| //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The analysis collects instructions that should be output at the module level |
| // and performs the global register numbering. |
| // |
| // The results of this analysis are used in AsmPrinter to rename registers |
| // globally and to output required instructions at the module level. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SPIRVModuleAnalysis.h" |
| #include "MCTargetDesc/SPIRVBaseInfo.h" |
| #include "MCTargetDesc/SPIRVMCTargetDesc.h" |
| #include "SPIRV.h" |
| #include "SPIRVSubtarget.h" |
| #include "SPIRVTargetMachine.h" |
| #include "SPIRVUtils.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "spirv-module-analysis" |
| |
| static cl::opt<bool> |
| SPVDumpDeps("spv-dump-deps", |
| cl::desc("Dump MIR with SPIR-V dependencies info"), |
| cl::Optional, cl::init(false)); |
| |
| static cl::list<SPIRV::Capability::Capability> |
| AvoidCapabilities("avoid-spirv-capabilities", |
| cl::desc("SPIR-V capabilities to avoid if there are " |
| "other options enabling a feature"), |
| cl::ZeroOrMore, cl::Hidden, |
| cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader", |
| "SPIR-V Shader capability"))); |
| // Use sets instead of cl::list to check "if contains" condition |
| struct AvoidCapabilitiesSet { |
| SmallSet<SPIRV::Capability::Capability, 4> S; |
| AvoidCapabilitiesSet() { |
| for (auto Cap : AvoidCapabilities) |
| S.insert(Cap); |
| } |
| }; |
| |
| char llvm::SPIRVModuleAnalysis::ID = 0; |
| |
| namespace llvm { |
| void initializeSPIRVModuleAnalysisPass(PassRegistry &); |
| } // namespace llvm |
| |
| INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true, |
| true) |
| |
| // Retrieve an unsigned from an MDNode with a list of them as operands. |
| static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex, |
| unsigned DefaultVal = 0) { |
| if (MdNode && OpIndex < MdNode->getNumOperands()) { |
| const auto &Op = MdNode->getOperand(OpIndex); |
| return mdconst::extract<ConstantInt>(Op)->getZExtValue(); |
| } |
| return DefaultVal; |
| } |
| |
| static SPIRV::Requirements |
| getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category, |
| unsigned i, const SPIRVSubtarget &ST, |
| SPIRV::RequirementHandler &Reqs) { |
| static AvoidCapabilitiesSet |
| AvoidCaps; // contains capabilities to avoid if there is another option |
| |
| VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i); |
| VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i); |
| VersionTuple SPIRVVersion = ST.getSPIRVVersion(); |
| bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer; |
| bool MaxVerOK = |
| ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer; |
| CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i); |
| ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i); |
| if (ReqCaps.empty()) { |
| if (ReqExts.empty()) { |
| if (MinVerOK && MaxVerOK) |
| return {true, {}, {}, ReqMinVer, ReqMaxVer}; |
| return {false, {}, {}, VersionTuple(), VersionTuple()}; |
| } |
| } else if (MinVerOK && MaxVerOK) { |
| if (ReqCaps.size() == 1) { |
| auto Cap = ReqCaps[0]; |
| if (Reqs.isCapabilityAvailable(Cap)) |
| return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; |
| } else { |
| // By SPIR-V specification: "If an instruction, enumerant, or other |
| // feature specifies multiple enabling capabilities, only one such |
| // capability needs to be declared to use the feature." However, one |
| // capability may be preferred over another. We use command line |
| // argument(s) and AvoidCapabilities to avoid selection of certain |
| // capabilities if there are other options. |
| CapabilityList UseCaps; |
| for (auto Cap : ReqCaps) |
| if (Reqs.isCapabilityAvailable(Cap)) |
| UseCaps.push_back(Cap); |
| for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) { |
| auto Cap = UseCaps[i]; |
| if (i == Sz - 1 || !AvoidCaps.S.contains(Cap)) |
| return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer}; |
| } |
| } |
| } |
| // If there are no capabilities, or we can't satisfy the version or |
| // capability requirements, use the list of extensions (if the subtarget |
| // can handle them all). |
| if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) { |
| return ST.canUseExtension(Ext); |
| })) { |
| return {true, |
| {}, |
| ReqExts, |
| VersionTuple(), |
| VersionTuple()}; // TODO: add versions to extensions. |
| } |
| return {false, {}, {}, VersionTuple(), VersionTuple()}; |
| } |
| |
| void SPIRVModuleAnalysis::setBaseInfo(const Module &M) { |
| MAI.MaxID = 0; |
| for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++) |
| MAI.MS[i].clear(); |
| MAI.RegisterAliasTable.clear(); |
| MAI.InstrsToDelete.clear(); |
| MAI.FuncMap.clear(); |
| MAI.GlobalVarList.clear(); |
| MAI.ExtInstSetMap.clear(); |
| MAI.Reqs.clear(); |
| MAI.Reqs.initAvailableCapabilities(*ST); |
| |
| // TODO: determine memory model and source language from the configuratoin. |
| if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) { |
| auto MemMD = MemModel->getOperand(0); |
| MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>( |
| getMetadataUInt(MemMD, 0)); |
| MAI.Mem = |
| static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1)); |
| } else { |
| // TODO: Add support for VulkanMemoryModel. |
| MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL |
| : SPIRV::MemoryModel::GLSL450; |
| if (MAI.Mem == SPIRV::MemoryModel::OpenCL) { |
| unsigned PtrSize = ST->getPointerSize(); |
| MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32 |
| : PtrSize == 64 ? SPIRV::AddressingModel::Physical64 |
| : SPIRV::AddressingModel::Logical; |
| } else { |
| // TODO: Add support for PhysicalStorageBufferAddress. |
| MAI.Addr = SPIRV::AddressingModel::Logical; |
| } |
| } |
| // Get the OpenCL version number from metadata. |
| // TODO: support other source languages. |
| if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) { |
| MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C; |
| // Construct version literal in accordance with SPIRV-LLVM-Translator. |
| // TODO: support multiple OCL version metadata. |
| assert(VerNode->getNumOperands() > 0 && "Invalid SPIR"); |
| auto VersionMD = VerNode->getOperand(0); |
| unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2); |
| unsigned MinorNum = getMetadataUInt(VersionMD, 1); |
| unsigned RevNum = getMetadataUInt(VersionMD, 2); |
