| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "COFFLinkerContext.h" |
| #include "Chunks.h" |
| #include "Config.h" |
| #include "DebugTypes.h" |
| #include "Driver.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "lld/Common/DWARF.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm-c/lto.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" |
| #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" |
| #include "llvm/DebugInfo/CodeView/SymbolRecord.h" |
| #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" |
| #include "llvm/DebugInfo/PDB/Native/NativeSession.h" |
| #include "llvm/DebugInfo/PDB/Native/PDBFile.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/Object/Binary.h" |
| #include "llvm/Object/COFF.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorOr.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cstring> |
| #include <system_error> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::COFF; |
| using namespace llvm::codeview; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::coff; |
| |
| using llvm::Triple; |
| using llvm::support::ulittle32_t; |
| |
| // Returns the last element of a path, which is supposed to be a filename. |
| static StringRef getBasename(StringRef path) { |
| return sys::path::filename(path, sys::path::Style::windows); |
| } |
| |
| // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". |
| std::string lld::toString(const coff::InputFile *file) { |
| if (!file) |
| return "<internal>"; |
| if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind) |
| return std::string(file->getName()); |
| |
| return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + |
| ")") |
| .str(); |
| } |
| |
| /// Checks that Source is compatible with being a weak alias to Target. |
| /// If Source is Undefined and has no weak alias set, makes it a weak |
| /// alias to Target. |
| static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f, |
| Symbol *source, Symbol *target) { |
| if (auto *u = dyn_cast<Undefined>(source)) { |
| if (u->weakAlias && u->weakAlias != target) { |
| // Weak aliases as produced by GCC are named in the form |
| // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name |
| // of another symbol emitted near the weak symbol. |
| // Just use the definition from the first object file that defined |
| // this weak symbol. |
| if (config->mingw) |
| return; |
| symtab->reportDuplicate(source, f); |
| } |
| u->weakAlias = target; |
| } |
| } |
| |
| static bool ignoredSymbolName(StringRef name) { |
| return name == "@feat.00" || name == "@comp.id"; |
| } |
| |
| ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
| : InputFile(ctx, ArchiveKind, m) {} |
| |
| void ArchiveFile::parse() { |
| // Parse a MemoryBufferRef as an archive file. |
| file = CHECK(Archive::create(mb), this); |
| |
| // Read the symbol table to construct Lazy objects. |
| for (const Archive::Symbol &sym : file->symbols()) |
| ctx.symtab.addLazyArchive(this, sym); |
| } |
| |
| // Returns a buffer pointing to a member file containing a given symbol. |
| void ArchiveFile::addMember(const Archive::Symbol &sym) { |
| const Archive::Child &c = |
| CHECK(sym.getMember(), |
| "could not get the member for symbol " + toCOFFString(sym)); |
| |
| // Return an empty buffer if we have already returned the same buffer. |
| if (!seen.insert(c.getChildOffset()).second) |
| return; |
| |
| driver->enqueueArchiveMember(c, sym, getName()); |
| } |
| |
| std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) { |
| std::vector<MemoryBufferRef> v; |
| Error err = Error::success(); |
| for (const Archive::Child &c : file->children(err)) { |
| MemoryBufferRef mbref = |
| CHECK(c.getMemoryBufferRef(), |
| file->getFileName() + |
| ": could not get the buffer for a child of the archive"); |
| v.push_back(mbref); |
| } |
| if (err) |
| fatal(file->getFileName() + |
| ": Archive::children failed: " + toString(std::move(err))); |
| return v; |
| } |
| |
| void LazyObjFile::fetch() { |
| if (mb.getBuffer().empty()) |
| return; |
| |
| InputFile *file; |
| if (isBitcode(mb)) |
| file = make<BitcodeFile>(ctx, mb, "", 0, std::move(symbols)); |
| else |
| file = make<ObjFile>(ctx, mb, std::move(symbols)); |
| mb = {}; |
| ctx.symtab.addFile(file); |
| } |
| |
| void LazyObjFile::parse() { |
| if (isBitcode(this->mb)) { |
| // Bitcode file. |
| std::unique_ptr<lto::InputFile> obj = |
| CHECK(lto::InputFile::create(this->mb), this); |
| for (const lto::InputFile::Symbol &sym : obj->symbols()) { |
| if (!sym.isUndefined()) |
| ctx.symtab.addLazyObject(this, sym.getName()); |
| } |
| return; |
| } |
| |
| // Native object file. |
| std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this); |
| COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get()); |
| uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
| for (uint32_t i = 0; i < numSymbols; ++i) { |
| COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); |
| if (coffSym.isUndefined() || !coffSym.isExternal() || |
| coffSym.isWeakExternal()) |
| continue; |
| StringRef name = check(coffObj->getSymbolName(coffSym)); |
| if (coffSym.isAbsolute() && ignoredSymbolName(name)) |
| continue; |
| ctx.symtab.addLazyObject(this, name); |
| i += coffSym.getNumberOfAuxSymbols(); |
| } |
| } |
| |
| void ObjFile::parse() { |
| // Parse a memory buffer as a COFF file. |
| std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); |
| |
