| //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the TargetRegisterInfo interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Printable.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <utility> |
| |
| #define DEBUG_TYPE "target-reg-info" |
| |
| using namespace llvm; |
| |
| static cl::opt<unsigned> |
| HugeSizeForSplit("huge-size-for-split", cl::Hidden, |
| cl::desc("A threshold of live range size which may cause " |
| "high compile time cost in global splitting."), |
| cl::init(5000)); |
| |
| TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, |
| regclass_iterator RCB, regclass_iterator RCE, |
| const char *const *SRINames, |
| const LaneBitmask *SRILaneMasks, |
| LaneBitmask SRICoveringLanes, |
| const RegClassInfo *const RCIs, |
| unsigned Mode) |
| : InfoDesc(ID), SubRegIndexNames(SRINames), |
| SubRegIndexLaneMasks(SRILaneMasks), |
| RegClassBegin(RCB), RegClassEnd(RCE), |
| CoveringLanes(SRICoveringLanes), |
| RCInfos(RCIs), HwMode(Mode) { |
| } |
| |
| TargetRegisterInfo::~TargetRegisterInfo() = default; |
| |
| bool TargetRegisterInfo::shouldRegionSplitForVirtReg( |
| const MachineFunction &MF, const LiveInterval &VirtReg) const { |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineInstr *MI = MRI.getUniqueVRegDef(VirtReg.reg()); |
| if (MI && TII->isTriviallyReMaterializable(*MI) && |
| VirtReg.size() > HugeSizeForSplit) |
| return false; |
| return true; |
| } |
| |
| void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, |
| MCRegister Reg) const { |
| for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI) |
| RegisterSet.set(*AI); |
| } |
| |
| bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet, |
| ArrayRef<MCPhysReg> Exceptions) const { |
| // Check that all super registers of reserved regs are reserved as well. |
| BitVector Checked(getNumRegs()); |
| for (unsigned Reg : RegisterSet.set_bits()) { |
| if (Checked[Reg]) |
| continue; |
| for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) { |
| if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) { |
| dbgs() << "Error: Super register " << printReg(*SR, this) |
| << " of reserved register " << printReg(Reg, this) |
| << " is not reserved.\n"; |
| return false; |
| } |
| |
| // We transitively check superregs. So we can remember this for later |
| // to avoid compiletime explosion in deep register hierarchies. |
| Checked.set(*SR); |
| } |
| } |
| return true; |
| } |
| |
| namespace llvm { |
| |
| Printable printReg(Register Reg, const TargetRegisterInfo *TRI, |
| unsigned SubIdx, const MachineRegisterInfo *MRI) { |
| return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) { |
| if (!Reg) |
| OS << "$noreg"; |
| else if (Register::isStackSlot(Reg)) |
| OS << "SS#" << Register::stackSlot2Index(Reg); |
| else if (Register::isVirtualRegister(Reg)) { |
| StringRef Name = MRI ? MRI->getVRegName(Reg) : ""; |
| if (Name != "") { |
| OS << '%' << Name; |
| } else { |
| OS << '%' << Register::virtReg2Index(Reg); |
| } |
| } else if (!TRI) |
| OS << '$' << "physreg" << Reg; |
| else if (Reg < TRI->getNumRegs()) { |
| OS << '$'; |
| printLowerCase(TRI->getName(Reg), OS); |
| } else |
| llvm_unreachable("Register kind is unsupported."); |
| |
| if (SubIdx) { |
| if (TRI) |
| OS << ':' << TRI->getSubRegIndexName(SubIdx); |
| else |
| OS << ":sub(" << SubIdx << ')'; |
| } |
| }); |
| } |
| |
| Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) { |
| return Printable([Unit, TRI](raw_ostream &OS) { |
| // Generic printout when TRI is missing. |
| if (!TRI) { |
| OS << "Unit~" << Unit; |
| return; |
| } |
| |
| // Check for invalid register units. |
| if (Unit >= TRI->getNumRegUnits()) { |
| OS << "BadUnit~" << Unit; |
| return; |
| } |
| |
| // Normal units have at least one root. |
| MCRegUnitRootIterator Roots(Unit, TRI); |
| assert(Roots.isValid() && "Unit has no roots."); |
| OS << TRI->getName(*Roots); |
| for (++Roots; Roots.isValid(); ++Roots) |
| OS << '~' << TRI->getName(*Roots); |
| }); |
| } |
| |
| Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) { |
| return Printable([Unit, TRI](raw_ostream &OS) { |
| if (Register::isVirtualRegister(Unit)) { |
| OS << '%' << Register::virtReg2Index(Unit); |
| } else { |
| OS << printRegUnit(Unit, TRI); |
| } |
| }); |
| } |
| |
| Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo, |