| // Prevent Major part of OpenCL version to be 0 |
| MAI.SrcLangVersion = |
| (std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum; |
| } else { |
| // If there is no information about OpenCL version we are forced to generate |
| // OpenCL 1.0 by default for the OpenCL environment to avoid puzzling |
| // run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV |
| // Translator avoids potential issues with run-times in a similar manner. |
| if (ST->isOpenCLEnv()) { |
| MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP; |
| MAI.SrcLangVersion = 100000; |
| } else { |
| MAI.SrcLang = SPIRV::SourceLanguage::Unknown; |
| MAI.SrcLangVersion = 0; |
| } |
| } |
| |
| if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) { |
| for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) { |
| MDNode *MD = ExtNode->getOperand(I); |
| if (!MD || MD->getNumOperands() == 0) |
| continue; |
| for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J) |
| MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString()); |
| } |
| } |
| |
| // Update required capabilities for this memory model, addressing model and |
| // source language. |
| MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, |
| MAI.Mem, *ST); |
| MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand, |
| MAI.SrcLang, *ST); |
| MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, |
| MAI.Addr, *ST); |
| |
| if (ST->isOpenCLEnv()) { |
| // TODO: check if it's required by default. |
| MAI.ExtInstSetMap[static_cast<unsigned>( |
| SPIRV::InstructionSet::OpenCL_std)] = |
| Register::index2VirtReg(MAI.getNextID()); |
| } |
| } |
| |
| // Collect MI which defines the register in the given machine function. |
| static void collectDefInstr(Register Reg, const MachineFunction *MF, |
| SPIRV::ModuleAnalysisInfo *MAI, |
| SPIRV::ModuleSectionType MSType, |
| bool DoInsert = true) { |
| assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias"); |
| MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg); |
| assert(MI && "There should be an instruction that defines the register"); |
| MAI->setSkipEmission(MI); |
| if (DoInsert) |
| MAI->MS[MSType].push_back(MI); |
| } |
| |
| void SPIRVModuleAnalysis::collectGlobalEntities( |
| const std::vector<SPIRV::DTSortableEntry *> &DepsGraph, |
| SPIRV::ModuleSectionType MSType, |
| std::function<bool(const SPIRV::DTSortableEntry *)> Pred, |
| bool UsePreOrder = false) { |
| DenseSet<const SPIRV::DTSortableEntry *> Visited; |
| for (const auto *E : DepsGraph) { |
| std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil; |
| // NOTE: here we prefer recursive approach over iterative because |
| // we don't expect depchains long enough to cause SO. |
| RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred, |
| &RecHoistUtil](const SPIRV::DTSortableEntry *E) { |
| if (Visited.count(E) || !Pred(E)) |
| return; |
| Visited.insert(E); |
| |
| // Traversing deps graph in post-order allows us to get rid of |
| // register aliases preprocessing. |
| // But pre-order is required for correct processing of function |
| // declaration and arguments processing. |
| if (!UsePreOrder) |
| for (auto *S : E->getDeps()) |
| RecHoistUtil(S); |
| |
| Register GlobalReg = Register::index2VirtReg(MAI.getNextID()); |
| bool IsFirst = true; |
| for (auto &U : *E) { |
| const MachineFunction *MF = U.first; |
| Register Reg = U.second; |
| MAI.setRegisterAlias(MF, Reg, GlobalReg); |
| if (!MF->getRegInfo().getUniqueVRegDef(Reg)) |
| continue; |
| collectDefInstr(Reg, MF, &MAI, MSType, IsFirst); |
| IsFirst = false; |
| if (E->getIsGV()) |
| MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg)); |
| } |
| |
| if (UsePreOrder) |
| for (auto *S : E->getDeps()) |
| RecHoistUtil(S); |
| }; |
| RecHoistUtil(E); |
| } |
| } |
| |
| // The function initializes global register alias table for types, consts, |
| // global vars and func decls and collects these instruction for output |
| // at module level. Also it collects explicit OpExtension/OpCapability |
| // instructions. |
| void SPIRVModuleAnalysis::processDefInstrs(const Module &M) { |
| std::vector<SPIRV::DTSortableEntry *> DepsGraph; |
| |
| GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr); |
| |
| collectGlobalEntities( |
| DepsGraph, SPIRV::MB_TypeConstVars, |
| [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); }); |
| |
| for (auto F = M.begin(), E = M.end(); F != E; ++F) { |
| MachineFunction *MF = MMI->getMachineFunction(*F); |
| if (!MF) |
| continue; |
| // Iterate through and collect OpExtension/OpCapability instructions. |
| for (MachineBasicBlock &MBB : *MF) { |
| for (MachineInstr &MI : MBB) { |
| if (MI.getOpcode() == SPIRV::OpExtension) { |
| // Here, OpExtension just has a single enum operand, not a string. |
| auto Ext = SPIRV::Extension::Extension(MI.getOperand(0).getImm()); |
| MAI.Reqs.addExtension(Ext); |
| MAI.setSkipEmission(&MI); |
| } else if (MI.getOpcode() == SPIRV::OpCapability) { |
| auto Cap = SPIRV::Capability::Capability(MI.getOperand(0).getImm()); |
| MAI.Reqs.addCapability(Cap); |
| MAI.setSkipEmission(&MI); |
| } |
| } |
| } |
| } |
| |
| collectGlobalEntities( |
| DepsGraph, SPIRV::MB_ExtFuncDecls, |
| [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true); |
| } |
| |
| // Look for IDs declared with Import linkage, and map the corresponding function |
| // to the register defining that variable (which will usually be the result of |
| // an OpFunction). This lets us call externally imported functions using |
| // the correct ID registers. |
| void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI, |
| const Function *F) { |
| if (MI.getOpcode() == SPIRV::OpDecorate) { |
| // If it's got Import linkage. |
| auto Dec = MI.getOperand(1).getImm(); |
| if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) { |
| auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm(); |
| if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) { |
| // Map imported function name to function ID register. |
| const Function *ImportedFunc = |
| F->getParent()->getFunction(getStringImm(MI, 2)); |
| Register Target = MI.getOperand(0).getReg(); |
| MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target); |
| } |
| } |
| } else if (MI.getOpcode() == SPIRV::OpFunction) { |
| // Record all internal OpFunction declarations. |
| Register Reg = MI.defs().begin()->getReg(); |
| Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg); |
| assert(GlobalReg.isValid()); |
| MAI.FuncMap[F] = GlobalReg; |
| } |
| } |
| |
| // References to a function via function pointers generate virtual |
| // registers without a definition. We are able to resolve this |
| // reference using Globar Register info into an OpFunction instruction |
| // and replace dummy operands by the corresponding global register references. |
| void SPIRVModuleAnalysis::collectFuncPtrs() { |
| for (auto &MI : MAI.MS[SPIRV::MB_TypeConstVars]) |
| if (MI->getOpcode() == SPIRV::OpConstantFunctionPointerINTEL) |
| collectFuncPtrs(MI); |
| } |
| |
| void SPIRVModuleAnalysis::collectFuncPtrs(MachineInstr *MI) { |
| const MachineOperand *FunUse = &MI->getOperand(2); |
| if (const MachineOperand *FunDef = GR->getFunctionDefinitionByUse(FunUse)) { |
| const MachineInstr *FunDefMI = FunDef->getParent(); |
| assert(FunDefMI->getOpcode() == SPIRV::OpFunction && |
| "Constant function pointer must refer to function definition"); |
| Register FunDefReg = FunDef->getReg(); |
| Register GlobalFunDefReg = |
| MAI.getRegisterAlias(FunDefMI->getMF(), FunDefReg); |
| assert(GlobalFunDefReg.isValid() && |
| "Function definition must refer to a global register"); |
| Register FunPtrReg = FunUse->getReg(); |
| MAI.setRegisterAlias(MI->getMF(), FunPtrReg, GlobalFunDefReg); |
| } |
| } |
| |
| using InstrSignature = SmallVector<size_t>; |
| using InstrTraces = std::set<InstrSignature>; |
| |
| // Returns a representation of an instruction as a vector of MachineOperand |
| // hash values, see llvm::hash_value(const MachineOperand &MO) for details. |
| // This creates a signature of the instruction with the same content |
| // that MachineOperand::isIdenticalTo uses for comparison. |
| static InstrSignature instrToSignature(MachineInstr &MI, |
| SPIRV::ModuleAnalysisInfo &MAI) { |
| InstrSignature Signature; |
| for (unsigned i = 0; i < MI.getNumOperands(); ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| size_t h; |
| if (MO.isReg()) { |
| Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg()); |
| // mimic llvm::hash_value(const MachineOperand &MO) |
| h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(), |
| MO.isDef()); |
| } else { |
| h = hash_value(MO); |
| } |
| Signature.push_back(h); |
| } |
| return Signature; |
| } |
| |
| // Collect the given instruction in the specified MS. We assume global register |
| // numbering has already occurred by this point. We can directly compare reg |
| // arguments when detecting duplicates. |
| static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI, |
| SPIRV::ModuleSectionType MSType, InstrTraces &IS, |
| bool Append = true) { |
| MAI.setSkipEmission(&MI); |
| InstrSignature MISign = instrToSignature(MI, MAI); |
| auto FoundMI = IS.insert(MISign); |
| if (!FoundMI.second) |
| return; // insert failed, so we found a duplicate; don't add it to MAI.MS |
| // No duplicates, so add it. |
| if (Append) |
| MAI.MS[MSType].push_back(&MI); |
| else |
| MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI); |
| } |
| |
| // Some global instructions make reference to function-local ID regs, so cannot |
| // be correctly collected until these registers are globally numbered. |
| void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) { |
| InstrTraces IS; |
| for (auto F = M.begin(), E = M.end(); F != E; ++F) { |
| if ((*F).isDeclaration()) |
| continue; |
| MachineFunction *MF = MMI->getMachineFunction(*F); |
| assert(MF); |
| for (MachineBasicBlock &MBB : *MF) |
| for (MachineInstr &MI : MBB) { |
| if (MAI.getSkipEmission(&MI)) |
| continue; |
| const unsigned OpCode = MI.getOpcode(); |
| if (OpCode == SPIRV::OpString) { |
| collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS); |
| } else if (OpCode == SPIRV::OpExtInst) { |
| MachineOperand Ins = MI.getOperand(3); |
| namespace NS = SPIRV::NonSemanticExtInst; |
| static constexpr int64_t GlobalNonSemanticDITy[] = { |
| NS::DebugSource, NS::DebugCompilationUnit}; |
| bool IsGlobalDI = false; |
| for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx) |
| IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx]; |
| if (IsGlobalDI) |
| collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS); |
| } else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) { |
| collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS); |
| } else if (OpCode == SPIRV::OpEntryPoint) { |
| collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS); |
| } else if (TII->isDecorationInstr(MI)) { |
| collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS); |
| collectFuncNames(MI, &*F); |
| } else if (TII->isConstantInstr(MI)) { |
| // Now OpSpecConstant*s are not in DT, |
| // but they need to be collected anyway. |
| collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS); |
| } else if (OpCode == SPIRV::OpFunction) { |
| collectFuncNames(MI, &*F); |
| } else if (OpCode == SPIRV::OpTypeForwardPointer) { |
| collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false); |
| } |
| } |
| } |
| } |
| |
| // Number registers in all functions globally from 0 onwards and store |
| // the result in global register alias table. Some registers are already |
| // numbered in collectGlobalEntities. |
| void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) { |
| for (auto F = M.begin(), E = M.end(); F != E; ++F) { |
| if ((*F).isDeclaration()) |
| continue; |
| MachineFunction *MF = MMI->getMachineFunction(*F); |
| assert(MF); |
| for (MachineBasicBlock &MBB : *MF) { |
| for (MachineInstr &MI : MBB) { |
| for (MachineOperand &Op : MI.operands()) { |
| if (!Op.isReg()) |
| continue; |
| Register Reg = Op.getReg(); |
| if (MAI.hasRegisterAlias(MF, Reg)) |
| continue; |
| Register NewReg = Register::index2VirtReg(MAI.getNextID()); |
| MAI.setRegisterAlias(MF, Reg, NewReg); |
| } |
| if (MI.getOpcode() != SPIRV::OpExtInst) |
| continue; |
| auto Set = MI.getOperand(2).getImm(); |
| if (!MAI.ExtInstSetMap.contains(Set)) |
| MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID()); |
| } |
| } |
| } |
| } |
| |
| // RequirementHandler implementations. |
| void SPIRV::RequirementHandler::getAndAddRequirements( |
| SPIRV::OperandCategory::OperandCategory Category, uint32_t i, |
| const SPIRVSubtarget &ST) { |
| addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this)); |
| } |
| |
| void SPIRV::RequirementHandler::recursiveAddCapabilities( |