| if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { |
| bin.release(); |
| coffObj.reset(obj); |
| } else { |
| fatal(toString(this) + " is not a COFF file"); |
| } |
| |
| // Read section and symbol tables. |
| initializeChunks(); |
| initializeSymbols(); |
| initializeFlags(); |
| initializeDependencies(); |
| } |
| |
| const coff_section *ObjFile::getSection(uint32_t i) { |
| auto sec = coffObj->getSection(i); |
| if (!sec) |
| fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError())); |
| return *sec; |
| } |
| |
| // We set SectionChunk pointers in the SparseChunks vector to this value |
| // temporarily to mark comdat sections as having an unknown resolution. As we |
| // walk the object file's symbol table, once we visit either a leader symbol or |
| // an associative section definition together with the parent comdat's leader, |
| // we set the pointer to either nullptr (to mark the section as discarded) or a |
| // valid SectionChunk for that section. |
| static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1); |
| |
| void ObjFile::initializeChunks() { |
| uint32_t numSections = coffObj->getNumberOfSections(); |
| sparseChunks.resize(numSections + 1); |
| for (uint32_t i = 1; i < numSections + 1; ++i) { |
| const coff_section *sec = getSection(i); |
| if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) |
| sparseChunks[i] = pendingComdat; |
| else |
| sparseChunks[i] = readSection(i, nullptr, ""); |
| } |
| } |
| |
| SectionChunk *ObjFile::readSection(uint32_t sectionNumber, |
| const coff_aux_section_definition *def, |
| StringRef leaderName) { |
| const coff_section *sec = getSection(sectionNumber); |
| |
| StringRef name; |
| if (Expected<StringRef> e = coffObj->getSectionName(sec)) |
| name = *e; |
| else |
| fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " + |
| toString(e.takeError())); |
| |
| if (name == ".drectve") { |
| ArrayRef<uint8_t> data; |
| cantFail(coffObj->getSectionContents(sec, data)); |
| directives = StringRef((const char *)data.data(), data.size()); |
| return nullptr; |
| } |
| |
| if (name == ".llvm_addrsig") { |
| addrsigSec = sec; |
| return nullptr; |
| } |
| |
| if (name == ".llvm.call-graph-profile") { |
| callgraphSec = sec; |
| return nullptr; |
| } |
| |
| // Object files may have DWARF debug info or MS CodeView debug info |
| // (or both). |
| // |
| // DWARF sections don't need any special handling from the perspective |
| // of the linker; they are just a data section containing relocations. |
| // We can just link them to complete debug info. |
| // |
| // CodeView needs linker support. We need to interpret debug info, |
| // and then write it to a separate .pdb file. |
| |
| // Ignore DWARF debug info unless /debug is given. |
| if (!config->debug && name.startswith(".debug_")) |
| return nullptr; |
| |
| if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) |
| return nullptr; |
| auto *c = make<SectionChunk>(this, sec); |
| if (def) |
| c->checksum = def->CheckSum; |
| |
| // CodeView sections are stored to a different vector because they are not |
| // linked in the regular manner. |
| if (c->isCodeView()) |
| debugChunks.push_back(c); |
| else if (name == ".gfids$y") |
| guardFidChunks.push_back(c); |
| else if (name == ".giats$y") |
| guardIATChunks.push_back(c); |
| else if (name == ".gljmp$y") |
| guardLJmpChunks.push_back(c); |
| else if (name == ".gehcont$y") |
| guardEHContChunks.push_back(c); |
| else if (name == ".sxdata") |
| sxDataChunks.push_back(c); |
| else if (config->tailMerge && sec->NumberOfRelocations == 0 && |
| name == ".rdata" && leaderName.startswith("??_C@")) |
| // COFF sections that look like string literal sections (i.e. no |
| // relocations, in .rdata, leader symbol name matches the MSVC name mangling |
| // for string literals) are subject to string tail merging. |
| MergeChunk::addSection(ctx, c); |
| else if (name == ".rsrc" || name.startswith(".rsrc$")) |
| resourceChunks.push_back(c); |
| else |
| chunks.push_back(c); |
| |
| return c; |
| } |
| |
| void ObjFile::includeResourceChunks() { |
| chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); |
| } |
| |
| void ObjFile::readAssociativeDefinition( |
| COFFSymbolRef sym, const coff_aux_section_definition *def) { |
| readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); |
| } |
| |
| void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, |
| const coff_aux_section_definition *def, |
| uint32_t parentIndex) { |
| SectionChunk *parent = sparseChunks[parentIndex]; |
| int32_t sectionNumber = sym.getSectionNumber(); |
| |
| auto diag = [&]() { |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| |
| StringRef parentName; |
| const coff_section *parentSec = getSection(parentIndex); |
| if (Expected<StringRef> e = coffObj->getSectionName(parentSec)) |
| parentName = *e; |
| error(toString(this) + ": associative comdat " + name + " (sec " + |
| Twine(sectionNumber) + ") has invalid reference to section " + |
| parentName + " (sec " + Twine(parentIndex) + ")"); |
| }; |
| |
| if (parent == pendingComdat) { |
| // This can happen if an associative comdat refers to another associative |
| // comdat that appears after it (invalid per COFF spec) or to a section |
| // without any symbols. |
| diag(); |
| return; |
| } |
| |
| // Check whether the parent is prevailing. If it is, so are we, and we read |
| // the section; otherwise mark it as discarded. |
