| // RUN: mlir-opt %s \ |
| // RUN: --sparsification --sparse-tensor-conversion \ |
| // RUN: --linalg-bufferize --convert-linalg-to-loops \ |
| // RUN: --convert-vector-to-scf --convert-scf-to-std \ |
| // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ |
| // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ |
| // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \ |
| // RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ |
| // RUN: mlir-cpu-runner \ |
| // RUN: -e entry -entry-point-result=void \ |
| // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ |
| // RUN: FileCheck %s |
| |
| #DCSR = #sparse_tensor.encoding<{ |
| dimLevelType = [ "compressed", "compressed" ] |
| }> |
| |
| #trait_mult_elt = { |
| indexing_maps = [ |
| affine_map<(i,j) -> (i,j)>, // A |
| affine_map<(i,j) -> (i,j)>, // B |
| affine_map<(i,j) -> (i,j)> // X (out) |
| ], |
| iterator_types = ["parallel", "parallel"], |
| doc = "X(i,j) = A(i,j) * B(i,j)" |
| } |
| |
| module { |
| // Sparse kernel. |
| func @sparse_mult_elt( |
| %arga: tensor<32x16xf32, #DCSR>, %argb: tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR> { |
| %c16 = arith.constant 16 : index |
| %c32 = arith.constant 32 : index |
| %argx = sparse_tensor.init [%c32, %c16] : tensor<32x16xf32, #DCSR> |
| %0 = linalg.generic #trait_mult_elt |
| ins(%arga, %argb: tensor<32x16xf32, #DCSR>, tensor<32x16xf32, #DCSR>) |
| outs(%argx: tensor<32x16xf32, #DCSR>) { |
| ^bb(%a: f32, %b: f32, %x: f32): |
| %1 = arith.mulf %a, %b : f32 |
| linalg.yield %1 : f32 |
| } -> tensor<32x16xf32, #DCSR> |
| return %0 : tensor<32x16xf32, #DCSR> |
| } |
| |
| // Driver method to call and verify kernel. |
| func @entry() { |
| %c0 = arith.constant 0 : index |
| %f1 = arith.constant -1.0 : f32 |
| |
| // Setup very sparse matrices. |
| %ta = arith.constant sparse< |
| [ [2,2], [15,15], [31,0], [31,14] ], [ 2.0, 3.0, -2.0, 4.0 ] |
| > : tensor<32x16xf32> |
| %tb = arith.constant sparse< |
| [ [1,1], [2,0], [2,2], [2,15], [31,0], [31,15] ], [ 5.0, 6.0, 7.0, 8.0, -10.0, 9.0 ] |
| > : tensor<32x16xf32> |
| %sta = sparse_tensor.convert %ta |
| : tensor<32x16xf32> to tensor<32x16xf32, #DCSR> |
| %stb = sparse_tensor.convert %tb |
| : tensor<32x16xf32> to tensor<32x16xf32, #DCSR> |
| |
| // Call kernel. |
| %0 = call @sparse_mult_elt(%sta, %stb) |
| : (tensor<32x16xf32, #DCSR>, |
| tensor<32x16xf32, #DCSR>) -> tensor<32x16xf32, #DCSR> |
| |
| // |
| // Verify results. Only two entries stored in result! |
| // |
| // CHECK: ( 14, 20, -1, -1 ) |
| // |
| %val = sparse_tensor.values %0 : tensor<32x16xf32, #DCSR> to memref<?xf32> |
| %vv = vector.transfer_read %val[%c0], %f1: memref<?xf32>, vector<4xf32> |
| vector.print %vv : vector<4xf32> |
| |
| // Release the resources. |
| sparse_tensor.release %sta : tensor<32x16xf32, #DCSR> |
| sparse_tensor.release %stb : tensor<32x16xf32, #DCSR> |
| sparse_tensor.release %0 : tensor<32x16xf32, #DCSR> |
| return |
| } |
| } |