| //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass inserts stack protectors into functions which need them. A variable |
| // with a random value in it is stored onto the stack before the local variables |
| // are allocated. Upon exiting the block, the stored value is checked. If it's |
| // changed, then there was some sort of violation and the program aborts. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/StackProtector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "stack-protector" |
| |
| STATISTIC(NumFunProtected, "Number of functions protected"); |
| STATISTIC(NumAddrTaken, "Number of local variables that have their address" |
| " taken."); |
| |
| static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", |
| cl::init(true), cl::Hidden); |
| |
| char StackProtector::ID = 0; |
| |
| StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) { |
| initializeStackProtectorPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, |
| "Insert stack protectors", false, true) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, |
| "Insert stack protectors", false, true) |
| |
| FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } |
| |
| void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<TargetPassConfig>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| |
| bool StackProtector::runOnFunction(Function &Fn) { |
| F = &Fn; |
| M = F->getParent(); |
| DominatorTreeWrapperPass *DTWP = |
| getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
| Trip = TM->getTargetTriple(); |
| TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); |
| HasPrologue = false; |
| HasIRCheck = false; |
| |
| Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); |
| if (Attr.isStringAttribute() && |
| Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) |
| return false; // Invalid integer string |
| |
| if (!RequiresStackProtector()) |
| return false; |
| |
| // TODO(etienneb): Functions with funclets are not correctly supported now. |
| // Do nothing if this is funclet-based personality. |
| if (Fn.hasPersonalityFn()) { |
| EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); |
| if (isFuncletEHPersonality(Personality)) |
| return false; |
| } |
| |
| ++NumFunProtected; |
| return InsertStackProtectors(); |
| } |
| |
| /// \param [out] IsLarge is set to true if a protectable array is found and |
| /// it is "large" ( >= ssp-buffer-size). In the case of a structure with |
| /// multiple arrays, this gets set if any of them is large. |
| bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, |
| bool Strong, |
| bool InStruct) const { |
| if (!Ty) |
| return false; |
| if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| if (!AT->getElementType()->isIntegerTy(8)) { |
| // If we're on a non-Darwin platform or we're inside of a structure, don't |
| // add stack protectors unless the array is a character array. |
| // However, in strong mode any array, regardless of type and size, |
| // triggers a protector. |
| if (!Strong && (InStruct || !Trip.isOSDarwin())) |
| return false; |
| } |
| |
| // If an array has more than SSPBufferSize bytes of allocated space, then we |
| // emit stack protectors. |
| if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { |
| IsLarge = true; |
| return true; |
| } |
| |
| if (Strong) |
| // Require a protector for all arrays in strong mode |
| return true; |
| } |
| |
| const StructType *ST = dyn_cast<StructType>(Ty); |
| if (!ST) |
| return false; |
| |
| bool NeedsProtector = false; |
| for (Type *ET : ST->elements()) |
| if (ContainsProtectableArray(ET, IsLarge, Strong, true)) { |
| // If the element is a protectable array and is large (>= SSPBufferSize) |
| // then we are done. If the protectable array is not large, then |
| // keep looking in case a subsequent element is a large array. |
| if (IsLarge) |
| return true; |
| NeedsProtector = true; |
| } |
| |
| return NeedsProtector; |
| } |
| |
| bool StackProtector::HasAddressTaken(const Instruction *AI, |
| uint64_t AllocSize) { |
| const DataLayout &DL = M->getDataLayout(); |
| for (const User *U : AI->users()) { |
| const auto *I = cast<Instruction>(U); |
| // If this instruction accesses memory make sure it doesn't access beyond |
| // the bounds of the allocated object. |
| Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); |
| if (MemLoc.hasValue() && MemLoc->Size.hasValue() && |
| MemLoc->Size.getValue() > AllocSize) |
| return true; |
| switch (I->getOpcode()) { |
| case Instruction::Store: |
| if (AI == cast<StoreInst>(I)->getValueOperand()) |
| return true; |
| break; |
| case Instruction::AtomicCmpXchg: |
| // cmpxchg conceptually includes both a load and store from the same |
| // location. So, like store, the value being stored is what matters. |
| if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) |
| return true; |
| break; |
| case Instruction::PtrToInt: |
| if (AI == cast<PtrToIntInst>(I)->getOperand(0)) |
| return true; |
| break; |
| case Instruction::Call: { |
| // Ignore intrinsics that do not become real instructions. |
| // TODO: Narrow this to intrinsics that have store-like effects. |
| const auto *CI = cast<CallInst>(I); |