| const CapabilityList &ToPrune) { |
| for (const auto &Cap : ToPrune) { |
| AllCaps.insert(Cap); |
| CapabilityList ImplicitDecls = |
| getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); |
| recursiveAddCapabilities(ImplicitDecls); |
| } |
| } |
| |
| void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) { |
| for (const auto &Cap : ToAdd) { |
| bool IsNewlyInserted = AllCaps.insert(Cap).second; |
| if (!IsNewlyInserted) // Don't re-add if it's already been declared. |
| continue; |
| CapabilityList ImplicitDecls = |
| getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap); |
| recursiveAddCapabilities(ImplicitDecls); |
| MinimalCaps.push_back(Cap); |
| } |
| } |
| |
| void SPIRV::RequirementHandler::addRequirements( |
| const SPIRV::Requirements &Req) { |
| if (!Req.IsSatisfiable) |
| report_fatal_error("Adding SPIR-V requirements this target can't satisfy."); |
| |
| if (Req.Cap.has_value()) |
| addCapabilities({Req.Cap.value()}); |
| |
| addExtensions(Req.Exts); |
| |
| if (!Req.MinVer.empty()) { |
| if (!MaxVersion.empty() && Req.MinVer > MaxVersion) { |
| LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer |
| << " and <= " << MaxVersion << "\n"); |
| report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); |
| } |
| |
| if (MinVersion.empty() || Req.MinVer > MinVersion) |
| MinVersion = Req.MinVer; |
| } |
| |
| if (!Req.MaxVer.empty()) { |
| if (!MinVersion.empty() && Req.MaxVer < MinVersion) { |
| LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer |
| << " and >= " << MinVersion << "\n"); |
| report_fatal_error("Adding SPIR-V requirements that can't be satisfied."); |
| } |
| |
| if (MaxVersion.empty() || Req.MaxVer < MaxVersion) |
| MaxVersion = Req.MaxVer; |
| } |
| } |
| |
| void SPIRV::RequirementHandler::checkSatisfiable( |
| const SPIRVSubtarget &ST) const { |
| // Report as many errors as possible before aborting the compilation. |
| bool IsSatisfiable = true; |
| auto TargetVer = ST.getSPIRVVersion(); |
| |
| if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) { |
| LLVM_DEBUG( |
| dbgs() << "Target SPIR-V version too high for required features\n" |
| << "Required max version: " << MaxVersion << " target version " |
| << TargetVer << "\n"); |
| IsSatisfiable = false; |
| } |
| |
| if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) { |
| LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n" |
| << "Required min version: " << MinVersion |
| << " target version " << TargetVer << "\n"); |
| IsSatisfiable = false; |
| } |
| |
| if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) { |
| LLVM_DEBUG( |
| dbgs() |
| << "Version is too low for some features and too high for others.\n" |
| << "Required SPIR-V min version: " << MinVersion |
| << " required SPIR-V max version " << MaxVersion << "\n"); |
| IsSatisfiable = false; |
| } |
| |
| for (auto Cap : MinimalCaps) { |
| if (AvailableCaps.contains(Cap)) |
| continue; |
| LLVM_DEBUG(dbgs() << "Capability not supported: " |
| << getSymbolicOperandMnemonic( |
| OperandCategory::CapabilityOperand, Cap) |
| << "\n"); |
| IsSatisfiable = false; |
| } |
| |
| for (auto Ext : AllExtensions) { |
| if (ST.canUseExtension(Ext)) |
| continue; |
| LLVM_DEBUG(dbgs() << "Extension not supported: " |
| << getSymbolicOperandMnemonic( |
| OperandCategory::ExtensionOperand, Ext) |
| << "\n"); |
| IsSatisfiable = false; |
| } |
| |
| if (!IsSatisfiable) |
| report_fatal_error("Unable to meet SPIR-V requirements for this target."); |
| } |
| |
| // Add the given capabilities and all their implicitly defined capabilities too. |
| void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) { |
| for (const auto Cap : ToAdd) |
| if (AvailableCaps.insert(Cap).second) |
| addAvailableCaps(getSymbolicOperandCapabilities( |
| SPIRV::OperandCategory::CapabilityOperand, Cap)); |
| } |
| |
| void SPIRV::RequirementHandler::removeCapabilityIf( |
| const Capability::Capability ToRemove, |
| const Capability::Capability IfPresent) { |
| if (AllCaps.contains(IfPresent)) |
| AllCaps.erase(ToRemove); |
| } |
| |
| namespace llvm { |
| namespace SPIRV { |
| void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) { |
| if (ST.isOpenCLEnv()) { |
| initAvailableCapabilitiesForOpenCL(ST); |
| return; |
| } |
| |
| if (ST.isVulkanEnv()) { |
| initAvailableCapabilitiesForVulkan(ST); |
| return; |
| } |
| |
| report_fatal_error("Unimplemented environment for SPIR-V generation."); |
| } |
| |
| void RequirementHandler::initAvailableCapabilitiesForOpenCL( |
| const SPIRVSubtarget &ST) { |
| // Add the min requirements for different OpenCL and SPIR-V versions. |
| addAvailableCaps({Capability::Addresses, Capability::Float16Buffer, |
| Capability::Int16, Capability::Int8, Capability::Kernel, |
| Capability::Linkage, Capability::Vector16, |
| Capability::Groups, Capability::GenericPointer, |
| Capability::Shader}); |
| if (ST.hasOpenCLFullProfile()) |
| addAvailableCaps({Capability::Int64, Capability::Int64Atomics}); |
| if (ST.hasOpenCLImageSupport()) { |
| addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler, |
| Capability::Image1D, Capability::SampledBuffer, |
| Capability::ImageBuffer}); |
| if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0))) |
| addAvailableCaps({Capability::ImageReadWrite}); |
| } |
| if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) && |
| ST.isAtLeastOpenCLVer(VersionTuple(2, 2))) |
| addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage}); |
| if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3))) |
| addAvailableCaps({Capability::GroupNonUniform, |
| Capability::GroupNonUniformVote, |
| Capability::GroupNonUniformArithmetic, |
| Capability::GroupNonUniformBallot, |
| Capability::GroupNonUniformClustered, |
| Capability::GroupNonUniformShuffle, |
| Capability::GroupNonUniformShuffleRelative}); |
| if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4))) |
| addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero, |
| Capability::SignedZeroInfNanPreserve, |
| Capability::RoundingModeRTE, |
| Capability::RoundingModeRTZ}); |
| // TODO: verify if this needs some checks. |
| addAvailableCaps({Capability::Float16, Capability::Float64}); |
| |
| // Add capabilities enabled by extensions. |
| for (auto Extension : ST.getAllAvailableExtensions()) { |
| CapabilityList EnabledCapabilities = |
| getCapabilitiesEnabledByExtension(Extension); |
