| //===-- Value.cpp - Implement the Value class -----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Value, ValueHandle, and User classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Value.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DerivedUser.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| static cl::opt<unsigned> UseDerefAtPointSemantics( |
| "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), |
| cl::desc("Deref attributes and metadata infer facts at definition only")); |
| |
| //===----------------------------------------------------------------------===// |
| // Value Class |
| //===----------------------------------------------------------------------===// |
| static inline Type *checkType(Type *Ty) { |
| assert(Ty && "Value defined with a null type: Error!"); |
| return Ty; |
| } |
| |
| Value::Value(Type *ty, unsigned scid) |
| : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), |
| SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), |
| IsUsedByMD(false), HasName(false), HasMetadata(false) { |
| static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); |
| // FIXME: Why isn't this in the subclass gunk?? |
| // Note, we cannot call isa<CallInst> before the CallInst has been |
| // constructed. |
| unsigned OpCode = 0; |
| if (SubclassID >= InstructionVal) |
| OpCode = SubclassID - InstructionVal; |
| if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || |
| OpCode == Instruction::CallBr) |
| assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && |
| "invalid CallBase type!"); |
| else if (SubclassID != BasicBlockVal && |
| (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) |
| assert((VTy->isFirstClassType() || VTy->isVoidTy()) && |
| "Cannot create non-first-class values except for constants!"); |
| static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), |
| "Value too big"); |
| } |
| |
| Value::~Value() { |
| // Notify all ValueHandles (if present) that this value is going away. |
| if (HasValueHandle) |
| ValueHandleBase::ValueIsDeleted(this); |
| if (isUsedByMetadata()) |
| ValueAsMetadata::handleDeletion(this); |
| |
| // Remove associated metadata from context. |
| if (HasMetadata) |
| clearMetadata(); |
| |
| #ifndef NDEBUG // Only in -g mode... |
| // Check to make sure that there are no uses of this value that are still |
| // around when the value is destroyed. If there are, then we have a dangling |
| // reference and something is wrong. This code is here to print out where |
| // the value is still being referenced. |
| // |
| // Note that use_empty() cannot be called here, as it eventually downcasts |
| // 'this' to GlobalValue (derived class of Value), but GlobalValue has already |
| // been destructed, so accessing it is UB. |
| // |
| if (!materialized_use_empty()) { |
| dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; |
| for (auto *U : users()) |
| dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; |
| } |
| #endif |
| assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); |
| |
| // If this value is named, destroy the name. This should not be in a symtab |
| // at this point. |
| destroyValueName(); |
| } |
| |
| void Value::deleteValue() { |
| switch (getValueID()) { |
| #define HANDLE_VALUE(Name) \ |
| case Value::Name##Val: \ |
| delete static_cast<Name *>(this); \ |
| break; |
| #define HANDLE_MEMORY_VALUE(Name) \ |
| case Value::Name##Val: \ |
| static_cast<DerivedUser *>(this)->DeleteValue( \ |
| static_cast<DerivedUser *>(this)); \ |
| break; |
| #define HANDLE_CONSTANT(Name) \ |
| case Value::Name##Val: \ |
| llvm_unreachable("constants should be destroyed with destroyConstant"); \ |
| break; |
| #define HANDLE_INSTRUCTION(Name) /* nothing */ |
| #include "llvm/IR/Value.def" |
| |
| #define HANDLE_INST(N, OPC, CLASS) \ |
| case Value::InstructionVal + Instruction::OPC: \ |
| delete static_cast<CLASS *>(this); \ |
| break; |
| #define HANDLE_USER_INST(N, OPC, CLASS) |
| #include "llvm/IR/Instruction.def" |
| |
| default: |
| llvm_unreachable("attempting to delete unknown value kind"); |
| } |
| } |
| |
| void Value::destroyValueName() { |
| ValueName *Name = getValueName(); |
| if (Name) { |
| MallocAllocator Allocator; |
| Name->Destroy(Allocator); |
| } |
| setValueName(nullptr); |
| } |
| |
| bool Value::hasNUses(unsigned N) const { |
| return hasNItems(use_begin(), use_end(), N); |
| } |
| |
| bool Value::hasNUsesOrMore(unsigned N) const { |
| return hasNItemsOrMore(use_begin(), use_end(), N); |
| } |
| |
| bool Value::hasOneUser() const { |
| if (use_empty()) |
| return false; |
| if (hasOneUse()) |
| return true; |
| return std::equal(++user_begin(), user_end(), user_begin()); |
| } |
| |
| static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } |
| |
| Use *Value::getSingleUndroppableUse() { |
| Use *Result = nullptr; |
| for (Use &U : uses()) { |
| if (!U.getUser()->isDroppable()) { |
| if (Result) |
| return nullptr; |
| Result = &U; |
| } |
| } |
| return Result; |
| } |
| |
| User *Value::getUniqueUndroppableUser() { |
| User *Result = nullptr; |
| for (auto *U : users()) { |
