
VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
for (VPRecipeBase &R : Header->phis()) {
// Skip phi-like recipes that generate their backedege values themselves.
if (isa<VPWidenPHIRecipe>(&R))
continue;
if (isa<VPWidenInductionRecipe>(&R)) {
PHINode *Phi = nullptr;
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
} else {
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
"recipe generating only scalars should have been replaced");
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
Phi = cast<PHINode>(GEP->getPointerOperand());
}
Phi->setIncomingBlock(1, VectorLatchBB);
// Move the last step to the end of the latch block. This ensures
// consistent placement of all induction updates.
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
Inc->moveBefore(std::prev(VectorLatchBB->getTerminator()->getIterator()));
// Use the steps for the last part as backedge value for the induction.
if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
continue;
}
auto *PhiR = cast<VPSingleDefRecipe>(&R);
// VPInstructions currently model scalar Phis only.
bool NeedsScalar = isa<VPInstruction>(PhiR) ||
(isa<VPReductionPHIRecipe>(PhiR) &&
cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
Value *Phi = State->get(PhiR, NeedsScalar);
// VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does not.
Value *Val = State->get(PhiR->getOperand(1), NeedsScalar);
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
}
}
InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
// For now only return the cost of the vector loop region, ignoring any other
// blocks, like the preheader or middle blocks.
return getVectorLoopRegion()->cost(VF, Ctx);
}
VPRegionBlock *VPlan::getVectorLoopRegion() {
// TODO: Cache if possible.
for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
if (auto *R = dyn_cast<VPRegionBlock>(B))
return R->isReplicator() ? nullptr : R;
return nullptr;
}
const VPRegionBlock *VPlan::getVectorLoopRegion() const {
for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
if (auto *R = dyn_cast<VPRegionBlock>(B))
return R->isReplicator() ? nullptr : R;
return nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPlan::printLiveIns(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
if (VF.getNumUsers() > 0) {
O << "\nLive-in ";
VF.printAsOperand(O, SlotTracker);
O << " = VF";
}
if (VFxUF.getNumUsers() > 0) {
O << "\nLive-in ";
VFxUF.printAsOperand(O, SlotTracker);
O << " = VF * UF";
}
if (VectorTripCount.getNumUsers() > 0) {
O << "\nLive-in ";
VectorTripCount.printAsOperand(O, SlotTracker);
O << " = vector-trip-count";
}
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
O << "\nLive-in ";
BackedgeTakenCount->printAsOperand(O, SlotTracker);
O << " = backedge-taken count";
}
O << "\n";
if (TripCount) {
if (TripCount->isLiveIn())
O << "Live-in ";
TripCount->printAsOperand(O, SlotTracker);
O << " = original trip-count";
O << "\n";
}
}
LLVM_DUMP_METHOD
void VPlan::print(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
O << "VPlan '" << getName() << "' {";
printLiveIns(O);
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
RPOT(getEntry());
for (const VPBlockBase *Block : RPOT) {
O << '\n';
Block->print(O, "", SlotTracker);
}
O << "}\n";
}
std::string VPlan::getName() const {
std::string Out;
raw_string_ostream RSO(Out);
RSO << Name << " for ";
if (!VFs.empty()) {
RSO << "VF={" << VFs[0];
for (ElementCount VF : drop_begin(VFs))
RSO << "," << VF;
RSO << "},";
}
if (UFs.empty()) {
RSO << "UF>=1";
} else {
RSO << "UF={" << UFs[0];
for (unsigned UF : drop_begin(UFs))
RSO << "," << UF;
RSO << "}";
}
return Out;
}
LLVM_DUMP_METHOD
void VPlan::printDOT(raw_ostream &O) const {
VPlanPrinter Printer(O, *this);
Printer.dump();
}
LLVM_DUMP_METHOD
void VPlan::dump() const { print(dbgs()); }
#endif
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
// Update the operands of all cloned recipes starting at NewEntry. This
// traverses all reachable blocks. This is done in two steps, to handle cycles
// in PHI recipes.