| addAvailableCaps(EnabledCapabilities); |
| } |
| |
| // TODO: add OpenCL extensions. |
| } |
| |
| void RequirementHandler::initAvailableCapabilitiesForVulkan( |
| const SPIRVSubtarget &ST) { |
| addAvailableCaps({Capability::Shader, Capability::Linkage}); |
| |
| // Provided by all supported Vulkan versions. |
| addAvailableCaps({Capability::Int16, Capability::Int64, Capability::Float16, |
| Capability::Float64, Capability::GroupNonUniform}); |
| } |
| |
| } // namespace SPIRV |
| } // namespace llvm |
| |
| // Add the required capabilities from a decoration instruction (including |
| // BuiltIns). |
| static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex, |
| SPIRV::RequirementHandler &Reqs, |
| const SPIRVSubtarget &ST) { |
| int64_t DecOp = MI.getOperand(DecIndex).getImm(); |
| auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp); |
| Reqs.addRequirements(getSymbolicOperandRequirements( |
| SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs)); |
| |
| if (Dec == SPIRV::Decoration::BuiltIn) { |
| int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm(); |
| auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp); |
| Reqs.addRequirements(getSymbolicOperandRequirements( |
| SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs)); |
| } else if (Dec == SPIRV::Decoration::LinkageAttributes) { |
| int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm(); |
| SPIRV::LinkageType::LinkageType LnkType = |
| static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp); |
| if (LnkType == SPIRV::LinkageType::LinkOnceODR) |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr); |
| } else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL || |
| Dec == SPIRV::Decoration::CacheControlStoreINTEL) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls); |
| } else if (Dec == SPIRV::Decoration::HostAccessINTEL) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access); |
| } else if (Dec == SPIRV::Decoration::InitModeINTEL || |
| Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) { |
| Reqs.addExtension( |
| SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations); |
| } |
| } |
| |
| // Add requirements for image handling. |
| static void addOpTypeImageReqs(const MachineInstr &MI, |
| SPIRV::RequirementHandler &Reqs, |
| const SPIRVSubtarget &ST) { |
| assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage"); |
| // The operand indices used here are based on the OpTypeImage layout, which |
| // the MachineInstr follows as well. |
| int64_t ImgFormatOp = MI.getOperand(7).getImm(); |
| auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand, |
| ImgFormat, ST); |
| |
| bool IsArrayed = MI.getOperand(4).getImm() == 1; |
| bool IsMultisampled = MI.getOperand(5).getImm() == 1; |
| bool NoSampler = MI.getOperand(6).getImm() == 2; |
| // Add dimension requirements. |
| assert(MI.getOperand(2).isImm()); |
| switch (MI.getOperand(2).getImm()) { |
| case SPIRV::Dim::DIM_1D: |
| Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D |
| : SPIRV::Capability::Sampled1D); |
| break; |
| case SPIRV::Dim::DIM_2D: |
| if (IsMultisampled && NoSampler) |
| Reqs.addRequirements(SPIRV::Capability::ImageMSArray); |
| break; |
| case SPIRV::Dim::DIM_Cube: |
| Reqs.addRequirements(SPIRV::Capability::Shader); |
| if (IsArrayed) |
| Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray |
| : SPIRV::Capability::SampledCubeArray); |
| break; |
| case SPIRV::Dim::DIM_Rect: |
| Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect |
| : SPIRV::Capability::SampledRect); |
| break; |
| case SPIRV::Dim::DIM_Buffer: |
| Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer |
| : SPIRV::Capability::SampledBuffer); |
| break; |
| case SPIRV::Dim::DIM_SubpassData: |
| Reqs.addRequirements(SPIRV::Capability::InputAttachment); |
| break; |
| } |
| |
| // Has optional access qualifier. |
| // TODO: check if it's OpenCL's kernel. |
| if (MI.getNumOperands() > 8 && |
| MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite) |
| Reqs.addRequirements(SPIRV::Capability::ImageReadWrite); |
| else |
| Reqs.addRequirements(SPIRV::Capability::ImageBasic); |
| } |
| |
| // Add requirements for handling atomic float instructions |
| #define ATOM_FLT_REQ_EXT_MSG(ExtName) \ |
| "The atomic float instruction requires the following SPIR-V " \ |
| "extension: SPV_EXT_shader_atomic_float" ExtName |
| static void AddAtomicFloatRequirements(const MachineInstr &MI, |
| SPIRV::RequirementHandler &Reqs, |
| const SPIRVSubtarget &ST) { |
| assert(MI.getOperand(1).isReg() && |
| "Expect register operand in atomic float instruction"); |
| Register TypeReg = MI.getOperand(1).getReg(); |
| SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg); |
| if (TypeDef->getOpcode() != SPIRV::OpTypeFloat) |
| report_fatal_error("Result type of an atomic float instruction must be a " |
| "floating-point type scalar"); |
| |
| unsigned BitWidth = TypeDef->getOperand(1).getImm(); |
| unsigned Op = MI.getOpcode(); |
| if (Op == SPIRV::OpAtomicFAddEXT) { |
| if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add)) |
| report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false); |
| Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add); |
| switch (BitWidth) { |
| case 16: |
| if (!ST.canUseExtension( |
| SPIRV::Extension::SPV_EXT_shader_atomic_float16_add)) |
| report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false); |
| Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add); |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT); |
| break; |
| case 32: |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT); |
| break; |
| case 64: |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT); |
| break; |
| default: |
| report_fatal_error( |
| "Unexpected floating-point type width in atomic float instruction"); |
| } |
| } else { |
| if (!ST.canUseExtension( |
| SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max)) |
| report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false); |
| Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max); |
| switch (BitWidth) { |
| case 16: |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT); |
| break; |
| case 32: |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT); |
| break; |
| case 64: |
| Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT); |
| break; |
| default: |
| report_fatal_error( |