| if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) |
| return true; |
| break; |
| } |
| case Instruction::Invoke: |
| return true; |
| case Instruction::GetElementPtr: { |
| // If the GEP offset is out-of-bounds, or is non-constant and so has to be |
| // assumed to be potentially out-of-bounds, then any memory access that |
| // would use it could also be out-of-bounds meaning stack protection is |
| // required. |
| const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); |
| unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType()); |
| APInt Offset(TypeSize, 0); |
| APInt MaxOffset(TypeSize, AllocSize); |
| if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset)) |
| return true; |
| // Adjust AllocSize to be the space remaining after this offset. |
| if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue())) |
| return true; |
| break; |
| } |
| case Instruction::BitCast: |
| case Instruction::Select: |
| case Instruction::AddrSpaceCast: |
| if (HasAddressTaken(I, AllocSize)) |
| return true; |
| break; |
| case Instruction::PHI: { |
| // Keep track of what PHI nodes we have already visited to ensure |
| // they are only visited once. |
| const auto *PN = cast<PHINode>(I); |
| if (VisitedPHIs.insert(PN).second) |
| if (HasAddressTaken(PN, AllocSize)) |
| return true; |
| break; |
| } |
| case Instruction::Load: |
| case Instruction::AtomicRMW: |
| case Instruction::Ret: |
| // These instructions take an address operand, but have load-like or |
| // other innocuous behavior that should not trigger a stack protector. |
| // atomicrmw conceptually has both load and store semantics, but the |
| // value being stored must be integer; so if a pointer is being stored, |
| // we'll catch it in the PtrToInt case above. |
| break; |
| default: |
| // Conservatively return true for any instruction that takes an address |
| // operand, but is not handled above. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Search for the first call to the llvm.stackprotector intrinsic and return it |
| /// if present. |
| static const CallInst *findStackProtectorIntrinsic(Function &F) { |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| if (const auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::stackprotector) |
| return II; |
| return nullptr; |
| } |
| |
| /// Check whether or not this function needs a stack protector based |
| /// upon the stack protector level. |
| /// |
| /// We use two heuristics: a standard (ssp) and strong (sspstrong). |
| /// The standard heuristic which will add a guard variable to functions that |
| /// call alloca with a either a variable size or a size >= SSPBufferSize, |
| /// functions with character buffers larger than SSPBufferSize, and functions |
| /// with aggregates containing character buffers larger than SSPBufferSize. The |
| /// strong heuristic will add a guard variables to functions that call alloca |
| /// regardless of size, functions with any buffer regardless of type and size, |
| /// functions with aggregates that contain any buffer regardless of type and |
| /// size, and functions that contain stack-based variables that have had their |
| /// address taken. |
| bool StackProtector::RequiresStackProtector() { |
| bool Strong = false; |
| bool NeedsProtector = false; |
| |
| if (F->hasFnAttribute(Attribute::SafeStack)) |
| return false; |
| |
| // We are constructing the OptimizationRemarkEmitter on the fly rather than |
| // using the analysis pass to avoid building DominatorTree and LoopInfo which |
| // are not available this late in the IR pipeline. |
| OptimizationRemarkEmitter ORE(F); |
| |
| if (F->hasFnAttribute(Attribute::StackProtectReq)) { |
| ORE.emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) |
| << "Stack protection applied to function " |
| << ore::NV("Function", F) |
| << " due to a function attribute or command-line switch"; |
| }); |
| NeedsProtector = true; |
| Strong = true; // Use the same heuristic as strong to determine SSPLayout |
| } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) |
| Strong = true; |
| else if (!F->hasFnAttribute(Attribute::StackProtect)) |
| return false; |
| |
| for (const BasicBlock &BB : *F) { |
| for (const Instruction &I : BB) { |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { |
| if (AI->isArrayAllocation()) { |
| auto RemarkBuilder = [&]() { |
| return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", |
| &I) |
| << "Stack protection applied to function " |
| << ore::NV("Function", F) |
| << " due to a call to alloca or use of a variable length " |
| "array"; |
| }; |
| if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { |
| if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { |
| // A call to alloca with size >= SSPBufferSize requires |
| // stack protectors. |
| Layout.insert(std::make_pair(AI, |
| MachineFrameInfo::SSPLK_LargeArray)); |
| ORE.emit(RemarkBuilder); |
| NeedsProtector = true; |
| } else if (Strong) { |
| // Require protectors for all alloca calls in strong mode. |
| Layout.insert(std::make_pair(AI, |
| MachineFrameInfo::SSPLK_SmallArray)); |
| ORE.emit(RemarkBuilder); |
| NeedsProtector = true; |
| } |
| } else { |
| // A call to alloca with a variable size requires protectors. |