| if (parent) { |
| SectionChunk *c = readSection(sectionNumber, def, ""); |
| sparseChunks[sectionNumber] = c; |
| if (c) { |
| c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; |
| parent->addAssociative(c); |
| } |
| } else { |
| sparseChunks[sectionNumber] = nullptr; |
| } |
| } |
| |
| void ObjFile::recordPrevailingSymbolForMingw( |
| COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
| // For comdat symbols in executable sections, where this is the copy |
| // of the section chunk we actually include instead of discarding it, |
| // add the symbol to a map to allow using it for implicitly |
| // associating .[px]data$<func> sections to it. |
| // Use the suffix from the .text$<func> instead of the leader symbol |
| // name, for cases where the names differ (i386 mangling/decorations, |
| // cases where the leader is a weak symbol named .weak.func.default*). |
| int32_t sectionNumber = sym.getSectionNumber(); |
| SectionChunk *sc = sparseChunks[sectionNumber]; |
| if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { |
| StringRef name = sc->getSectionName().split('$').second; |
| prevailingSectionMap[name] = sectionNumber; |
| } |
| } |
| |
| void ObjFile::maybeAssociateSEHForMingw( |
| COFFSymbolRef sym, const coff_aux_section_definition *def, |
| const DenseMap<StringRef, uint32_t> &prevailingSectionMap) { |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || |
| name.consume_front(".eh_frame$")) { |
| // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly |
| // associative to the symbol <func>. |
| auto parentSym = prevailingSectionMap.find(name); |
| if (parentSym != prevailingSectionMap.end()) |
| readAssociativeDefinition(sym, def, parentSym->second); |
| } |
| } |
| |
| Symbol *ObjFile::createRegular(COFFSymbolRef sym) { |
| SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; |
| if (sym.isExternal()) { |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| if (sc) |
| return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc, |
| sym.getValue()); |
| // For MinGW symbols named .weak.* that point to a discarded section, |
| // don't create an Undefined symbol. If nothing ever refers to the symbol, |
| // everything should be fine. If something actually refers to the symbol |
| // (e.g. the undefined weak alias), linking will fail due to undefined |
| // references at the end. |
| if (config->mingw && name.startswith(".weak.")) |
| return nullptr; |
| return ctx.symtab.addUndefined(name, this, false); |
| } |
| if (sc) |
| return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, |
| /*IsExternal*/ false, sym.getGeneric(), sc); |
| return nullptr; |
| } |
| |
| void ObjFile::initializeSymbols() { |
| uint32_t numSymbols = coffObj->getNumberOfSymbols(); |
| symbols.resize(numSymbols); |
| |
| SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases; |
| std::vector<uint32_t> pendingIndexes; |
| pendingIndexes.reserve(numSymbols); |
| |
| DenseMap<StringRef, uint32_t> prevailingSectionMap; |
| std::vector<const coff_aux_section_definition *> comdatDefs( |
| coffObj->getNumberOfSections() + 1); |
| |
| for (uint32_t i = 0; i < numSymbols; ++i) { |
| COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); |
| bool prevailingComdat; |
| if (coffSym.isUndefined()) { |
| symbols[i] = createUndefined(coffSym); |
| } else if (coffSym.isWeakExternal()) { |
| symbols[i] = createUndefined(coffSym); |
| uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex; |
| weakAliases.emplace_back(symbols[i], tagIndex); |
| } else if (Optional<Symbol *> optSym = |
| createDefined(coffSym, comdatDefs, prevailingComdat)) { |
| symbols[i] = *optSym; |
| if (config->mingw && prevailingComdat) |
| recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); |
| } else { |
| // createDefined() returns None if a symbol belongs to a section that |
| // was pending at the point when the symbol was read. This can happen in |
| // two cases: |
| // 1) section definition symbol for a comdat leader; |
| // 2) symbol belongs to a comdat section associated with another section. |
| // In both of these cases, we can expect the section to be resolved by |
| // the time we finish visiting the remaining symbols in the symbol |
| // table. So we postpone the handling of this symbol until that time. |
| pendingIndexes.push_back(i); |
| } |
| i += coffSym.getNumberOfAuxSymbols(); |
| } |
| |
| for (uint32_t i : pendingIndexes) { |
| COFFSymbolRef sym = check(coffObj->getSymbol(i)); |
| if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
| if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
| readAssociativeDefinition(sym, def); |
| else if (config->mingw) |
| maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); |
| } |
| if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| log("comdat section " + name + |
| " without leader and unassociated, discarding"); |
| continue; |
| } |
| symbols[i] = createRegular(sym); |
| } |
| |
| for (auto &kv : weakAliases) { |
| Symbol *sym = kv.first; |
| uint32_t idx = kv.second; |
| checkAndSetWeakAlias(&ctx.symtab, this, sym, symbols[idx]); |
| } |
| |
| // Free the memory used by sparseChunks now that symbol loading is finished. |
| decltype(sparseChunks)().swap(sparseChunks); |
| } |
| |
| Symbol *ObjFile::createUndefined(COFFSymbolRef sym) { |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| return ctx.symtab.addUndefined(name, this, sym.isWeakExternal()); |
