| //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the TargetLoweringBase class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> JumpIsExpensiveOverride( |
| "jump-is-expensive", cl::init(false), |
| cl::desc("Do not create extra branches to split comparison logic."), |
| cl::Hidden); |
| |
| static cl::opt<unsigned> MinimumJumpTableEntries |
| ("min-jump-table-entries", cl::init(4), cl::Hidden, |
| cl::desc("Set minimum number of entries to use a jump table.")); |
| |
| static cl::opt<unsigned> MaximumJumpTableSize |
| ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, |
| cl::desc("Set maximum size of jump tables.")); |
| |
| /// Minimum jump table density for normal functions. |
| static cl::opt<unsigned> |
| JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, |
| cl::desc("Minimum density for building a jump table in " |
| "a normal function")); |
| |
| /// Minimum jump table density for -Os or -Oz functions. |
| static cl::opt<unsigned> OptsizeJumpTableDensity( |
| "optsize-jump-table-density", cl::init(40), cl::Hidden, |
| cl::desc("Minimum density for building a jump table in " |
| "an optsize function")); |
| |
| // FIXME: This option is only to test if the strict fp operation processed |
| // correctly by preventing mutating strict fp operation to normal fp operation |
| // during development. When the backend supports strict float operation, this |
| // option will be meaningless. |
| static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", |
| cl::desc("Don't mutate strict-float node to a legalize node"), |
| cl::init(false), cl::Hidden); |
| |
| static bool darwinHasSinCos(const Triple &TT) { |
| assert(TT.isOSDarwin() && "should be called with darwin triple"); |
| // Don't bother with 32 bit x86. |
| if (TT.getArch() == Triple::x86) |
| return false; |
| // Macos < 10.9 has no sincos_stret. |
| if (TT.isMacOSX()) |
| return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); |
| // iOS < 7.0 has no sincos_stret. |
| if (TT.isiOS()) |
| return !TT.isOSVersionLT(7, 0); |
| // Any other darwin such as WatchOS/TvOS is new enough. |
| return true; |
| } |
| |
| void TargetLoweringBase::InitLibcalls(const Triple &TT) { |
| #define HANDLE_LIBCALL(code, name) \ |
| setLibcallName(RTLIB::code, name); |
| #include "llvm/IR/RuntimeLibcalls.def" |
| #undef HANDLE_LIBCALL |
| // Initialize calling conventions to their default. |
| for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) |
| setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); |
| |
| // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". |
| if (TT.isPPC()) { |
| setLibcallName(RTLIB::ADD_F128, "__addkf3"); |
| setLibcallName(RTLIB::SUB_F128, "__subkf3"); |
| setLibcallName(RTLIB::MUL_F128, "__mulkf3"); |
| setLibcallName(RTLIB::DIV_F128, "__divkf3"); |
| setLibcallName(RTLIB::POWI_F128, "__powikf2"); |
| setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); |
| setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); |
| setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); |
| setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); |
| setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); |
| setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); |
| setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); |
| setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); |
| setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); |
| setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); |
| setLibcallName(RTLIB::UNE_F128, "__nekf2"); |
| setLibcallName(RTLIB::OGE_F128, "__gekf2"); |
| setLibcallName(RTLIB::OLT_F128, "__ltkf2"); |
| setLibcallName(RTLIB::OLE_F128, "__lekf2"); |
| setLibcallName(RTLIB::OGT_F128, "__gtkf2"); |
| setLibcallName(RTLIB::UO_F128, "__unordkf2"); |
| } |
| |
| // A few names are different on particular architectures or environments. |
| if (TT.isOSDarwin()) { |
| // For f16/f32 conversions, Darwin uses the standard naming scheme, instead |
| // of the gnueabi-style __gnu_*_ieee. |
| // FIXME: What about other targets? |
| setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); |
| setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); |
| |
| // Some darwins have an optimized __bzero/bzero function. |
| switch (TT.getArch()) { |
| case Triple::x86: |
| case Triple::x86_64: |
| if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) |
| setLibcallName(RTLIB::BZERO, "__bzero"); |
| break; |
| case Triple::aarch64: |
| case Triple::aarch64_32: |
| setLibcallName(RTLIB::BZERO, "bzero"); |
| break; |
| default: |
| break; |
| } |
| |
| if (darwinHasSinCos(TT)) { |
| setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); |
| setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); |
| if (TT.isWatchABI()) { |
| setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, |
| CallingConv::ARM_AAPCS_VFP); |
| setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, |
| CallingConv::ARM_AAPCS_VFP); |
| } |
| } |
| } else { |
| setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); |
| setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); |
| } |
| |
| if (TT.isGNUEnvironment() || TT.isOSFuchsia() || |
| (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { |
| setLibcallName(RTLIB::SINCOS_F32, "sincosf"); |
| setLibcallName(RTLIB::SINCOS_F64, "sincos"); |
| setLibcallName(RTLIB::SINCOS_F80, "sincosl"); |
| setLibcallName(RTLIB::SINCOS_F128, "sincosl"); |
| setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); |
| } |
| |
| if (TT.isPS4CPU()) { |
| setLibcallName(RTLIB::SINCOS_F32, "sincosf"); |
| setLibcallName(RTLIB::SINCOS_F64, "sincos"); |
| } |
| |
| if (TT.isOSOpenBSD()) { |
| setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); |
| } |
| } |
| |
| /// GetFPLibCall - Helper to return the right libcall for the given floating |
| /// point type, or UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, |
| RTLIB::Libcall Call_F32, |
| RTLIB::Libcall Call_F64, |
| RTLIB::Libcall Call_F80, |
| RTLIB::Libcall Call_F128, |
| RTLIB::Libcall Call_PPCF128) { |
| return |
| VT == MVT::f32 ? Call_F32 : |
| VT == MVT::f64 ? Call_F64 : |
| VT == MVT::f80 ? Call_F80 : |
| VT == MVT::f128 ? Call_F128 : |
| VT == MVT::ppcf128 ? Call_PPCF128 : |
| RTLIB::UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f16) { |
| if (RetVT == MVT::f32) |
| return FPEXT_F16_F32; |
| if (RetVT == MVT::f64) |
| return FPEXT_F16_F64; |
| if (RetVT == MVT::f80) |
| return FPEXT_F16_F80; |
| if (RetVT == MVT::f128) |
| return FPEXT_F16_F128; |
| } else if (OpVT == MVT::f32) { |
| if (RetVT == MVT::f64) |
| return FPEXT_F32_F64; |
| if (RetVT == MVT::f128) |
| return FPEXT_F32_F128; |
| if (RetVT == MVT::ppcf128) |
| return FPEXT_F32_PPCF128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::f128) |
| return FPEXT_F64_F128; |
| else if (RetVT == MVT::ppcf128) |
| return FPEXT_F64_PPCF128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::f128) |
| return FPEXT_F80_F128; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { |
| if (RetVT == MVT::f16) { |
| if (OpVT == MVT::f32) |
| return FPROUND_F32_F16; |
| if (OpVT == MVT::f64) |
| return FPROUND_F64_F16; |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F16; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F16; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F16; |
| } else if (RetVT == MVT::f32) { |
| if (OpVT == MVT::f64) |
| return FPROUND_F64_F32; |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F32; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F32; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F32; |
| } else if (RetVT == MVT::f64) { |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F64; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F64; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F64; |
| } else if (RetVT == MVT::f80) { |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F80; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f16) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F16_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F16_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F16_I128; |
| } else if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f16) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F16_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F16_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F16_I128; |
| } else if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f16) |
| return SINTTOFP_I32_F16; |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f16) |
| return SINTTOFP_I64_F16; |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f16) |
| return SINTTOFP_I128_F16; |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f16) |
| return UINTTOFP_I32_F16; |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f16) |
| return UINTTOFP_I64_F16; |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f16) |
| return UINTTOFP_I128_F16; |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { |
| return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, |
| POWI_PPCF128); |
| } |
| |
| RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, |
| MVT VT) { |
| unsigned ModeN, ModelN; |
| switch (VT.SimpleTy) { |
| case MVT::i8: |
| ModeN = 0; |
| break; |
| case MVT::i16: |
| ModeN = 1; |
| break; |
| case MVT::i32: |
| ModeN = 2; |
| break; |
| case MVT::i64: |
| ModeN = 3; |
| break; |
| case MVT::i128: |
| ModeN = 4; |
| break; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| |
| switch (Order) { |
| case AtomicOrdering::Monotonic: |
| ModelN = 0; |
| break; |
| case AtomicOrdering::Acquire: |
| ModelN = 1; |
| break; |
| case AtomicOrdering::Release: |
| ModelN = 2; |
| break; |
| case AtomicOrdering::AcquireRelease: |
| case AtomicOrdering::SequentiallyConsistent: |
| ModelN = 3; |
| break; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| |
| #define LCALLS(A, B) \ |
| { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } |
| #define LCALL5(A) \ |
| LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) |
| switch (Opc) { |
| case ISD::ATOMIC_CMP_SWAP: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; |
| return LC[ModeN][ModelN]; |
| } |
| case ISD::ATOMIC_SWAP: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; |
| return LC[ModeN][ModelN]; |
| } |
| case ISD::ATOMIC_LOAD_ADD: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; |
| return LC[ModeN][ModelN]; |
| } |
| case ISD::ATOMIC_LOAD_OR: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; |
| return LC[ModeN][ModelN]; |
| } |
| case ISD::ATOMIC_LOAD_CLR: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; |
| return LC[ModeN][ModelN]; |
| } |
| case ISD::ATOMIC_LOAD_XOR: { |
| const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; |
| return LC[ModeN][ModelN]; |
| } |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| #undef LCALLS |
| #undef LCALL5 |
| } |
| |
| RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { |
| #define OP_TO_LIBCALL(Name, Enum) \ |
| case Name: \ |
| switch (VT.SimpleTy) { \ |
| default: \ |
| return UNKNOWN_LIBCALL; \ |
| case MVT::i8: \ |
| return Enum##_1; \ |
| case MVT::i16: \ |
| return Enum##_2; \ |
| case MVT::i32: \ |
| return Enum##_4; \ |
| case MVT::i64: \ |
| return Enum##_8; \ |
| case MVT::i128: \ |
| return Enum##_16; \ |
| } |
| |
| switch (Opc) { |
| OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) |
| OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) |
| } |
| |
| #undef OP_TO_LIBCALL |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { |
| switch (ElementSize) { |
| case 1: |
| return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; |
| case 2: |
| return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; |
| case 4: |
| return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; |
| case 8: |
| return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; |
| case 16: |
| return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| } |
| |
| RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { |
| switch (ElementSize) { |
| case 1: |
| return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; |
| case 2: |
| return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; |
| case 4: |
| return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; |
| case 8: |
| return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; |
| case 16: |
| return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| } |
| |
| RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { |
| switch (ElementSize) { |
| case 1: |
| return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; |
| case 2: |
| return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; |
| case 4: |
| return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; |
| case 8: |
| return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; |
| case 16: |
| return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| } |
| |
| /// InitCmpLibcallCCs - Set default comparison libcall CC. |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) { |
| std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); |
| CCs[RTLIB::OEQ_F32] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F64] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F128] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; |
| CCs[RTLIB::UNE_F32] = ISD::SETNE; |
| CCs[RTLIB::UNE_F64] = ISD::SETNE; |
| CCs[RTLIB::UNE_F128] = ISD::SETNE; |
| CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; |
| CCs[RTLIB::OGE_F32] = ISD::SETGE; |
| CCs[RTLIB::OGE_F64] = ISD::SETGE; |
| CCs[RTLIB::OGE_F128] = ISD::SETGE; |
| CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; |
| CCs[RTLIB::OLT_F32] = ISD::SETLT; |
| CCs[RTLIB::OLT_F64] = ISD::SETLT; |
| CCs[RTLIB::OLT_F128] = ISD::SETLT; |
| CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; |
| CCs[RTLIB::OLE_F32] = ISD::SETLE; |
| CCs[RTLIB::OLE_F64] = ISD::SETLE; |
| CCs[RTLIB::OLE_F128] = ISD::SETLE; |
| CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; |
| CCs[RTLIB::OGT_F32] = ISD::SETGT; |
| CCs[RTLIB::OGT_F64] = ISD::SETGT; |
| CCs[RTLIB::OGT_F128] = ISD::SETGT; |
| CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; |
| CCs[RTLIB::UO_F32] = ISD::SETNE; |
| CCs[RTLIB::UO_F64] = ISD::SETNE; |
| CCs[RTLIB::UO_F128] = ISD::SETNE; |
| CCs[RTLIB::UO_PPCF128] = ISD::SETNE; |
| } |
| |
| /// NOTE: The TargetMachine owns TLOF. |
| TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { |
| initActions(); |
| |
| // Perform these initializations only once. |
| MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = |
| MaxLoadsPerMemcmp = 8; |
| MaxGluedStoresPerMemcpy = 0; |
| MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = |
| MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; |
| HasMultipleConditionRegisters = false; |
| HasExtractBitsInsn = false; |
| JumpIsExpensive = JumpIsExpensiveOverride; |
| PredictableSelectIsExpensive = false; |
| EnableExtLdPromotion = false; |
| StackPointerRegisterToSaveRestore = 0; |
| BooleanContents = UndefinedBooleanContent; |
| BooleanFloatContents = UndefinedBooleanContent; |
| BooleanVectorContents = UndefinedBooleanContent; |
| SchedPreferenceInfo = Sched::ILP; |
| GatherAllAliasesMaxDepth = 18; |
| IsStrictFPEnabled = DisableStrictNodeMutation; |
| // TODO: the default will be switched to 0 in the next commit, along |
| // with the Target-specific changes necessary. |
| MaxAtomicSizeInBitsSupported = 1024; |
| |
| MinCmpXchgSizeInBits = 0; |
| SupportsUnalignedAtomics = false; |
| |
| std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); |
| |
| InitLibcalls(TM.getTargetTriple()); |
| InitCmpLibcallCCs(CmpLibcallCCs); |
| } |
| |
| void TargetLoweringBase::initActions() { |
| // All operations default to being supported. |
| memset(OpActions, 0, sizeof(OpActions)); |
| memset(LoadExtActions, 0, sizeof(LoadExtActions)); |
| memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); |
| memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); |
| memset(CondCodeActions, 0, sizeof(CondCodeActions)); |
| std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); |
| std::fill(std::begin(TargetDAGCombineArray), |
| std::end(TargetDAGCombineArray), 0); |
| |
| for (MVT VT : MVT::fp_valuetypes()) { |
| MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); |
| if (IntVT.isValid()) { |
| setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); |
| AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); |
| } |
| } |
| |
| // Set default actions for various operations. |
| for (MVT VT : MVT::all_valuetypes()) { |
| // Default all indexed load / store to expand. |
| for (unsigned IM = (unsigned)ISD::PRE_INC; |
| IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { |
| setIndexedLoadAction(IM, VT, Expand); |
| setIndexedStoreAction(IM, VT, Expand); |
| setIndexedMaskedLoadAction(IM, VT, Expand); |
| setIndexedMaskedStoreAction(IM, VT, Expand); |
| } |
| |
| // Most backends expect to see the node which just returns the value loaded. |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); |
| |
| // These operations default to expand. |
| setOperationAction(ISD::FGETSIGN, VT, Expand); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); |
| setOperationAction(ISD::FMINNUM, VT, Expand); |
| setOperationAction(ISD::FMAXNUM, VT, Expand); |
| setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); |
| setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); |
| setOperationAction(ISD::FMINIMUM, VT, Expand); |
| setOperationAction(ISD::FMAXIMUM, VT, Expand); |
| setOperationAction(ISD::FMAD, VT, Expand); |
| setOperationAction(ISD::SMIN, VT, Expand); |
| setOperationAction(ISD::SMAX, VT, Expand); |
| setOperationAction(ISD::UMIN, VT, Expand); |
| setOperationAction(ISD::UMAX, VT, Expand); |
| setOperationAction(ISD::ABS, VT, Expand); |
| setOperationAction(ISD::FSHL, VT, Expand); |
| setOperationAction(ISD::FSHR, VT, Expand); |
| setOperationAction(ISD::SADDSAT, VT, Expand); |
| setOperationAction(ISD::UADDSAT, VT, Expand); |
