| //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file This implements the ScheduleDAGInstrs class, which implements |
| /// re-scheduling of MachineInstrs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/ADT/IntEqClasses.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SparseSet.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/ScheduleDFS.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "machine-scheduler" |
| |
| static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, |
| cl::ZeroOrMore, cl::init(false), |
| cl::desc("Enable use of AA during MI DAG construction")); |
| |
| static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, |
| cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); |
| |
| // Note: the two options below might be used in tuning compile time vs |
| // output quality. Setting HugeRegion so large that it will never be |
| // reached means best-effort, but may be slow. |
| |
| // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) |
| // together hold this many SUs, a reduction of maps will be done. |
| static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, |
| cl::init(1000), cl::desc("The limit to use while constructing the DAG " |
| "prior to scheduling, at which point a trade-off " |
| "is made to avoid excessive compile time.")); |
| |
| static cl::opt<unsigned> ReductionSize( |
| "dag-maps-reduction-size", cl::Hidden, |
| cl::desc("A huge scheduling region will have maps reduced by this many " |
| "nodes at a time. Defaults to HugeRegion / 2.")); |
| |
| static unsigned getReductionSize() { |
| // Always reduce a huge region with half of the elements, except |
| // when user sets this number explicitly. |
| if (ReductionSize.getNumOccurrences() == 0) |
| return HugeRegion / 2; |
| return ReductionSize; |
| } |
| |
| static void dumpSUList(ScheduleDAGInstrs::SUList &L) { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| dbgs() << "{ "; |
| for (const SUnit *su : L) { |
| dbgs() << "SU(" << su->NodeNum << ")"; |
| if (su != L.back()) |
| dbgs() << ", "; |
| } |
| dbgs() << "}\n"; |
| #endif |
| } |
| |
| ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, |
| const MachineLoopInfo *mli, |
| bool RemoveKillFlags) |
| : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), |
| RemoveKillFlags(RemoveKillFlags), |
| UnknownValue(UndefValue::get( |
| Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { |
| DbgValues.clear(); |
| |
| const TargetSubtargetInfo &ST = mf.getSubtarget(); |
| SchedModel.init(&ST); |
| } |
| |
| /// If this machine instr has memory reference information and it can be |
| /// tracked to a normal reference to a known object, return the Value |
| /// for that object. This function returns false the memory location is |
| /// unknown or may alias anything. |
| static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, |
| const MachineFrameInfo &MFI, |
| UnderlyingObjectsVector &Objects, |
| const DataLayout &DL) { |
| auto allMMOsOkay = [&]() { |
| for (const MachineMemOperand *MMO : MI->memoperands()) { |
| // TODO: Figure out whether isAtomic is really necessary (see D57601). |
| if (MMO->isVolatile() || MMO->isAtomic()) |
| return false; |
| |
| if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { |
| // Function that contain tail calls don't have unique PseudoSourceValue |
| // objects. Two PseudoSourceValues might refer to the same or |
| // overlapping locations. The client code calling this function assumes |
| // this is not the case. So return a conservative answer of no known |
| // object. |
| if (MFI.hasTailCall()) |
| return false; |
| |
| // For now, ignore PseudoSourceValues which may alias LLVM IR values |
| // because the code that uses this function has no way to cope with |
| // such aliases. |
| if (PSV->isAliased(&MFI)) |
| return false; |
| |
| bool MayAlias = PSV->mayAlias(&MFI); |
| Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); |
| } else if (const Value *V = MMO->getValue()) { |
| SmallVector<Value *, 4> Objs; |
| if (!getUnderlyingObjectsForCodeGen(V, Objs)) |
| return false; |
| |
| for (Value *V : Objs) { |
| assert(isIdentifiedObject(V)); |
| Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); |
| } |
| } else |
| return false; |
| } |
| return true; |
| }; |
| |
| if (!allMMOsOkay()) { |
| Objects.clear(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { |
| BB = bb; |
| } |
| |
| void ScheduleDAGInstrs::finishBlock() { |
| // Subclasses should no longer refer to the old block. |
| BB = nullptr; |
| } |
| |
| void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned regioninstrs) { |
| assert(bb == BB && "startBlock should set BB"); |
| RegionBegin = begin; |
| RegionEnd = end; |
| NumRegionInstrs = regioninstrs; |
| } |
| |
| void ScheduleDAGInstrs::exitRegion() { |
| // Nothing to do. |
| } |
| |
| void ScheduleDAGInstrs::addSchedBarrierDeps() { |
| MachineInstr *ExitMI = |
| RegionEnd != BB->end() |
| ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) |
| : nullptr; |
| ExitSU.setInstr(ExitMI); |
| // Add dependencies on the defs and uses of the instruction. |
| if (ExitMI) { |
| for (const MachineOperand &MO : ExitMI->operands()) { |
| if (!MO.isReg() || MO.isDef()) continue; |
| Register Reg = MO.getReg(); |
| if (Register::isPhysicalRegister(Reg)) { |
| Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); |
| } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { |
| addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO)); |
| } |
| } |
| } |
| if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { |
| // For others, e.g. fallthrough, conditional branch, assume the exit |
| // uses all the registers that are livein to the successor blocks. |
| for (const MachineBasicBlock *Succ : BB->successors()) { |
| for (const auto &LI : Succ->liveins()) { |
| if (!Uses.contains(LI.PhysReg)) |
| Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg)); |
| } |
| } |
| } |
| } |
| |
| /// MO is an operand of SU's instruction that defines a physical register. Adds |
| /// data dependencies from SU to any uses of the physical register. |
