| //===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Defines the implementation for the fixed point number interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APFixedPoint.h" |
| #include "llvm/ADT/APFloat.h" |
| |
| namespace llvm { |
| |
| APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema, |
| bool *Overflow) const { |
| APSInt NewVal = Val; |
| unsigned DstWidth = DstSema.getWidth(); |
| unsigned DstScale = DstSema.getScale(); |
| bool Upscaling = DstScale > getScale(); |
| if (Overflow) |
| *Overflow = false; |
| |
| if (Upscaling) { |
| NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale()); |
| NewVal <<= (DstScale - getScale()); |
| } else { |
| NewVal >>= (getScale() - DstScale); |
| } |
| |
| auto Mask = APInt::getBitsSetFrom( |
| NewVal.getBitWidth(), |
| std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth())); |
| APInt Masked(NewVal & Mask); |
| |
| // Change in the bits above the sign |
| if (!(Masked == Mask || Masked == 0)) { |
| // Found overflow in the bits above the sign |
| if (DstSema.isSaturated()) |
| NewVal = NewVal.isNegative() ? Mask : ~Mask; |
| else if (Overflow) |
| *Overflow = true; |
| } |
| |
| // If the dst semantics are unsigned, but our value is signed and negative, we |
| // clamp to zero. |
| if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) { |
| // Found negative overflow for unsigned result |
| if (DstSema.isSaturated()) |
| NewVal = 0; |
| else if (Overflow) |
| *Overflow = true; |
| } |
| |
| NewVal = NewVal.extOrTrunc(DstWidth); |
| NewVal.setIsSigned(DstSema.isSigned()); |
| return APFixedPoint(NewVal, DstSema); |
| } |
| |
| int APFixedPoint::compare(const APFixedPoint &Other) const { |
| APSInt ThisVal = getValue(); |
| APSInt OtherVal = Other.getValue(); |
| bool ThisSigned = Val.isSigned(); |
| bool OtherSigned = OtherVal.isSigned(); |
| unsigned OtherScale = Other.getScale(); |
| unsigned OtherWidth = OtherVal.getBitWidth(); |
| |
| unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth); |
| |
| // Prevent overflow in the event the widths are the same but the scales differ |
| CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale |
| : OtherScale - getScale(); |
| |
| ThisVal = ThisVal.extOrTrunc(CommonWidth); |
| OtherVal = OtherVal.extOrTrunc(CommonWidth); |
| |
| unsigned CommonScale = std::max(getScale(), OtherScale); |
| ThisVal = ThisVal.shl(CommonScale - getScale()); |
| OtherVal = OtherVal.shl(CommonScale - OtherScale); |
| |
| if (ThisSigned && OtherSigned) { |
| if (ThisVal.sgt(OtherVal)) |
| return 1; |
| else if (ThisVal.slt(OtherVal)) |
| return -1; |
| } else if (!ThisSigned && !OtherSigned) { |
| if (ThisVal.ugt(OtherVal)) |
| return 1; |
| else if (ThisVal.ult(OtherVal)) |
| return -1; |
| } else if (ThisSigned && !OtherSigned) { |
| if (ThisVal.isSignBitSet()) |
| return -1; |
| else if (ThisVal.ugt(OtherVal)) |
| return 1; |
| else if (ThisVal.ult(OtherVal)) |
| return -1; |
| } else { |
| // !ThisSigned && OtherSigned |
| if (OtherVal.isSignBitSet()) |
| return 1; |
| else if (ThisVal.ugt(OtherVal)) |
| return 1; |
| else if (ThisVal.ult(OtherVal)) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) { |
| bool IsUnsigned = !Sema.isSigned(); |
| auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned); |
| if (IsUnsigned && Sema.hasUnsignedPadding()) |
| Val = Val.lshr(1); |
| return APFixedPoint(Val, Sema); |
| } |
| |
| APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) { |
| auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned()); |
| return APFixedPoint(Val, Sema); |
| } |
| |
| bool FixedPointSemantics::fitsInFloatSemantics( |
| const fltSemantics &FloatSema) const { |
| // A fixed point semantic fits in a floating point semantic if the maximum |
| // and minimum values as integers of the fixed point semantic can fit in the |
| // floating point semantic. |
| |