| setOperationAction(ISD::SSUBSAT, VT, Expand); |
| setOperationAction(ISD::USUBSAT, VT, Expand); |
| setOperationAction(ISD::SSHLSAT, VT, Expand); |
| setOperationAction(ISD::USHLSAT, VT, Expand); |
| setOperationAction(ISD::SMULFIX, VT, Expand); |
| setOperationAction(ISD::SMULFIXSAT, VT, Expand); |
| setOperationAction(ISD::UMULFIX, VT, Expand); |
| setOperationAction(ISD::UMULFIXSAT, VT, Expand); |
| setOperationAction(ISD::SDIVFIX, VT, Expand); |
| setOperationAction(ISD::SDIVFIXSAT, VT, Expand); |
| setOperationAction(ISD::UDIVFIX, VT, Expand); |
| setOperationAction(ISD::UDIVFIXSAT, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand); |
| |
| // Overflow operations default to expand |
| setOperationAction(ISD::SADDO, VT, Expand); |
| setOperationAction(ISD::SSUBO, VT, Expand); |
| setOperationAction(ISD::UADDO, VT, Expand); |
| setOperationAction(ISD::USUBO, VT, Expand); |
| setOperationAction(ISD::SMULO, VT, Expand); |
| setOperationAction(ISD::UMULO, VT, Expand); |
| |
| // ADDCARRY operations default to expand |
| setOperationAction(ISD::ADDCARRY, VT, Expand); |
| setOperationAction(ISD::SUBCARRY, VT, Expand); |
| setOperationAction(ISD::SETCCCARRY, VT, Expand); |
| setOperationAction(ISD::SADDO_CARRY, VT, Expand); |
| setOperationAction(ISD::SSUBO_CARRY, VT, Expand); |
| |
| // ADDC/ADDE/SUBC/SUBE default to expand. |
| setOperationAction(ISD::ADDC, VT, Expand); |
| setOperationAction(ISD::ADDE, VT, Expand); |
| setOperationAction(ISD::SUBC, VT, Expand); |
| setOperationAction(ISD::SUBE, VT, Expand); |
| |
| // Absolute difference |
| setOperationAction(ISD::ABDS, VT, Expand); |
| setOperationAction(ISD::ABDU, VT, Expand); |
| |
| // These default to Expand so they will be expanded to CTLZ/CTTZ by default. |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); |
| |
| setOperationAction(ISD::BITREVERSE, VT, Expand); |
| setOperationAction(ISD::PARITY, VT, Expand); |
| |
| // These library functions default to expand. |
| setOperationAction(ISD::FROUND, VT, Expand); |
| setOperationAction(ISD::FROUNDEVEN, VT, Expand); |
| setOperationAction(ISD::FPOWI, VT, Expand); |
| |
| // These operations default to expand for vector types. |
| if (VT.isVector()) { |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); |
| setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); |
| } |
| |
| // Constrained floating-point operations default to expand. |
| #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
| setOperationAction(ISD::STRICT_##DAGN, VT, Expand); |
| #include "llvm/IR/ConstrainedOps.def" |
| |
| // For most targets @llvm.get.dynamic.area.offset just returns 0. |
| setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); |
| |
| // Vector reduction default to expand. |
| setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_AND, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_OR, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand); |
| setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand); |
| |
| // Named vector shuffles default to expand. |
| setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); |
| } |
| |
| // Most targets ignore the @llvm.prefetch intrinsic. |
| setOperationAction(ISD::PREFETCH, MVT::Other, Expand); |
| |
| // Most targets also ignore the @llvm.readcyclecounter intrinsic. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); |
| |
| // ConstantFP nodes default to expand. Targets can either change this to |
| // Legal, in which case all fp constants are legal, or use isFPImmLegal() |
| // to optimize expansions for certain constants. |
| setOperationAction(ISD::ConstantFP, MVT::f16, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f80, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f128, Expand); |
| |
| // These library functions default to expand. |
| for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { |
| setOperationAction(ISD::FCBRT, VT, Expand); |
| setOperationAction(ISD::FLOG , VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FEXP , VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::LROUND, VT, Expand); |
| setOperationAction(ISD::LLROUND, VT, Expand); |
| setOperationAction(ISD::LRINT, VT, Expand); |
| setOperationAction(ISD::LLRINT, VT, Expand); |
| } |
| |
| // Default ISD::TRAP to expand (which turns it into abort). |
| setOperationAction(ISD::TRAP, MVT::Other, Expand); |
| |
| // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" |
| // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); |
| |
| setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); |
| } |
| |
| MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, |
| EVT) const { |
| return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); |
| } |
| |
| EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, |
| bool LegalTypes) const { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| if (LHSTy.isVector()) |
| return LHSTy; |
| MVT ShiftVT = |
| LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); |
| // If any possible shift value won't fit in the prefered type, just use |
| // something safe. Assume it will be legalized when the shift is expanded. |
| if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) |
| ShiftVT = MVT::i32; |
| assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && |
| "ShiftVT is still too small!"); |
| return ShiftVT; |
| } |
| |
| bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { |
| assert(isTypeLegal(VT)); |
| switch (Op) { |
| default: |
| return false; |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| return true; |
| } |
| } |
| |
| bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| return TM.isNoopAddrSpaceCast(SrcAS, DestAS); |
| } |
| |
| void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { |
| // If the command-line option was specified, ignore this request. |
| if (!JumpIsExpensiveOverride.getNumOccurrences()) |
| JumpIsExpensive = isExpensive; |
| } |
| |
| TargetLoweringBase::LegalizeKind |
| TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { |
| // If this is a simple type, use the ComputeRegisterProp mechanism. |
| if (VT.isSimple()) { |
| MVT SVT = VT.getSimpleVT(); |
| assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); |
| MVT NVT = TransformToType[SVT.SimpleTy]; |
| LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); |
| |
| assert((LA == TypeLegal || LA == TypeSoftenFloat || |
| LA == TypeSoftPromoteHalf || |
| (NVT.isVector() || |
| ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && |
| "Promote may not follow Expand or Promote"); |
| |
| if (LA == TypeSplitVector) |
| return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); |
| if (LA == TypeScalarizeVector) |
| return LegalizeKind(LA, SVT.getVectorElementType()); |
| return LegalizeKind(LA, NVT); |
| } |
| |
| // Handle Extended Scalar Types. |
| if (!VT.isVector()) { |
| assert(VT.isInteger() && "Float types must be simple"); |
| unsigned BitSize = VT.getSizeInBits(); |
| // First promote to a power-of-two size, then expand if necessary. |
| if (BitSize < 8 || !isPowerOf2_32(BitSize)) { |
| EVT NVT = VT.getRoundIntegerType(Context); |
| assert(NVT != VT && "Unable to round integer VT"); |
| LegalizeKind NextStep = getTypeConversion(Context, NVT); |
| // Avoid multi-step promotion. |
| if (NextStep.first == TypePromoteInteger) |
| return NextStep; |
| // Return rounded integer type. |
| return LegalizeKind(TypePromoteInteger, NVT); |
| } |
| |
| return LegalizeKind(TypeExpandInteger, |
| EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); |
| } |
| |
| // Handle vector types. |
| ElementCount NumElts = VT.getVectorElementCount(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // Vectors with only one element are always scalarized. |
| if (NumElts.isScalar()) |
| return LegalizeKind(TypeScalarizeVector, EltVT); |
| |
| // Try to widen vector elements until the element type is a power of two and |
| // promote it to a legal type later on, for example: |
| // <3 x i8> -> <4 x i8> -> <4 x i32> |
| if (EltVT.isInteger()) { |
| // Vectors with a number of elements that is not a power of two are always |
| // widened, for example <3 x i8> -> <4 x i8>. |
| if (!VT.isPow2VectorType()) { |
| NumElts = NumElts.coefficientNextPowerOf2(); |
| EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| // Examine the element type. |
| LegalizeKind LK = getTypeConversion(Context, EltVT); |
| |
| // If type is to be expanded, split the vector. |
| // <4 x i140> -> <2 x i140> |
| if (LK.first == TypeExpandInteger) { |
| if (VT.getVectorElementCount().isScalable()) |
| return LegalizeKind(TypeScalarizeScalableVector, EltVT); |
| return LegalizeKind(TypeSplitVector, |
| VT.getHalfNumVectorElementsVT(Context)); |
| } |
| |
| // Promote the integer element types until a legal vector type is found |
| // or until the element integer type is too big. If a legal type was not |
| // found, fallback to the usual mechanism of widening/splitting the |
| // vector. |
| EVT OldEltVT = EltVT; |
| while (true) { |
