| //===-- Half-precision acospi function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/acospif16.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/sqrt.h" |
| #include "src/__support/macros/optimization.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| LLVM_LIBC_FUNCTION(float16, acospif16, (float16 x)) { |
| using FPBits = fputil::FPBits<float16>; |
| FPBits xbits(x); |
| |
| uint16_t x_u = xbits.uintval(); |
| uint16_t x_abs = x_u & 0x7fff; |
| uint16_t x_sign = x_u >> 15; |
| |
| // |x| > 0x1p0, |x| > 1, or x is NaN. |
| if (LIBC_UNLIKELY(x_abs > 0x3c00)) { |
| // acospif16(NaN) = NaN |
| if (xbits.is_nan()) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| return x; |
| } |
| |
| // 1 < |x| <= +inf |
| fputil::raise_except_if_required(FE_INVALID); |
| fputil::set_errno_if_required(EDOM); |
| |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| // |x| == 0x1p0, x is 1 or -1 |
| // if x is (-)1, return 1 |
| // if x is (+)1, return 0 |
| if (LIBC_UNLIKELY(x_abs == 0x3c00)) |
| return fputil::cast<float16>(x_sign ? 1.0f : 0.0f); |
| |
| float xf = x; |
| float xsq = xf * xf; |
| |
| // Degree-6 minimax polynomial coefficients of asin(x) generated by Sollya |
| // with: > P = fpminimax(asin(x)/(pi * x), [|0, 2, 4, 6, 8|], [|SG...|], [0, |
| // 0.5]); |
| constexpr float POLY_COEFFS[5] = {0x1.45f308p-2f, 0x1.b2900cp-5f, |
| 0x1.897e36p-6f, 0x1.9efafcp-7f, |
| 0x1.06d884p-6f}; |
| // |x| <= 0x1p-1, |x| <= 0.5 |
| if (x_abs <= 0x3800) { |
| // if x is 0, return 0.5 |
| if (LIBC_UNLIKELY(x_abs == 0)) |
| return fputil::cast<float16>(0.5f); |
| |
| // Note that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x), then |
| // acospi(x) = 0.5 - asin(x)/pi |
| float interm = |
| fputil::polyeval(xsq, POLY_COEFFS[0], POLY_COEFFS[1], POLY_COEFFS[2], |
| POLY_COEFFS[3], POLY_COEFFS[4]); |
| |
| return fputil::cast<float16>(fputil::multiply_add(-xf, interm, 0.5f)); |
| } |
| |
| // When |x| > 0.5, assume that 0.5 < |x| <= 1 |
| // |
| // Step-by-step range-reduction proof: |
| // 1: Let y = asin(x), such that, x = sin(y) |
| // 2: From complimentary angle identity: |
| // x = sin(y) = cos(pi/2 - y) |
| // 3: Let z = pi/2 - y, such that x = cos(z) |
| // 4: From double angle formula; cos(2A) = 1 - 2 * sin^2(A): |
| // z = 2A, z/2 = A |
| // cos(z) = 1 - 2 * sin^2(z/2) |
| // 5: Make sin(z/2) subject of the formula: |
| // sin(z/2) = sqrt((1 - cos(z))/2) |
| // 6: Recall [3]; x = cos(z). Therefore: |
| // sin(z/2) = sqrt((1 - x)/2) |
| // 7: Let u = (1 - x)/2 |
| // 8: Therefore: |
| // asin(sqrt(u)) = z/2 |
| // 2 * asin(sqrt(u)) = z |
| // 9: Recall [3]; z = pi/2 - y. Therefore: |
| // y = pi/2 - z |
| // y = pi/2 - 2 * asin(sqrt(u)) |
| // 10: Recall [1], y = asin(x). Therefore: |
| // asin(x) = pi/2 - 2 * asin(sqrt(u)) |
| // 11: Recall that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x) |
| // Therefore: |
| // acos(x) = pi/2 - (pi/2 - 2 * asin(sqrt(u))) |
| // acos(x) = 2 * asin(sqrt(u)) |
| // acospi(x) = 2 * (asin(sqrt(u)) / pi) |
| // |
| // THE RANGE REDUCTION, HOW? |
| // 12: Recall [7], u = (1 - x)/2 |
| // 13: Since 0.5 < x <= 1, therefore: |
| // 0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5 |
| // |
| // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for |
| // Step [11] as `sqrt(u)` is in range. |
| // When -1 < x <= -0.5, the identity: |
| // acos(x) = pi - acos(-x) |
| // acospi(x) = 1 - acos(-x)/pi |
| // allows us to compute for the negative x value (lhs) |
| // with a positive x value instead (rhs). |
| |
| float xf_abs = (xf < 0 ? -xf : xf); |
| float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f); |
| float sqrt_u = fputil::sqrt<float>(u); |
| |
| float asin_sqrt_u = |
| sqrt_u * fputil::polyeval(u, POLY_COEFFS[0], POLY_COEFFS[1], |
| POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4]); |
| |
| // Same as acos(x), but devided the expression with pi |
| return fputil::cast<float16>( |
| x_sign ? fputil::multiply_add(-2.0f, asin_sqrt_u, 1.0f) |
| : 2.0f * asin_sqrt_u); |
| } |
| } // namespace LIBC_NAMESPACE_DECL |