| void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { |
| const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); |
| assert(MO.isDef() && "expect physreg def"); |
| |
| // Ask the target if address-backscheduling is desirable, and if so how much. |
| const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| |
| // Only use any non-zero latency for real defs/uses, in contrast to |
| // "fake" operands added by regalloc. |
| const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc(); |
| bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() && |
| !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg())); |
| for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); |
| Alias.isValid(); ++Alias) { |
| for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { |
| SUnit *UseSU = I->SU; |
| if (UseSU == SU) |
| continue; |
| |
| // Adjust the dependence latency using operand def/use information, |
| // then allow the target to perform its own adjustments. |
| int UseOp = I->OpIdx; |
| MachineInstr *RegUse = nullptr; |
| SDep Dep; |
| if (UseOp < 0) |
| Dep = SDep(SU, SDep::Artificial); |
| else { |
| // Set the hasPhysRegDefs only for physreg defs that have a use within |
| // the scheduling region. |
| SU->hasPhysRegDefs = true; |
| Dep = SDep(SU, SDep::Data, *Alias); |
| RegUse = UseSU->getInstr(); |
| } |
| const MCInstrDesc *UseMIDesc = |
| (RegUse ? &UseSU->getInstr()->getDesc() : nullptr); |
| bool ImplicitPseudoUse = |
| (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) && |
| !UseMIDesc->hasImplicitUseOfPhysReg(*Alias)); |
| if (!ImplicitPseudoDef && !ImplicitPseudoUse) { |
| Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, |
| RegUse, UseOp)); |
| } else { |
| Dep.setLatency(0); |
| } |
| ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep); |
| UseSU->addPred(Dep); |
| } |
| } |
| } |
| |
| /// Adds register dependencies (data, anti, and output) from this SUnit |
| /// to following instructions in the same scheduling region that depend the |
| /// physical register referenced at OperIdx. |
| void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { |
| MachineInstr *MI = SU->getInstr(); |
| MachineOperand &MO = MI->getOperand(OperIdx); |
| Register Reg = MO.getReg(); |
| // We do not need to track any dependencies for constant registers. |
| if (MRI.isConstantPhysReg(Reg)) |
| return; |
| |
| const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| |
| // Optionally add output and anti dependencies. For anti |
| // dependencies we use a latency of 0 because for a multi-issue |
| // target we want to allow the defining instruction to issue |
| // in the same cycle as the using instruction. |
| // TODO: Using a latency of 1 here for output dependencies assumes |
| // there's no cost for reusing registers. |
| SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; |
| for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { |
| if (!Defs.contains(*Alias)) |
| continue; |
| for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { |
| SUnit *DefSU = I->SU; |
| if (DefSU == &ExitSU) |
| continue; |
| if (DefSU != SU && |
| (Kind != SDep::Output || !MO.isDead() || |
| !DefSU->getInstr()->registerDefIsDead(*Alias))) { |
| SDep Dep(SU, Kind, /*Reg=*/*Alias); |
| if (Kind != SDep::Anti) |
| Dep.setLatency( |
| SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); |
| ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep); |
| DefSU->addPred(Dep); |
| } |
| } |
| } |
| |
| if (!MO.isDef()) { |
| SU->hasPhysRegUses = true; |
| // Either insert a new Reg2SUnits entry with an empty SUnits list, or |
| // retrieve the existing SUnits list for this register's uses. |
| // Push this SUnit on the use list. |
| Uses.insert(PhysRegSUOper(SU, OperIdx, Reg)); |
| if (RemoveKillFlags) |
| MO.setIsKill(false); |
| } else { |
| addPhysRegDataDeps(SU, OperIdx); |
| |
| // Clear previous uses and defs of this register and its subergisters. |
| for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) { |
| if (Uses.contains(*SubReg)) |
| Uses.eraseAll(*SubReg); |
| if (!MO.isDead()) |
| Defs.eraseAll(*SubReg); |
| } |
| if (MO.isDead() && SU->isCall) { |
| // Calls will not be reordered because of chain dependencies (see |
| // below). Since call operands are dead, calls may continue to be added |
| // to the DefList making dependence checking quadratic in the size of |
| // the block. Instead, we leave only one call at the back of the |
| // DefList. |
| Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); |
| Reg2SUnitsMap::iterator B = P.first; |
| Reg2SUnitsMap::iterator I = P.second; |
| for (bool isBegin = I == B; !isBegin; /* empty */) { |
| isBegin = (--I) == B; |
| if (!I->SU->isCall) |
| break; |
| I = Defs.erase(I); |
| } |
| } |
| |
| // Defs are pushed in the order they are visited and never reordered. |
| Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); |
| } |
| } |
| |
| LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const |
| { |
| Register Reg = MO.getReg(); |
| // No point in tracking lanemasks if we don't have interesting subregisters. |
| const TargetRegisterClass &RC = *MRI.getRegClass(Reg); |
| if (!RC.HasDisjunctSubRegs) |
| return LaneBitmask::getAll(); |
| |
| unsigned SubReg = MO.getSubReg(); |
| if (SubReg == 0) |
| return RC.getLaneMask(); |
| return TRI->getSubRegIndexLaneMask(SubReg); |
| } |
| |
| bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { |
| auto RegUse = CurrentVRegUses.find(MO.getReg()); |
| if (RegUse == CurrentVRegUses.end()) |
| return true; |
| return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); |
| } |
| |
| /// Adds register output and data dependencies from this SUnit to instructions |
| /// that occur later in the same scheduling region if they read from or write to |
| /// the virtual register defined at OperIdx. |
| /// |
| /// TODO: Hoist loop induction variable increments. This has to be |
| /// reevaluated. Generally, IV scheduling should be done before coalescing. |
| void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { |
| MachineInstr *MI = SU->getInstr(); |