| // Increase the bitwidth of the element to the next pow-of-two |
| // (which is greater than 8 bits). |
| EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) |
| .getRoundIntegerType(Context); |
| |
| // Stop trying when getting a non-simple element type. |
| // Note that vector elements may be greater than legal vector element |
| // types. Example: X86 XMM registers hold 64bit element on 32bit |
| // systems. |
| if (!EltVT.isSimple()) |
| break; |
| |
| // Build a new vector type and check if it is legal. |
| MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| // Found a legal promoted vector type. |
| if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) |
| return LegalizeKind(TypePromoteInteger, |
| EVT::getVectorVT(Context, EltVT, NumElts)); |
| } |
| |
| // Reset the type to the unexpanded type if we did not find a legal vector |
| // type with a promoted vector element type. |
| EltVT = OldEltVT; |
| } |
| |
| // Try to widen the vector until a legal type is found. |
| // If there is no wider legal type, split the vector. |
| while (true) { |
| // Round up to the next power of 2. |
| NumElts = NumElts.coefficientNextPowerOf2(); |
| |
| // If there is no simple vector type with this many elements then there |
| // cannot be a larger legal vector type. Note that this assumes that |
| // there are no skipped intermediate vector types in the simple types. |
| if (!EltVT.isSimple()) |
| break; |
| MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| if (LargerVector == MVT()) |
| break; |
| |
| // If this type is legal then widen the vector. |
| if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) |
| return LegalizeKind(TypeWidenVector, LargerVector); |
| } |
| |
| // Widen odd vectors to next power of two. |
| if (!VT.isPow2VectorType()) { |
| EVT NVT = VT.getPow2VectorType(Context); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| if (VT.getVectorElementCount() == ElementCount::getScalable(1)) |
| return LegalizeKind(TypeScalarizeScalableVector, EltVT); |
| |
| // Vectors with illegal element types are expanded. |
| EVT NVT = EVT::getVectorVT(Context, EltVT, |
| VT.getVectorElementCount().divideCoefficientBy(2)); |
| return LegalizeKind(TypeSplitVector, NVT); |
| } |
| |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT, |
| TargetLoweringBase *TLI) { |
| // Figure out the right, legal destination reg to copy into. |
| ElementCount EC = VT.getVectorElementCount(); |
| MVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // Scalable vectors cannot be scalarized, so splitting or widening is |
| // required. |
| if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) |
| llvm_unreachable( |
| "Splitting or widening of non-power-of-2 MVTs is not implemented."); |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. |
| // Ideally we could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(EC.getKnownMinValue())) { |
| // Split EC to unit size (scalable property is preserved). |
| NumVectorRegs = EC.getKnownMinValue(); |
| EC = ElementCount::getFixed(1); |
| } |
| |
| // Divide the input until we get to a supported size. This will |
| // always end up with an EC that represent a scalar or a scalable |
| // scalar. |
| while (EC.getKnownMinValue() > 1 && |
| !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { |
| EC = EC.divideCoefficientBy(2); |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| MVT NewVT = MVT::getVectorVT(EltTy, EC); |
| if (!TLI->isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); |
| |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(LaneSizeInBits)) |
| LaneSizeInBits = NextPowerOf2(LaneSizeInBits); |
| |
| MVT DestVT = TLI->getRegisterType(NewVT); |
| RegisterVT = DestVT; |
| if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. |
| return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| /// isLegalRC - Return true if the value types that can be represented by the |
| /// specified register class are all legal. |
| bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, |
| const TargetRegisterClass &RC) const { |
| for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) |
| if (isTypeLegal(*I)) |
| return true; |
| return false; |
| } |
| |
| /// Replace/modify any TargetFrameIndex operands with a targte-dependent |
| /// sequence of memory operands that is recognized by PrologEpilogInserter. |
| MachineBasicBlock * |
| TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, |
| MachineBasicBlock *MBB) const { |
| MachineInstr *MI = &InitialMI; |
| MachineFunction &MF = *MI->getMF(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // We're handling multiple types of operands here: |
| // PATCHPOINT MetaArgs - live-in, read only, direct |
| // STATEPOINT Deopt Spill - live-through, read only, indirect |
| // STATEPOINT Deopt Alloca - live-through, read only, direct |
| // (We're currently conservative and mark the deopt slots read/write in |
| // practice.) |
| // STATEPOINT GC Spill - live-through, read/write, indirect |
| // STATEPOINT GC Alloca - live-through, read/write, direct |
| // The live-in vs live-through is handled already (the live through ones are |
| // all stack slots), but we need to handle the different type of stackmap |
| // operands and memory effects here. |
| |
| if (!llvm::any_of(MI->operands(), |
| [](MachineOperand &Operand) { return Operand.isFI(); })) |
| return MBB; |
| |
| MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); |
| |
| // Inherit previous memory operands. |
| MIB.cloneMemRefs(*MI); |
| |
| for (unsigned i = 0; i < MI->getNumOperands(); ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isFI()) { |
| // Index of Def operand this Use it tied to. |
| // Since Defs are coming before Uses, if Use is tied, then |
| // index of Def must be smaller that index of that Use. |
| // Also, Defs preserve their position in new MI. |
| unsigned TiedTo = i; |
| if (MO.isReg() && MO.isTied()) |
| TiedTo = MI->findTiedOperandIdx(i); |
| MIB.add(MO); |
| if (TiedTo < i) |
| MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); |
| continue; |
| } |
| |
| // foldMemoryOperand builds a new MI after replacing a single FI operand |
| // with the canonical set of five x86 addressing-mode operands. |
| int FI = MO.getIndex(); |
| |
| // Add frame index operands recognized by stackmaps.cpp |
| if (MFI.isStatepointSpillSlotObjectIndex(FI)) { |
| // indirect-mem-ref tag, size, #FI, offset. |
| // Used for spills inserted by StatepointLowering. This codepath is not |
| // used for patchpoints/stackmaps at all, for these spilling is done via |
| // foldMemoryOperand callback only. |
| assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); |
| MIB.addImm(StackMaps::IndirectMemRefOp); |
| MIB.addImm(MFI.getObjectSize(FI)); |
| MIB.add(MO); |
| MIB.addImm(0); |
| } else { |
| // direct-mem-ref tag, #FI, offset. |
| // Used by patchpoint, and direct alloca arguments to statepoints |
| MIB.addImm(StackMaps::DirectMemRefOp); |
| MIB.add(MO); |
| MIB.addImm(0); |
| } |
| |
| assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); |
| |
| // Add a new memory operand for this FI. |
| assert(MFI.getObjectOffset(FI) != -1); |
| |
| // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and |
| // PATCHPOINT should be updated to do the same. (TODO) |
| if (MI->getOpcode() != TargetOpcode::STATEPOINT) { |
| auto Flags = MachineMemOperand::MOLoad; |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), Flags, |
| MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); |
| MIB->addMemOperand(MF, MMO); |
| } |
| } |
| MBB->insert(MachineBasicBlock::iterator(MI), MIB); |
| MI->eraseFromParent(); |
| return MBB; |
| } |
| |
| /// findRepresentativeClass - Return the largest legal super-reg register class |
| /// of the register class for the specified type and its associated "cost". |
| // This function is in TargetLowering because it uses RegClassForVT which would |
| // need to be moved to TargetRegisterInfo and would necessitate moving |
| // isTypeLegal over as well - a massive change that would just require |
| // TargetLowering having a TargetRegisterInfo class member that it would use. |
| std::pair<const TargetRegisterClass *, uint8_t> |
| TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| MVT VT) const { |
| const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; |
| if (!RC) |
| return std::make_pair(RC, 0); |
| |
| // Compute the set of all super-register classes. |
| BitVector SuperRegRC(TRI->getNumRegClasses()); |
| for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) |
| SuperRegRC.setBitsInMask(RCI.getMask()); |
| |
| // Find the first legal register class with the largest spill size. |
| const TargetRegisterClass *BestRC = RC; |
| for (unsigned i : SuperRegRC.set_bits()) { |
| const TargetRegisterClass *SuperRC = TRI->getRegClass(i); |
| // We want the largest possible spill size. |
| if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) |
| continue; |
| if (!isLegalRC(*TRI, *SuperRC)) |
| continue; |