| const TargetRegisterInfo *TRI) { |
| return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) { |
| if (RegInfo.getRegClassOrNull(Reg)) |
| OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower(); |
| else if (RegInfo.getRegBankOrNull(Reg)) |
| OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower(); |
| else { |
| OS << "_"; |
| assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) && |
| "Generic registers must have a valid type"); |
| } |
| }); |
| } |
| |
| } // end namespace llvm |
| |
| /// getAllocatableClass - Return the maximal subclass of the given register |
| /// class that is alloctable, or NULL. |
| const TargetRegisterClass * |
| TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { |
| if (!RC || RC->isAllocatable()) |
| return RC; |
| |
| for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid(); |
| ++It) { |
| const TargetRegisterClass *SubRC = getRegClass(It.getID()); |
| if (SubRC->isAllocatable()) |
| return SubRC; |
| } |
| return nullptr; |
| } |
| |
| /// getMinimalPhysRegClass - Returns the Register Class of a physical |
| /// register of the given type, picking the most sub register class of |
| /// the right type that contains this physreg. |
| const TargetRegisterClass * |
| TargetRegisterInfo::getMinimalPhysRegClass(MCRegister reg, MVT VT) const { |
| assert(Register::isPhysicalRegister(reg) && |
| "reg must be a physical register"); |
| |
| // Pick the most sub register class of the right type that contains |
| // this physreg. |
| const TargetRegisterClass* BestRC = nullptr; |
| for (const TargetRegisterClass* RC : regclasses()) { |
| if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) && |
| RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC))) |
| BestRC = RC; |
| } |
| |
| assert(BestRC && "Couldn't find the register class"); |
| return BestRC; |
| } |
| |
| const TargetRegisterClass * |
| TargetRegisterInfo::getMinimalPhysRegClassLLT(MCRegister reg, LLT Ty) const { |
| assert(Register::isPhysicalRegister(reg) && |
| "reg must be a physical register"); |
| |
| // Pick the most sub register class of the right type that contains |
| // this physreg. |
| const TargetRegisterClass *BestRC = nullptr; |
| for (const TargetRegisterClass *RC : regclasses()) { |
| if ((!Ty.isValid() || isTypeLegalForClass(*RC, Ty)) && RC->contains(reg) && |
| (!BestRC || BestRC->hasSubClass(RC))) |
| BestRC = RC; |
| } |
| |
| return BestRC; |
| } |
| |
| /// getAllocatableSetForRC - Toggle the bits that represent allocatable |
| /// registers for the specific register class. |
| static void getAllocatableSetForRC(const MachineFunction &MF, |
| const TargetRegisterClass *RC, BitVector &R){ |
| assert(RC->isAllocatable() && "invalid for nonallocatable sets"); |
| ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); |
| for (unsigned i = 0; i != Order.size(); ++i) |
| R.set(Order[i]); |
| } |
| |
| BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, |
| const TargetRegisterClass *RC) const { |
| BitVector Allocatable(getNumRegs()); |
| if (RC) { |
| // A register class with no allocatable subclass returns an empty set. |
| const TargetRegisterClass *SubClass = getAllocatableClass(RC); |
| if (SubClass) |
| getAllocatableSetForRC(MF, SubClass, Allocatable); |
| } else { |
| for (const TargetRegisterClass *C : regclasses()) |
| if (C->isAllocatable()) |
| getAllocatableSetForRC(MF, C, Allocatable); |
| } |
| |
| // Mask out the reserved registers |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const BitVector &Reserved = MRI.getReservedRegs(); |
| Allocatable.reset(Reserved); |
| |
| return Allocatable; |
| } |
| |
| static inline |
| const TargetRegisterClass *firstCommonClass(const uint32_t *A, |
| const uint32_t *B, |
| const TargetRegisterInfo *TRI) { |
| for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) |
| if (unsigned Common = *A++ & *B++) |
| return TRI->getRegClass(I + countTrailingZeros(Common)); |
| return nullptr; |
| } |
| |
| const TargetRegisterClass * |
| TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, |
| const TargetRegisterClass *B) const { |
| // First take care of the trivial cases. |
| if (A == B) |
| return A; |
| if (!A || !B) |
| return nullptr; |
| |
| // Register classes are ordered topologically, so the largest common |