| } |
| |
| static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, |
| int32_t section) { |
| uint32_t numSymbols = obj->getNumberOfSymbols(); |
| for (uint32_t i = 0; i < numSymbols; ++i) { |
| COFFSymbolRef sym = check(obj->getSymbol(i)); |
| if (sym.getSectionNumber() != section) |
| continue; |
| if (const coff_aux_section_definition *def = sym.getSectionDefinition()) |
| return def; |
| } |
| return nullptr; |
| } |
| |
| void ObjFile::handleComdatSelection( |
| COFFSymbolRef sym, COMDATType &selection, bool &prevailing, |
| DefinedRegular *leader, |
| const llvm::object::coff_aux_section_definition *def) { |
| if (prevailing) |
| return; |
| // There's already an existing comdat for this symbol: `Leader`. |
| // Use the comdats's selection field to determine if the new |
| // symbol in `Sym` should be discarded, produce a duplicate symbol |
| // error, etc. |
| |
| SectionChunk *leaderChunk = leader->getChunk(); |
| COMDATType leaderSelection = leaderChunk->selection; |
| |
| assert(leader->data && "Comdat leader without SectionChunk?"); |
| if (isa<BitcodeFile>(leader->file)) { |
| // If the leader is only a LTO symbol, we don't know e.g. its final size |
| // yet, so we can't do the full strict comdat selection checking yet. |
| selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; |
| } |
| |
| if ((selection == IMAGE_COMDAT_SELECT_ANY && |
| leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || |
| (selection == IMAGE_COMDAT_SELECT_LARGEST && |
| leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { |
| // cl.exe picks "any" for vftables when building with /GR- and |
| // "largest" when building with /GR. To be able to link object files |
| // compiled with each flag, "any" and "largest" are merged as "largest". |
| leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; |
| } |
| |
| // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". |
| // Clang on the other hand picks "any". To be able to link two object files |
| // with a __declspec(selectany) declaration, one compiled with gcc and the |
| // other with clang, we merge them as proper "same size as" |
| if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && |
| leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || |
| (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && |
| leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { |
| leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; |
| } |
| |
| // Other than that, comdat selections must match. This is a bit more |
| // strict than link.exe which allows merging "any" and "largest" if "any" |
| // is the first symbol the linker sees, and it allows merging "largest" |
| // with everything (!) if "largest" is the first symbol the linker sees. |
| // Making this symmetric independent of which selection is seen first |
| // seems better though. |
| // (This behavior matches ModuleLinker::getComdatResult().) |
| if (selection != leaderSelection) { |
| log(("conflicting comdat type for " + toString(*leader) + ": " + |
| Twine((int)leaderSelection) + " in " + toString(leader->getFile()) + |
| " and " + Twine((int)selection) + " in " + toString(this)) |
| .str()); |
| ctx.symtab.reportDuplicate(leader, this); |
| return; |
| } |
| |
| switch (selection) { |
| case IMAGE_COMDAT_SELECT_NODUPLICATES: |
| ctx.symtab.reportDuplicate(leader, this); |
| break; |
| |
| case IMAGE_COMDAT_SELECT_ANY: |
| // Nothing to do. |
| break; |
| |
| case IMAGE_COMDAT_SELECT_SAME_SIZE: |
| if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { |
| if (!config->mingw) { |
| ctx.symtab.reportDuplicate(leader, this); |
| } else { |
| const coff_aux_section_definition *leaderDef = nullptr; |
| if (leaderChunk->file) |
| leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), |
| leaderChunk->getSectionNumber()); |
| if (!leaderDef || leaderDef->Length != def->Length) |
| ctx.symtab.reportDuplicate(leader, this); |
| } |
| } |
| break; |
| |
| case IMAGE_COMDAT_SELECT_EXACT_MATCH: { |
| SectionChunk newChunk(this, getSection(sym)); |
| // link.exe only compares section contents here and doesn't complain |
| // if the two comdat sections have e.g. different alignment. |
| // Match that. |
| if (leaderChunk->getContents() != newChunk.getContents()) |
| ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); |
| break; |
| } |
| |
| case IMAGE_COMDAT_SELECT_ASSOCIATIVE: |
| // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. |
| // (This means lld-link doesn't produce duplicate symbol errors for |
| // associative comdats while link.exe does, but associate comdats |
| // are never extern in practice.) |
| llvm_unreachable("createDefined not called for associative comdats"); |
| |
| case IMAGE_COMDAT_SELECT_LARGEST: |
| if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { |
| // Replace the existing comdat symbol with the new one. |
| StringRef name = check(coffObj->getSymbolName(sym)); |
| // FIXME: This is incorrect: With /opt:noref, the previous sections |
| // make it into the final executable as well. Correct handling would |
| // be to undo reading of the whole old section that's being replaced, |
| // or doing one pass that determines what the final largest comdat |
| // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading |
| // only the largest one. |
| replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true, |
| /*IsExternal*/ true, sym.getGeneric(), |
| nullptr); |