| BestRC = SuperRC; |
| } |
| return std::make_pair(BestRC, 1); |
| } |
| |
| /// computeRegisterProperties - Once all of the register classes are added, |
| /// this allows us to compute derived properties we expose. |
| void TargetLoweringBase::computeRegisterProperties( |
| const TargetRegisterInfo *TRI) { |
| static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, |
| "Too many value types for ValueTypeActions to hold!"); |
| |
| // Everything defaults to needing one register. |
| for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { |
| NumRegistersForVT[i] = 1; |
| RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; |
| } |
| // ...except isVoid, which doesn't need any registers. |
| NumRegistersForVT[MVT::isVoid] = 0; |
| |
| // Find the largest integer register class. |
| unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; |
| for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) |
| assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| |
| // Every integer value type larger than this largest register takes twice as |
| // many registers to represent as the previous ValueType. |
| for (unsigned ExpandedReg = LargestIntReg + 1; |
| ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { |
| NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; |
| RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; |
| TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); |
| ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, |
| TypeExpandInteger); |
| } |
| |
| // Inspect all of the ValueType's smaller than the largest integer |
| // register to see which ones need promotion. |
| unsigned LegalIntReg = LargestIntReg; |
| for (unsigned IntReg = LargestIntReg - 1; |
| IntReg >= (unsigned)MVT::i1; --IntReg) { |
| MVT IVT = (MVT::SimpleValueType)IntReg; |
| if (isTypeLegal(IVT)) { |
| LegalIntReg = IntReg; |
| } else { |
| RegisterTypeForVT[IntReg] = TransformToType[IntReg] = |
| (MVT::SimpleValueType)LegalIntReg; |
| ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); |
| } |
| } |
| |
| // ppcf128 type is really two f64's. |
| if (!isTypeLegal(MVT::ppcf128)) { |
| if (isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; |
| RegisterTypeForVT[MVT::ppcf128] = MVT::f64; |
| TransformToType[MVT::ppcf128] = MVT::f64; |
| ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); |
| } else { |
| NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; |
| RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; |
| TransformToType[MVT::ppcf128] = MVT::i128; |
| ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); |
| } |
| } |
| |
| // Decide how to handle f128. If the target does not have native f128 support, |
| // expand it to i128 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f128)) { |
| NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; |
| RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; |
| TransformToType[MVT::f128] = MVT::i128; |
| ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f64. If the target does not have native f64 support, |
| // expand it to i64 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; |
| RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; |
| TransformToType[MVT::f64] = MVT::i64; |
| ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f32. If the target does not have native f32 support, |
| // expand it to i32 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f32)) { |
| NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; |
| RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; |
| TransformToType[MVT::f32] = MVT::i32; |
| ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f16. If the target does not have native f16 support, |
| // promote it to f32, because there are no f16 library calls (except for |
| // conversions). |
| if (!isTypeLegal(MVT::f16)) { |
| // Allow targets to control how we legalize half. |
| if (softPromoteHalfType()) { |
| NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; |
| RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; |
| TransformToType[MVT::f16] = MVT::f32; |
| ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); |
| } else { |
| NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; |
| RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; |
| TransformToType[MVT::f16] = MVT::f32; |
| ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); |
| } |
| } |
| |
| // Loop over all of the vector value types to see which need transformations. |
| for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
| i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT VT = (MVT::SimpleValueType) i; |
| if (isTypeLegal(VT)) |
| continue; |
| |
| MVT EltVT = VT.getVectorElementType(); |
| ElementCount EC = VT.getVectorElementCount(); |
| bool IsLegalWiderType = false; |
| bool IsScalable = VT.isScalableVector(); |
| LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); |
| switch (PreferredAction) { |
| case TypePromoteInteger: { |
| MVT::SimpleValueType EndVT = IsScalable ? |
| MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : |
| MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; |
| // Try to promote the elements of integer vectors. If no legal |
| // promotion was found, fall through to the widen-vector method. |
| for (unsigned nVT = i + 1; |
| (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType) nVT; |
| // Promote vectors of integers to vectors with the same number |
| // of elements, with a wider element type. |
| if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && |
| SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypePromoteInteger); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| if (IsLegalWiderType) |
| break; |
| LLVM_FALLTHROUGH; |
| } |
| |
| case TypeWidenVector: |
| if (isPowerOf2_32(EC.getKnownMinValue())) { |
| // Try to widen the vector. |
| for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType) nVT; |
| if (SVT.getVectorElementType() == EltVT && |
| SVT.isScalableVector() == IsScalable && |
| SVT.getVectorElementCount().getKnownMinValue() > |
| EC.getKnownMinValue() && |
| isTypeLegal(SVT)) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| if (IsLegalWiderType) |
| break; |
| } else { |
| // Only widen to the next power of 2 to keep consistency with EVT. |
| MVT NVT = VT.getPow2VectorType(); |
| if (isTypeLegal(NVT)) { |
| TransformToType[i] = NVT; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| RegisterTypeForVT[i] = NVT; |
| NumRegistersForVT[i] = 1; |
| break; |
| } |
| } |
| LLVM_FALLTHROUGH; |
| |
| case TypeSplitVector: |
| case TypeScalarizeVector: { |
| MVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, |
| NumIntermediates, RegisterVT, this); |
| NumRegistersForVT[i] = NumRegisters; |
| assert(NumRegistersForVT[i] == NumRegisters && |
| "NumRegistersForVT size cannot represent NumRegisters!"); |
| RegisterTypeForVT[i] = RegisterVT; |
| |
| MVT NVT = VT.getPow2VectorType(); |
| if (NVT == VT) { |
| // Type is already a power of 2. The default action is to split. |
| TransformToType[i] = MVT::Other; |
| if (PreferredAction == TypeScalarizeVector) |
| ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); |
| else if (PreferredAction == TypeSplitVector) |
| ValueTypeActions.setTypeAction(VT, TypeSplitVector); |
| else if (EC.getKnownMinValue() > 1) |
| ValueTypeActions.setTypeAction(VT, TypeSplitVector); |
| else |
| ValueTypeActions.setTypeAction(VT, EC.isScalable() |
| ? TypeScalarizeScalableVector |
| : TypeScalarizeVector); |
| } else { |
| TransformToType[i] = NVT; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| } |
| break; |
| } |
| default: |
| llvm_unreachable("Unknown vector legalization action!"); |
| } |
| } |
| |
| // Determine the 'representative' register class for each value type. |
| // An representative register class is the largest (meaning one which is |
| // not a sub-register class / subreg register class) legal register class for |
| // a group of value types. For example, on i386, i8, i16, and i32 |
| // representative would be GR32; while on x86_64 it's GR64. |
| for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { |
| const TargetRegisterClass* RRC; |
| uint8_t Cost; |
| std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); |
| RepRegClassForVT[i] = RRC; |
| RepRegClassCostForVT[i] = Cost; |
| } |
| } |
| |
| EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| assert(!VT.isVector() && "No default SetCC type for vectors!"); |
| return getPointerTy(DL).SimpleTy; |
| } |
| |
| MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { |
| return MVT::i32; // return the default value |
| } |
| |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of |
| /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. |
| /// |
| /// This method returns the number of registers needed, and the VT for each |
| /// register. It also returns the VT and quantity of the intermediate values |
| /// before they are promoted/expanded. |
| unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, |