| // sub-class it the common sub-class with the smallest ID. |
| return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); |
| } |
| |
| const TargetRegisterClass * |
| TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, |
| const TargetRegisterClass *B, |
| unsigned Idx) const { |
| assert(A && B && "Missing register class"); |
| assert(Idx && "Bad sub-register index"); |
| |
| // Find Idx in the list of super-register indices. |
| for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) |
| if (RCI.getSubReg() == Idx) |
| // The bit mask contains all register classes that are projected into B |
| // by Idx. Find a class that is also a sub-class of A. |
| return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); |
| return nullptr; |
| } |
| |
| const TargetRegisterClass *TargetRegisterInfo:: |
| getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, |
| const TargetRegisterClass *RCB, unsigned SubB, |
| unsigned &PreA, unsigned &PreB) const { |
| assert(RCA && SubA && RCB && SubB && "Invalid arguments"); |
| |
| // Search all pairs of sub-register indices that project into RCA and RCB |
| // respectively. This is quadratic, but usually the sets are very small. On |
| // most targets like X86, there will only be a single sub-register index |
| // (e.g., sub_16bit projecting into GR16). |
| // |
| // The worst case is a register class like DPR on ARM. |
| // We have indices dsub_0..dsub_7 projecting into that class. |
| // |
| // It is very common that one register class is a sub-register of the other. |
| // Arrange for RCA to be the larger register so the answer will be found in |
| // the first iteration. This makes the search linear for the most common |
| // case. |
| const TargetRegisterClass *BestRC = nullptr; |
| unsigned *BestPreA = &PreA; |
| unsigned *BestPreB = &PreB; |
| if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) { |
| std::swap(RCA, RCB); |
| std::swap(SubA, SubB); |
| std::swap(BestPreA, BestPreB); |
| } |
| |
| // Also terminate the search one we have found a register class as small as |
| // RCA. |
| unsigned MinSize = getRegSizeInBits(*RCA); |
| |
| for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { |
| unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); |
| for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { |
| // Check if a common super-register class exists for this index pair. |
| const TargetRegisterClass *RC = |
| firstCommonClass(IA.getMask(), IB.getMask(), this); |
| if (!RC || getRegSizeInBits(*RC) < MinSize) |
| continue; |
| |
| // The indexes must compose identically: PreA+SubA == PreB+SubB. |
| unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); |
| if (FinalA != FinalB) |
| continue; |
| |
| // Is RC a better candidate than BestRC? |
| if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC)) |
| continue; |
| |
| // Yes, RC is the smallest super-register seen so far. |
| BestRC = RC; |
| *BestPreA = IA.getSubReg(); |
| *BestPreB = IB.getSubReg(); |
| |
| // Bail early if we reached MinSize. We won't find a better candidate. |
| if (getRegSizeInBits(*BestRC) == MinSize) |
| return BestRC; |
| } |
| } |
| return BestRC; |
| } |
| |
| /// Check if the registers defined by the pair (RegisterClass, SubReg) |
| /// share the same register file. |
| static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, |
| const TargetRegisterClass *DefRC, |
| unsigned DefSubReg, |
| const TargetRegisterClass *SrcRC, |
| unsigned SrcSubReg) { |
| // Same register class. |
| if (DefRC == SrcRC) |
| return true; |
| |
| // Both operands are sub registers. Check if they share a register class. |
| unsigned SrcIdx, DefIdx; |
| if (SrcSubReg && DefSubReg) { |
| return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, |
| SrcIdx, DefIdx) != nullptr; |
| } |
| |
| // At most one of the register is a sub register, make it Src to avoid |
| // duplicating the test. |
| if (!SrcSubReg) { |
| std::swap(DefSubReg, SrcSubReg); |
| std::swap(DefRC, SrcRC); |
| } |
| |
| // One of the register is a sub register, check if we can get a superclass. |
| if (SrcSubReg) |
| return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; |
| |
| // Plain copy. |
| return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; |
| } |
| |
| bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC, |