| prevailing = true; |
| } |
| break; |
| |
| case IMAGE_COMDAT_SELECT_NEWEST: |
| llvm_unreachable("should have been rejected earlier"); |
| } |
| } |
| |
| Optional<Symbol *> ObjFile::createDefined( |
| COFFSymbolRef sym, |
| std::vector<const coff_aux_section_definition *> &comdatDefs, |
| bool &prevailing) { |
| prevailing = false; |
| auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; |
| |
| if (sym.isCommon()) { |
| auto *c = make<CommonChunk>(sym); |
| chunks.push_back(c); |
| return ctx.symtab.addCommon(this, getName(), sym.getValue(), |
| sym.getGeneric(), c); |
| } |
| |
| if (sym.isAbsolute()) { |
| StringRef name = getName(); |
| |
| if (name == "@feat.00") |
| feat00Flags = sym.getValue(); |
| // Skip special symbols. |
| if (ignoredSymbolName(name)) |
| return nullptr; |
| |
| if (sym.isExternal()) |
| return ctx.symtab.addAbsolute(name, sym); |
| return make<DefinedAbsolute>(name, sym); |
| } |
| |
| int32_t sectionNumber = sym.getSectionNumber(); |
| if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) |
| return nullptr; |
| |
| if (llvm::COFF::isReservedSectionNumber(sectionNumber)) |
| fatal(toString(this) + ": " + getName() + |
| " should not refer to special section " + Twine(sectionNumber)); |
| |
| if ((uint32_t)sectionNumber >= sparseChunks.size()) |
| fatal(toString(this) + ": " + getName() + |
| " should not refer to non-existent section " + Twine(sectionNumber)); |
| |
| // Comdat handling. |
| // A comdat symbol consists of two symbol table entries. |
| // The first symbol entry has the name of the section (e.g. .text), fixed |
| // values for the other fields, and one auxiliary record. |
| // The second symbol entry has the name of the comdat symbol, called the |
| // "comdat leader". |
| // When this function is called for the first symbol entry of a comdat, |
| // it sets comdatDefs and returns None, and when it's called for the second |
| // symbol entry it reads comdatDefs and then sets it back to nullptr. |
| |
| // Handle comdat leader. |
| if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { |
| comdatDefs[sectionNumber] = nullptr; |
| DefinedRegular *leader; |
| |
| if (sym.isExternal()) { |
| std::tie(leader, prevailing) = |
| ctx.symtab.addComdat(this, getName(), sym.getGeneric()); |
| } else { |
| leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false, |
| /*IsExternal*/ false, sym.getGeneric()); |
| prevailing = true; |
| } |
| |
| if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || |
| // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe |
| // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. |
| def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { |
| fatal("unknown comdat type " + std::to_string((int)def->Selection) + |
| " for " + getName() + " in " + toString(this)); |
| } |
| COMDATType selection = (COMDATType)def->Selection; |
| |
| if (leader->isCOMDAT) |
| handleComdatSelection(sym, selection, prevailing, leader, def); |
| |
| if (prevailing) { |
| SectionChunk *c = readSection(sectionNumber, def, getName()); |
| sparseChunks[sectionNumber] = c; |
| c->sym = cast<DefinedRegular>(leader); |
| c->selection = selection; |
| cast<DefinedRegular>(leader)->data = &c->repl; |
| } else { |
| sparseChunks[sectionNumber] = nullptr; |
| } |
| return leader; |
| } |
| |
| // Prepare to handle the comdat leader symbol by setting the section's |
| // ComdatDefs pointer if we encounter a non-associative comdat. |
| if (sparseChunks[sectionNumber] == pendingComdat) { |
| if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { |
| if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) |
| comdatDefs[sectionNumber] = def; |
| } |
| return None; |
| } |
| |
| return createRegular(sym); |
| } |
| |
| MachineTypes ObjFile::getMachineType() { |
| if (coffObj) |
| return static_cast<MachineTypes>(coffObj->getMachine()); |
| return IMAGE_FILE_MACHINE_UNKNOWN; |
| } |
| |
| ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) { |
| if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) |
| return sec->consumeDebugMagic(); |
| return {}; |
| } |
| |
| // OBJ files systematically store critical information in a .debug$S stream, |
| // even if the TU was compiled with no debug info. At least two records are |
| // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the |
| // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is |
| // currently used to initialize the hotPatchable member. |
| void ObjFile::initializeFlags() { |
| ArrayRef<uint8_t> data = getDebugSection(".debug$S"); |
| if (data.empty()) |
| return; |
| |
| DebugSubsectionArray subsections; |
| |
| BinaryStreamReader reader(data, support::little); |
| ExitOnError exitOnErr; |
| exitOnErr(reader.readArray(subsections, data.size())); |
| |
| for (const DebugSubsectionRecord &ss : subsections) { |
| if (ss.kind() != DebugSubsectionKind::Symbols) |
| continue; |
| |
| unsigned offset = 0; |
| |
| // Only parse the first two records. We are only looking for S_OBJNAME |
| // and S_COMPILE3, and they usually appear at the beginning of the |
| // stream. |
| for (unsigned i = 0; i < 2; ++i) { |
| Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset); |
| if (!sym) { |
| consumeError(sym.takeError()); |
| return; |
| } |
| if (sym->kind() == SymbolKind::S_COMPILE3) { |
| auto cs = |
| cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get())); |
| hotPatchable = |