| if (!U->isDroppable()) { |
| if (Result && Result != U) |
| return nullptr; |
| Result = U; |
| } |
| } |
| return Result; |
| } |
| |
| bool Value::hasNUndroppableUses(unsigned int N) const { |
| return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); |
| } |
| |
| bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { |
| return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); |
| } |
| |
| void Value::dropDroppableUses( |
| llvm::function_ref<bool(const Use *)> ShouldDrop) { |
| SmallVector<Use *, 8> ToBeEdited; |
| for (Use &U : uses()) |
| if (U.getUser()->isDroppable() && ShouldDrop(&U)) |
| ToBeEdited.push_back(&U); |
| for (Use *U : ToBeEdited) |
| dropDroppableUse(*U); |
| } |
| |
| void Value::dropDroppableUsesIn(User &Usr) { |
| assert(Usr.isDroppable() && "Expected a droppable user!"); |
| for (Use &UsrOp : Usr.operands()) { |
| if (UsrOp.get() == this) |
| dropDroppableUse(UsrOp); |
| } |
| } |
| |
| void Value::dropDroppableUse(Use &U) { |
| U.removeFromList(); |
| if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { |
| unsigned OpNo = U.getOperandNo(); |
| if (OpNo == 0) |
| U.set(ConstantInt::getTrue(Assume->getContext())); |
| else { |
| U.set(UndefValue::get(U.get()->getType())); |
| CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); |
| BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); |
| } |
| return; |
| } |
| |
| llvm_unreachable("unkown droppable use"); |
| } |
| |
| bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { |
| // This can be computed either by scanning the instructions in BB, or by |
| // scanning the use list of this Value. Both lists can be very long, but |
| // usually one is quite short. |
| // |
| // Scan both lists simultaneously until one is exhausted. This limits the |
| // search to the shorter list. |
| BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); |
| const_user_iterator UI = user_begin(), UE = user_end(); |
| for (; BI != BE && UI != UE; ++BI, ++UI) { |
| // Scan basic block: Check if this Value is used by the instruction at BI. |
| if (is_contained(BI->operands(), this)) |
| return true; |
| // Scan use list: Check if the use at UI is in BB. |
| const auto *User = dyn_cast<Instruction>(*UI); |
| if (User && User->getParent() == BB) |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned Value::getNumUses() const { |
| return (unsigned)std::distance(use_begin(), use_end()); |
| } |
| |
| static bool getSymTab(Value *V, ValueSymbolTable *&ST) { |
| ST = nullptr; |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| if (BasicBlock *P = I->getParent()) |
| if (Function *PP = P->getParent()) |
| ST = PP->getValueSymbolTable(); |
| } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { |
| if (Function *P = BB->getParent()) |
| ST = P->getValueSymbolTable(); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| if (Module *P = GV->getParent()) |
| ST = &P->getValueSymbolTable(); |
| } else if (Argument *A = dyn_cast<Argument>(V)) { |
| if (Function *P = A->getParent()) |
| ST = P->getValueSymbolTable(); |
| } else { |
| assert(isa<Constant>(V) && "Unknown value type!"); |
| return true; // no name is setable for this. |
| } |
| return false; |
| } |
| |
| ValueName *Value::getValueName() const { |
| if (!HasName) return nullptr; |
| |
| LLVMContext &Ctx = getContext(); |
| auto I = Ctx.pImpl->ValueNames.find(this); |
| assert(I != Ctx.pImpl->ValueNames.end() && |
| "No name entry found!"); |
| |
| return I->second; |
| } |
| |
| void Value::setValueName(ValueName *VN) { |
| LLVMContext &Ctx = getContext(); |
| |
| assert(HasName == Ctx.pImpl->ValueNames.count(this) && |
| "HasName bit out of sync!"); |
| |
| if (!VN) { |
| if (HasName) |
| Ctx.pImpl->ValueNames.erase(this); |
| HasName = false; |
| return; |
| } |
| |
| HasName = true; |
| Ctx.pImpl->ValueNames[this] = VN; |
| } |
| |
| StringRef Value::getName() const { |
| // Make sure the empty string is still a C string. For historical reasons, |
| // some clients want to call .data() on the result and expect it to be null |
| // terminated. |
| if (!hasName()) |
| return StringRef("", 0); |
| return getValueName()->getKey(); |
| } |
| |
| void Value::setNameImpl(const Twine &NewName) { |
| // Fast-path: LLVMContext can be set to strip out non-GlobalValue names |
| if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) |
| return; |
| |
| // Fast path for common IRBuilder case of setName("") when there is no name. |
| if (NewName.isTriviallyEmpty() && !hasName()) |
| return; |
| |
| SmallString<256> NameData; |
| StringRef NameRef = NewName.toStringRef(NameData); |
| assert(NameRef.find_first_of(0) == StringRef::npos && |
| "Null bytes are not allowed in names"); |
| |
| // Name isn't changing? |
| if (getName() == NameRef) |
| return; |
| |
| assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); |
| |
| // Get the symbol table to update for this object. |
| ValueSymbolTable *ST; |
| if (getSymTab(this, ST)) |
| return; // Cannot set a name on this value (e.g. constant). |
| |
| if (!ST) { // No symbol table to update? Just do the change. |