| MachineOperand &MO = MI->getOperand(OperIdx); |
| Register Reg = MO.getReg(); |
| |
| LaneBitmask DefLaneMask; |
| LaneBitmask KillLaneMask; |
| if (TrackLaneMasks) { |
| bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); |
| DefLaneMask = getLaneMaskForMO(MO); |
| // If we have a <read-undef> flag, none of the lane values comes from an |
| // earlier instruction. |
| KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; |
| |
| if (MO.getSubReg() != 0 && MO.isUndef()) { |
| // There may be other subregister defs on the same instruction of the same |
| // register in later operands. The lanes of other defs will now be live |
| // after this instruction, so these should not be treated as killed by the |
| // instruction even though they appear to be killed in this one operand. |
| for (const MachineOperand &OtherMO : |
| llvm::drop_begin(MI->operands(), OperIdx + 1)) |
| if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) |
| KillLaneMask &= ~getLaneMaskForMO(OtherMO); |
| } |
| |
| // Clear undef flag, we'll re-add it later once we know which subregister |
| // Def is first. |
| MO.setIsUndef(false); |
| } else { |
| DefLaneMask = LaneBitmask::getAll(); |
| KillLaneMask = LaneBitmask::getAll(); |
| } |
| |
| if (MO.isDead()) { |
| assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); |
| } else { |
| // Add data dependence to all uses we found so far. |
| const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), |
| E = CurrentVRegUses.end(); I != E; /*empty*/) { |
| LaneBitmask LaneMask = I->LaneMask; |
| // Ignore uses of other lanes. |
| if ((LaneMask & KillLaneMask).none()) { |
| ++I; |
| continue; |
| } |
| |
| if ((LaneMask & DefLaneMask).any()) { |
| SUnit *UseSU = I->SU; |
| MachineInstr *Use = UseSU->getInstr(); |
| SDep Dep(SU, SDep::Data, Reg); |
| Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, |
| I->OperandIndex)); |
| ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep); |
| UseSU->addPred(Dep); |
| } |
| |
| LaneMask &= ~KillLaneMask; |
| // If we found a Def for all lanes of this use, remove it from the list. |
| if (LaneMask.any()) { |
| I->LaneMask = LaneMask; |
| ++I; |
| } else |
| I = CurrentVRegUses.erase(I); |
| } |
| } |
| |
| // Shortcut: Singly defined vregs do not have output/anti dependencies. |
| if (MRI.hasOneDef(Reg)) |
| return; |
| |
| // Add output dependence to the next nearest defs of this vreg. |
| // |
| // Unless this definition is dead, the output dependence should be |
| // transitively redundant with antidependencies from this definition's |
| // uses. We're conservative for now until we have a way to guarantee the uses |
| // are not eliminated sometime during scheduling. The output dependence edge |
| // is also useful if output latency exceeds def-use latency. |
| LaneBitmask LaneMask = DefLaneMask; |
| for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), |
| CurrentVRegDefs.end())) { |
| // Ignore defs for other lanes. |
| if ((V2SU.LaneMask & LaneMask).none()) |
| continue; |
| // Add an output dependence. |
| SUnit *DefSU = V2SU.SU; |
| // Ignore additional defs of the same lanes in one instruction. This can |
| // happen because lanemasks are shared for targets with too many |
| // subregisters. We also use some representration tricks/hacks where we |
| // add super-register defs/uses, to imply that although we only access parts |
| // of the reg we care about the full one. |
| if (DefSU == SU) |
| continue; |
| SDep Dep(SU, SDep::Output, Reg); |
| Dep.setLatency( |
| SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); |
| DefSU->addPred(Dep); |
| |
| // Update current definition. This can get tricky if the def was about a |
| // bigger lanemask before. We then have to shrink it and create a new |
| // VReg2SUnit for the non-overlapping part. |
| LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; |
| LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; |
| V2SU.SU = SU; |
| V2SU.LaneMask = OverlapMask; |
| if (NonOverlapMask.any()) |
| CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); |
| } |
| // If there was no CurrentVRegDefs entry for some lanes yet, create one. |
| if (LaneMask.any()) |
| CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); |
| } |
| |
| /// Adds a register data dependency if the instruction that defines the |
| /// virtual register used at OperIdx is mapped to an SUnit. Add a register |
| /// antidependency from this SUnit to instructions that occur later in the same |
| /// scheduling region if they write the virtual register. |
| /// |
| /// TODO: Handle ExitSU "uses" properly. |
| void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { |
| const MachineInstr *MI = SU->getInstr(); |
| assert(!MI->isDebugOrPseudoInstr()); |
| |
| const MachineOperand &MO = MI->getOperand(OperIdx); |
| Register Reg = MO.getReg(); |
| |
| // Remember the use. Data dependencies will be added when we find the def. |
| LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) |
| : LaneBitmask::getAll(); |
| CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); |
| |
| // Add antidependences to the following defs of the vreg. |
| for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), |
| CurrentVRegDefs.end())) { |
| // Ignore defs for unrelated lanes. |
| LaneBitmask PrevDefLaneMask = V2SU.LaneMask; |
| if ((PrevDefLaneMask & LaneMask).none()) |
| continue; |
| if (V2SU.SU == SU) |
| continue; |
| |
| V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); |
| } |
| } |
| |
| /// Returns true if MI is an instruction we are unable to reason about |
| /// (like a call or something with unmodeled side effects). |
| static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) { |
| return MI->isCall() || MI->hasUnmodeledSideEffects() || |
| (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA)); |
| } |
| |
| void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, |
| unsigned Latency) { |
| if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) { |
| SDep Dep(SUa, SDep::MayAliasMem); |
| Dep.setLatency(Latency); |
| SUb->addPred(Dep); |
| } |
| } |
| |