| "Unexpected floating-point type width in atomic float instruction"); |
| } |
| } |
| } |
| |
| void addInstrRequirements(const MachineInstr &MI, |
| SPIRV::RequirementHandler &Reqs, |
| const SPIRVSubtarget &ST) { |
| switch (MI.getOpcode()) { |
| case SPIRV::OpMemoryModel: { |
| int64_t Addr = MI.getOperand(0).getImm(); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand, |
| Addr, ST); |
| int64_t Mem = MI.getOperand(1).getImm(); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem, |
| ST); |
| break; |
| } |
| case SPIRV::OpEntryPoint: { |
| int64_t Exe = MI.getOperand(0).getImm(); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand, |
| Exe, ST); |
| break; |
| } |
| case SPIRV::OpExecutionMode: |
| case SPIRV::OpExecutionModeId: { |
| int64_t Exe = MI.getOperand(1).getImm(); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand, |
| Exe, ST); |
| break; |
| } |
| case SPIRV::OpTypeMatrix: |
| Reqs.addCapability(SPIRV::Capability::Matrix); |
| break; |
| case SPIRV::OpTypeInt: { |
| unsigned BitWidth = MI.getOperand(1).getImm(); |
| if (BitWidth == 64) |
| Reqs.addCapability(SPIRV::Capability::Int64); |
| else if (BitWidth == 16) |
| Reqs.addCapability(SPIRV::Capability::Int16); |
| else if (BitWidth == 8) |
| Reqs.addCapability(SPIRV::Capability::Int8); |
| break; |
| } |
| case SPIRV::OpTypeFloat: { |
| unsigned BitWidth = MI.getOperand(1).getImm(); |
| if (BitWidth == 64) |
| Reqs.addCapability(SPIRV::Capability::Float64); |
| else if (BitWidth == 16) |
| Reqs.addCapability(SPIRV::Capability::Float16); |
| break; |
| } |
| case SPIRV::OpTypeVector: { |
| unsigned NumComponents = MI.getOperand(2).getImm(); |
| if (NumComponents == 8 || NumComponents == 16) |
| Reqs.addCapability(SPIRV::Capability::Vector16); |
| break; |
| } |
| case SPIRV::OpTypePointer: { |
| auto SC = MI.getOperand(1).getImm(); |
| Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC, |
| ST); |
| // If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer |
| // capability. |
| if (!ST.isOpenCLEnv()) |
| break; |
| assert(MI.getOperand(2).isReg()); |
| const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg()); |
| if (TypeDef->getOpcode() == SPIRV::OpTypeFloat && |
| TypeDef->getOperand(1).getImm() == 16) |
| Reqs.addCapability(SPIRV::Capability::Float16Buffer); |
| break; |
| } |
| case SPIRV::OpExtInst: { |
| if (MI.getOperand(2).getImm() == |
| static_cast<int64_t>( |
| SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info); |
| } |
| break; |
| } |
| case SPIRV::OpBitReverse: |
| case SPIRV::OpBitFieldInsert: |
| case SPIRV::OpBitFieldSExtract: |
| case SPIRV::OpBitFieldUExtract: |
| if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) { |
| Reqs.addCapability(SPIRV::Capability::Shader); |
| break; |
| } |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions); |
| Reqs.addCapability(SPIRV::Capability::BitInstructions); |
| break; |
| case SPIRV::OpTypeRuntimeArray: |
| Reqs.addCapability(SPIRV::Capability::Shader); |
| break; |
| case SPIRV::OpTypeOpaque: |
| case SPIRV::OpTypeEvent: |
| Reqs.addCapability(SPIRV::Capability::Kernel); |
| break; |
| case SPIRV::OpTypePipe: |
| case SPIRV::OpTypeReserveId: |
| Reqs.addCapability(SPIRV::Capability::Pipes); |
| break; |
| case SPIRV::OpTypeDeviceEvent: |
| case SPIRV::OpTypeQueue: |
| case SPIRV::OpBuildNDRange: |
| Reqs.addCapability(SPIRV::Capability::DeviceEnqueue); |
| break; |
| case SPIRV::OpDecorate: |
| case SPIRV::OpDecorateId: |
| case SPIRV::OpDecorateString: |
| addOpDecorateReqs(MI, 1, Reqs, ST); |
| break; |
| case SPIRV::OpMemberDecorate: |
| case SPIRV::OpMemberDecorateString: |
| addOpDecorateReqs(MI, 2, Reqs, ST); |
| break; |
| case SPIRV::OpInBoundsPtrAccessChain: |
| Reqs.addCapability(SPIRV::Capability::Addresses); |
| break; |
| case SPIRV::OpConstantSampler: |
| Reqs.addCapability(SPIRV::Capability::LiteralSampler); |
| break; |
| case SPIRV::OpTypeImage: |
| addOpTypeImageReqs(MI, Reqs, ST); |
| break; |
| case SPIRV::OpTypeSampler: |
| Reqs.addCapability(SPIRV::Capability::ImageBasic); |
| break; |
| case SPIRV::OpTypeForwardPointer: |
| // TODO: check if it's OpenCL's kernel. |
| Reqs.addCapability(SPIRV::Capability::Addresses); |
| break; |
| case SPIRV::OpAtomicFlagTestAndSet: |
| case SPIRV::OpAtomicLoad: |
| case SPIRV::OpAtomicStore: |
| case SPIRV::OpAtomicExchange: |
| case SPIRV::OpAtomicCompareExchange: |
| case SPIRV::OpAtomicIIncrement: |
| case SPIRV::OpAtomicIDecrement: |
| case SPIRV::OpAtomicIAdd: |
| case SPIRV::OpAtomicISub: |
| case SPIRV::OpAtomicUMin: |
| case SPIRV::OpAtomicUMax: |
| case SPIRV::OpAtomicSMin: |
| case SPIRV::OpAtomicSMax: |
| case SPIRV::OpAtomicAnd: |
| case SPIRV::OpAtomicOr: |
| case SPIRV::OpAtomicXor: { |
| const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| const MachineInstr *InstrPtr = &MI; |
| if (MI.getOpcode() == SPIRV::OpAtomicStore) { |
| assert(MI.getOperand(3).isReg()); |
| InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg()); |
| assert(InstrPtr && "Unexpected type instruction for OpAtomicStore"); |
| } |
| assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic"); |
| Register TypeReg = InstrPtr->getOperand(1).getReg(); |
| SPIRVType *TypeDef = MRI.getVRegDef(TypeReg); |
| if (TypeDef->getOpcode() == SPIRV::OpTypeInt) { |
| unsigned BitWidth = TypeDef->getOperand(1).getImm(); |
| if (BitWidth == 64) |
| Reqs.addCapability(SPIRV::Capability::Int64Atomics); |
| } |
| break; |
| } |
| case SPIRV::OpGroupNonUniformIAdd: |
| case SPIRV::OpGroupNonUniformFAdd: |
| case SPIRV::OpGroupNonUniformIMul: |
| case SPIRV::OpGroupNonUniformFMul: |
| case SPIRV::OpGroupNonUniformSMin: |
| case SPIRV::OpGroupNonUniformUMin: |
| case SPIRV::OpGroupNonUniformFMin: |
| case SPIRV::OpGroupNonUniformSMax: |
| case SPIRV::OpGroupNonUniformUMax: |
| case SPIRV::OpGroupNonUniformFMax: |
| case SPIRV::OpGroupNonUniformBitwiseAnd: |
| case SPIRV::OpGroupNonUniformBitwiseOr: |
| case SPIRV::OpGroupNonUniformBitwiseXor: |
| case SPIRV::OpGroupNonUniformLogicalAnd: |
| case SPIRV::OpGroupNonUniformLogicalOr: |
| case SPIRV::OpGroupNonUniformLogicalXor: { |
| assert(MI.getOperand(3).isImm()); |
| int64_t GroupOp = MI.getOperand(3).getImm(); |
| switch (GroupOp) { |
| case SPIRV::GroupOperation::Reduce: |
| case SPIRV::GroupOperation::InclusiveScan: |
| case SPIRV::GroupOperation::ExclusiveScan: |