| (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; |
| } |
| if (sym->kind() == SymbolKind::S_OBJNAME) { |
| auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>( |
| sym.get())); |
| pchSignature = objName.Signature; |
| } |
| offset += sym->length(); |
| } |
| } |
| } |
| |
| // Depending on the compilation flags, OBJs can refer to external files, |
| // necessary to merge this OBJ into the final PDB. We currently support two |
| // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. |
| // And PDB type servers, when compiling with /Zi. This function extracts these |
| // dependencies and makes them available as a TpiSource interface (see |
| // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular |
| // output even with /Yc and /Yu and with /Zi. |
| void ObjFile::initializeDependencies() { |
| if (!config->debug) |
| return; |
| |
| bool isPCH = false; |
| |
| ArrayRef<uint8_t> data = getDebugSection(".debug$P"); |
| if (!data.empty()) |
| isPCH = true; |
| else |
| data = getDebugSection(".debug$T"); |
| |
| // symbols but no types, make a plain, empty TpiSource anyway, because it |
| // simplifies adding the symbols later. |
| if (data.empty()) { |
| if (!debugChunks.empty()) |
| debugTypesObj = makeTpiSource(ctx, this); |
| return; |
| } |
| |
| // Get the first type record. It will indicate if this object uses a type |
| // server (/Zi) or a PCH file (/Yu). |
| CVTypeArray types; |
| BinaryStreamReader reader(data, support::little); |
| cantFail(reader.readArray(types, reader.getLength())); |
| CVTypeArray::Iterator firstType = types.begin(); |
| if (firstType == types.end()) |
| return; |
| |
| // Remember the .debug$T or .debug$P section. |
| debugTypes = data; |
| |
| // This object file is a PCH file that others will depend on. |
| if (isPCH) { |
| debugTypesObj = makePrecompSource(ctx, this); |
| return; |
| } |
| |
| // This object file was compiled with /Zi. Enqueue the PDB dependency. |
| if (firstType->kind() == LF_TYPESERVER2) { |
| TypeServer2Record ts = cantFail( |
| TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data())); |
| debugTypesObj = makeUseTypeServerSource(ctx, this, ts); |
| enqueuePdbFile(ts.getName(), this); |
| return; |
| } |
| |
| // This object was compiled with /Yu. It uses types from another object file |
| // with a matching signature. |
| if (firstType->kind() == LF_PRECOMP) { |
| PrecompRecord precomp = cantFail( |
| TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data())); |
| debugTypesObj = makeUsePrecompSource(ctx, this, precomp); |
| // Drop the LF_PRECOMP record from the input stream. |
| debugTypes = debugTypes.drop_front(firstType->RecordData.size()); |
| return; |
| } |
| |
| // This is a plain old object file. |
| debugTypesObj = makeTpiSource(ctx, this); |
| } |
| |
| // Make a PDB path assuming the PDB is in the same folder as the OBJ |
| static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) { |
| StringRef localPath = |
| !file->parentName.empty() ? file->parentName : file->getName(); |
| SmallString<128> path = sys::path::parent_path(localPath); |
| |
| // Currently, type server PDBs are only created by MSVC cl, which only runs |
| // on Windows, so we can assume type server paths are Windows style. |
| sys::path::append(path, |
| sys::path::filename(tSPath, sys::path::Style::windows)); |
| return std::string(path.str()); |
| } |
| |
| // The casing of the PDB path stamped in the OBJ can differ from the actual path |
| // on disk. With this, we ensure to always use lowercase as a key for the |
| // pdbInputFileInstances map, at least on Windows. |
| static std::string normalizePdbPath(StringRef path) { |
| #if defined(_WIN32) |
| return path.lower(); |
| #else // LINUX |
| return std::string(path); |
| #endif |
| } |
| |
| // If existing, return the actual PDB path on disk. |
| static Optional<std::string> findPdbPath(StringRef pdbPath, |
| ObjFile *dependentFile) { |
| // Ensure the file exists before anything else. In some cases, if the path |
| // points to a removable device, Driver::enqueuePath() would fail with an |
| // error (EAGAIN, "resource unavailable try again") which we want to skip |
| // silently. |
| if (llvm::sys::fs::exists(pdbPath)) |
| return normalizePdbPath(pdbPath); |
| std::string ret = getPdbBaseName(dependentFile, pdbPath); |
| if (llvm::sys::fs::exists(ret)) |
| return normalizePdbPath(ret); |
| return None; |
| } |
| |
| PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) |
| : InputFile(ctx, PDBKind, m) {} |
| |
| PDBInputFile::~PDBInputFile() = default; |
| |
| PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, |
| StringRef path, |
| ObjFile *fromFile) { |
| auto p = findPdbPath(path.str(), fromFile); |
| if (!p) |
| return nullptr; |
| auto it = ctx.pdbInputFileInstances.find(*p); |
| if (it != ctx.pdbInputFileInstances.end()) |
| return it->second; |
| return nullptr; |
| } |
| |
| void PDBInputFile::parse() { |
| ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; |
| |
| std::unique_ptr<pdb::IPDBSession> thisSession; |
| loadErr.emplace(pdb::NativeSession::createFromPdb( |
| MemoryBuffer::getMemBuffer(mb, false), thisSession)); |
| if (*loadErr) |
| return; // fail silently at this point - the error will be handled later, |
| // when merging the debug type stream |
| |
| session.reset(static_cast<pdb::NativeSession *>(thisSession.release())); |
| |
| pdb::PDBFile &pdbFile = session->getPDBFile(); |