| Layout.insert(std::make_pair(AI, |
| MachineFrameInfo::SSPLK_LargeArray)); |
| ORE.emit(RemarkBuilder); |
| NeedsProtector = true; |
| } |
| continue; |
| } |
| |
| bool IsLarge = false; |
| if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { |
| Layout.insert(std::make_pair(AI, IsLarge |
| ? MachineFrameInfo::SSPLK_LargeArray |
| : MachineFrameInfo::SSPLK_SmallArray)); |
| ORE.emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) |
| << "Stack protection applied to function " |
| << ore::NV("Function", F) |
| << " due to a stack allocated buffer or struct containing a " |
| "buffer"; |
| }); |
| NeedsProtector = true; |
| continue; |
| } |
| |
| if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( |
| AI->getAllocatedType()))) { |
| ++NumAddrTaken; |
| Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); |
| ORE.emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", |
| &I) |
| << "Stack protection applied to function " |
| << ore::NV("Function", F) |
| << " due to the address of a local variable being taken"; |
| }); |
| NeedsProtector = true; |
| } |
| // Clear any PHIs that we visited, to make sure we examine all uses of |
| // any subsequent allocas that we look at. |
| VisitedPHIs.clear(); |
| } |
| } |
| } |
| |
| return NeedsProtector; |
| } |
| |
| /// Create a stack guard loading and populate whether SelectionDAG SSP is |
| /// supported. |
| static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, |
| IRBuilder<> &B, |
| bool *SupportsSelectionDAGSP = nullptr) { |
| Value *Guard = TLI->getIRStackGuard(B); |
| StringRef GuardMode = M->getStackProtectorGuard(); |
| if ((GuardMode == "tls" || GuardMode.empty()) && Guard) |
| return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); |
| |
| // Use SelectionDAG SSP handling, since there isn't an IR guard. |
| // |
| // This is more or less weird, since we optionally output whether we |
| // should perform a SelectionDAG SP here. The reason is that it's strictly |
| // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also |
| // mutating. There is no way to get this bit without mutating the IR, so |
| // getting this bit has to happen in this right time. |
| // |
| // We could have define a new function TLI::supportsSelectionDAGSP(), but that |
| // will put more burden on the backends' overriding work, especially when it |
| // actually conveys the same information getIRStackGuard() already gives. |
| if (SupportsSelectionDAGSP) |
| *SupportsSelectionDAGSP = true; |
| TLI->insertSSPDeclarations(*M); |
| return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); |
| } |
| |
| /// Insert code into the entry block that stores the stack guard |
| /// variable onto the stack: |
| /// |
| /// entry: |
| /// StackGuardSlot = alloca i8* |
| /// StackGuard = <stack guard> |
| /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) |
| /// |
| /// Returns true if the platform/triple supports the stackprotectorcreate pseudo |
| /// node. |
| static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, |
| const TargetLoweringBase *TLI, AllocaInst *&AI) { |
| bool SupportsSelectionDAGSP = false; |
| IRBuilder<> B(&F->getEntryBlock().front()); |
| PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); |
| AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); |
| |
| Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); |
| B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), |
| {GuardSlot, AI}); |
| return SupportsSelectionDAGSP; |
| } |
| |
| /// InsertStackProtectors - Insert code into the prologue and epilogue of the |
| /// function. |
| /// |
| /// - The prologue code loads and stores the stack guard onto the stack. |
| /// - The epilogue checks the value stored in the prologue against the original |
| /// value. It calls __stack_chk_fail if they differ. |
| bool StackProtector::InsertStackProtectors() { |
| // If the target wants to XOR the frame pointer into the guard value, it's |
| // impossible to emit the check in IR, so the target *must* support stack |
| // protection in SDAG. |
| bool SupportsSelectionDAGSP = |
| TLI->useStackGuardXorFP() || |
| (EnableSelectionDAGSP && !TM->Options.EnableFastISel); |
| AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. |
| |
| for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { |
| ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); |
| if (!RI) |
| continue; |
| |
| // Generate prologue instrumentation if not already generated. |
| if (!HasPrologue) { |
| HasPrologue = true; |
| SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); |
| } |
| |
| // SelectionDAG based code generation. Nothing else needs to be done here. |
| // The epilogue instrumentation is postponed to SelectionDAG. |
| if (SupportsSelectionDAGSP) |
| break; |
| |
| // Find the stack guard slot if the prologue was not created by this pass |
| // itself via a previous call to CreatePrologue(). |
| if (!AI) { |
| const CallInst *SPCall = findStackProtectorIntrinsic(*F); |
| assert(SPCall && "Call to llvm.stackprotector is missing"); |
| AI = cast<AllocaInst>(SPCall->getArgOperand(1)); |
| } |
| |
| // Set HasIRCheck to true, so that SelectionDAG will not generate its own |