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
OldDeepRPOT(Entry);
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
NewDeepRPOT(NewEntry);
// First, collect all mappings from old to new VPValues defined by cloned
// recipes.
for (const auto &[OldBB, NewBB] :
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
"blocks must have the same number of recipes");
for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
assert(OldR.getNumOperands() == NewR.getNumOperands() &&
"recipes must have the same number of operands");
assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
"recipes must define the same number of operands");
for (const auto &[OldV, NewV] :
zip(OldR.definedValues(), NewR.definedValues()))
Old2NewVPValues[OldV] = NewV;
}
}
// Update all operands to use cloned VPValues.
for (VPBasicBlock *NewBB :
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
for (VPRecipeBase &NewR : *NewBB)
for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
NewR.setOperand(I, NewOp);
}
}
}
VPlan *VPlan::duplicate() {
unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
// Clone blocks.
const auto &[NewEntry, __] = cloneFrom(Entry);
BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
VPIRBasicBlock *NewScalarHeader = nullptr;
if (getScalarHeader()->getNumPredecessors() == 0) {
NewScalarHeader = createVPIRBasicBlock(ScalarHeaderIRBB);
} else {
NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
}));
}
// Create VPlan, clone live-ins and remap operands in the cloned blocks.
auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
DenseMap<VPValue *, VPValue *> Old2NewVPValues;
for (VPValue *OldLiveIn : getLiveIns()) {
Old2NewVPValues[OldLiveIn] =
NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
}
Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
Old2NewVPValues[&VF] = &NewPlan->VF;
Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
if (BackedgeTakenCount) {
NewPlan->BackedgeTakenCount = new VPValue();
Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
}
if (TripCount && TripCount->isLiveIn())
Old2NewVPValues[TripCount] =
NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
// else NewTripCount will be created and inserted into Old2NewVPValues when
// TripCount is cloned. In any case NewPlan->TripCount is updated below.
remapOperands(Entry, NewEntry, Old2NewVPValues);
// Initialize remaining fields of cloned VPlan.
NewPlan->VFs = VFs;
NewPlan->UFs = UFs;
// TODO: Adjust names.
NewPlan->Name = Name;
if (TripCount) {
assert(Old2NewVPValues.contains(TripCount) &&
"TripCount must have been added to Old2NewVPValues");
NewPlan->TripCount = Old2NewVPValues[TripCount];
}
// Transfer all cloned blocks (the second half of all current blocks) from
// current to new VPlan.
unsigned NumBlocksAfterCloning = CreatedBlocks.size();
for (unsigned I :
seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
CreatedBlocks.truncate(NumBlocksBeforeCloning);
// Update ExitBlocks of the new plan.
for (VPBlockBase *VPB : NewPlan->CreatedBlocks) {
if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(VPB) &&
VPB != NewScalarHeader)
NewPlan->ExitBlocks.push_back(cast<VPIRBasicBlock>(VPB));
}
return NewPlan;
}
VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) {
auto *VPIRBB = new VPIRBasicBlock(IRBB);
CreatedBlocks.push_back(VPIRBB);
return VPIRBB;
}
VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) {
auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
for (Instruction &I :
make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
VPIRBB->appendRecipe(VPIRInstruction::create(I));
return VPIRBB;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
Twine(getOrCreateBID(Block));
}
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
const std::string &Name = Block->getName();
if (!Name.empty())
return Name;
return "VPB" + Twine(getOrCreateBID(Block));
}
void VPlanPrinter::dump() {
Depth = 1;
bumpIndent(0);
OS << "digraph VPlan {\n";
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
if (!Plan.getName().empty())
OS << "\\n" << DOT::EscapeString(Plan.getName());
{
// Print live-ins.