| if (NameRef.empty()) { |
| // Free the name for this value. |
| destroyValueName(); |
| return; |
| } |
| |
| // NOTE: Could optimize for the case the name is shrinking to not deallocate |
| // then reallocated. |
| destroyValueName(); |
| |
| // Create the new name. |
| MallocAllocator Allocator; |
| setValueName(ValueName::Create(NameRef, Allocator)); |
| getValueName()->setValue(this); |
| return; |
| } |
| |
| // NOTE: Could optimize for the case the name is shrinking to not deallocate |
| // then reallocated. |
| if (hasName()) { |
| // Remove old name. |
| ST->removeValueName(getValueName()); |
| destroyValueName(); |
| |
| if (NameRef.empty()) |
| return; |
| } |
| |
| // Name is changing to something new. |
| setValueName(ST->createValueName(NameRef, this)); |
| } |
| |
| void Value::setName(const Twine &NewName) { |
| setNameImpl(NewName); |
| if (Function *F = dyn_cast<Function>(this)) |
| F->recalculateIntrinsicID(); |
| } |
| |
| void Value::takeName(Value *V) { |
| ValueSymbolTable *ST = nullptr; |
| // If this value has a name, drop it. |
| if (hasName()) { |
| // Get the symtab this is in. |
| if (getSymTab(this, ST)) { |
| // We can't set a name on this value, but we need to clear V's name if |
| // it has one. |
| if (V->hasName()) V->setName(""); |
| return; // Cannot set a name on this value (e.g. constant). |
| } |
| |
| // Remove old name. |
| if (ST) |
| ST->removeValueName(getValueName()); |
| destroyValueName(); |
| } |
| |
| // Now we know that this has no name. |
| |
| // If V has no name either, we're done. |
| if (!V->hasName()) return; |
| |
| // Get this's symtab if we didn't before. |
| if (!ST) { |
| if (getSymTab(this, ST)) { |
| // Clear V's name. |
| V->setName(""); |
| return; // Cannot set a name on this value (e.g. constant). |
| } |
| } |
| |
| // Get V's ST, this should always succed, because V has a name. |
| ValueSymbolTable *VST; |
| bool Failure = getSymTab(V, VST); |
| assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; |
| |
| // If these values are both in the same symtab, we can do this very fast. |
| // This works even if both values have no symtab yet. |
| if (ST == VST) { |
| // Take the name! |
| setValueName(V->getValueName()); |
| V->setValueName(nullptr); |
| getValueName()->setValue(this); |
| return; |
| } |
| |
| // Otherwise, things are slightly more complex. Remove V's name from VST and |
| // then reinsert it into ST. |
| |
| if (VST) |
| VST->removeValueName(V->getValueName()); |
| setValueName(V->getValueName()); |
| V->setValueName(nullptr); |
| getValueName()->setValue(this); |
| |
| if (ST) |
| ST->reinsertValue(this); |
| } |
| |
| #ifndef NDEBUG |
| std::string Value::getNameOrAsOperand() const { |
| if (!getName().empty()) |
| return std::string(getName()); |
| |
| std::string BBName; |
| raw_string_ostream OS(BBName); |
| printAsOperand(OS, false); |
| return OS.str(); |
| } |
| #endif |
| |
| void Value::assertModuleIsMaterializedImpl() const { |
| #ifndef NDEBUG |
| const GlobalValue *GV = dyn_cast<GlobalValue>(this); |
| if (!GV) |
| return; |
| const Module *M = GV->getParent(); |
| if (!M) |
| return; |
| assert(M->isMaterialized()); |
| #endif |
| } |
| |
| #ifndef NDEBUG |
| static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, |
| Constant *C) { |
| if (!Cache.insert(Expr).second) |
| return false; |
| |
| for (auto &O : Expr->operands()) { |
| if (O == C) |
| return true; |
| auto *CE = dyn_cast<ConstantExpr>(O); |
| if (!CE) |
| continue; |
| if (contains(Cache, CE, C)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool contains(Value *Expr, Value *V) { |
| if (Expr == V) |
| return true; |
| |
| auto *C = dyn_cast<Constant>(V); |
| if (!C) |
| return false; |
| |
| auto *CE = dyn_cast<ConstantExpr>(Expr); |
| if (!CE) |
| return false; |
| |
| SmallPtrSet<ConstantExpr *, 4> Cache; |
| return contains(Cache, CE, C); |
| } |
| #endif // NDEBUG |
| |
| void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { |
| assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); |
| assert(!contains(New, this) && |
| "this->replaceAllUsesWith(expr(this)) is NOT valid!"); |
| assert(New->getType() == getType() && |
| "replaceAllUses of value with new value of different type!"); |
| |
| // Notify all ValueHandles (if present) that this value is going away. |
| if (HasValueHandle) |
| ValueHandleBase::ValueIsRAUWd(this, New); |
| if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) |
| ValueAsMetadata::handleRAUW(this, New); |
| |
| while (!materialized_use_empty()) { |
| Use &U = *UseList; |
| // Must handle Constants specially, we cannot call replaceUsesOfWith on a |
| // constant because they are uniqued. |
| if (auto *C = dyn_cast<Constant>(U.getUser())) { |
| if (!isa<GlobalValue>(C)) { |
| C->handleOperandChange(this, New); |
| continue; |
| } |
| } |
| |
| U.set(New); |
| } |
| |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) |
| BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); |
| } |
| |
| void Value::replaceAllUsesWith(Value *New) { |
| doRAUW(New, ReplaceMetadataUses::Yes); |