| /// Creates an SUnit for each real instruction, numbered in top-down |
| /// topological order. The instruction order A < B, implies that no edge exists |
| /// from B to A. |
| /// |
| /// Map each real instruction to its SUnit. |
| /// |
| /// After initSUnits, the SUnits vector cannot be resized and the scheduler may |
| /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs |
| /// instead of pointers. |
| /// |
| /// MachineScheduler relies on initSUnits numbering the nodes by their order in |
| /// the original instruction list. |
| void ScheduleDAGInstrs::initSUnits() { |
| // We'll be allocating one SUnit for each real instruction in the region, |
| // which is contained within a basic block. |
| SUnits.reserve(NumRegionInstrs); |
| |
| for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { |
| if (MI.isDebugOrPseudoInstr()) |
| continue; |
| |
| SUnit *SU = newSUnit(&MI); |
| MISUnitMap[&MI] = SU; |
| |
| SU->isCall = MI.isCall(); |
| SU->isCommutable = MI.isCommutable(); |
| |
| // Assign the Latency field of SU using target-provided information. |
| SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); |
| |
| // If this SUnit uses a reserved or unbuffered resource, mark it as such. |
| // |
| // Reserved resources block an instruction from issuing and stall the |
| // entire pipeline. These are identified by BufferSize=0. |
| // |
| // Unbuffered resources prevent execution of subsequent instructions that |
| // require the same resources. This is used for in-order execution pipelines |
| // within an out-of-order core. These are identified by BufferSize=1. |
| if (SchedModel.hasInstrSchedModel()) { |
| const MCSchedClassDesc *SC = getSchedClass(SU); |
| for (const MCWriteProcResEntry &PRE : |
| make_range(SchedModel.getWriteProcResBegin(SC), |
| SchedModel.getWriteProcResEnd(SC))) { |
| switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { |
| case 0: |
| SU->hasReservedResource = true; |
| break; |
| case 1: |
| SU->isUnbuffered = true; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> { |
| /// Current total number of SUs in map. |
| unsigned NumNodes = 0; |
| |
| /// 1 for loads, 0 for stores. (see comment in SUList) |
| unsigned TrueMemOrderLatency; |
| |
| public: |
| Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} |
| |
| /// To keep NumNodes up to date, insert() is used instead of |
| /// this operator w/ push_back(). |
| ValueType &operator[](const SUList &Key) { |
| llvm_unreachable("Don't use. Use insert() instead."); }; |
| |
| /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling |
| /// reduce(). |
| void inline insert(SUnit *SU, ValueType V) { |
| MapVector::operator[](V).push_back(SU); |
| NumNodes++; |
| } |
| |
| /// Clears the list of SUs mapped to V. |
| void inline clearList(ValueType V) { |
| iterator Itr = find(V); |
| if (Itr != end()) { |
| assert(NumNodes >= Itr->second.size()); |
| NumNodes -= Itr->second.size(); |
| |
| Itr->second.clear(); |
| } |
| } |
| |
| /// Clears map from all contents. |
| void clear() { |
| MapVector<ValueType, SUList>::clear(); |
| NumNodes = 0; |
| } |
| |
| unsigned inline size() const { return NumNodes; } |
| |
| /// Counts the number of SUs in this map after a reduction. |
| void reComputeSize() { |
| NumNodes = 0; |
| for (auto &I : *this) |
| NumNodes += I.second.size(); |
| } |
| |
| unsigned inline getTrueMemOrderLatency() const { |
| return TrueMemOrderLatency; |
| } |
| |
| void dump(); |
| }; |
| |
| void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, |
| Value2SUsMap &Val2SUsMap) { |
| for (auto &I : Val2SUsMap) |
| addChainDependencies(SU, I.second, |
| Val2SUsMap.getTrueMemOrderLatency()); |
| } |
| |
| void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, |
| Value2SUsMap &Val2SUsMap, |
| ValueType V) { |
| Value2SUsMap::iterator Itr = Val2SUsMap.find(V); |
| if (Itr != Val2SUsMap.end()) |
| addChainDependencies(SU, Itr->second, |
| Val2SUsMap.getTrueMemOrderLatency()); |
| } |
| |
| void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { |
| assert(BarrierChain != nullptr); |
| |
| for (auto &I : map) { |
| SUList &sus = I.second; |
| for (auto *SU : sus) |
| SU->addPredBarrier(BarrierChain); |
| } |
| map.clear(); |
| } |
| |
| void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { |
| assert(BarrierChain != nullptr); |
| |
| // Go through all lists of SUs. |
| for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { |
| Value2SUsMap::iterator CurrItr = I++; |
| SUList &sus = CurrItr->second; |
| SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); |
| for (; SUItr != SUEE; ++SUItr) { |
| // Stop on BarrierChain or any instruction above it. |
| if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) |
| break; |
| |
| (*SUItr)->addPredBarrier(BarrierChain); |
| } |
| |
| // Remove also the BarrierChain from list if present. |
| if (SUItr != SUEE && *SUItr == BarrierChain) |
| SUItr++; |
| |
| // Remove all SUs that are now successors of BarrierChain. |
| if (SUItr != sus.begin()) |
| sus.erase(sus.begin(), SUItr); |
| } |
| |
| // Remove all entries with empty su lists. |
| map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { |
| return (mapEntry.second.empty()); }); |
| |
| // Recompute the size of the map (NumNodes). |
| map.reComputeSize(); |
| } |
| |
| void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, |
| RegPressureTracker *RPTracker, |
| PressureDiffs *PDiffs, |
| LiveIntervals *LIS, |
| bool TrackLaneMasks) { |
| const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI |
| : ST.useAA(); |
| AAForDep = UseAA ? AA : nullptr; |
| |
| BarrierChain = nullptr; |
| |
| this->TrackLaneMasks = TrackLaneMasks; |
| MISUnitMap.clear(); |
| ScheduleDAG::clearDAG(); |
| |
| // Create an SUnit for each real instruction. |
| initSUnits(); |
| |
| if (PDiffs) |
| PDiffs->init(SUnits.size()); |
| |
| // We build scheduling units by walking a block's instruction list |
| // from bottom to top. |
| |
| // Each MIs' memory operand(s) is analyzed to a list of underlying |
| // objects. The SU is then inserted in the SUList(s) mapped from the |
| // Value(s). Each Value thus gets mapped to lists of SUs depending |
