| //===-- Half-precision acosf16(x) function --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/acosf16.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/sqrt.h" |
| #include "src/__support/macros/optimization.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| // Generated by Sollya using the following command: |
| // > round(pi/2, SG, RN); |
| // > round(pi, SG, RN); |
| static constexpr float PI_OVER_2 = 0x1.921fb6p0f; |
| static constexpr float PI = 0x1.921fb6p1f; |
| |
| #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| static constexpr size_t N_EXCEPTS = 2; |
| |
| static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ACOSF16_EXCEPTS{{ |
| // (input, RZ output, RU offset, RD offset, RN offset) |
| {0xacaf, 0x3e93, 1, 0, 0}, |
| {0xb874, 0x4052, 1, 0, 1}, |
| }}; |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| |
| LLVM_LIBC_FUNCTION(float16, acosf16, (float16 x)) { |
| using FPBits = fputil::FPBits<float16>; |
| FPBits xbits(x); |
| |
| uint16_t x_u = xbits.uintval(); |
| uint16_t x_abs = x_u & 0x7fff; |
| uint16_t x_sign = x_u >> 15; |
| |
| // |x| > 0x1p0, |x| > 1, or x is NaN. |
| if (LIBC_UNLIKELY(x_abs > 0x3c00)) { |
| // acosf16(NaN) = NaN |
| if (xbits.is_nan()) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| return x; |
| } |
| |
| // 1 < |x| <= +/-inf |
| fputil::raise_except_if_required(FE_INVALID); |
| fputil::set_errno_if_required(EDOM); |
| |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| float xf = x; |
| |
| #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| // Handle exceptional values |
| if (auto r = ACOSF16_EXCEPTS.lookup(x_u); LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| |
| // |x| == 0x1p0, x is 1 or -1 |
| // if x is (-)1, return pi, else |
| // if x is (+)1, return 0 |
| if (LIBC_UNLIKELY(x_abs == 0x3c00)) |
| return fputil::cast<float16>(x_sign ? PI : 0.0f); |
| |
| float xsq = xf * xf; |
| |
| // |x| <= 0x1p-1, |x| <= 0.5 |
| if (x_abs <= 0x3800) { |
| // if x is 0, return pi/2 |
| if (LIBC_UNLIKELY(x_abs == 0)) |
| return fputil::cast<float16>(PI_OVER_2); |
| |
| // Note that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x) |
| // Degree-6 minimax polynomial of asin(x) generated by Sollya with: |
| // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); |
| float interm = |
| fputil::polyeval(xsq, 0x1.000002p0f, 0x1.554c2ap-3f, 0x1.3541ccp-4f, |
| 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); |
| return fputil::cast<float16>(fputil::multiply_add(-xf, interm, PI_OVER_2)); |
| } |
| |
| // When |x| > 0.5, assume that 0.5 < |x| <= 1 |
| // |
| // Step-by-step range-reduction proof: |
| // 1: Let y = asin(x), such that, x = sin(y) |
| // 2: From complimentary angle identity: |
| // x = sin(y) = cos(pi/2 - y) |
| // 3: Let z = pi/2 - y, such that x = cos(z) |
| // 4: From double angle formula; cos(2A) = 1 - 2 * sin^2(A): |
| // z = 2A, z/2 = A |
| // cos(z) = 1 - 2 * sin^2(z/2) |
| // 5: Make sin(z/2) subject of the formula: |
| // sin(z/2) = sqrt((1 - cos(z))/2) |
| // 6: Recall [3]; x = cos(z). Therefore: |
| // sin(z/2) = sqrt((1 - x)/2) |
| // 7: Let u = (1 - x)/2 |
| // 8: Therefore: |
| // asin(sqrt(u)) = z/2 |
| // 2 * asin(sqrt(u)) = z |
| // 9: Recall [3]; z = pi/2 - y. Therefore: |
| // y = pi/2 - z |
| // y = pi/2 - 2 * asin(sqrt(u)) |
| // 10: Recall [1], y = asin(x). Therefore: |
| // asin(x) = pi/2 - 2 * asin(sqrt(u)) |
| // 11: Recall that: acos(x) = pi/2 + asin(-x) = pi/2 - asin(x) |
| // Therefore: |
| // acos(x) = pi/2 - (pi/2 - 2 * asin(sqrt(u))) |
| // acos(x) = 2 * asin(sqrt(u)) |
| // |
| // THE RANGE REDUCTION, HOW? |
| // 12: Recall [7], u = (1 - x)/2 |
| // 13: Since 0.5 < x <= 1, therefore: |
| // 0 <= u <= 0.25 and 0 <= sqrt(u) <= 0.5 |
| // |
| // Hence, we can reuse the same [0, 0.5] domain polynomial approximation for |
| // Step [11] as `sqrt(u)` is in range. |
| // When -1 < x <= -0.5, the identity: |
| // acos(x) = pi - acos(-x) |
| // allows us to compute for the negative x value (lhs) |
| // with a positive x value instead (rhs). |
| |
| float xf_abs = (xf < 0 ? -xf : xf); |
| float u = fputil::multiply_add(-0.5f, xf_abs, 0.5f); |
| float sqrt_u = fputil::sqrt<float>(u); |
| |
| // Degree-6 minimax polynomial of asin(x) generated by Sollya with: |
| // > P = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8|], [|SG...|], [0, 0.5]); |
| float asin_sqrt_u = |
| sqrt_u * fputil::polyeval(u, 0x1.000002p0f, 0x1.554c2ap-3f, |
| 0x1.3541ccp-4f, 0x1.43b2d6p-5f, 0x1.a0d73ep-5f); |
| |
| return fputil::cast<float16>( |
| x_sign ? fputil::multiply_add(-2.0f, asin_sqrt_u, PI) : 2 * asin_sqrt_u); |
| } |
| } // namespace LIBC_NAMESPACE_DECL |