| } |
| |
| void Value::replaceNonMetadataUsesWith(Value *New) { |
| doRAUW(New, ReplaceMetadataUses::No); |
| } |
| |
| void Value::replaceUsesWithIf(Value *New, |
| llvm::function_ref<bool(Use &U)> ShouldReplace) { |
| assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); |
| assert(New->getType() == getType() && |
| "replaceUses of value with new value of different type!"); |
| |
| SmallVector<TrackingVH<Constant>, 8> Consts; |
| SmallPtrSet<Constant *, 8> Visited; |
| |
| for (Use &U : llvm::make_early_inc_range(uses())) { |
| if (!ShouldReplace(U)) |
| continue; |
| // Must handle Constants specially, we cannot call replaceUsesOfWith on a |
| // constant because they are uniqued. |
| if (auto *C = dyn_cast<Constant>(U.getUser())) { |
| if (!isa<GlobalValue>(C)) { |
| if (Visited.insert(C).second) |
| Consts.push_back(TrackingVH<Constant>(C)); |
| continue; |
| } |
| } |
| U.set(New); |
| } |
| |
| while (!Consts.empty()) { |
| // FIXME: handleOperandChange() updates all the uses in a given Constant, |
| // not just the one passed to ShouldReplace |
| Consts.pop_back_val()->handleOperandChange(this, New); |
| } |
| } |
| |
| /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB |
| /// with New. |
| static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { |
| SmallVector<DbgVariableIntrinsic *> DbgUsers; |
| findDbgUsers(DbgUsers, V); |
| for (auto *DVI : DbgUsers) { |
| if (DVI->getParent() != BB) |
| DVI->replaceVariableLocationOp(V, New); |
| } |
| } |
| |
| // Like replaceAllUsesWith except it does not handle constants or basic blocks. |
| // This routine leaves uses within BB. |
| void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { |
| assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); |
| assert(!contains(New, this) && |
| "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); |
| assert(New->getType() == getType() && |
| "replaceUses of value with new value of different type!"); |
| assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); |
| |
| replaceDbgUsesOutsideBlock(this, New, BB); |
| replaceUsesWithIf(New, [BB](Use &U) { |
| auto *I = dyn_cast<Instruction>(U.getUser()); |
| // Don't replace if it's an instruction in the BB basic block. |
| return !I || I->getParent() != BB; |
| }); |
| } |
| |
| namespace { |
| // Various metrics for how much to strip off of pointers. |
| enum PointerStripKind { |
| PSK_ZeroIndices, |
| PSK_ZeroIndicesAndAliases, |
| PSK_ZeroIndicesSameRepresentation, |
| PSK_ForAliasAnalysis, |
| PSK_InBoundsConstantIndices, |
| PSK_InBounds |
| }; |
| |
| template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} |
| |
| template <PointerStripKind StripKind> |
| static const Value *stripPointerCastsAndOffsets( |
| const Value *V, |
| function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { |
| if (!V->getType()->isPointerTy()) |
| return V; |
| |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<const Value *, 4> Visited; |
| |
| Visited.insert(V); |
| do { |
| Func(V); |
| if (auto *GEP = dyn_cast<GEPOperator>(V)) { |
| switch (StripKind) { |
| case PSK_ZeroIndices: |
| case PSK_ZeroIndicesAndAliases: |
| case PSK_ZeroIndicesSameRepresentation: |
| case PSK_ForAliasAnalysis: |
| if (!GEP->hasAllZeroIndices()) |
| return V; |
| break; |
| case PSK_InBoundsConstantIndices: |
| if (!GEP->hasAllConstantIndices()) |
| return V; |
| LLVM_FALLTHROUGH; |
| case PSK_InBounds: |
| if (!GEP->isInBounds()) |
| return V; |
| break; |
| } |
| V = GEP->getPointerOperand(); |
| } else if (Operator::getOpcode(V) == Instruction::BitCast) { |
| V = cast<Operator>(V)->getOperand(0); |
| if (!V->getType()->isPointerTy()) |
| return V; |
| } else if (StripKind != PSK_ZeroIndicesSameRepresentation && |
| Operator::getOpcode(V) == Instruction::AddrSpaceCast) { |
| // TODO: If we know an address space cast will not change the |
| // representation we could look through it here as well. |
| V = cast<Operator>(V)->getOperand(0); |
| } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { |
| V = cast<GlobalAlias>(V)->getAliasee(); |
| } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && |
| cast<PHINode>(V)->getNumIncomingValues() == 1) { |
| V = cast<PHINode>(V)->getIncomingValue(0); |
| } else { |
| if (const auto *Call = dyn_cast<CallBase>(V)) { |
| if (const Value *RV = Call->getReturnedArgOperand()) { |
| V = RV; |
| continue; |
| } |
| // The result of launder.invariant.group must alias it's argument, |
| // but it can't be marked with returned attribute, that's why it needs |
| // special case. |
| if (StripKind == PSK_ForAliasAnalysis && |
| (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || |
| Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { |
| V = Call->getArgOperand(0); |
| continue; |
| } |
| } |
| return V; |
| } |
| assert(V->getType()->isPointerTy() && "Unexpected operand type!"); |
| } while (Visited.insert(V).second); |
| |
| return V; |
| } |
| } // end anonymous namespace |
| |
| const Value *Value::stripPointerCasts() const { |
| return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); |