| // If these values do not fit, then a floating point rescaling of the true |
| // maximum/minimum value will not fit either, so the floating point semantic |
| // cannot be used to perform such a rescaling. |
| |
| APSInt MaxInt = APFixedPoint::getMax(*this).getValue(); |
| APFloat F(FloatSema); |
| APFloat::opStatus Status = F.convertFromAPInt(MaxInt, MaxInt.isSigned(), |
| APFloat::rmNearestTiesToAway); |
| if ((Status & APFloat::opOverflow) || !isSigned()) |
| return !(Status & APFloat::opOverflow); |
| |
| APSInt MinInt = APFixedPoint::getMin(*this).getValue(); |
| Status = F.convertFromAPInt(MinInt, MinInt.isSigned(), |
| APFloat::rmNearestTiesToAway); |
| return !(Status & APFloat::opOverflow); |
| } |
| |
| FixedPointSemantics FixedPointSemantics::getCommonSemantics( |
| const FixedPointSemantics &Other) const { |
| unsigned CommonScale = std::max(getScale(), Other.getScale()); |
| unsigned CommonWidth = |
| std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale; |
| |
| bool ResultIsSigned = isSigned() || Other.isSigned(); |
| bool ResultIsSaturated = isSaturated() || Other.isSaturated(); |
| bool ResultHasUnsignedPadding = false; |
| if (!ResultIsSigned) { |
| // Both are unsigned. |
| ResultHasUnsignedPadding = hasUnsignedPadding() && |
| Other.hasUnsignedPadding() && !ResultIsSaturated; |
| } |
| |
| // If the result is signed, add an extra bit for the sign. Otherwise, if it is |
| // unsigned and has unsigned padding, we only need to add the extra padding |
| // bit back if we are not saturating. |
| if (ResultIsSigned || ResultHasUnsignedPadding) |
| CommonWidth++; |
| |
| return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned, |
| ResultIsSaturated, ResultHasUnsignedPadding); |
| } |
| |
| APFixedPoint APFixedPoint::add(const APFixedPoint &Other, |
| bool *Overflow) const { |
| auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); |
| APFixedPoint ConvertedThis = convert(CommonFXSema); |
| APFixedPoint ConvertedOther = Other.convert(CommonFXSema); |
| APSInt ThisVal = ConvertedThis.getValue(); |
| APSInt OtherVal = ConvertedOther.getValue(); |
| bool Overflowed = false; |
| |
| APSInt Result; |
| if (CommonFXSema.isSaturated()) { |
| Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal) |
| : ThisVal.uadd_sat(OtherVal); |
| } else { |
| Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed) |
| : ThisVal.uadd_ov(OtherVal, Overflowed); |
| } |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Result, CommonFXSema); |
| } |
| |
| APFixedPoint APFixedPoint::sub(const APFixedPoint &Other, |
| bool *Overflow) const { |
| auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); |
| APFixedPoint ConvertedThis = convert(CommonFXSema); |
| APFixedPoint ConvertedOther = Other.convert(CommonFXSema); |
| APSInt ThisVal = ConvertedThis.getValue(); |
| APSInt OtherVal = ConvertedOther.getValue(); |
| bool Overflowed = false; |
| |
| APSInt Result; |
| if (CommonFXSema.isSaturated()) { |
| Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal) |
| : ThisVal.usub_sat(OtherVal); |
| } else { |
| Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed) |
| : ThisVal.usub_ov(OtherVal, Overflowed); |
| } |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Result, CommonFXSema); |
| } |
| |
| APFixedPoint APFixedPoint::mul(const APFixedPoint &Other, |
| bool *Overflow) const { |
| auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); |
| APFixedPoint ConvertedThis = convert(CommonFXSema); |
| APFixedPoint ConvertedOther = Other.convert(CommonFXSema); |
| APSInt ThisVal = ConvertedThis.getValue(); |
| APSInt OtherVal = ConvertedOther.getValue(); |
| bool Overflowed = false; |
| |
| // Widen the LHS and RHS so we can perform a full multiplication. |
| unsigned Wide = CommonFXSema.getWidth() * 2; |
| if (CommonFXSema.isSigned()) { |
| ThisVal = ThisVal.sextOrSelf(Wide); |
| OtherVal = OtherVal.sextOrSelf(Wide); |
| } else { |
