blob: 38ca333c788b119795d5920b2b057b83d27e4790 [file] [log] [blame]
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
import ctypes
import numpy as np
import os
import mlir.all_passes_registration
from mlir import ir
from mlir import runtime as rt
from mlir import execution_engine
from mlir import passmanager
from mlir.dialects import sparse_tensor as st
from mlir.dialects import builtin
from mlir.dialects.linalg.opdsl import lang as dsl
def run(f):
print('\nTEST:', f.__name__)
f()
return f
@dsl.linalg_structured_op
def matmul_dsl(
A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
def build_SpMM(attr: st.EncodingAttr):
"""Build SpMM kernel.
This method generates a linalg op with for matrix multiplication using
just the Python API. Effectively, a generic linalg op is constructed
that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
"""
module = ir.Module.create()
f64 = ir.F64Type.get()
a = ir.RankedTensorType.get([3, 4], f64, attr)
b = ir.RankedTensorType.get([4, 2], f64)
c = ir.RankedTensorType.get([3, 2], f64)
arguments = [a, b, c]
with ir.InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(*arguments)
def spMxM(*args):
return matmul_dsl(args[0], args[1], outs=[args[2]])
return module
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method.
This method sets up a boilerplate main method that takes three tensors
(a, b, c), converts the first tensor a into s sparse tensor, and then
calls the sparse kernel for matrix multiplication. For convenience,
this part is purely done as string input.
"""
return f"""
func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
attributes {{ llvm.emit_c_interface }} {{
%a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
%0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
tensor<4x2xf64>,
tensor<3x2xf64>) -> tensor<3x2xf64>
return %0 : tensor<3x2xf64>
}}
"""
def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
compiler):
# Build.
module = build_SpMM(attr)
func = str(module.operation.regions[0].blocks[0].operations[0].operation)
module = ir.Module.parse(func + boilerplate(attr))
# Compile.
compiler(module)
engine = execution_engine.ExecutionEngine(
module, opt_level=0, shared_libs=[support_lib])
# Set up numpy input and buffer for output.
a = np.array(
[[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]],
np.float64)
b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
c = np.zeros((3, 2), np.float64)
out = np.zeros((3, 2), np.float64)
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
mem_out = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(out)))
# Invoke the kernel and get numpy output.
# Built-in bufferization uses in-out buffers.
# TODO: replace with inplace comprehensive bufferization.
engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
# Sanity check on computed result.
expected = np.matmul(a, b);
c = rt.ranked_memref_to_numpy(mem_out[0])
if np.allclose(c, expected):
pass
else:
quit(f'FAILURE')
class SparseCompiler:
"""Sparse compiler passes."""
def __init__(self, options: str):
pipeline = (
f'builtin.func(linalg-generalize-named-ops,linalg-fuse-elementwise-ops),'
f'sparsification{{{options}}},'
f'sparse-tensor-conversion,'
f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),'
f'convert-scf-to-std,'
f'func-bufferize,'
f'tensor-constant-bufferize,'
f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
f'lower-affine,'
f'convert-memref-to-llvm,'
f'convert-std-to-llvm,'
f'reconcile-unrealized-casts')
self.pipeline = pipeline
def __call__(self, module: ir.Module):
passmanager.PassManager.parse(self.pipeline).run(module)
# CHECK-LABEL: TEST: testSpMM
# CHECK: Passed 8 tests
@run
def testSpMM():
# Obtain path to runtime support library.
support_lib = os.getenv('SUPPORT_LIB')
assert os.path.exists(support_lib), f'{support_lib} does not exist'
with ir.Context() as ctx, ir.Location.unknown():
count = 0
# Loop over various ways to compile and annotate the SpMM kernel with
# a *single* sparse tensor. Note that we deliberate do not exhaustively
# search the full state space to reduce runtime of the test. It is
# straightforward to adapt the code below to explore more combinations.
par = 0
vec = 0
vl = 1
e = False
opt = (f'parallelization-strategy={par} '
f'vectorization-strategy={vec} '
f'vl={vl} enable-simd-index32={e}')
levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
[st.DimLevelType.dense, st.DimLevelType.compressed],
[st.DimLevelType.compressed, st.DimLevelType.dense],
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
orderings = [
ir.AffineMap.get_permutation([0, 1]),
ir.AffineMap.get_permutation([1, 0])
]
bitwidths = [0]
for level in levels:
for ordering in orderings:
for pwidth in bitwidths:
for iwidth in bitwidths:
attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
compiler = SparseCompiler(options=opt)
build_compile_and_run_SpMM(attr, support_lib, compiler)
count = count + 1
print('Passed ', count, 'tests')