| } |
| |
| const Value *Value::stripPointerCastsAndAliases() const { |
| return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); |
| } |
| |
| const Value *Value::stripPointerCastsSameRepresentation() const { |
| return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); |
| } |
| |
| const Value *Value::stripInBoundsConstantOffsets() const { |
| return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); |
| } |
| |
| const Value *Value::stripPointerCastsForAliasAnalysis() const { |
| return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); |
| } |
| |
| const Value *Value::stripAndAccumulateConstantOffsets( |
| const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
| bool AllowInvariantGroup, |
| function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { |
| if (!getType()->isPtrOrPtrVectorTy()) |
| return this; |
| |
| unsigned BitWidth = Offset.getBitWidth(); |
| assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && |
| "The offset bit width does not match the DL specification."); |
| |
| // Even though we don't look through PHI nodes, we could be called on an |
| // instruction in an unreachable block, which may be on a cycle. |
| SmallPtrSet<const Value *, 4> Visited; |
| Visited.insert(this); |
| const Value *V = this; |
| do { |
| if (auto *GEP = dyn_cast<GEPOperator>(V)) { |
| // If in-bounds was requested, we do not strip non-in-bounds GEPs. |
| if (!AllowNonInbounds && !GEP->isInBounds()) |
| return V; |
| |
| // If one of the values we have visited is an addrspacecast, then |
| // the pointer type of this GEP may be different from the type |
| // of the Ptr parameter which was passed to this function. This |
| // means when we construct GEPOffset, we need to use the size |
| // of GEP's pointer type rather than the size of the original |
| // pointer type. |
| APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); |
| if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) |
| return V; |
| |
| // Stop traversal if the pointer offset wouldn't fit in the bit-width |
| // provided by the Offset argument. This can happen due to AddrSpaceCast |
| // stripping. |
| if (GEPOffset.getMinSignedBits() > BitWidth) |
| return V; |
| |
| // External Analysis can return a result higher/lower than the value |
| // represents. We need to detect overflow/underflow. |
| APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); |
| if (!ExternalAnalysis) { |
| Offset += GEPOffsetST; |
| } else { |
| bool Overflow = false; |
| APInt OldOffset = Offset; |
| Offset = Offset.sadd_ov(GEPOffsetST, Overflow); |
| if (Overflow) { |
| Offset = OldOffset; |
| return V; |
| } |
| } |
| V = GEP->getPointerOperand(); |
| } else if (Operator::getOpcode(V) == Instruction::BitCast || |
| Operator::getOpcode(V) == Instruction::AddrSpaceCast) { |
| V = cast<Operator>(V)->getOperand(0); |
| } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { |
| if (!GA->isInterposable()) |
| V = GA->getAliasee(); |
| } else if (const auto *Call = dyn_cast<CallBase>(V)) { |
| if (const Value *RV = Call->getReturnedArgOperand()) |
| V = RV; |
| if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) |
| V = Call->getArgOperand(0); |
| } |
| assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); |
| } while (Visited.insert(V).second); |
| |
| return V; |
| } |
| |
| const Value * |
| Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { |
| return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); |
| } |
| |
| bool Value::canBeFreed() const { |
| assert(getType()->isPointerTy()); |
| |
| // Cases that can simply never be deallocated |
| // *) Constants aren't allocated per se, thus not deallocated either. |
| if (isa<Constant>(this)) |
| return false; |
| |
| // Handle byval/byref/sret/inalloca/preallocated arguments. The storage |
| // lifetime is guaranteed to be longer than the callee's lifetime. |
| if (auto *A = dyn_cast<Argument>(this)) { |
| if (A->hasPointeeInMemoryValueAttr()) |
| return false; |
| // A pointer to an object in a function which neither frees, nor can arrange |
| // for another thread to free on its behalf, can not be freed in the scope |
| // of the function. Note that this logic is restricted to memory |
| // allocations in existance before the call; a nofree function *is* allowed |
| // to free memory it allocated. |
| const Function *F = A->getParent(); |
| if (F->doesNotFreeMemory() && F->hasNoSync()) |
| return false; |
| } |
| |
| const Function *F = nullptr; |
| if (auto *I = dyn_cast<Instruction>(this)) |
| F = I->getFunction(); |
| if (auto *A = dyn_cast<Argument>(this)) |
| F = A->getParent(); |
| |
| if (!F) |
| return true; |
| |
| // With garbage collection, deallocation typically occurs solely at or after |
| // safepoints. If we're compiling for a collector which uses the |
| // gc.statepoint infrastructure, safepoints aren't explicitly present |
| // in the IR until after lowering from abstract to physical machine model. |
| // The collector could chose to mix explicit deallocation and gc'd objects |
| // which is why we need the explicit opt in on a per collector basis. |