| ThisVal = ThisVal.zextOrSelf(Wide); |
| OtherVal = OtherVal.zextOrSelf(Wide); |
| } |
| |
| // Perform the full multiplication and downscale to get the same scale. |
| // |
| // Note that the right shifts here perform an implicit downwards rounding. |
| // This rounding could discard bits that would technically place the result |
| // outside the representable range. We interpret the spec as allowing us to |
| // perform the rounding step first, avoiding the overflow case that would |
| // arise. |
| APSInt Result; |
| if (CommonFXSema.isSigned()) |
| Result = ThisVal.smul_ov(OtherVal, Overflowed) |
| .ashr(CommonFXSema.getScale()); |
| else |
| Result = ThisVal.umul_ov(OtherVal, Overflowed) |
| .lshr(CommonFXSema.getScale()); |
| assert(!Overflowed && "Full multiplication cannot overflow!"); |
| Result.setIsSigned(CommonFXSema.isSigned()); |
| |
| // If our result lies outside of the representative range of the common |
| // semantic, we either have overflow or saturation. |
| APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue() |
| .extOrTrunc(Wide); |
| APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue() |
| .extOrTrunc(Wide); |
| if (CommonFXSema.isSaturated()) { |
| if (Result < Min) |
| Result = Min; |
| else if (Result > Max) |
| Result = Max; |
| } else |
| Overflowed = Result < Min || Result > Max; |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()), |
| CommonFXSema); |
| } |
| |
| APFixedPoint APFixedPoint::div(const APFixedPoint &Other, |
| bool *Overflow) const { |
| auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics()); |
| APFixedPoint ConvertedThis = convert(CommonFXSema); |
| APFixedPoint ConvertedOther = Other.convert(CommonFXSema); |
| APSInt ThisVal = ConvertedThis.getValue(); |
| APSInt OtherVal = ConvertedOther.getValue(); |
| bool Overflowed = false; |
| |
| // Widen the LHS and RHS so we can perform a full division. |
| unsigned Wide = CommonFXSema.getWidth() * 2; |
| if (CommonFXSema.isSigned()) { |
| ThisVal = ThisVal.sextOrSelf(Wide); |
| OtherVal = OtherVal.sextOrSelf(Wide); |
| } else { |
| ThisVal = ThisVal.zextOrSelf(Wide); |
| OtherVal = OtherVal.zextOrSelf(Wide); |
| } |
| |
| // Upscale to compensate for the loss of precision from division, and |
| // perform the full division. |
| ThisVal = ThisVal.shl(CommonFXSema.getScale()); |
| APSInt Result; |
| if (CommonFXSema.isSigned()) { |
| APInt Rem; |
| APInt::sdivrem(ThisVal, OtherVal, Result, Rem); |
| // If the quotient is negative and the remainder is nonzero, round |
| // towards negative infinity by subtracting epsilon from the result. |
| if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isZero()) |
| Result = Result - 1; |
| } else |
| Result = ThisVal.udiv(OtherVal); |
| Result.setIsSigned(CommonFXSema.isSigned()); |
| |
| // If our result lies outside of the representative range of the common |
| // semantic, we either have overflow or saturation. |
| APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue() |
| .extOrTrunc(Wide); |
| APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue() |
| .extOrTrunc(Wide); |
| if (CommonFXSema.isSaturated()) { |
| if (Result < Min) |
| Result = Min; |
| else if (Result > Max) |
| Result = Max; |
| } else |
| Overflowed = Result < Min || Result > Max; |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()), |
| CommonFXSema); |
| } |
| |
| APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const { |
| APSInt ThisVal = Val; |
| bool Overflowed = false; |
| |
| // Widen the LHS. |
| unsigned Wide = Sema.getWidth() * 2; |
| if (Sema.isSigned()) |
| ThisVal = ThisVal.sextOrSelf(Wide); |
| else |
| ThisVal = ThisVal.zextOrSelf(Wide); |
| |
| // Clamp the shift amount at the original width, and perform the shift. |
| Amt = std::min(Amt, ThisVal.getBitWidth()); |
| APSInt Result = ThisVal << Amt; |
| Result.setIsSigned(Sema.isSigned()); |
| |
| // If our result lies outside of the representative range of the |
