|  | //===-- Single-precision asin function ------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "src/math/asinf.h" | 
|  | #include "src/__support/FPUtil/FEnvImpl.h" | 
|  | #include "src/__support/FPUtil/FPBits.h" | 
|  | #include "src/__support/FPUtil/PolyEval.h" | 
|  | #include "src/__support/FPUtil/except_value_utils.h" | 
|  | #include "src/__support/FPUtil/multiply_add.h" | 
|  | #include "src/__support/FPUtil/sqrt.h" | 
|  | #include "src/__support/macros/config.h" | 
|  | #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY | 
|  | #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA | 
|  |  | 
|  | #include "inv_trigf_utils.h" | 
|  |  | 
|  | namespace LIBC_NAMESPACE_DECL { | 
|  |  | 
|  | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  | static constexpr size_t N_EXCEPTS = 2; | 
|  |  | 
|  | // Exceptional values when |x| <= 0.5 | 
|  | static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{ | 
|  | // (inputs, RZ output, RU offset, RD offset, RN offset) | 
|  | // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) | 
|  | {0x3d09bf86, 0x3d09c62c, 1, 0, 1}, | 
|  | // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) | 
|  | {0x3de5fa1e, 0x3de6768e, 1, 0, 0}, | 
|  | }}; | 
|  |  | 
|  | // Exceptional values when 0.5 < |x| <= 1 | 
|  | static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{ | 
|  | // (inputs, RZ output, RU offset, RD offset, RN offset) | 
|  | // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) | 
|  | {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0}, | 
|  | // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) | 
|  | {0x3f7741b6, 0x3fa7832a, 1, 0, 0}, | 
|  | }}; | 
|  | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  |  | 
|  | LLVM_LIBC_FUNCTION(float, asinf, (float x)) { | 
|  | using FPBits = typename fputil::FPBits<float>; | 
|  |  | 
|  | FPBits xbits(x); | 
|  | uint32_t x_uint = xbits.uintval(); | 
|  | uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; | 
|  | constexpr double SIGN[2] = {1.0, -1.0}; | 
|  | uint32_t x_sign = x_uint >> 31; | 
|  |  | 
|  | // |x| <= 0.5-ish | 
|  | if (x_abs < 0x3f04'471dU) { | 
|  | // |x| < 0x1.d12edp-12 | 
|  | if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { | 
|  | // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x | 
|  | // is: | 
|  | //   |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) | 
|  | //                             = x^2 / 6 | 
|  | //                             < 2^-25 | 
|  | //                             < epsilon(1)/2. | 
|  | // So the correctly rounded values of asin(x) are: | 
|  | //   = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, | 
|  | //                        or (rounding mode = FE_UPWARD and x is | 
|  | //                        negative), | 
|  | //   = x otherwise. | 
|  | // To simplify the rounding decision and make it more efficient, we use | 
|  | //   fma(x, 2^-25, x) instead. | 
|  | // An exhaustive test shows that this formula work correctly for all | 
|  | // rounding modes up to |x| < 0x1.d12edp-12. | 
|  | // Note: to use the formula x + 2^-25*x to decide the correct rounding, we | 
|  | // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when | 
|  | // |x| < 2^-125. For targets without FMA instructions, we simply use | 
|  | // double for intermediate results as it is more efficient than using an | 
|  | // emulated version of FMA. | 
|  | #if defined(LIBC_TARGET_CPU_HAS_FMA_FLOAT) | 
|  | return fputil::multiply_add(x, 0x1.0p-25f, x); | 
|  | #else | 
|  | double xd = static_cast<double>(x); | 
|  | return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); | 
|  | #endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT | 
|  | } | 
|  |  | 
|  | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  | // Check for exceptional values | 
|  | if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign); | 
|  | LIBC_UNLIKELY(r.has_value())) | 
|  | return r.value(); | 
|  | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  |  | 
|  | // For |x| <= 0.5, we approximate asinf(x) by: | 
|  | //   asin(x) = x * P(x^2) | 
|  | // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating | 
|  | // asin(x)/x on [0, 0.5] generated by Sollya with: | 
|  | // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], | 
|  | //                 [|1, D...|], [0, 0.5]); | 
|  | // An exhaustive test shows that this approximation works well up to a | 
|  | // little more than 0.5. | 
|  | double xd = static_cast<double>(x); | 
|  | double xsq = xd * xd; | 
|  | double x3 = xd * xsq; | 
|  | double r = asin_eval(xsq); | 
|  | return static_cast<float>(fputil::multiply_add(x3, r, xd)); | 
|  | } | 
|  |  | 
|  | // |x| > 1, return NaNs. | 
|  | if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { | 
|  | if (xbits.is_signaling_nan()) { | 
|  | fputil::raise_except_if_required(FE_INVALID); | 
|  | return FPBits::quiet_nan().get_val(); | 
|  | } | 
|  |  | 
|  | if (x_abs <= 0x7f80'0000U) { | 
|  | fputil::set_errno_if_required(EDOM); | 
|  | fputil::raise_except_if_required(FE_INVALID); | 
|  | } | 
|  |  | 
|  | return FPBits::quiet_nan().get_val(); | 
|  | } | 
|  |  | 
|  | #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  | // Check for exceptional values | 
|  | if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign); | 
|  | LIBC_UNLIKELY(r.has_value())) | 
|  | return r.value(); | 
|  | #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS | 
|  |  | 
|  | // When |x| > 0.5, we perform range reduction as follow: | 
|  | // | 
|  | // Assume further that 0.5 < x <= 1, and let: | 
|  | //   y = asin(x) | 
|  | // We will use the double angle formula: | 
|  | //   cos(2y) = 1 - 2 sin^2(y) | 
|  | // and the complement angle identity: | 
|  | //   x = sin(y) = cos(pi/2 - y) | 
|  | //              = 1 - 2 sin^2 (pi/4 - y/2) | 
|  | // So: | 
|  | //   sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) | 
|  | // And hence: | 
|  | //   pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) | 
|  | // Equivalently: | 
|  | //   asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) | 
|  | // Let u = (1 - x)/2, then: | 
|  | //   asin(x) = pi/2 - 2 * asin( sqrt(u) ) | 
|  | // Moreover, since 0.5 < x <= 1: | 
|  | //   0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, | 
|  | // And hence we can reuse the same polynomial approximation of asin(x) when | 
|  | // |x| <= 0.5: | 
|  | //   asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), | 
|  |  | 
|  | xbits.set_sign(Sign::POS); | 
|  | double sign = SIGN[x_sign]; | 
|  | double xd = static_cast<double>(xbits.get_val()); | 
|  | double u = fputil::multiply_add(-0.5, xd, 0.5); | 
|  | double c1 = sign * (-2 * fputil::sqrt<double>(u)); | 
|  | double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1); | 
|  | double c3 = c1 * u; | 
|  |  | 
|  | double r = asin_eval(u); | 
|  | return static_cast<float>(fputil::multiply_add(c3, r, c2)); | 
|  | } | 
|  |  | 
|  | } // namespace LIBC_NAMESPACE_DECL |