| if (!F->hasGC()) |
| return true; |
| |
| const auto &GCName = F->getGC(); |
| if (GCName == "statepoint-example") { |
| auto *PT = cast<PointerType>(this->getType()); |
| if (PT->getAddressSpace() != 1) |
| // For the sake of this example GC, we arbitrarily pick addrspace(1) as |
| // our GC managed heap. This must match the same check in |
| // RewriteStatepointsForGC (and probably needs better factored.) |
| return true; |
| |
| // It is cheaper to scan for a declaration than to scan for a use in this |
| // function. Note that gc.statepoint is a type overloaded function so the |
| // usual trick of requesting declaration of the intrinsic from the module |
| // doesn't work. |
| for (auto &Fn : *F->getParent()) |
| if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) |
| return true; |
| return false; |
| } |
| return true; |
| } |
| |
| uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, |
| bool &CanBeNull, |
| bool &CanBeFreed) const { |
| assert(getType()->isPointerTy() && "must be pointer"); |
| |
| uint64_t DerefBytes = 0; |
| CanBeNull = false; |
| CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); |
| if (const Argument *A = dyn_cast<Argument>(this)) { |
| DerefBytes = A->getDereferenceableBytes(); |
| if (DerefBytes == 0) { |
| // Handle byval/byref/inalloca/preallocated arguments |
| if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { |
| if (ArgMemTy->isSized()) { |
| // FIXME: Why isn't this the type alloc size? |
| DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); |
| } |
| } |
| } |
| |
| if (DerefBytes == 0) { |
| DerefBytes = A->getDereferenceableOrNullBytes(); |
| CanBeNull = true; |
| } |
| } else if (const auto *Call = dyn_cast<CallBase>(this)) { |
| DerefBytes = Call->getRetDereferenceableBytes(); |
| if (DerefBytes == 0) { |
| DerefBytes = Call->getRetDereferenceableOrNullBytes(); |
| CanBeNull = true; |
| } |
| } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { |
| if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); |
| DerefBytes = CI->getLimitedValue(); |
| } |
| if (DerefBytes == 0) { |
| if (MDNode *MD = |
| LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); |
| DerefBytes = CI->getLimitedValue(); |
| } |
| CanBeNull = true; |
| } |
| } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { |
| if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); |
| DerefBytes = CI->getLimitedValue(); |
| } |
| if (DerefBytes == 0) { |
| if (MDNode *MD = |
| IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); |
| DerefBytes = CI->getLimitedValue(); |
| } |
| CanBeNull = true; |
| } |
| } else if (auto *AI = dyn_cast<AllocaInst>(this)) { |
| if (!AI->isArrayAllocation()) { |
| DerefBytes = |
| DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); |
| CanBeNull = false; |
| CanBeFreed = false; |
| } |
| } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { |
| if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { |
| // TODO: Don't outright reject hasExternalWeakLinkage but set the |
| // CanBeNull flag. |
| DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); |
| CanBeNull = false; |
| CanBeFreed = false; |
| } |
| } |
| return DerefBytes; |
| } |
| |
| Align Value::getPointerAlignment(const DataLayout &DL) const { |
| assert(getType()->isPointerTy() && "must be pointer"); |
| if (auto *GO = dyn_cast<GlobalObject>(this)) { |
| if (isa<Function>(GO)) { |
| Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); |
| switch (DL.getFunctionPtrAlignType()) { |
| case DataLayout::FunctionPtrAlignType::Independent: |
| return FunctionPtrAlign; |
| case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: |
| return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); |
| } |
| llvm_unreachable("Unhandled FunctionPtrAlignType"); |
| } |
| const MaybeAlign Alignment(GO->getAlignment()); |
| if (!Alignment) { |
| if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { |
| Type *ObjectType = GVar->getValueType(); |
| if (ObjectType->isSized()) { |
| // If the object is defined in the current Module, we'll be giving |
| // it the preferred alignment. Otherwise, we have to assume that it |
| // may only have the minimum ABI alignment. |
| if (GVar->isStrongDefinitionForLinker()) |
| return DL.getPreferredAlign(GVar); |
| else |
| return DL.getABITypeAlign(ObjectType); |
| } |
| } |
| } |
| return Alignment.valueOrOne(); |
| } else if (const Argument *A = dyn_cast<Argument>(this)) { |
| const MaybeAlign Alignment = A->getParamAlign(); |
| if (!Alignment && A->hasStructRetAttr()) { |
| // An sret parameter has at least the ABI alignment of the return type. |
| Type *EltTy = A->getParamStructRetType(); |
| if (EltTy->isSized()) |
| return DL.getABITypeAlign(EltTy); |
| } |
| return Alignment.valueOrOne(); |
| } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { |
| return AI->getAlign(); |
| } else if (const auto *Call = dyn_cast<CallBase>(this)) { |
| MaybeAlign Alignment = Call->getRetAlign(); |
| if (!Alignment && Call->getCalledFunction()) |
| Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); |