| // on it, stores and loads kept separately. Two SUs are trivially |
| // non-aliasing if they both depend on only identified Values and do |
| // not share any common Value. |
| Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); |
| |
| // Certain memory accesses are known to not alias any SU in Stores |
| // or Loads, and have therefore their own 'NonAlias' |
| // domain. E.g. spill / reload instructions never alias LLVM I/R |
| // Values. It would be nice to assume that this type of memory |
| // accesses always have a proper memory operand modelling, and are |
| // therefore never unanalyzable, but this is conservatively not |
| // done. |
| Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); |
| |
| // Track all instructions that may raise floating-point exceptions. |
| // These do not depend on one other (or normal loads or stores), but |
| // must not be rescheduled across global barriers. Note that we don't |
| // really need a "map" here since we don't track those MIs by value; |
| // using the same Value2SUsMap data type here is simply a matter of |
| // convenience. |
| Value2SUsMap FPExceptions; |
| |
| // Remove any stale debug info; sometimes BuildSchedGraph is called again |
| // without emitting the info from the previous call. |
| DbgValues.clear(); |
| FirstDbgValue = nullptr; |
| |
| assert(Defs.empty() && Uses.empty() && |
| "Only BuildGraph should update Defs/Uses"); |
| Defs.setUniverse(TRI->getNumRegs()); |
| Uses.setUniverse(TRI->getNumRegs()); |
| |
| assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); |
| assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); |
| unsigned NumVirtRegs = MRI.getNumVirtRegs(); |
| CurrentVRegDefs.setUniverse(NumVirtRegs); |
| CurrentVRegUses.setUniverse(NumVirtRegs); |
| |
| // Model data dependencies between instructions being scheduled and the |
| // ExitSU. |
| addSchedBarrierDeps(); |
| |
| // Walk the list of instructions, from bottom moving up. |
| MachineInstr *DbgMI = nullptr; |
| for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; |
| MII != MIE; --MII) { |
| MachineInstr &MI = *std::prev(MII); |
| if (DbgMI) { |
| DbgValues.push_back(std::make_pair(DbgMI, &MI)); |
| DbgMI = nullptr; |
| } |
| |
| if (MI.isDebugValue() || MI.isDebugPHI()) { |
| DbgMI = &MI; |
| continue; |
| } |
| |
| if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) |
| continue; |
| |
| SUnit *SU = MISUnitMap[&MI]; |
| assert(SU && "No SUnit mapped to this MI"); |
| |
| if (RPTracker) { |
| RegisterOperands RegOpers; |
| RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); |
| if (TrackLaneMasks) { |
| SlotIndex SlotIdx = LIS->getInstructionIndex(MI); |
| RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); |
| } |
| if (PDiffs != nullptr) |
| PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); |
| |
| if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) |
| RPTracker->recedeSkipDebugValues(); |
| assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); |
| RPTracker->recede(RegOpers); |
| } |
| |
| assert( |
| (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && |
| "Cannot schedule terminators or labels!"); |
| |
| // Add register-based dependencies (data, anti, and output). |
| // For some instructions (calls, returns, inline-asm, etc.) there can |
| // be explicit uses and implicit defs, in which case the use will appear |
| // on the operand list before the def. Do two passes over the operand |
| // list to make sure that defs are processed before any uses. |
| bool HasVRegDef = false; |
| for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI.getOperand(j); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Register::isPhysicalRegister(Reg)) { |
| addPhysRegDeps(SU, j); |
| } else if (Register::isVirtualRegister(Reg)) { |
| HasVRegDef = true; |
| addVRegDefDeps(SU, j); |
| } |
| } |
| // Now process all uses. |
| for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { |
| const MachineOperand &MO = MI.getOperand(j); |
| // Only look at use operands. |
| // We do not need to check for MO.readsReg() here because subsequent |
| // subregister defs will get output dependence edges and need no |
| // additional use dependencies. |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Register::isPhysicalRegister(Reg)) { |
| addPhysRegDeps(SU, j); |
| } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) { |
| addVRegUseDeps(SU, j); |
| } |
| } |
| |
| // If we haven't seen any uses in this scheduling region, create a |
| // dependence edge to ExitSU to model the live-out latency. This is required |
| // for vreg defs with no in-region use, and prefetches with no vreg def. |
| // |
| // FIXME: NumDataSuccs would be more precise than NumSuccs here. This |
| // check currently relies on being called before adding chain deps. |
| if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { |
| SDep Dep(SU, SDep::Artificial); |
| Dep.setLatency(SU->Latency - 1); |
| ExitSU.addPred(Dep); |
| } |
| |
| // Add memory dependencies (Note: isStoreToStackSlot and |
| // isLoadFromStackSLot are not usable after stack slots are lowered to |
| // actual addresses). |
| |
| // This is a barrier event that acts as a pivotal node in the DAG. |
| if (isGlobalMemoryObject(AA, &MI)) { |
| |
| // Become the barrier chain. |
| if (BarrierChain) |
| BarrierChain->addPredBarrier(SU); |
| BarrierChain = SU; |
| |
| LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" |
| << BarrierChain->NodeNum << ").\n";); |
| |
| // Add dependencies against everything below it and clear maps. |
| addBarrierChain(Stores); |
| addBarrierChain(Loads); |
| addBarrierChain(NonAliasStores); |
| addBarrierChain(NonAliasLoads); |
| addBarrierChain(FPExceptions); |
| |
| continue; |
| } |
| |
| // Instructions that may raise FP exceptions may not be moved |
| // across any global barriers. |
| if (MI.mayRaiseFPException()) { |
| if (BarrierChain) |
| BarrierChain->addPredBarrier(SU); |
| |
| FPExceptions.insert(SU, UnknownValue); |
| |
| if (FPExceptions.size() >= HugeRegion) { |
| LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";); |