| EVT VT, EVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT) const { |
| ElementCount EltCnt = VT.getVectorElementCount(); |
| |
| // If there is a wider vector type with the same element type as this one, |
| // or a promoted vector type that has the same number of elements which |
| // are wider, then we should convert to that legal vector type. |
| // This handles things like <2 x float> -> <4 x float> and |
| // <4 x i1> -> <4 x i32>. |
| LegalizeTypeAction TA = getTypeAction(Context, VT); |
| if (!EltCnt.isScalar() && |
| (TA == TypeWidenVector || TA == TypePromoteInteger)) { |
| EVT RegisterEVT = getTypeToTransformTo(Context, VT); |
| if (isTypeLegal(RegisterEVT)) { |
| IntermediateVT = RegisterEVT; |
| RegisterVT = RegisterEVT.getSimpleVT(); |
| NumIntermediates = 1; |
| return 1; |
| } |
| } |
| |
| // Figure out the right, legal destination reg to copy into. |
| EVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // Scalable vectors cannot be scalarized, so handle the legalisation of the |
| // types like done elsewhere in SelectionDAG. |
| if (EltCnt.isScalable()) { |
| LegalizeKind LK; |
| EVT PartVT = VT; |
| do { |
| // Iterate until we've found a legal (part) type to hold VT. |
| LK = getTypeConversion(Context, PartVT); |
| PartVT = LK.second; |
| } while (LK.first != TypeLegal); |
| |
| if (!PartVT.isVector()) { |
| report_fatal_error( |
| "Don't know how to legalize this scalable vector type"); |
| } |
| |
| NumIntermediates = |
| divideCeil(VT.getVectorElementCount().getKnownMinValue(), |
| PartVT.getVectorElementCount().getKnownMinValue()); |
| IntermediateVT = PartVT; |
| RegisterVT = getRegisterType(Context, IntermediateVT); |
| return NumIntermediates; |
| } |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally |
| // we could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { |
| NumVectorRegs = EltCnt.getKnownMinValue(); |
| EltCnt = ElementCount::getFixed(1); |
| } |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (EltCnt.getKnownMinValue() > 1 && |
| !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { |
| EltCnt = EltCnt.divideCoefficientBy(2); |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); |
| if (!isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| MVT DestVT = getRegisterType(Context, NewVT); |
| RegisterVT = DestVT; |
| |
| if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. |
| TypeSize NewVTSize = NewVT.getSizeInBits(); |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) |
| NewVTSize = NewVTSize.coefficientNextPowerOf2(); |
| return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); |
| } |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, |
| uint64_t NumCases, |
| uint64_t Range, |
| ProfileSummaryInfo *PSI, |
| BlockFrequencyInfo *BFI) const { |
| // FIXME: This function check the maximum table size and density, but the |
| // minimum size is not checked. It would be nice if the minimum size is |
| // also combined within this function. Currently, the minimum size check is |
| // performed in findJumpTable() in SelectionDAGBuiler and |
| // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. |
| const bool OptForSize = |
| SI->getParent()->getParent()->hasOptSize() || |
| llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); |
| const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); |
| const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); |
| |
| // Check whether the number of cases is small enough and |
| // the range is dense enough for a jump table. |
| return (OptForSize || Range <= MaxJumpTableSize) && |
| (NumCases * 100 >= Range * MinDensity); |
| } |
| |
| /// Get the EVTs and ArgFlags collections that represent the legalized return |
| /// type of the given function. This does not require a DAG or a return value, |
| /// and is suitable for use before any DAGs for the function are constructed. |
| /// TODO: Move this out of TargetLowering.cpp. |
| void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, |
| AttributeList attr, |
| SmallVectorImpl<ISD::OutputArg> &Outs, |
| const TargetLowering &TLI, const DataLayout &DL) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) return; |
| |
| for (unsigned j = 0, f = NumValues; j != f; ++j) { |
| EVT VT = ValueVTs[j]; |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (attr.hasRetAttr(Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (attr.hasRetAttr(Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| // FIXME: C calling convention requires the return type to be promoted to |
| // at least 32-bit. But this is not necessary for non-C calling |
| // conventions. The frontend should mark functions whose return values |
| // require promoting with signext or zeroext attributes. |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { |
| MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); |
| if (VT.bitsLT(MinVT)) |
| VT = MinVT; |
| } |
| |
| unsigned NumParts = |
| TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); |
| MVT PartVT = |
| TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (attr.hasRetAttr(Attribute::InReg)) |
| Flags.setInReg(); |
| |
| // Propagate extension type if any |
| if (attr.hasRetAttr(Attribute::SExt)) |
| Flags.setSExt(); |
| else if (attr.hasRetAttr(Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) |
| Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const { |
| return DL.getABITypeAlign(Ty).value(); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccessForAlignment( |
| LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, |
| Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { |
| // Check if the specified alignment is sufficient based on the data layout. |
| // TODO: While using the data layout works in practice, a better solution |
| // would be to implement this check directly (make this a virtual function). |
| // For example, the ABI alignment may change based on software platform while |
| // this function should only be affected by hardware implementation. |
| Type *Ty = VT.getTypeForEVT(Context); |
| if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { |
| // Assume that an access that meets the ABI-specified alignment is fast. |
| if (Fast != nullptr) |
| *Fast = true; |
| return true; |
| } |
| |
| // This is a misaligned access. |
| return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccessForAlignment( |
| LLVMContext &Context, const DataLayout &DL, EVT VT, |
| const MachineMemOperand &MMO, bool *Fast) const { |
| return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), |
| MMO.getAlign(), MMO.getFlags(), Fast); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, |
| const DataLayout &DL, EVT VT, |
| unsigned AddrSpace, Align Alignment, |
| MachineMemOperand::Flags Flags, |
| bool *Fast) const { |
| return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, |
| Flags, Fast); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, |
| const DataLayout &DL, EVT VT, |
| const MachineMemOperand &MMO, |
| bool *Fast) const { |
| return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), |
| MMO.getFlags(), Fast); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, |
| const DataLayout &DL, LLT Ty, |
| const MachineMemOperand &MMO, |
| bool *Fast) const { |
| EVT VT = getApproximateEVTForLLT(Ty, DL, Context); |
| return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), |
| MMO.getFlags(), Fast); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetTransformInfo Helpers |
| //===----------------------------------------------------------------------===// |
| |
| int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { |
| enum InstructionOpcodes { |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM |
| #include "llvm/IR/Instruction.def" |
| }; |
| switch (static_cast<InstructionOpcodes>(Opcode)) { |
| case Ret: return 0; |
| case Br: return 0; |
| case Switch: return 0; |
| case IndirectBr: return 0; |
| case Invoke: return 0; |
| case CallBr: return 0; |
| case Resume: return 0; |
| case Unreachable: return 0; |
| case CleanupRet: return 0; |
| case CatchRet: return 0; |
| case CatchPad: return 0; |
| case CatchSwitch: return 0; |
| case CleanupPad: return 0; |
| case FNeg: return ISD::FNEG; |
| case Add: return ISD::ADD; |
| case FAdd: return ISD::FADD; |
| case Sub: return ISD::SUB; |
| case FSub: return ISD::FSUB; |
| case Mul: return ISD::MUL; |
| case FMul: return ISD::FMUL; |
| case UDiv: return ISD::UDIV; |
| case SDiv: return ISD::SDIV; |
| case FDiv: return ISD::FDIV; |
| case URem: return ISD::UREM; |
| case SRem: return ISD::SREM; |
| case FRem: return ISD::FREM; |
| case Shl: return ISD::SHL; |
| case LShr: return ISD::SRL; |
| case AShr: return ISD::SRA; |
| case And: return ISD::AND; |
| case Or: return ISD::OR; |
| case Xor: return ISD::XOR; |
| case Alloca: return 0; |
| case Load: return ISD::LOAD; |
| case Store: return ISD::STORE; |
| case GetElementPtr: return 0; |
| case Fence: return 0; |
| case AtomicCmpXchg: return 0; |