std::string Str;
raw_string_ostream SS(Str);
Plan.printLiveIns(SS);
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
for (auto Line : Lines)
OS << DOT::EscapeString(Line.str()) << "\\n";
}
OS << "\"]\n";
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
OS << "edge [fontname=Courier, fontsize=30]\n";
OS << "compound=true\n";
for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
dumpBlock(Block);
OS << "}\n";
}
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
dumpBasicBlock(BasicBlock);
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
dumpRegion(Region);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
bool Hidden, const Twine &Label) {
// Due to "dot" we print an edge between two regions as an edge between the
// exiting basic block and the entry basic of the respective regions.
const VPBlockBase *Tail = From->getExitingBasicBlock();
const VPBlockBase *Head = To->getEntryBasicBlock();
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
OS << " [ label=\"" << Label << '\"';
if (Tail != From)
OS << " ltail=" << getUID(From);
if (Head != To)
OS << " lhead=" << getUID(To);
if (Hidden)
OS << "; splines=none";
OS << "]\n";
}
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
auto &Successors = Block->getSuccessors();
if (Successors.size() == 1)
drawEdge(Block, Successors.front(), false, "");
else if (Successors.size() == 2) {
drawEdge(Block, Successors.front(), false, "T");
drawEdge(Block, Successors.back(), false, "F");
} else {
unsigned SuccessorNumber = 0;
for (auto *Successor : Successors)
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
}
}
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
// Implement dot-formatted dump by performing plain-text dump into the
// temporary storage followed by some post-processing.
OS << Indent << getUID(BasicBlock) << " [label =\n";
bumpIndent(1);
std::string Str;
raw_string_ostream SS(Str);
// Use no indentation as we need to wrap the lines into quotes ourselves.
BasicBlock->print(SS, "", SlotTracker);
// We need to process each line of the output separately, so split
// single-string plain-text dump.
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
};
// Don't need the "+" after the last line.
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
EmitLine(Line, " +\n");
EmitLine(Lines.back(), "\n");
bumpIndent(-1);
OS << Indent << "]\n";
dumpEdges(BasicBlock);
}
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
OS << Indent << "subgraph " << getUID(Region) << " {\n";
bumpIndent(1);
OS << Indent << "fontname=Courier\n"
<< Indent << "label=\""
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
<< DOT::EscapeString(Region->getName()) << "\"\n";
// Dump the blocks of the region.
assert(Region->getEntry() && "Region contains no inner blocks.");
for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
dumpBlock(Block);
bumpIndent(-1);
OS << Indent << "}\n";
dumpEdges(Region);
}
#endif
/// Returns true if there is a vector loop region and \p VPV is defined in a
/// loop region.
static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
const VPRecipeBase *DefR = VPV->getDefiningRecipe();
return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
DefR->getParent()->getEnclosingLoopRegion());
}
bool VPValue::isDefinedOutsideLoopRegions() const {
return !isDefinedInsideLoopRegions(this);
}
void VPValue::replaceAllUsesWith(VPValue *New) {
replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
}
void VPValue::replaceUsesWithIf(
VPValue *New,
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
// Note that this early exit is required for correctness; the implementation
// below relies on the number of users for this VPValue to decrease, which
// isn't the case if this == New.
if (this == New)
return;
for (unsigned J = 0; J < getNumUsers();) {
VPUser *User = Users[J];
bool RemovedUser = false;
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
if (User->getOperand(I) != this || !ShouldReplace(*User, I))
continue;
RemovedUser = true;
User->setOperand(I, New);
}
// If a user got removed after updating the current user, the next user to
// update will be moved to the current position, so we only need to
// increment the index if the number of users did not change.
if (!RemovedUser)
J++;
}
}
void VPUser::replaceUsesOfWith(VPValue *From, VPValue *To) {
for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) {
if (getOperand(Idx) == From)
setOperand(Idx, To);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
OS << Tracker.getOrCreateName(this);
}
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
Op->printAsOperand(O, SlotTracker);
});
}
#endif
void VPSlotTracker::assignName(const VPValue *V) {
assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
auto *UV = V->getUnderlyingValue();
auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
if (!UV && !(VPI && !VPI->getName().empty())) {
VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
NextSlot++;
return;
}
// Use the name of the underlying Value, wrapped in "ir<>", and versioned by
// appending ".Number" to the name if there are multiple uses.