| Value2SUsMap empty; |
| reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); |
| } |
| } |
| |
| // If it's not a store or a variant load, we're done. |
| if (!MI.mayStore() && |
| !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))) |
| continue; |
| |
| // Always add dependecy edge to BarrierChain if present. |
| if (BarrierChain) |
| BarrierChain->addPredBarrier(SU); |
| |
| // Find the underlying objects for MI. The Objs vector is either |
| // empty, or filled with the Values of memory locations which this |
| // SU depends on. |
| UnderlyingObjectsVector Objs; |
| bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, |
| MF.getDataLayout()); |
| |
| if (MI.mayStore()) { |
| if (!ObjsFound) { |
| // An unknown store depends on all stores and loads. |
| addChainDependencies(SU, Stores); |
| addChainDependencies(SU, NonAliasStores); |
| addChainDependencies(SU, Loads); |
| addChainDependencies(SU, NonAliasLoads); |
| |
| // Map this store to 'UnknownValue'. |
| Stores.insert(SU, UnknownValue); |
| } else { |
| // Add precise dependencies against all previously seen memory |
| // accesses mapped to the same Value(s). |
| for (const UnderlyingObject &UnderlObj : Objs) { |
| ValueType V = UnderlObj.getValue(); |
| bool ThisMayAlias = UnderlObj.mayAlias(); |
| |
| // Add dependencies to previous stores and loads mapped to V. |
| addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); |
| addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); |
| } |
| // Update the store map after all chains have been added to avoid adding |
| // self-loop edge if multiple underlying objects are present. |
| for (const UnderlyingObject &UnderlObj : Objs) { |
| ValueType V = UnderlObj.getValue(); |
| bool ThisMayAlias = UnderlObj.mayAlias(); |
| |
| // Map this store to V. |
| (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); |
| } |
| // The store may have dependencies to unanalyzable loads and |
| // stores. |
| addChainDependencies(SU, Loads, UnknownValue); |
| addChainDependencies(SU, Stores, UnknownValue); |
| } |
| } else { // SU is a load. |
| if (!ObjsFound) { |
| // An unknown load depends on all stores. |
| addChainDependencies(SU, Stores); |
| addChainDependencies(SU, NonAliasStores); |
| |
| Loads.insert(SU, UnknownValue); |
| } else { |
| for (const UnderlyingObject &UnderlObj : Objs) { |
| ValueType V = UnderlObj.getValue(); |
| bool ThisMayAlias = UnderlObj.mayAlias(); |
| |
| // Add precise dependencies against all previously seen stores |
| // mapping to the same Value(s). |
| addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); |
| |
| // Map this load to V. |
| (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); |
| } |
| // The load may have dependencies to unanalyzable stores. |
| addChainDependencies(SU, Stores, UnknownValue); |
| } |
| } |
| |
| // Reduce maps if they grow huge. |
| if (Stores.size() + Loads.size() >= HugeRegion) { |
| LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";); |
| reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); |
| } |
| if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { |
| LLVM_DEBUG( |
| dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";); |
| reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); |
| } |
| } |
| |
| if (DbgMI) |
| FirstDbgValue = DbgMI; |
| |
| Defs.clear(); |
| Uses.clear(); |
| CurrentVRegDefs.clear(); |
| CurrentVRegUses.clear(); |
| |
| Topo.MarkDirty(); |
| } |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { |
| PSV->printCustom(OS); |
| return OS; |
| } |
| |
| void ScheduleDAGInstrs::Value2SUsMap::dump() { |
| for (auto &Itr : *this) { |
| if (Itr.first.is<const Value*>()) { |
| const Value *V = Itr.first.get<const Value*>(); |
| if (isa<UndefValue>(V)) |
| dbgs() << "Unknown"; |
| else |
| V->printAsOperand(dbgs()); |
| } |
| else if (Itr.first.is<const PseudoSourceValue*>()) |
| dbgs() << Itr.first.get<const PseudoSourceValue*>(); |
| else |
| llvm_unreachable("Unknown Value type."); |
| |
| dbgs() << " : "; |
| dumpSUList(Itr.second); |
| } |
| } |
| |
| void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, |
| Value2SUsMap &loads, unsigned N) { |
| LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); |
| dbgs() << "Loading SUnits:\n"; loads.dump()); |
| |
| // Insert all SU's NodeNums into a vector and sort it. |
| std::vector<unsigned> NodeNums; |
| NodeNums.reserve(stores.size() + loads.size()); |
| for (auto &I : stores) |
| for (auto *SU : I.second) |
| NodeNums.push_back(SU->NodeNum); |
| for (auto &I : loads) |
| for (auto *SU : I.second) |
| NodeNums.push_back(SU->NodeNum); |
| llvm::sort(NodeNums); |
| |
| // The N last elements in NodeNums will be removed, and the SU with |
| // the lowest NodeNum of them will become the new BarrierChain to |
| // let the not yet seen SUs have a dependency to the removed SUs. |
| assert(N <= NodeNums.size()); |
| SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; |
| if (BarrierChain) { |
| // The aliasing and non-aliasing maps reduce independently of each |
| // other, but share a common BarrierChain. Check if the |
| // newBarrierChain is above the former one. If it is not, it may |
| // introduce a loop to use newBarrierChain, so keep the old one. |
| if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { |
| BarrierChain->addPredBarrier(newBarrierChain); |
| BarrierChain = newBarrierChain; |
| LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" |
| << BarrierChain->NodeNum << ").\n";); |
| } |
| else |
| LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" |
| << BarrierChain->NodeNum << ").\n";); |
| } |
| else |
| BarrierChain = newBarrierChain; |
| |
| insertBarrierChain(stores); |
| insertBarrierChain(loads); |
| |
| LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); |
| dbgs() << "Loading SUnits:\n"; loads.dump()); |
| } |
| |
| static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs, |
| MachineInstr &MI, bool addToLiveRegs) { |
| for (MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.readsReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| |