| case AtomicRMW: return 0; |
| case Trunc: return ISD::TRUNCATE; |
| case ZExt: return ISD::ZERO_EXTEND; |
| case SExt: return ISD::SIGN_EXTEND; |
| case FPToUI: return ISD::FP_TO_UINT; |
| case FPToSI: return ISD::FP_TO_SINT; |
| case UIToFP: return ISD::UINT_TO_FP; |
| case SIToFP: return ISD::SINT_TO_FP; |
| case FPTrunc: return ISD::FP_ROUND; |
| case FPExt: return ISD::FP_EXTEND; |
| case PtrToInt: return ISD::BITCAST; |
| case IntToPtr: return ISD::BITCAST; |
| case BitCast: return ISD::BITCAST; |
| case AddrSpaceCast: return ISD::ADDRSPACECAST; |
| case ICmp: return ISD::SETCC; |
| case FCmp: return ISD::SETCC; |
| case PHI: return 0; |
| case Call: return 0; |
| case Select: return ISD::SELECT; |
| case UserOp1: return 0; |
| case UserOp2: return 0; |
| case VAArg: return 0; |
| case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; |
| case InsertElement: return ISD::INSERT_VECTOR_ELT; |
| case ShuffleVector: return ISD::VECTOR_SHUFFLE; |
| case ExtractValue: return ISD::MERGE_VALUES; |
| case InsertValue: return ISD::MERGE_VALUES; |
| case LandingPad: return 0; |
| case Freeze: return ISD::FREEZE; |
| } |
| |
| llvm_unreachable("Unknown instruction type encountered!"); |
| } |
| |
| std::pair<InstructionCost, MVT> |
| TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, |
| Type *Ty) const { |
| LLVMContext &C = Ty->getContext(); |
| EVT MTy = getValueType(DL, Ty); |
| |
| InstructionCost Cost = 1; |
| // We keep legalizing the type until we find a legal kind. We assume that |
| // the only operation that costs anything is the split. After splitting |
| // we need to handle two types. |
| while (true) { |
| LegalizeKind LK = getTypeConversion(C, MTy); |
| |
| if (LK.first == TypeScalarizeScalableVector) { |
| // Ensure we return a sensible simple VT here, since many callers of this |
| // function require it. |
| MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64; |
| return std::make_pair(InstructionCost::getInvalid(), VT); |
| } |
| |
| if (LK.first == TypeLegal) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) |
| Cost *= 2; |
| |
| // Do not loop with f128 type. |
| if (MTy == LK.second) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| // Keep legalizing the type. |
| MTy = LK.second; |
| } |
| } |
| |
| Value * |
| TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, |
| bool UseTLS) const { |
| // compiler-rt provides a variable with a magic name. Targets that do not |
| // link with compiler-rt may also provide such a variable. |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; |
| auto UnsafeStackPtr = |
| dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); |
| |
| Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); |
| |
| if (!UnsafeStackPtr) { |
| auto TLSModel = UseTLS ? |
| GlobalValue::InitialExecTLSModel : |
| GlobalValue::NotThreadLocal; |
| // The global variable is not defined yet, define it ourselves. |
| // We use the initial-exec TLS model because we do not support the |
| // variable living anywhere other than in the main executable. |
| UnsafeStackPtr = new GlobalVariable( |
| *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, |
| UnsafeStackPtrVar, nullptr, TLSModel); |
| } else { |
| // The variable exists, check its type and attributes. |
| if (UnsafeStackPtr->getValueType() != StackPtrTy) |
| report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); |
| if (UseTLS != UnsafeStackPtr->isThreadLocal()) |
| report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + |
| (UseTLS ? "" : "not ") + "be thread-local"); |
| } |
| return UnsafeStackPtr; |
| } |
| |
| Value * |
| TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { |
| if (!TM.getTargetTriple().isAndroid()) |
| return getDefaultSafeStackPointerLocation(IRB, true); |
| |
| // Android provides a libc function to retrieve the address of the current |
| // thread's unsafe stack pointer. |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); |
| FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", |
| StackPtrTy->getPointerTo(0)); |
| return IRB.CreateCall(Fn); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Strength Reduction hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // The default implementation of this implements a conservative RISCy, r+r and |
| // r+i addr mode. |
| |
| // Allows a sign-extended 16-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) |
| return false; |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // Only support r+r, |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. |
| return false; |
| // Otherwise we have r+r or r+i. |
| break; |
| case 2: |
| if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. |
| return false; |
| // Allow 2*r as r+r. |
| break; |
| default: // Don't allow n * r |
| return false; |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Stack Protector |
| //===----------------------------------------------------------------------===// |
| |
| // For OpenBSD return its special guard variable. Otherwise return nullptr, |
| // so that SelectionDAG handle SSP. |
| Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { |
| if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { |
| Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); |
| PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); |
| Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); |
| if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) |
| G->setVisibility(GlobalValue::HiddenVisibility); |
| return C; |
| } |
| return nullptr; |
| } |
| |
| // Currently only support "standard" __stack_chk_guard. |
| // TODO: add LOAD_STACK_GUARD support. |
| void TargetLoweringBase::insertSSPDeclarations(Module &M) const { |
| if (!M.getNamedValue("__stack_chk_guard")) { |
| auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, |
| GlobalVariable::ExternalLinkage, nullptr, |
| "__stack_chk_guard"); |
| |
| // FreeBSD has "__stack_chk_guard" defined externally on libc.so |
| if (TM.getRelocationModel() == Reloc::Static && |
| !TM.getTargetTriple().isWindowsGNUEnvironment() && |
| !TM.getTargetTriple().isOSFreeBSD()) |
| GV->setDSOLocal(true); |
| } |
| } |
| |
| // Currently only support "standard" __stack_chk_guard. |
| // TODO: add LOAD_STACK_GUARD support. |
| Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { |
| return M.getNamedValue("__stack_chk_guard"); |
| } |
| |
| Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { |
| return nullptr; |
| } |
| |
| unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { |
| return MinimumJumpTableEntries; |
| } |
| |
| void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { |
| MinimumJumpTableEntries = Val; |
| } |
| |
| unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { |
| return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; |
| } |
| |
| unsigned TargetLoweringBase::getMaximumJumpTableSize() const { |
| return MaximumJumpTableSize; |
| } |
| |
| void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { |
| MaximumJumpTableSize = Val; |
| } |
| |
| bool TargetLoweringBase::isJumpTableRelative() const { |
| return getTargetMachine().isPositionIndependent(); |
| } |
| |
| Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { |
| if (TM.Options.LoopAlignment) |
| return Align(TM.Options.LoopAlignment); |
| return PrefLoopAlignment; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reciprocal Estimates |
| //===----------------------------------------------------------------------===// |
| |
| /// Get the reciprocal estimate attribute string for a function that will |
| /// override the target defaults. |
| static StringRef getRecipEstimateForFunc(MachineFunction &MF) { |
| const Function &F = MF.getFunction(); |
| return F.getFnAttribute("reciprocal-estimates").getValueAsString(); |
| } |
| |
| /// Construct a string for the given reciprocal operation of the given type. |
| /// This string should match the corresponding option to the front-end's |
| /// "-mrecip" flag assuming those strings have been passed through in an |
| /// attribute string. For example, "vec-divf" for a division of a vXf32. |
| static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { |
| std::string Name = VT.isVector() ? "vec-" : ""; |
| |
| Name += IsSqrt ? "sqrt" : "div"; |
| |
| // TODO: Handle "half" or other float types? |
| if (VT.getScalarType() == MVT::f64) { |
| Name += "d"; |
| } else { |
| assert(VT.getScalarType() == MVT::f32 && |
| "Unexpected FP type for reciprocal estimate"); |
| Name += "f"; |
| } |
| |
| return Name; |
| } |
| |
| /// Return the character position and value (a single numeric character) of a |
| /// customized refinement operation in the input string if it exists. Return |
| /// false if there is no customized refinement step count. |
| static bool parseRefinementStep(StringRef In, size_t &Position, |
| uint8_t &Value) { |
| const char RefStepToken = ':'; |
| Position = In.find(RefStepToken); |
| if (Position == StringRef::npos) |
| return false; |
| |
| StringRef RefStepString = In.substr(Position + 1); |