| return Alignment.valueOrOne(); |
| } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { |
| if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { |
| ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); |
| return Align(CI->getLimitedValue()); |
| } |
| } else if (auto *CstPtr = dyn_cast<Constant>(this)) { |
| if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( |
| const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), |
| /*OnlyIfReduced=*/true))) { |
| size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); |
| // While the actual alignment may be large, elsewhere we have |
| // an arbitrary upper alignmet limit, so let's clamp to it. |
| return Align(TrailingZeros < Value::MaxAlignmentExponent |
| ? uint64_t(1) << TrailingZeros |
| : Value::MaximumAlignment); |
| } |
| } |
| return Align(1); |
| } |
| |
| const Value *Value::DoPHITranslation(const BasicBlock *CurBB, |
| const BasicBlock *PredBB) const { |
| auto *PN = dyn_cast<PHINode>(this); |
| if (PN && PN->getParent() == CurBB) |
| return PN->getIncomingValueForBlock(PredBB); |
| return this; |
| } |
| |
| LLVMContext &Value::getContext() const { return VTy->getContext(); } |
| |
| void Value::reverseUseList() { |
| if (!UseList || !UseList->Next) |
| // No need to reverse 0 or 1 uses. |
| return; |
| |
| Use *Head = UseList; |
| Use *Current = UseList->Next; |
| Head->Next = nullptr; |
| while (Current) { |
| Use *Next = Current->Next; |
| Current->Next = Head; |
| Head->Prev = &Current->Next; |
| Head = Current; |
| Current = Next; |
| } |
| UseList = Head; |
| Head->Prev = &UseList; |
| } |
| |
| bool Value::isSwiftError() const { |
| auto *Arg = dyn_cast<Argument>(this); |
| if (Arg) |
| return Arg->hasSwiftErrorAttr(); |
| auto *Alloca = dyn_cast<AllocaInst>(this); |
| if (!Alloca) |
| return false; |
| return Alloca->isSwiftError(); |
| } |
| |
| bool Value::isTransitiveUsedByMetadataOnly() const { |
| if (use_empty()) |
| return false; |
| llvm::SmallVector<const User *, 32> WorkList; |
| llvm::SmallPtrSet<const User *, 32> Visited; |
| WorkList.insert(WorkList.begin(), user_begin(), user_end()); |
| while (!WorkList.empty()) { |
| const User *U = WorkList.pop_back_val(); |
| Visited.insert(U); |
| // If it is transitively used by a global value or a non-constant value, |
| // it's obviously not only used by metadata. |
| if (!isa<Constant>(U) || isa<GlobalValue>(U)) |
| return false; |
| for (const User *UU : U->users()) |
| if (!Visited.count(UU)) |
| WorkList.push_back(UU); |
| } |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ValueHandleBase Class |
| //===----------------------------------------------------------------------===// |
| |
| void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { |
| assert(List && "Handle list is null?"); |
| |
| // Splice ourselves into the list. |
| Next = *List; |
| *List = this; |
| setPrevPtr(List); |
| if (Next) { |
| Next->setPrevPtr(&Next); |
| assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); |
| } |
| } |
| |
| void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { |
| assert(List && "Must insert after existing node"); |
| |
| Next = List->Next; |
| setPrevPtr(&List->Next); |
| List->Next = this; |
| if (Next) |
| Next->setPrevPtr(&Next); |
| } |
| |
| void ValueHandleBase::AddToUseList() { |
| assert(getValPtr() && "Null pointer doesn't have a use list!"); |
| |
| LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; |
| |
| if (getValPtr()->HasValueHandle) { |
| // If this value already has a ValueHandle, then it must be in the |
| // ValueHandles map already. |
| ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; |
| assert(Entry && "Value doesn't have any handles?"); |
| AddToExistingUseList(&Entry); |
| return; |
| } |
| |
| // Ok, it doesn't have any handles yet, so we must insert it into the |
| // DenseMap. However, doing this insertion could cause the DenseMap to |
| // reallocate itself, which would invalidate all of the PrevP pointers that |
| // point into the old table. Handle this by checking for reallocation and |
| // updating the stale pointers only if needed. |
| DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; |
| const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); |
| |
| ValueHandleBase *&Entry = Handles[getValPtr()]; |
| assert(!Entry && "Value really did already have handles?"); |
| AddToExistingUseList(&Entry); |
| getValPtr()->HasValueHandle = true; |
| |
| // If reallocation didn't happen or if this was the first insertion, don't |
| // walk the table. |
| if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || |
| Handles.size() == 1) { |
| return; |
| } |
| |
| // Okay, reallocation did happen. Fix the Prev Pointers. |
| for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), |
| E = Handles.end(); I != E; ++I) { |
| assert(I->second && I->first == I->second->getValPtr() && |
| "List invariant broken!"); |
| I->second->setPrevPtr(&I->second); |
| } |
| } |
| |
| void ValueHandleBase::RemoveFromUseList() { |
| assert(getValPtr() && getValPtr()->HasValueHandle && |