| auto expectedInfo = pdbFile.getPDBInfoStream(); |
| // All PDB Files should have an Info stream. |
| if (!expectedInfo) { |
| loadErr.emplace(expectedInfo.takeError()); |
| return; |
| } |
| debugTypesObj = makeTypeServerSource(ctx, this); |
| } |
| |
| // Used only for DWARF debug info, which is not common (except in MinGW |
| // environments). This returns an optional pair of file name and line |
| // number for where the variable was defined. |
| Optional<std::pair<StringRef, uint32_t>> |
| ObjFile::getVariableLocation(StringRef var) { |
| if (!dwarf) { |
| dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); |
| if (!dwarf) |
| return None; |
| } |
| if (config->machine == I386) |
| var.consume_front("_"); |
| Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var); |
| if (!ret) |
| return None; |
| return std::make_pair(saver.save(ret->first), ret->second); |
| } |
| |
| // Used only for DWARF debug info, which is not common (except in MinGW |
| // environments). |
| Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset, |
| uint32_t sectionIndex) { |
| if (!dwarf) { |
| dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj())); |
| if (!dwarf) |
| return None; |
| } |
| |
| return dwarf->getDILineInfo(offset, sectionIndex); |
| } |
| |
| void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { |
| auto p = findPdbPath(path.str(), fromFile); |
| if (!p) |
| return; |
| auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr); |
| if (!it.second) |
| return; // already scheduled for load |
| driver->enqueuePDB(*p); |
| } |
| |
| void ImportFile::parse() { |
| const char *buf = mb.getBufferStart(); |
| const auto *hdr = reinterpret_cast<const coff_import_header *>(buf); |
| |
| // Check if the total size is valid. |
| if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) |
| fatal("broken import library"); |
| |
| // Read names and create an __imp_ symbol. |
| StringRef name = saver.save(StringRef(buf + sizeof(*hdr))); |
| StringRef impName = saver.save("__imp_" + name); |
| const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1; |
| dllName = std::string(StringRef(nameStart)); |
| StringRef extName; |
| switch (hdr->getNameType()) { |
| case IMPORT_ORDINAL: |
| extName = ""; |
| break; |
| case IMPORT_NAME: |
| extName = name; |
| break; |
| case IMPORT_NAME_NOPREFIX: |
| extName = ltrim1(name, "?@_"); |
| break; |
| case IMPORT_NAME_UNDECORATE: |
| extName = ltrim1(name, "?@_"); |
| extName = extName.substr(0, extName.find('@')); |
| break; |
| } |
| |
| this->hdr = hdr; |
| externalName = extName; |
| |
| impSym = ctx.symtab.addImportData(impName, this); |
| // If this was a duplicate, we logged an error but may continue; |
| // in this case, impSym is nullptr. |
| if (!impSym) |
| return; |
| |
| if (hdr->getType() == llvm::COFF::IMPORT_CONST) |
| static_cast<void>(ctx.symtab.addImportData(name, this)); |
| |
| // If type is function, we need to create a thunk which jump to an |
| // address pointed by the __imp_ symbol. (This allows you to call |
| // DLL functions just like regular non-DLL functions.) |
| if (hdr->getType() == llvm::COFF::IMPORT_CODE) |
| thunkSym = ctx.symtab.addImportThunk( |
| name, cast_or_null<DefinedImportData>(impSym), hdr->Machine); |
| } |
| |
| BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, |
| StringRef archiveName, uint64_t offsetInArchive) |
| : BitcodeFile(ctx, mb, archiveName, offsetInArchive, {}) {} |
| |
| BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, |
| StringRef archiveName, uint64_t offsetInArchive, |
| std::vector<Symbol *> &&symbols) |
| : InputFile(ctx, BitcodeKind, mb), symbols(std::move(symbols)) { |
| std::string path = mb.getBufferIdentifier().str(); |
| if (config->thinLTOIndexOnly) |
| path = replaceThinLTOSuffix(mb.getBufferIdentifier()); |
| |
| // ThinLTO assumes that all MemoryBufferRefs given to it have a unique |
| // name. If two archives define two members with the same name, this |
| // causes a collision which result in only one of the objects being taken |
| // into consideration at LTO time (which very likely causes undefined |
| // symbols later in the link stage). So we append file offset to make |
| // filename unique. |
| MemoryBufferRef mbref( |
| mb.getBuffer(), |
| saver.save(archiveName.empty() ? path |
| : archiveName + sys::path::filename(path) + |
| utostr(offsetInArchive))); |
| |
| obj = check(lto::InputFile::create(mbref)); |
| } |
| |
| BitcodeFile::~BitcodeFile() = default; |
| |
| namespace { |
| // Convenience class for initializing a coff_section with specific flags. |
| class FakeSection { |
| public: |
| FakeSection(int c) { section.Characteristics = c; } |
| |
| coff_section section; |
| }; |
| |
| // Convenience class for initializing a SectionChunk with specific flags. |
| class FakeSectionChunk { |
| public: |
| FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) { |
| // Comdats from LTO files can't be fully treated as regular comdats |
| // at this point; we don't know what size or contents they are going to |
| // have, so we can't do proper checking of such aspects of them. |
| chunk.selection = IMAGE_COMDAT_SELECT_ANY; |
| } |
| |
| SectionChunk chunk; |
| }; |
| |
| FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE); |
| FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA); |
| FakeSectionChunk ltoTextSectionChunk(<oTextSection.section); |