| // semantic, we either have overflow or saturation. |
| APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide); |
| APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide); |
| if (Sema.isSaturated()) { |
| if (Result < Min) |
| Result = Min; |
| else if (Result > Max) |
| Result = Max; |
| } else |
| Overflowed = Result < Min || Result > Max; |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema); |
| } |
| |
| void APFixedPoint::toString(SmallVectorImpl<char> &Str) const { |
| APSInt Val = getValue(); |
| unsigned Scale = getScale(); |
| |
| if (Val.isSigned() && Val.isNegative() && Val != -Val) { |
| Val = -Val; |
| Str.push_back('-'); |
| } |
| |
| APSInt IntPart = Val >> Scale; |
| |
| // Add 4 digits to hold the value after multiplying 10 (the radix) |
| unsigned Width = Val.getBitWidth() + 4; |
| APInt FractPart = Val.zextOrTrunc(Scale).zext(Width); |
| APInt FractPartMask = APInt::getAllOnes(Scale).zext(Width); |
| APInt RadixInt = APInt(Width, 10); |
| |
| IntPart.toString(Str, /*Radix=*/10); |
| Str.push_back('.'); |
| do { |
| (FractPart * RadixInt) |
| .lshr(Scale) |
| .toString(Str, /*Radix=*/10, Val.isSigned()); |
| FractPart = (FractPart * RadixInt) & FractPartMask; |
| } while (FractPart != 0); |
| } |
| |
| APFixedPoint APFixedPoint::negate(bool *Overflow) const { |
| if (!isSaturated()) { |
| if (Overflow) |
| *Overflow = |
| (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue()); |
| return APFixedPoint(-Val, Sema); |
| } |
| |
| // We never overflow for saturation |
| if (Overflow) |
| *Overflow = false; |
| |
| if (isSigned()) |
| return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema); |
| else |
| return APFixedPoint(Sema); |
| } |
| |
| APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign, |
| bool *Overflow) const { |
| APSInt Result = getIntPart(); |
| unsigned SrcWidth = getWidth(); |
| |
| APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign); |
| APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign); |
| |
| if (SrcWidth < DstWidth) { |
| Result = Result.extend(DstWidth); |
| } else if (SrcWidth > DstWidth) { |
| DstMin = DstMin.extend(SrcWidth); |
| DstMax = DstMax.extend(SrcWidth); |
| } |
| |
| if (Overflow) { |
| if (Result.isSigned() && !DstSign) { |
| *Overflow = Result.isNegative() || Result.ugt(DstMax); |
| } else if (Result.isUnsigned() && DstSign) { |
| *Overflow = Result.ugt(DstMax); |
| } else { |
| *Overflow = Result < DstMin || Result > DstMax; |
| } |
| } |
| |
| Result.setIsSigned(DstSign); |
| return Result.extOrTrunc(DstWidth); |
| } |
| |
| const fltSemantics *APFixedPoint::promoteFloatSemantics(const fltSemantics *S) { |
| if (S == &APFloat::BFloat()) |
| return &APFloat::IEEEdouble(); |
| else if (S == &APFloat::IEEEhalf()) |
| return &APFloat::IEEEsingle(); |
| else if (S == &APFloat::IEEEsingle()) |
| return &APFloat::IEEEdouble(); |
| else if (S == &APFloat::IEEEdouble()) |
| return &APFloat::IEEEquad(); |
| llvm_unreachable("Could not promote float type!"); |
| } |
| |
| APFloat APFixedPoint::convertToFloat(const fltSemantics &FloatSema) const { |
| // For some operations, rounding mode has an effect on the result, while |
| // other operations are lossless and should never result in rounding. |
| // To signify which these operations are, we define two rounding modes here. |
| APFloat::roundingMode RM = APFloat::rmNearestTiesToEven; |
| APFloat::roundingMode LosslessRM = APFloat::rmTowardZero; |
| |
| // Make sure that we are operating in a type that works with this fixed-point |
| // semantic. |
| const fltSemantics *OpSema = &FloatSema; |
| while (!Sema.fitsInFloatSemantics(*OpSema)) |
| OpSema = promoteFloatSemantics(OpSema); |
| |
| // Convert the fixed point value bits as an integer. If the floating point |
| // value does not have the required precision, we will round according to the |
| // given mode. |