| "Pointer doesn't have a use list!"); |
| |
| // Unlink this from its use list. |
| ValueHandleBase **PrevPtr = getPrevPtr(); |
| assert(*PrevPtr == this && "List invariant broken"); |
| |
| *PrevPtr = Next; |
| if (Next) { |
| assert(Next->getPrevPtr() == &Next && "List invariant broken"); |
| Next->setPrevPtr(PrevPtr); |
| return; |
| } |
| |
| // If the Next pointer was null, then it is possible that this was the last |
| // ValueHandle watching VP. If so, delete its entry from the ValueHandles |
| // map. |
| LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; |
| DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; |
| if (Handles.isPointerIntoBucketsArray(PrevPtr)) { |
| Handles.erase(getValPtr()); |
| getValPtr()->HasValueHandle = false; |
| } |
| } |
| |
| void ValueHandleBase::ValueIsDeleted(Value *V) { |
| assert(V->HasValueHandle && "Should only be called if ValueHandles present"); |
| |
| // Get the linked list base, which is guaranteed to exist since the |
| // HasValueHandle flag is set. |
| LLVMContextImpl *pImpl = V->getContext().pImpl; |
| ValueHandleBase *Entry = pImpl->ValueHandles[V]; |
| assert(Entry && "Value bit set but no entries exist"); |
| |
| // We use a local ValueHandleBase as an iterator so that ValueHandles can add |
| // and remove themselves from the list without breaking our iteration. This |
| // is not really an AssertingVH; we just have to give ValueHandleBase a kind. |
| // Note that we deliberately do not the support the case when dropping a value |
| // handle results in a new value handle being permanently added to the list |
| // (as might occur in theory for CallbackVH's): the new value handle will not |
| // be processed and the checking code will mete out righteous punishment if |
| // the handle is still present once we have finished processing all the other |
| // value handles (it is fine to momentarily add then remove a value handle). |
| for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { |
| Iterator.RemoveFromUseList(); |
| Iterator.AddToExistingUseListAfter(Entry); |
| assert(Entry->Next == &Iterator && "Loop invariant broken."); |
| |
| switch (Entry->getKind()) { |
| case Assert: |
| break; |
| case Weak: |
| case WeakTracking: |
| // WeakTracking and Weak just go to null, which unlinks them |
| // from the list. |
| Entry->operator=(nullptr); |
| break; |
| case Callback: |
| // Forward to the subclass's implementation. |
| static_cast<CallbackVH*>(Entry)->deleted(); |
| break; |
| } |
| } |
| |
| // All callbacks, weak references, and assertingVHs should be dropped by now. |
| if (V->HasValueHandle) { |
| #ifndef NDEBUG // Only in +Asserts mode... |
| dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() |
| << "\n"; |
| if (pImpl->ValueHandles[V]->getKind() == Assert) |
| llvm_unreachable("An asserting value handle still pointed to this" |
| " value!"); |
| |
| #endif |
| llvm_unreachable("All references to V were not removed?"); |
| } |
| } |
| |
| void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { |
| assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); |
| assert(Old != New && "Changing value into itself!"); |
| assert(Old->getType() == New->getType() && |
| "replaceAllUses of value with new value of different type!"); |
| |
| // Get the linked list base, which is guaranteed to exist since the |
| // HasValueHandle flag is set. |
| LLVMContextImpl *pImpl = Old->getContext().pImpl; |
| ValueHandleBase *Entry = pImpl->ValueHandles[Old]; |
| |
| assert(Entry && "Value bit set but no entries exist"); |
| |
| // We use a local ValueHandleBase as an iterator so that |
| // ValueHandles can add and remove themselves from the list without |
| // breaking our iteration. This is not really an AssertingVH; we |
| // just have to give ValueHandleBase some kind. |
| for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { |
| Iterator.RemoveFromUseList(); |
| Iterator.AddToExistingUseListAfter(Entry); |
| assert(Entry->Next == &Iterator && "Loop invariant broken."); |
| |
| switch (Entry->getKind()) { |
| case Assert: |
| case Weak: |
| // Asserting and Weak handles do not follow RAUW implicitly. |
| break; |
| case WeakTracking: |
| // Weak goes to the new value, which will unlink it from Old's list. |
| Entry->operator=(New); |
| break; |
| case Callback: |
| // Forward to the subclass's implementation. |
| static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); |
| break; |
| } |
| } |
| |
| #ifndef NDEBUG |
| // If any new weak value handles were added while processing the |
| // list, then complain about it now. |
| if (Old->HasValueHandle) |
| for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) |
| switch (Entry->getKind()) { |
| case WeakTracking: |
| dbgs() << "After RAUW from " << *Old->getType() << " %" |
| << Old->getName() << " to " << *New->getType() << " %" |
| << New->getName() << "\n"; |
| llvm_unreachable( |
| "A weak tracking value handle still pointed to the old value!\n"); |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| // Pin the vtable to this file. |
| void CallbackVH::anchor() {} |