| FakeSectionChunk ltoDataSectionChunk(<oDataSection.section); |
| } // namespace |
| |
| void BitcodeFile::parse() { |
| std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size()); |
| for (size_t i = 0; i != obj->getComdatTable().size(); ++i) |
| // FIXME: Check nodeduplicate |
| comdat[i] = |
| ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); |
| for (const lto::InputFile::Symbol &objSym : obj->symbols()) { |
| StringRef symName = saver.save(objSym.getName()); |
| int comdatIndex = objSym.getComdatIndex(); |
| Symbol *sym; |
| SectionChunk *fakeSC = nullptr; |
| if (objSym.isExecutable()) |
| fakeSC = <oTextSectionChunk.chunk; |
| else |
| fakeSC = <oDataSectionChunk.chunk; |
| if (objSym.isUndefined()) { |
| sym = ctx.symtab.addUndefined(symName, this, false); |
| } else if (objSym.isCommon()) { |
| sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize()); |
| } else if (objSym.isWeak() && objSym.isIndirect()) { |
| // Weak external. |
| sym = ctx.symtab.addUndefined(symName, this, true); |
| std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); |
| Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback)); |
| checkAndSetWeakAlias(&ctx.symtab, this, sym, alias); |
| } else if (comdatIndex != -1) { |
| if (symName == obj->getComdatTable()[comdatIndex].first) { |
| sym = comdat[comdatIndex].first; |
| if (cast<DefinedRegular>(sym)->data == nullptr) |
| cast<DefinedRegular>(sym)->data = &fakeSC->repl; |
| } else if (comdat[comdatIndex].second) { |
| sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); |
| } else { |
| sym = ctx.symtab.addUndefined(symName, this, false); |
| } |
| } else { |
| sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC); |
| } |
| symbols.push_back(sym); |
| if (objSym.isUsed()) |
| config->gcroot.push_back(sym); |
| } |
| directives = obj->getCOFFLinkerOpts(); |
| } |
| |
| MachineTypes BitcodeFile::getMachineType() { |
| switch (Triple(obj->getTargetTriple()).getArch()) { |
| case Triple::x86_64: |
| return AMD64; |
| case Triple::x86: |
| return I386; |
| case Triple::arm: |
| return ARMNT; |
| case Triple::aarch64: |
| return ARM64; |
| default: |
| return IMAGE_FILE_MACHINE_UNKNOWN; |
| } |
| } |
| |
| std::string lld::coff::replaceThinLTOSuffix(StringRef path) { |
| StringRef suffix = config->thinLTOObjectSuffixReplace.first; |
| StringRef repl = config->thinLTOObjectSuffixReplace.second; |
| |
| if (path.consume_back(suffix)) |
| return (path + repl).str(); |
| return std::string(path); |
| } |
| |
| static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { |
| for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { |
| const coff_section *sec = CHECK(coffObj->getSection(i), file); |
| if (rva >= sec->VirtualAddress && |
| rva <= sec->VirtualAddress + sec->VirtualSize) { |
| return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; |
| } |
| } |
| return false; |
| } |
| |
| void DLLFile::parse() { |
| // Parse a memory buffer as a PE-COFF executable. |
| std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this); |
| |
| if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) { |
| bin.release(); |
| coffObj.reset(obj); |
| } else { |
| error(toString(this) + " is not a COFF file"); |
| return; |
| } |
| |
| if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { |
| error(toString(this) + " is not a PE-COFF executable"); |
| return; |
| } |
| |
| for (const auto &exp : coffObj->export_directories()) { |
| StringRef dllName, symbolName; |
| uint32_t exportRVA; |
| checkError(exp.getDllName(dllName)); |
| checkError(exp.getSymbolName(symbolName)); |
| checkError(exp.getExportRVA(exportRVA)); |
| |
| if (symbolName.empty()) |
| continue; |
| |
| bool code = isRVACode(coffObj.get(), exportRVA, this); |
| |
| Symbol *s = make<Symbol>(); |
| s->dllName = dllName; |
| s->symbolName = symbolName; |
| s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; |
| s->nameType = ImportNameType::IMPORT_NAME; |
| |
| if (coffObj->getMachine() == I386) { |
| s->symbolName = symbolName = saver.save("_" + symbolName); |
| s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; |
| } |
| |
| StringRef impName = saver.save("__imp_" + symbolName); |
| ctx.symtab.addLazyDLLSymbol(this, s, impName); |
| if (code) |
| ctx.symtab.addLazyDLLSymbol(this, s, symbolName); |
| } |
| } |
| |
| MachineTypes DLLFile::getMachineType() { |
| if (coffObj) |
| return static_cast<MachineTypes>(coffObj->getMachine()); |
| return IMAGE_FILE_MACHINE_UNKNOWN; |
| } |
| |
| void DLLFile::makeImport(DLLFile::Symbol *s) { |
| if (!seen.insert(s->symbolName).second) |
| return; |
| |
| size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs |
| size_t size = sizeof(coff_import_header) + impSize; |
| char *buf = bAlloc.Allocate<char>(size); |
| memset(buf, 0, size); |
| char *p = buf; |
| auto *imp = reinterpret_cast<coff_import_header *>(p); |
| p += sizeof(*imp); |
| imp->Sig2 = 0xFFFF; |
| imp->Machine = coffObj->getMachine(); |
| imp->SizeOfData = impSize; |
| imp->OrdinalHint = 0; // Only linking by name |
| imp->TypeInfo = (s->nameType << 2) | s->importType; |
| |
| // Write symbol name and DLL name. |
| memcpy(p, s->symbolName.data(), s->symbolName.size()); |
| p += s->symbolName.size() + 1; |
| memcpy(p, s->dllName.data(), s->dllName.size()); |
| MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); |
| ImportFile *impFile = make<ImportFile>(ctx, mbref); |
| ctx.symtab.addFile(impFile); |
| } |