| APFloat Flt(*OpSema); |
| APFloat::opStatus S = Flt.convertFromAPInt(Val, Sema.isSigned(), RM); |
| |
| // If we cared about checking for precision loss, we could look at this |
| // status. |
| (void)S; |
| |
| // Scale down the integer value in the float to match the correct scaling |
| // factor. |
| APFloat ScaleFactor(std::pow(2, -(int)Sema.getScale())); |
| bool Ignored; |
| ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); |
| Flt.multiply(ScaleFactor, LosslessRM); |
| |
| if (OpSema != &FloatSema) |
| Flt.convert(FloatSema, RM, &Ignored); |
| |
| return Flt; |
| } |
| |
| APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value, |
| const FixedPointSemantics &DstFXSema, |
| bool *Overflow) { |
| FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics( |
| Value.getBitWidth(), Value.isSigned()); |
| return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow); |
| } |
| |
| APFixedPoint |
| APFixedPoint::getFromFloatValue(const APFloat &Value, |
| const FixedPointSemantics &DstFXSema, |
| bool *Overflow) { |
| // For some operations, rounding mode has an effect on the result, while |
| // other operations are lossless and should never result in rounding. |
| // To signify which these operations are, we define two rounding modes here, |
| // even though they are the same mode. |
| APFloat::roundingMode RM = APFloat::rmTowardZero; |
| APFloat::roundingMode LosslessRM = APFloat::rmTowardZero; |
| |
| const fltSemantics &FloatSema = Value.getSemantics(); |
| |
| if (Value.isNaN()) { |
| // Handle NaN immediately. |
| if (Overflow) |
| *Overflow = true; |
| return APFixedPoint(DstFXSema); |
| } |
| |
| // Make sure that we are operating in a type that works with this fixed-point |
| // semantic. |
| const fltSemantics *OpSema = &FloatSema; |
| while (!DstFXSema.fitsInFloatSemantics(*OpSema)) |
| OpSema = promoteFloatSemantics(OpSema); |
| |
| APFloat Val = Value; |
| |
| bool Ignored; |
| if (&FloatSema != OpSema) |
| Val.convert(*OpSema, LosslessRM, &Ignored); |
| |
| // Scale up the float so that the 'fractional' part of the mantissa ends up in |
| // the integer range instead. Rounding mode is irrelevant here. |
| // It is fine if this overflows to infinity even for saturating types, |
| // since we will use floating point comparisons to check for saturation. |
| APFloat ScaleFactor(std::pow(2, DstFXSema.getScale())); |
| ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); |
| Val.multiply(ScaleFactor, LosslessRM); |
| |
| // Convert to the integral representation of the value. This rounding mode |
| // is significant. |
| APSInt Res(DstFXSema.getWidth(), !DstFXSema.isSigned()); |
| Val.convertToInteger(Res, RM, &Ignored); |
| |
| // Round the integral value and scale back. This makes the |
| // overflow calculations below work properly. If we do not round here, |
| // we risk checking for overflow with a value that is outside the |
| // representable range of the fixed-point semantic even though no overflow |
| // would occur had we rounded first. |
| ScaleFactor = APFloat(std::pow(2, -(int)DstFXSema.getScale())); |
| ScaleFactor.convert(*OpSema, LosslessRM, &Ignored); |
| Val.roundToIntegral(RM); |
| Val.multiply(ScaleFactor, LosslessRM); |
| |
| // Check for overflow/saturation by checking if the floating point value |
| // is outside the range representable by the fixed-point value. |
| APFloat FloatMax = getMax(DstFXSema).convertToFloat(*OpSema); |
| APFloat FloatMin = getMin(DstFXSema).convertToFloat(*OpSema); |
| bool Overflowed = false; |
| if (DstFXSema.isSaturated()) { |
| if (Val > FloatMax) |
| Res = getMax(DstFXSema).getValue(); |
| else if (Val < FloatMin) |
| Res = getMin(DstFXSema).getValue(); |
| } else |
| Overflowed = Val > FloatMax || Val < FloatMin; |
| |
| if (Overflow) |
| *Overflow = Overflowed; |
| |
| return APFixedPoint(Res, DstFXSema); |
| } |
| |
| } // namespace llvm |