| // Things that are available after the instruction are killed by it. |
| bool IsKill = LiveRegs.available(MRI, Reg); |
| MO.setIsKill(IsKill); |
| if (addToLiveRegs) |
| LiveRegs.addReg(Reg); |
| } |
| } |
| |
| void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { |
| LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); |
| |
| LiveRegs.init(*TRI); |
| LiveRegs.addLiveOuts(MBB); |
| |
| // Examine block from end to start... |
| for (MachineInstr &MI : llvm::reverse(MBB)) { |
| if (MI.isDebugOrPseudoInstr()) |
| continue; |
| |
| // Update liveness. Registers that are defed but not used in this |
| // instruction are now dead. Mark register and all subregs as they |
| // are completely defined. |
| for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { |
| const MachineOperand &MO = *O; |
| if (MO.isReg()) { |
| if (!MO.isDef()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| LiveRegs.removeReg(Reg); |
| } else if (MO.isRegMask()) { |
| LiveRegs.removeRegsInMask(MO); |
| } |
| } |
| |
| // If there is a bundle header fix it up first. |
| if (!MI.isBundled()) { |
| toggleKills(MRI, LiveRegs, MI, true); |
| } else { |
| MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); |
| if (MI.isBundle()) |
| toggleKills(MRI, LiveRegs, MI, false); |
| |
| // Some targets make the (questionable) assumtion that the instructions |
| // inside the bundle are ordered and consequently only the last use of |
| // a register inside the bundle can kill it. |
| MachineBasicBlock::instr_iterator I = std::next(Bundle); |
| while (I->isBundledWithSucc()) |
| ++I; |
| do { |
| if (!I->isDebugOrPseudoInstr()) |
| toggleKills(MRI, LiveRegs, *I, true); |
| --I; |
| } while (I != Bundle); |
| } |
| } |
| } |
| |
| void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| dumpNodeName(SU); |
| dbgs() << ": "; |
| SU.getInstr()->dump(); |
| #endif |
| } |
| |
| void ScheduleDAGInstrs::dump() const { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| if (EntrySU.getInstr() != nullptr) |
| dumpNodeAll(EntrySU); |
| for (const SUnit &SU : SUnits) |
| dumpNodeAll(SU); |
| if (ExitSU.getInstr() != nullptr) |
| dumpNodeAll(ExitSU); |
| #endif |
| } |
| |
| std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { |
| std::string s; |
| raw_string_ostream oss(s); |
| if (SU == &EntrySU) |
| oss << "<entry>"; |
| else if (SU == &ExitSU) |
| oss << "<exit>"; |
| else |
| SU->getInstr()->print(oss, /*IsStandalone=*/true); |
| return oss.str(); |
| } |
| |
| /// Return the basic block label. It is not necessarilly unique because a block |
| /// contains multiple scheduling regions. But it is fine for visualization. |
| std::string ScheduleDAGInstrs::getDAGName() const { |
| return "dag." + BB->getFullName(); |
| } |
| |
| bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { |
| return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); |
| } |
| |
| bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { |
| if (SuccSU != &ExitSU) { |
| // Do not use WillCreateCycle, it assumes SD scheduling. |
| // If Pred is reachable from Succ, then the edge creates a cycle. |
| if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) |
| return false; |
| Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); |
| } |
| SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); |
| // Return true regardless of whether a new edge needed to be inserted. |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SchedDFSResult Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| |
| /// Internal state used to compute SchedDFSResult. |
| class SchedDFSImpl { |
| SchedDFSResult &R; |
| |
| /// Join DAG nodes into equivalence classes by their subtree. |
| IntEqClasses SubtreeClasses; |
| /// List PredSU, SuccSU pairs that represent data edges between subtrees. |
| std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; |
| |
| struct RootData { |
| unsigned NodeID; |
| unsigned ParentNodeID; ///< Parent node (member of the parent subtree). |
| unsigned SubInstrCount = 0; ///< Instr count in this tree only, not |
| /// children. |
| |
| RootData(unsigned id): NodeID(id), |
| ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} |
| |
| unsigned getSparseSetIndex() const { return NodeID; } |
| }; |
| |
| SparseSet<RootData> RootSet; |
| |
| public: |
| SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { |
| RootSet.setUniverse(R.DFSNodeData.size()); |
| } |
| |
| /// Returns true if this node been visited by the DFS traversal. |
| /// |
| /// During visitPostorderNode the Node's SubtreeID is assigned to the Node |
| /// ID. Later, SubtreeID is updated but remains valid. |
| bool isVisited(const SUnit *SU) const { |
| return R.DFSNodeData[SU->NodeNum].SubtreeID |
| != SchedDFSResult::InvalidSubtreeID; |
| } |
| |
| /// Initializes this node's instruction count. We don't need to flag the node |
| /// visited until visitPostorder because the DAG cannot have cycles. |
| void visitPreorder(const SUnit *SU) { |
| R.DFSNodeData[SU->NodeNum].InstrCount = |
| SU->getInstr()->isTransient() ? 0 : 1; |
| } |
| |
| /// Called once for each node after all predecessors are visited. Revisit this |
| /// node's predecessors and potentially join them now that we know the ILP of |
| /// the other predecessors. |
| void visitPostorderNode(const SUnit *SU) { |
| // Mark this node as the root of a subtree. It may be joined with its |
| // successors later. |
| R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; |
| RootData RData(SU->NodeNum); |
| RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; |
| |
| // If any predecessors are still in their own subtree, they either cannot be |
| // joined or are large enough to remain separate. If this parent node's |
| // total instruction count is not greater than a child subtree by at least |
| // the subtree limit, then try to join it now since splitting subtrees is |
| // only useful if multiple high-pressure paths are possible. |
| unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; |
| for (const SDep &PredDep : SU->Preds) { |
| if (PredDep.getKind() != SDep::Data) |
| continue; |