std::string Name;
if (UV) {
raw_string_ostream S(Name);
UV->printAsOperand(S, false);
} else
Name = VPI->getName();
assert(!Name.empty() && "Name cannot be empty.");
StringRef Prefix = UV ? "ir<" : "vp<%";
std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
// First assign the base name for V.
const auto &[A, _] = VPValue2Name.insert({V, BaseName});
// Integer or FP constants with different types will result in he same string
// due to stripping types.
if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
return;
// If it is already used by C > 0 other VPValues, increase the version counter
// C and use it for V.
const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
if (!UseInserted) {
C->second++;
A->second = (BaseName + Twine(".") + Twine(C->second)).str();
}
}
void VPSlotTracker::assignNames(const VPlan &Plan) {
if (Plan.VF.getNumUsers() > 0)
assignName(&Plan.VF);
if (Plan.VFxUF.getNumUsers() > 0)
assignName(&Plan.VFxUF);
assignName(&Plan.VectorTripCount);
if (Plan.BackedgeTakenCount)
assignName(Plan.BackedgeTakenCount);
for (VPValue *LI : Plan.getLiveIns())
assignName(LI);
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
for (const VPBasicBlock *VPBB :
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
assignNames(VPBB);
}
void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
for (const VPRecipeBase &Recipe : *VPBB)
for (VPValue *Def : Recipe.definedValues())
assignName(Def);
}
std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
std::string Name = VPValue2Name.lookup(V);
if (!Name.empty())
return Name;
// If no name was assigned, no VPlan was provided when creating the slot
// tracker or it is not reachable from the provided VPlan. This can happen,
// e.g. when trying to print a recipe that has not been inserted into a VPlan
// in a debugger.
// TODO: Update VPSlotTracker constructor to assign names to recipes &
// VPValues not associated with a VPlan, instead of constructing names ad-hoc
// here.
const VPRecipeBase *DefR = V->getDefiningRecipe();
(void)DefR;
assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
"VPValue defined by a recipe in a VPlan?");
// Use the underlying value's name, if there is one.
if (auto *UV = V->getUnderlyingValue()) {
std::string Name;
raw_string_ostream S(Name);
UV->printAsOperand(S, false);
return (Twine("ir<") + Name + ">").str();
}
return "<badref>";
}
bool LoopVectorizationPlanner::getDecisionAndClampRange(
const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
assert(!Range.isEmpty() && "Trying to test an empty VF range.");
bool PredicateAtRangeStart = Predicate(Range.Start);
for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
if (Predicate(TmpVF) != PredicateAtRangeStart) {
Range.End = TmpVF;
break;
}
return PredicateAtRangeStart;
}
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
ElementCount MaxVF) {
auto MaxVFTimes2 = MaxVF * 2;
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
VFRange SubRange = {VF, MaxVFTimes2};
if (auto Plan = tryToBuildVPlan(SubRange)) {
VPlanTransforms::optimize(*Plan);
// Update the name of the latch of the top-level vector loop region region
// after optimizations which includes block folding.
Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
VPlans.push_back(std::move(Plan));
}
VF = SubRange.End;
}
}
VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
assert(count_if(VPlans,
[VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1 &&
"Multiple VPlans for VF.");
for (const VPlanPtr &Plan : VPlans) {
if (Plan->hasVF(VF))
return *Plan.get();
}
llvm_unreachable("No plan found!");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
if (VPlans.empty()) {
O << "LV: No VPlans built.\n";
return;
}
for (const auto &Plan : VPlans)
if (PrintVPlansInDotFormat)
Plan->printDOT(O);
else
Plan->print(O);
}
#endif
TargetTransformInfo::OperandValueInfo
VPCostContext::getOperandInfo(VPValue *V) const {
if (!V->isLiveIn())
return {};
return TTI::getOperandInfo(V->getLiveInIRValue());
}