| Reqs.addCapability(SPIRV::Capability::Kernel); |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic); |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); |
| break; |
| case SPIRV::GroupOperation::ClusteredReduce: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered); |
| break; |
| case SPIRV::GroupOperation::PartitionedReduceNV: |
| case SPIRV::GroupOperation::PartitionedInclusiveScanNV: |
| case SPIRV::GroupOperation::PartitionedExclusiveScanNV: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV); |
| break; |
| } |
| break; |
| } |
| case SPIRV::OpGroupNonUniformShuffle: |
| case SPIRV::OpGroupNonUniformShuffleXor: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle); |
| break; |
| case SPIRV::OpGroupNonUniformShuffleUp: |
| case SPIRV::OpGroupNonUniformShuffleDown: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative); |
| break; |
| case SPIRV::OpGroupAll: |
| case SPIRV::OpGroupAny: |
| case SPIRV::OpGroupBroadcast: |
| case SPIRV::OpGroupIAdd: |
| case SPIRV::OpGroupFAdd: |
| case SPIRV::OpGroupFMin: |
| case SPIRV::OpGroupUMin: |
| case SPIRV::OpGroupSMin: |
| case SPIRV::OpGroupFMax: |
| case SPIRV::OpGroupUMax: |
| case SPIRV::OpGroupSMax: |
| Reqs.addCapability(SPIRV::Capability::Groups); |
| break; |
| case SPIRV::OpGroupNonUniformElect: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniform); |
| break; |
| case SPIRV::OpGroupNonUniformAll: |
| case SPIRV::OpGroupNonUniformAny: |
| case SPIRV::OpGroupNonUniformAllEqual: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote); |
| break; |
| case SPIRV::OpGroupNonUniformBroadcast: |
| case SPIRV::OpGroupNonUniformBroadcastFirst: |
| case SPIRV::OpGroupNonUniformBallot: |
| case SPIRV::OpGroupNonUniformInverseBallot: |
| case SPIRV::OpGroupNonUniformBallotBitExtract: |
| case SPIRV::OpGroupNonUniformBallotBitCount: |
| case SPIRV::OpGroupNonUniformBallotFindLSB: |
| case SPIRV::OpGroupNonUniformBallotFindMSB: |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot); |
| break; |
| case SPIRV::OpSubgroupShuffleINTEL: |
| case SPIRV::OpSubgroupShuffleDownINTEL: |
| case SPIRV::OpSubgroupShuffleUpINTEL: |
| case SPIRV::OpSubgroupShuffleXorINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); |
| Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL); |
| } |
| break; |
| case SPIRV::OpSubgroupBlockReadINTEL: |
| case SPIRV::OpSubgroupBlockWriteINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); |
| Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL); |
| } |
| break; |
| case SPIRV::OpSubgroupImageBlockReadINTEL: |
| case SPIRV::OpSubgroupImageBlockWriteINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups); |
| Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL); |
| } |
| break; |
| case SPIRV::OpAssumeTrueKHR: |
| case SPIRV::OpExpectKHR: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume); |
| Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR); |
| } |
| break; |
| case SPIRV::OpPtrCastToCrossWorkgroupINTEL: |
| case SPIRV::OpCrossWorkgroupCastToPtrINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes); |
| Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL); |
| } |
| break; |
| case SPIRV::OpConstantFunctionPointerINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); |
| Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); |
| } |
| break; |
| case SPIRV::OpGroupNonUniformRotateKHR: |
| if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate)) |
| report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the " |
| "following SPIR-V extension: SPV_KHR_subgroup_rotate", |
| false); |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate); |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR); |
| Reqs.addCapability(SPIRV::Capability::GroupNonUniform); |
| break; |
| case SPIRV::OpGroupIMulKHR: |
| case SPIRV::OpGroupFMulKHR: |
| case SPIRV::OpGroupBitwiseAndKHR: |
| case SPIRV::OpGroupBitwiseOrKHR: |
| case SPIRV::OpGroupBitwiseXorKHR: |
| case SPIRV::OpGroupLogicalAndKHR: |
| case SPIRV::OpGroupLogicalOrKHR: |
| case SPIRV::OpGroupLogicalXorKHR: |
| if (ST.canUseExtension( |
| SPIRV::Extension::SPV_KHR_uniform_group_instructions)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions); |
| Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR); |
| } |
| break; |
| case SPIRV::OpReadClockKHR: |
| if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock)) |
| report_fatal_error("OpReadClockKHR instruction requires the " |
| "following SPIR-V extension: SPV_KHR_shader_clock", |
| false); |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock); |
| Reqs.addCapability(SPIRV::Capability::ShaderClockKHR); |
| break; |
| case SPIRV::OpFunctionPointerCallINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers); |
| Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL); |
| } |
| break; |
| case SPIRV::OpAtomicFAddEXT: |
| case SPIRV::OpAtomicFMinEXT: |
| case SPIRV::OpAtomicFMaxEXT: |
| AddAtomicFloatRequirements(MI, Reqs, ST); |
| break; |
| case SPIRV::OpConvertBF16ToFINTEL: |
| case SPIRV::OpConvertFToBF16INTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion); |
| Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL); |
| } |
| break; |
| case SPIRV::OpVariableLengthArrayINTEL: |
| case SPIRV::OpSaveMemoryINTEL: |
| case SPIRV::OpRestoreMemoryINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array); |
| Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL); |
| } |
| break; |
| case SPIRV::OpAsmTargetINTEL: |
| case SPIRV::OpAsmINTEL: |
| case SPIRV::OpAsmCallINTEL: |
| if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) { |
| Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly); |
| Reqs.addCapability(SPIRV::Capability::AsmINTEL); |
| } |
| break; |
| case SPIRV::OpTypeCooperativeMatrixKHR: |
| if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix)) |
| report_fatal_error( |
| "OpTypeCooperativeMatrixKHR type requires the " |
| "following SPIR-V extension: SPV_KHR_cooperative_matrix", |
| false); |
| Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix); |
| Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR); |
| break; |
| default: |
| break; |
| } |
| |
| // If we require capability Shader, then we can remove the requirement for |
| // the BitInstructions capability, since Shader is a superset capability |
| // of BitInstructions. |
| Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions, |
| SPIRV::Capability::Shader); |
| } |
| |