| // Allow exactly one numeric character for the additional refinement |
| // step parameter. |
| if (RefStepString.size() == 1) { |
| char RefStepChar = RefStepString[0]; |
| if (isDigit(RefStepChar)) { |
| Value = RefStepChar - '0'; |
| return true; |
| } |
| } |
| report_fatal_error("Invalid refinement step for -recip."); |
| } |
| |
| /// For the input attribute string, return one of the ReciprocalEstimate enum |
| /// status values (enabled, disabled, or not specified) for this operation on |
| /// the specified data type. |
| static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { |
| if (Override.empty()) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| SmallVector<StringRef, 4> OverrideVector; |
| Override.split(OverrideVector, ','); |
| unsigned NumArgs = OverrideVector.size(); |
| |
| // Check if "all", "none", or "default" was specified. |
| if (NumArgs == 1) { |
| // Look for an optional setting of the number of refinement steps needed |
| // for this type of reciprocal operation. |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (parseRefinementStep(Override, RefPos, RefSteps)) { |
| // Split the string for further processing. |
| Override = Override.substr(0, RefPos); |
| } |
| |
| // All reciprocal types are enabled. |
| if (Override == "all") |
| return TargetLoweringBase::ReciprocalEstimate::Enabled; |
| |
| // All reciprocal types are disabled. |
| if (Override == "none") |
| return TargetLoweringBase::ReciprocalEstimate::Disabled; |
| |
| // Target defaults for enablement are used. |
| if (Override == "default") |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| // The attribute string may omit the size suffix ('f'/'d'). |
| std::string VTName = getReciprocalOpName(IsSqrt, VT); |
| std::string VTNameNoSize = VTName; |
| VTNameNoSize.pop_back(); |
| static const char DisabledPrefix = '!'; |
| |
| for (StringRef RecipType : OverrideVector) { |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (parseRefinementStep(RecipType, RefPos, RefSteps)) |
| RecipType = RecipType.substr(0, RefPos); |
| |
| // Ignore the disablement token for string matching. |
| bool IsDisabled = RecipType[0] == DisabledPrefix; |
| if (IsDisabled) |
| RecipType = RecipType.substr(1); |
| |
| if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) |
| return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled |
| : TargetLoweringBase::ReciprocalEstimate::Enabled; |
| } |
| |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| /// For the input attribute string, return the customized refinement step count |
| /// for this operation on the specified data type. If the step count does not |
| /// exist, return the ReciprocalEstimate enum value for unspecified. |
| static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { |
| if (Override.empty()) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| SmallVector<StringRef, 4> OverrideVector; |
| Override.split(OverrideVector, ','); |
| unsigned NumArgs = OverrideVector.size(); |
| |
| // Check if "all", "default", or "none" was specified. |
| if (NumArgs == 1) { |
| // Look for an optional setting of the number of refinement steps needed |
| // for this type of reciprocal operation. |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (!parseRefinementStep(Override, RefPos, RefSteps)) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| // Split the string for further processing. |
| Override = Override.substr(0, RefPos); |
| assert(Override != "none" && |
| "Disabled reciprocals, but specifed refinement steps?"); |
| |
| // If this is a general override, return the specified number of steps. |
| if (Override == "all" || Override == "default") |
| return RefSteps; |
| } |
| |
| // The attribute string may omit the size suffix ('f'/'d'). |
| std::string VTName = getReciprocalOpName(IsSqrt, VT); |
| std::string VTNameNoSize = VTName; |
| VTNameNoSize.pop_back(); |
| |
| for (StringRef RecipType : OverrideVector) { |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (!parseRefinementStep(RecipType, RefPos, RefSteps)) |
| continue; |
| |
| RecipType = RecipType.substr(0, RefPos); |
| if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) |
| return RefSteps; |
| } |
| |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, |
| MachineFunction &MF) const { |
| return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, |
| MachineFunction &MF) const { |
| return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, |
| MachineFunction &MF) const { |
| return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getDivRefinementSteps(EVT VT, |
| MachineFunction &MF) const { |
| return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { |
| MF.getRegInfo().freezeReservedRegs(MF); |
| } |
| |
| MachineMemOperand::Flags |
| TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, |
| const DataLayout &DL) const { |
| MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; |
| if (LI.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| |
| if (LI.hasMetadata(LLVMContext::MD_nontemporal)) |
| Flags |= MachineMemOperand::MONonTemporal; |
| |
| if (LI.hasMetadata(LLVMContext::MD_invariant_load)) |
| Flags |= MachineMemOperand::MOInvariant; |
| |
| if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) |
| Flags |= MachineMemOperand::MODereferenceable; |
| |
| Flags |= getTargetMMOFlags(LI); |
| return Flags; |
| } |
| |
| MachineMemOperand::Flags |
| TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, |
| const DataLayout &DL) const { |
| MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; |
| |
| if (SI.isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| |
| if (SI.hasMetadata(LLVMContext::MD_nontemporal)) |
| Flags |= MachineMemOperand::MONonTemporal; |
| |
| // FIXME: Not preserving dereferenceable |
| Flags |= getTargetMMOFlags(SI); |
| return Flags; |
| } |
| |
| MachineMemOperand::Flags |
| TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, |
| const DataLayout &DL) const { |
| auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { |
| if (RMW->isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { |
| if (CmpX->isVolatile()) |
| Flags |= MachineMemOperand::MOVolatile; |
| } else |
| llvm_unreachable("not an atomic instruction"); |
| |
| // FIXME: Not preserving dereferenceable |
| Flags |= getTargetMMOFlags(AI); |
| return Flags; |
| } |
| |
| Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) |
| return Builder.CreateFence(Ord); |
| else |
| return nullptr; |
| } |
| |
| Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, |
| Instruction *Inst, |
| AtomicOrdering Ord) const { |
| if (isAcquireOrStronger(Ord)) |
| return Builder.CreateFence(Ord); |
| else |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalISel Hooks |
| //===----------------------------------------------------------------------===// |
| |
| bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, |
| const TargetTransformInfo *TTI) const { |
| auto &MF = *MI.getMF(); |
| auto &MRI = MF.getRegInfo(); |
| // Assuming a spill and reload of a value has a cost of 1 instruction each, |
| // this helper function computes the maximum number of uses we should consider |
| // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We |
| // break even in terms of code size when the original MI has 2 users vs |
| // choosing to potentially spill. Any more than 2 users we we have a net code |
| // size increase. This doesn't take into account register pressure though. |
| auto maxUses = [](unsigned RematCost) { |
| // A cost of 1 means remats are basically free. |
| if (RematCost == 1) |
| return UINT_MAX; |
| if (RematCost == 2) |
| return 2U; |
| |
| // Remat is too expensive, only sink if there's one user. |
| if (RematCost > 2) |
| return 1U; |
| llvm_unreachable("Unexpected remat cost"); |
| }; |
| |
| // Helper to walk through uses and terminate if we've reached a limit. Saves |
| // us spending time traversing uses if all we want to know is if it's >= min. |
| auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { |
| unsigned NumUses = 0; |
| auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); |
| for (; UI != UE && NumUses < MaxUses; ++UI) { |
| NumUses++; |
| } |
| // If we haven't reached the end yet then there are more than MaxUses users. |
| return UI == UE; |
| }; |
| |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| // Constants-like instructions should be close to their users. |
| // We don't want long live-ranges for them. |
| case TargetOpcode::G_CONSTANT: |
| case TargetOpcode::G_FCONSTANT: |
| case TargetOpcode::G_FRAME_INDEX: |
| case TargetOpcode::G_INTTOPTR: |
| return true; |
| case TargetOpcode::G_GLOBAL_VALUE: { |
| unsigned RematCost = TTI->getGISelRematGlobalCost(); |
| Register Reg = MI.getOperand(0).getReg(); |
| unsigned MaxUses = maxUses(RematCost); |
| if (MaxUses == UINT_MAX) |
| return true; // Remats are "free" so always localize. |
| bool B = isUsesAtMost(Reg, MaxUses); |
| return B; |
| } |
| } |
| } |