blob: 8a5d81682a9c71d0d619c520417985745f9f25b9 [file] [log] [blame]
// RUN: mlir-opt %s \
// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
// RUN: --sparsification --sparse-tensor-conversion \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm \
// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with SIMDization as well. This should not change the outcome.
//
// RUN: mlir-opt %s \
// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
// RUN: --sparsification="vectorization-strategy=2 vl=2" --sparse-tensor-conversion \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm \
// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
// An example of a quantized sparse matmul. With the zero offset for the
// sparse input, the sparse compiler generates very efficient code for the
// x(i,j) += (ext(a(i,k)) - 2) * ext(b(k,j))
// operation.
module {
func @quantized_matmul(%input1: tensor<5x3xi8>,
%input2: tensor<3x6xi8, #DCSR>,
%output: tensor<5x6xi32>) -> tensor<5x6xi32> {
%c0 = arith.constant 0 : i32
%c2 = arith.constant 2 : i32
%0 = linalg.quantized_matmul
ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32)
outs(%output : tensor<5x6xi32>) -> tensor<5x6xi32>
return %0: tensor<5x6xi32>
}
func @entry() {
%c0 = arith.constant 0 : index
%i0 = arith.constant 0 : i32
%input1 = arith.constant dense<[
[ -128, 3, 127 ],
[ 0, 0, 0 ],
[ 11, 1, 0 ],
[ 0, 5, -1 ],
[ 13, 0, 3 ]
]> : tensor<5x3xi8>
%input2 = arith.constant dense<[
[ 127, 0, -128, 0, 0, 3 ],
[ 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 100, 10, 0 ]
]> : tensor<3x6xi8>
%sparse_input2 = sparse_tensor.convert %input2 : tensor<3x6xi8> to tensor<3x6xi8, #DCSR>
// Call the kernel.
%output = arith.constant dense<0> : tensor<5x6xi32>
%0 = call @quantized_matmul(%input1, %sparse_input2, %output)
: (tensor<5x3xi8>,
tensor<3x6xi8, #DCSR>,
tensor<5x6xi32>) -> tensor<5x6xi32>
//
// Verify the output.
//
// CHECK: ( ( -16510, 0, 16640, 12500, 1250, -390 ),
// CHECK-SAME: ( -254, 0, 256, -200, -20, -6 ),
// CHECK-SAME: ( 1143, 0, -1152, -200, -20, 27 ),
// CHECK-SAME: ( -254, 0, 256, -300, -30, -6 ),
// CHECK-SAME: ( 1397, 0, -1408, 100, 10, 33 ) )
//
%m = bufferization.to_memref %0 : memref<5x6xi32>
%v = vector.transfer_read %m[%c0, %c0], %i0
: memref<5x6xi32>, vector<5x6xi32>
vector.print %v : vector<5x6xi32>
// Release the resources.
sparse_tensor.release %sparse_input2 : tensor<3x6xi8, #DCSR>
memref.dealloc %m : memref<5x6xi32>
return
}
}