| // version. SelectionDAG called 'shouldEmitSDCheck' to check whether |
| // instrumentation has already been generated. |
| HasIRCheck = true; |
| |
| // If we're instrumenting a block with a musttail call, the check has to be |
| // inserted before the call rather than between it and the return. The |
| // verifier guarantees that a musttail call is either directly before the |
| // return or with a single correct bitcast of the return value in between so |
| // we don't need to worry about many situations here. |
| Instruction *CheckLoc = RI; |
| Instruction *Prev = RI->getPrevNonDebugInstruction(); |
| if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) |
| CheckLoc = Prev; |
| else if (Prev) { |
| Prev = Prev->getPrevNonDebugInstruction(); |
| if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) |
| CheckLoc = Prev; |
| } |
| |
| // Generate epilogue instrumentation. The epilogue intrumentation can be |
| // function-based or inlined depending on which mechanism the target is |
| // providing. |
| if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { |
| // Generate the function-based epilogue instrumentation. |
| // The target provides a guard check function, generate a call to it. |
| IRBuilder<> B(CheckLoc); |
| LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); |
| CallInst *Call = B.CreateCall(GuardCheck, {Guard}); |
| Call->setAttributes(GuardCheck->getAttributes()); |
| Call->setCallingConv(GuardCheck->getCallingConv()); |
| } else { |
| // Generate the epilogue with inline instrumentation. |
| // If we do not support SelectionDAG based calls, generate IR level |
| // calls. |
| // |
| // For each block with a return instruction, convert this: |
| // |
| // return: |
| // ... |
| // ret ... |
| // |
| // into this: |
| // |
| // return: |
| // ... |
| // %1 = <stack guard> |
| // %2 = load StackGuardSlot |
| // %3 = cmp i1 %1, %2 |
| // br i1 %3, label %SP_return, label %CallStackCheckFailBlk |
| // |
| // SP_return: |
| // ret ... |
| // |
| // CallStackCheckFailBlk: |
| // call void @__stack_chk_fail() |
| // unreachable |
| |
| // Create the FailBB. We duplicate the BB every time since the MI tail |
| // merge pass will merge together all of the various BB into one including |
| // fail BB generated by the stack protector pseudo instruction. |
| BasicBlock *FailBB = CreateFailBB(); |
| |
| // Split the basic block before the return instruction. |
| BasicBlock *NewBB = |
| BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return"); |
| |
| // Update the dominator tree if we need to. |
| if (DT && DT->isReachableFromEntry(&BB)) { |
| DT->addNewBlock(NewBB, &BB); |
| DT->addNewBlock(FailBB, &BB); |
| } |
| |
| // Remove default branch instruction to the new BB. |
| BB.getTerminator()->eraseFromParent(); |
| |
| // Move the newly created basic block to the point right after the old |
| // basic block so that it's in the "fall through" position. |
| NewBB->moveAfter(&BB); |
| |
| // Generate the stack protector instructions in the old basic block. |
| IRBuilder<> B(&BB); |
| Value *Guard = getStackGuard(TLI, M, B); |
| LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); |
| Value *Cmp = B.CreateICmpEQ(Guard, LI2); |
| auto SuccessProb = |
| BranchProbabilityInfo::getBranchProbStackProtector(true); |
| auto FailureProb = |
| BranchProbabilityInfo::getBranchProbStackProtector(false); |
| MDNode *Weights = MDBuilder(F->getContext()) |
| .createBranchWeights(SuccessProb.getNumerator(), |
| FailureProb.getNumerator()); |
| B.CreateCondBr(Cmp, NewBB, FailBB, Weights); |
| } |
| } |
| |
| // Return if we didn't modify any basic blocks. i.e., there are no return |
| // statements in the function. |
| return HasPrologue; |
| } |
| |
| /// CreateFailBB - Create a basic block to jump to when the stack protector |
| /// check fails. |
| BasicBlock *StackProtector::CreateFailBB() { |
| LLVMContext &Context = F->getContext(); |
| BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); |
| IRBuilder<> B(FailBB); |
| if (F->getSubprogram()) |
| B.SetCurrentDebugLocation( |
| DILocation::get(Context, 0, 0, F->getSubprogram())); |
| if (Trip.isOSOpenBSD()) { |
| FunctionCallee StackChkFail = M->getOrInsertFunction( |
| "__stack_smash_handler", Type::getVoidTy(Context), |
| Type::getInt8PtrTy(Context)); |
| |
| B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); |
| } else { |
| FunctionCallee StackChkFail = |
| M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); |
| |
| B.CreateCall(StackChkFail, {}); |
| } |
| B.CreateUnreachable(); |
| return FailBB; |
| } |
| |
| bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { |
| return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); |
| } |
| |
| void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { |
| if (Layout.empty()) |
| return; |
| |
| for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { |
| if (MFI.isDeadObjectIndex(I)) |
| continue; |
| |
| const AllocaInst *AI = MFI.getObjectAllocation(I); |
| if (!AI) |
| continue; |
| |
| SSPLayoutMap::const_iterator LI = Layout.find(AI); |
| if (LI == Layout.end()) |
| continue; |
| |
| MFI.setObjectSSPLayout(I, LI->second); |
| } |
| } |