|  | //===-- Single-precision log2(x) function ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "src/math/log2f.h" | 
|  | #include "common_constants.h" // Lookup table for (1/f) | 
|  | #include "src/__support/FPUtil/FEnvImpl.h" | 
|  | #include "src/__support/FPUtil/FPBits.h" | 
|  | #include "src/__support/FPUtil/PolyEval.h" | 
|  | #include "src/__support/FPUtil/except_value_utils.h" | 
|  | #include "src/__support/FPUtil/multiply_add.h" | 
|  | #include "src/__support/common.h" | 
|  | #include "src/__support/macros/config.h" | 
|  | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY | 
|  |  | 
|  | // This is a correctly-rounded algorithm for log2(x) in single precision with | 
|  | // round-to-nearest, tie-to-even mode from the RLIBM project at: | 
|  | // https://people.cs.rutgers.edu/~sn349/rlibm | 
|  |  | 
|  | // Step 1 - Range reduction: | 
|  | //   For x = 2^m * 1.mant, log2(x) = m + log2(1.m) | 
|  | //   If x is denormal, we normalize it by multiplying x by 2^23 and subtracting | 
|  | //   m by 23. | 
|  |  | 
|  | // Step 2 - Another range reduction: | 
|  | //   To compute log(1.mant), let f be the highest 8 bits including the hidden | 
|  | // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the | 
|  | // mantissa. Then we have the following approximation formula: | 
|  | //   log2(1.mant) = log2(f) + log2(1.mant / f) | 
|  | //                = log2(f) + log2(1 + d/f) | 
|  | //                ~ log2(f) + P(d/f) | 
|  | // since d/f is sufficiently small. | 
|  | //   log2(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. | 
|  |  | 
|  | // Step 3 - Polynomial approximation: | 
|  | //   To compute P(d/f), we use a single degree-5 polynomial in double precision | 
|  | // which provides correct rounding for all but few exception values. | 
|  | //   For more detail about how this polynomial is obtained, please refer to the | 
|  | // papers: | 
|  | //   Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce | 
|  | // Correctly Rounded Results of an Elementary Function for Multiple | 
|  | // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN | 
|  | // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, | 
|  | // USA, Jan. 16-22, 2022. | 
|  | // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf | 
|  | //   Aanjaneya, M., Lim, J., and Nagarakatte, S., "RLibm-Prog: Progressive | 
|  | // Polynomial Approximations for Fast Correctly Rounded Math Libraries", | 
|  | // Dept. of Comp. Sci., Rutgets U., Technical Report DCS-TR-758, Nov. 2021. | 
|  | // https://arxiv.org/pdf/2111.12852.pdf. | 
|  |  | 
|  | namespace LIBC_NAMESPACE_DECL { | 
|  |  | 
|  | LLVM_LIBC_FUNCTION(float, log2f, (float x)) { | 
|  | using FPBits = typename fputil::FPBits<float>; | 
|  |  | 
|  | FPBits xbits(x); | 
|  | uint32_t x_u = xbits.uintval(); | 
|  |  | 
|  | // Hard to round value(s). | 
|  | using fputil::round_result_slightly_up; | 
|  |  | 
|  | int m = -FPBits::EXP_BIAS; | 
|  |  | 
|  | // log2(1.0f) = 0.0f. | 
|  | if (LIBC_UNLIKELY(x_u == 0x3f80'0000U)) | 
|  | return 0.0f; | 
|  |  | 
|  | // Exceptional inputs. | 
|  | if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval() || | 
|  | x_u > FPBits::max_normal().uintval())) { | 
|  | if (x == 0.0f) { | 
|  | fputil::set_errno_if_required(ERANGE); | 
|  | fputil::raise_except_if_required(FE_DIVBYZERO); | 
|  | return FPBits::inf(Sign::NEG).get_val(); | 
|  | } | 
|  | if (xbits.is_neg() && !xbits.is_nan()) { | 
|  | fputil::set_errno_if_required(EDOM); | 
|  | fputil::raise_except(FE_INVALID); | 
|  | return FPBits::quiet_nan().get_val(); | 
|  | } | 
|  | if (xbits.is_inf_or_nan()) { | 
|  | return x; | 
|  | } | 
|  | // Normalize denormal inputs. | 
|  | xbits = FPBits(xbits.get_val() * 0x1.0p23f); | 
|  | m -= 23; | 
|  | } | 
|  |  | 
|  | m += xbits.get_biased_exponent(); | 
|  | int index = xbits.get_mantissa() >> 16; | 
|  | // Set bits to 1.m | 
|  | xbits.set_biased_exponent(0x7F); | 
|  |  | 
|  | float u = xbits.get_val(); | 
|  | double v; | 
|  | #ifdef LIBC_TARGET_CPU_HAS_FMA_FLOAT | 
|  | v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact. | 
|  | #else | 
|  | v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact | 
|  | #endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT | 
|  |  | 
|  | double extra_factor = static_cast<double>(m) + LOG2_R[index]; | 
|  |  | 
|  | // Degree-5 polynomial approximation of log2 generated by Sollya with: | 
|  | // > P = fpminimax(log2(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); | 
|  | constexpr double COEFFS[5] = {0x1.71547652b8133p0, -0x1.71547652d1e33p-1, | 
|  | 0x1.ec70a098473dep-2, -0x1.7154c5ccdf121p-2, | 
|  | 0x1.2514fd90a130ap-2}; | 
|  |  | 
|  | double vsq = v * v; // Exact | 
|  | double c0 = fputil::multiply_add(v, COEFFS[0], extra_factor); | 
|  | double c1 = fputil::multiply_add(v, COEFFS[2], COEFFS[1]); | 
|  | double c2 = fputil::multiply_add(v, COEFFS[4], COEFFS[3]); | 
|  |  | 
|  | double r = fputil::polyeval(vsq, c0, c1, c2); | 
|  |  | 
|  | return static_cast<float>(r); | 
|  | } | 
|  |  | 
|  | } // namespace LIBC_NAMESPACE_DECL |