| static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI, |
| MachineModuleInfo *MMI, const SPIRVSubtarget &ST) { |
| // Collect requirements for existing instructions. |
| for (auto F = M.begin(), E = M.end(); F != E; ++F) { |
| MachineFunction *MF = MMI->getMachineFunction(*F); |
| if (!MF) |
| continue; |
| for (const MachineBasicBlock &MBB : *MF) |
| for (const MachineInstr &MI : MBB) |
| addInstrRequirements(MI, MAI.Reqs, ST); |
| } |
| // Collect requirements for OpExecutionMode instructions. |
| auto Node = M.getNamedMetadata("spirv.ExecutionMode"); |
| if (Node) { |
| // SPV_KHR_float_controls is not available until v1.4 |
| bool RequireFloatControls = false, |
| VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4)); |
| for (unsigned i = 0; i < Node->getNumOperands(); i++) { |
| MDNode *MDN = cast<MDNode>(Node->getOperand(i)); |
| const MDOperand &MDOp = MDN->getOperand(1); |
| if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) { |
| Constant *C = CMeta->getValue(); |
| if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) { |
| auto EM = Const->getZExtValue(); |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, EM, ST); |
| // add SPV_KHR_float_controls if the version is too low |
| switch (EM) { |
| case SPIRV::ExecutionMode::DenormPreserve: |
| case SPIRV::ExecutionMode::DenormFlushToZero: |
| case SPIRV::ExecutionMode::SignedZeroInfNanPreserve: |
| case SPIRV::ExecutionMode::RoundingModeRTE: |
| case SPIRV::ExecutionMode::RoundingModeRTZ: |
| RequireFloatControls = VerLower14; |
| break; |
| } |
| } |
| } |
| } |
| if (RequireFloatControls && |
| ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls)) |
| MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls); |
| } |
| for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) { |
| const Function &F = *FI; |
| if (F.isDeclaration()) |
| continue; |
| if (F.getMetadata("reqd_work_group_size")) |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, |
| SPIRV::ExecutionMode::LocalSize, ST); |
| if (F.getFnAttribute("hlsl.numthreads").isValid()) { |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, |
| SPIRV::ExecutionMode::LocalSize, ST); |
| } |
| if (F.getMetadata("work_group_size_hint")) |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, |
| SPIRV::ExecutionMode::LocalSizeHint, ST); |
| if (F.getMetadata("intel_reqd_sub_group_size")) |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, |
| SPIRV::ExecutionMode::SubgroupSize, ST); |
| if (F.getMetadata("vec_type_hint")) |
| MAI.Reqs.getAndAddRequirements( |
| SPIRV::OperandCategory::ExecutionModeOperand, |
| SPIRV::ExecutionMode::VecTypeHint, ST); |
| |
| if (F.hasOptNone() && |
| ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) { |
| // Output OpCapability OptNoneINTEL. |
| MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone); |
| MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL); |
| } |
| } |
| } |
| |
| static unsigned getFastMathFlags(const MachineInstr &I) { |
| unsigned Flags = SPIRV::FPFastMathMode::None; |
| if (I.getFlag(MachineInstr::MIFlag::FmNoNans)) |
| Flags |= SPIRV::FPFastMathMode::NotNaN; |
| if (I.getFlag(MachineInstr::MIFlag::FmNoInfs)) |
| Flags |= SPIRV::FPFastMathMode::NotInf; |
| if (I.getFlag(MachineInstr::MIFlag::FmNsz)) |
| Flags |= SPIRV::FPFastMathMode::NSZ; |
| if (I.getFlag(MachineInstr::MIFlag::FmArcp)) |
| Flags |= SPIRV::FPFastMathMode::AllowRecip; |
| if (I.getFlag(MachineInstr::MIFlag::FmReassoc)) |
| Flags |= SPIRV::FPFastMathMode::Fast; |
| return Flags; |
| } |
| |
| static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST, |
| const SPIRVInstrInfo &TII, |
| SPIRV::RequirementHandler &Reqs) { |
| if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) && |
| getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, |
| SPIRV::Decoration::NoSignedWrap, ST, Reqs) |
| .IsSatisfiable) { |
| buildOpDecorate(I.getOperand(0).getReg(), I, TII, |
| SPIRV::Decoration::NoSignedWrap, {}); |
| } |
| if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) && |
| getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand, |
| SPIRV::Decoration::NoUnsignedWrap, ST, |
| Reqs) |
| .IsSatisfiable) { |
| buildOpDecorate(I.getOperand(0).getReg(), I, TII, |
| SPIRV::Decoration::NoUnsignedWrap, {}); |
| } |
| if (!TII.canUseFastMathFlags(I)) |
| return; |
| unsigned FMFlags = getFastMathFlags(I); |
| if (FMFlags == SPIRV::FPFastMathMode::None) |
| return; |
| Register DstReg = I.getOperand(0).getReg(); |
| buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags}); |
| } |
| |
| // Walk all functions and add decorations related to MI flags. |
| static void addDecorations(const Module &M, const SPIRVInstrInfo &TII, |
| MachineModuleInfo *MMI, const SPIRVSubtarget &ST, |
| SPIRV::ModuleAnalysisInfo &MAI) { |
| for (auto F = M.begin(), E = M.end(); F != E; ++F) { |
| MachineFunction *MF = MMI->getMachineFunction(*F); |
| if (!MF) |
| continue; |
| for (auto &MBB : *MF) |
| for (auto &MI : MBB) |
| handleMIFlagDecoration(MI, ST, TII, MAI.Reqs); |
| } |
| } |
| |
| struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI; |
| |
| void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<MachineModuleInfoWrapperPass>(); |
| } |
| |
| bool SPIRVModuleAnalysis::runOnModule(Module &M) { |
| SPIRVTargetMachine &TM = |
| getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>(); |
| ST = TM.getSubtargetImpl(); |
| GR = ST->getSPIRVGlobalRegistry(); |
| TII = ST->getInstrInfo(); |
| |
| MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); |
| |
| setBaseInfo(M); |
| |
| addDecorations(M, *TII, MMI, *ST, MAI); |
| |
| collectReqs(M, MAI, MMI, *ST); |
| |
| // Process type/const/global var/func decl instructions, number their |
| // destination registers from 0 to N, collect Extensions and Capabilities. |
| processDefInstrs(M); |
| |
| // Number rest of registers from N+1 onwards. |
| numberRegistersGlobally(M); |
| |
| // Update references to OpFunction instructions to use Global Registers |
| if (GR->hasConstFunPtr()) |
| collectFuncPtrs(); |
| |
| // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions. |
| processOtherInstrs(M); |
| |
| // If there are no entry points, we need the Linkage capability. |
| if (MAI.MS[SPIRV::MB_EntryPoints].empty()) |
| MAI.Reqs.addCapability(SPIRV::Capability::Linkage); |
| |
| // Set maximum ID used. |
| GR->setBound(MAI.MaxID); |
| |
| return false; |
| } |