| unsigned DefSubReg, |
| const TargetRegisterClass *SrcRC, |
| unsigned SrcSubReg) const { |
| // If this source does not incur a cross register bank copy, use it. |
| return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg); |
| } |
| |
| // Compute target-independent register allocator hints to help eliminate copies. |
| bool TargetRegisterInfo::getRegAllocationHints( |
| Register VirtReg, ArrayRef<MCPhysReg> Order, |
| SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF, |
| const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const std::pair<Register, SmallVector<Register, 4>> &Hints_MRI = |
| MRI.getRegAllocationHints(VirtReg); |
| |
| SmallSet<Register, 32> HintedRegs; |
| // First hint may be a target hint. |
| bool Skip = (Hints_MRI.first != 0); |
| for (auto Reg : Hints_MRI.second) { |
| if (Skip) { |
| Skip = false; |
| continue; |
| } |
| |
| // Target-independent hints are either a physical or a virtual register. |
| Register Phys = Reg; |
| if (VRM && Phys.isVirtual()) |
| Phys = VRM->getPhys(Phys); |
| |
| // Don't add the same reg twice (Hints_MRI may contain multiple virtual |
| // registers allocated to the same physreg). |
| if (!HintedRegs.insert(Phys).second) |
| continue; |
| // Check that Phys is a valid hint in VirtReg's register class. |
| if (!Phys.isPhysical()) |
| continue; |
| if (MRI.isReserved(Phys)) |
| continue; |
| // Check that Phys is in the allocation order. We shouldn't heed hints |
| // from VirtReg's register class if they aren't in the allocation order. The |
| // target probably has a reason for removing the register. |
| if (!is_contained(Order, Phys)) |
| continue; |
| |
| // All clear, tell the register allocator to prefer this register. |
| Hints.push_back(Phys); |
| } |
| return false; |
| } |
| |
| bool TargetRegisterInfo::isCalleeSavedPhysReg( |
| MCRegister PhysReg, const MachineFunction &MF) const { |
| if (PhysReg == 0) |
| return false; |
| const uint32_t *callerPreservedRegs = |
| getCallPreservedMask(MF, MF.getFunction().getCallingConv()); |
| if (callerPreservedRegs) { |
| assert(Register::isPhysicalRegister(PhysReg) && |
| "Expected physical register"); |
| return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1; |
| } |
| return false; |
| } |
| |
| bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { |
| return !MF.getFunction().hasFnAttribute("no-realign-stack"); |
| } |
| |
| bool TargetRegisterInfo::shouldRealignStack(const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
| const Function &F = MF.getFunction(); |
| return F.hasFnAttribute("stackrealign") || |
| (MFI.getMaxAlign() > TFI->getStackAlign()) || |
| F.hasFnAttribute(Attribute::StackAlignment); |
| } |
| |
| bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0, |
| const uint32_t *mask1) const { |
| unsigned N = (getNumRegs()+31) / 32; |
| for (unsigned I = 0; I < N; ++I) |
| if ((mask0[I] & mask1[I]) != mask0[I]) |
| return false; |
| return true; |
| } |
| |
| unsigned |
| TargetRegisterInfo::getRegSizeInBits(Register Reg, |
| const MachineRegisterInfo &MRI) const { |
| const TargetRegisterClass *RC{}; |
| if (Reg.isPhysical()) { |
| // The size is not directly available for physical registers. |
| // Instead, we need to access a register class that contains Reg and |
| // get the size of that register class. |
| RC = getMinimalPhysRegClass(Reg); |
| } else { |
| LLT Ty = MRI.getType(Reg); |
| unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0; |
| // If Reg is not a generic register, query the register class to |
| // get its size. |
| if (RegSize) |
| return RegSize; |
| // Since Reg is not a generic register, it must have a register class. |
| RC = MRI.getRegClass(Reg); |
| } |
| assert(RC && "Unable to deduce the register class"); |
| return getRegSizeInBits(*RC); |
| } |
| |
| bool TargetRegisterInfo::getCoveringSubRegIndexes( |
| const MachineRegisterInfo &MRI, const TargetRegisterClass *RC, |
| LaneBitmask LaneMask, SmallVectorImpl<unsigned> &NeededIndexes) const { |
| SmallVector<unsigned, 8> PossibleIndexes; |
| unsigned BestIdx = 0; |
| unsigned BestCover = 0; |
| |
| for (unsigned Idx = 1, E = getNumSubRegIndices(); Idx < E; ++Idx) { |
| // Is this index even compatible with the given class? |
| if (getSubClassWithSubReg(RC, Idx) != RC) |
| continue; |
| LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx); |
| // Early exit if we found a perfect match. |
| if (SubRegMask == LaneMask) { |
| BestIdx = Idx; |
| break; |
| } |
| |
| // The index must not cover any lanes outside \p LaneMask. |
| if ((SubRegMask & ~LaneMask).any()) |
| continue; |
| |
| unsigned PopCount = SubRegMask.getNumLanes(); |
| PossibleIndexes.push_back(Idx); |
| if (PopCount > BestCover) { |
| BestCover = PopCount; |
| BestIdx = Idx; |
| } |
| } |
| |
| // Abort if we cannot possibly implement the COPY with the given indexes. |
| if (BestIdx == 0) |
| return 0; |
| |
| NeededIndexes.push_back(BestIdx); |
| |
| // Greedy heuristic: Keep iterating keeping the best covering subreg index |
| // each time. |
| LaneBitmask LanesLeft = LaneMask & ~getSubRegIndexLaneMask(BestIdx); |
| while (LanesLeft.any()) { |
| unsigned BestIdx = 0; |
| int BestCover = std::numeric_limits<int>::min(); |
| for (unsigned Idx : PossibleIndexes) { |
| LaneBitmask SubRegMask = getSubRegIndexLaneMask(Idx); |
| // Early exit if we found a perfect match. |
| if (SubRegMask == LanesLeft) { |
| BestIdx = Idx; |
| break; |
| } |
| |
| // Try to cover as much of the remaining lanes as possible but |
| // as few of the already covered lanes as possible. |
| int Cover = (SubRegMask & LanesLeft).getNumLanes() - |
| (SubRegMask & ~LanesLeft).getNumLanes(); |
| if (Cover > BestCover) { |
| BestCover = Cover; |
| BestIdx = Idx; |
| } |
| } |
| |
| if (BestIdx == 0) |
| return 0; // Impossible to handle |
| |
| NeededIndexes.push_back(BestIdx); |
| |
| LanesLeft &= ~getSubRegIndexLaneMask(BestIdx); |
| } |
| |
| return BestIdx; |
| } |
| |
| Register |
| TargetRegisterInfo::lookThruCopyLike(Register SrcReg, |
| const MachineRegisterInfo *MRI) const { |
| while (true) { |
| const MachineInstr *MI = MRI->getVRegDef(SrcReg); |
| if (!MI->isCopyLike()) |
| return SrcReg; |
| |
| Register CopySrcReg; |
| if (MI->isCopy()) |
| CopySrcReg = MI->getOperand(1).getReg(); |
| else { |
| assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike"); |
| CopySrcReg = MI->getOperand(2).getReg(); |
| } |
| |
| if (!CopySrcReg.isVirtual()) |
| return CopySrcReg; |
| |
| SrcReg = CopySrcReg; |
| } |
| } |
| |
| Register TargetRegisterInfo::lookThruSingleUseCopyChain( |
| Register SrcReg, const MachineRegisterInfo *MRI) const { |
| while (true) { |
| const MachineInstr *MI = MRI->getVRegDef(SrcReg); |
| // Found the real definition, return it if it has a single use. |
| if (!MI->isCopyLike()) |
| return MRI->hasOneNonDBGUse(SrcReg) ? SrcReg : Register(); |
| |
| Register CopySrcReg; |
| if (MI->isCopy()) |
| CopySrcReg = MI->getOperand(1).getReg(); |
| else { |
| assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike"); |
| CopySrcReg = MI->getOperand(2).getReg(); |
| } |
| |
| // Continue only if the next definition in the chain is for a virtual |
| // register that has a single use. |
| if (!CopySrcReg.isVirtual() || !MRI->hasOneNonDBGUse(CopySrcReg)) |
| return Register(); |
| |
| SrcReg = CopySrcReg; |
| } |
| } |
| |
| void TargetRegisterInfo::getOffsetOpcodes( |
| const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const { |
| assert(!Offset.getScalable() && "Scalable offsets are not handled"); |
| DIExpression::appendOffset(Ops, Offset.getFixed()); |
| } |
| |
| DIExpression * |
| TargetRegisterInfo::prependOffsetExpression(const DIExpression *Expr, |
| unsigned PrependFlags, |
| const StackOffset &Offset) const { |
| assert((PrependFlags & |
| ~(DIExpression::DerefBefore | DIExpression::DerefAfter | |
| DIExpression::StackValue | DIExpression::EntryValue)) == 0 && |
| "Unsupported prepend flag"); |
| SmallVector<uint64_t, 16> OffsetExpr; |
| if (PrependFlags & DIExpression::DerefBefore) |
| OffsetExpr.push_back(dwarf::DW_OP_deref); |
| getOffsetOpcodes(Offset, OffsetExpr); |
| if (PrependFlags & DIExpression::DerefAfter) |
| OffsetExpr.push_back(dwarf::DW_OP_deref); |
| return DIExpression::prependOpcodes(Expr, OffsetExpr, |
| PrependFlags & DIExpression::StackValue, |
| PrependFlags & DIExpression::EntryValue); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD |
| void TargetRegisterInfo::dumpReg(Register Reg, unsigned SubRegIndex, |
| const TargetRegisterInfo *TRI) { |
| dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n"; |
| } |
| #endif |