| unsigned PredNum = PredDep.getSUnit()->NodeNum; |
| if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) |
| joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); |
| |
| // Either link or merge the TreeData entry from the child to the parent. |
| if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { |
| // If the predecessor's parent is invalid, this is a tree edge and the |
| // current node is the parent. |
| if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) |
| RootSet[PredNum].ParentNodeID = SU->NodeNum; |
| } |
| else if (RootSet.count(PredNum)) { |
| // The predecessor is not a root, but is still in the root set. This |
| // must be the new parent that it was just joined to. Note that |
| // RootSet[PredNum].ParentNodeID may either be invalid or may still be |
| // set to the original parent. |
| RData.SubInstrCount += RootSet[PredNum].SubInstrCount; |
| RootSet.erase(PredNum); |
| } |
| } |
| RootSet[SU->NodeNum] = RData; |
| } |
| |
| /// Called once for each tree edge after calling visitPostOrderNode on |
| /// the predecessor. Increment the parent node's instruction count and |
| /// preemptively join this subtree to its parent's if it is small enough. |
| void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { |
| R.DFSNodeData[Succ->NodeNum].InstrCount |
| += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; |
| joinPredSubtree(PredDep, Succ); |
| } |
| |
| /// Adds a connection for cross edges. |
| void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { |
| ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); |
| } |
| |
| /// Sets each node's subtree ID to the representative ID and record |
| /// connections between trees. |
| void finalize() { |
| SubtreeClasses.compress(); |
| R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); |
| assert(SubtreeClasses.getNumClasses() == RootSet.size() |
| && "number of roots should match trees"); |
| for (const RootData &Root : RootSet) { |
| unsigned TreeID = SubtreeClasses[Root.NodeID]; |
| if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) |
| R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; |
| R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; |
| // Note that SubInstrCount may be greater than InstrCount if we joined |
| // subtrees across a cross edge. InstrCount will be attributed to the |
| // original parent, while SubInstrCount will be attributed to the joined |
| // parent. |
| } |
| R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); |
| R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); |
| LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); |
| for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { |
| R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; |
| LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " |
| << R.DFSNodeData[Idx].SubtreeID << '\n'); |
| } |
| for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) { |
| unsigned PredTree = SubtreeClasses[P.first->NodeNum]; |
| unsigned SuccTree = SubtreeClasses[P.second->NodeNum]; |
| if (PredTree == SuccTree) |
| continue; |
| unsigned Depth = P.first->getDepth(); |
| addConnection(PredTree, SuccTree, Depth); |
| addConnection(SuccTree, PredTree, Depth); |
| } |
| } |
| |
| protected: |
| /// Joins the predecessor subtree with the successor that is its DFS parent. |
| /// Applies some heuristics before joining. |
| bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, |
| bool CheckLimit = true) { |
| assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); |
| |
| // Check if the predecessor is already joined. |
| const SUnit *PredSU = PredDep.getSUnit(); |
| unsigned PredNum = PredSU->NodeNum; |
| if (R.DFSNodeData[PredNum].SubtreeID != PredNum) |
| return false; |
| |
| // Four is the magic number of successors before a node is considered a |
| // pinch point. |
| unsigned NumDataSucs = 0; |
| for (const SDep &SuccDep : PredSU->Succs) { |
| if (SuccDep.getKind() == SDep::Data) { |
| if (++NumDataSucs >= 4) |
| return false; |
| } |
| } |
| if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) |
| return false; |
| R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; |
| SubtreeClasses.join(Succ->NodeNum, PredNum); |
| return true; |
| } |
| |
| /// Called by finalize() to record a connection between trees. |
| void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { |
| if (!Depth) |
| return; |
| |
| do { |
| SmallVectorImpl<SchedDFSResult::Connection> &Connections = |
| R.SubtreeConnections[FromTree]; |
| for (SchedDFSResult::Connection &C : Connections) { |
| if (C.TreeID == ToTree) { |
| C.Level = std::max(C.Level, Depth); |
| return; |
| } |
| } |
| Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); |
| FromTree = R.DFSTreeData[FromTree].ParentTreeID; |
| } while (FromTree != SchedDFSResult::InvalidSubtreeID); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace { |
| |
| /// Manage the stack used by a reverse depth-first search over the DAG. |
| class SchedDAGReverseDFS { |
| std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; |
| |
| public: |
| bool isComplete() const { return DFSStack.empty(); } |
| |
| void follow(const SUnit *SU) { |
| DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); |
| } |
| void advance() { ++DFSStack.back().second; } |
| |
| const SDep *backtrack() { |
| DFSStack.pop_back(); |
| return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); |
| } |
| |
| const SUnit *getCurr() const { return DFSStack.back().first; } |
| |
| SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } |
| |
| SUnit::const_pred_iterator getPredEnd() const { |
| return getCurr()->Preds.end(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static bool hasDataSucc(const SUnit *SU) { |
| for (const SDep &SuccDep : SU->Succs) { |
| if (SuccDep.getKind() == SDep::Data && |
| !SuccDep.getSUnit()->isBoundaryNode()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first |
| /// search from this root. |
| void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { |
| if (!IsBottomUp) |
| llvm_unreachable("Top-down ILP metric is unimplemented"); |
| |
| SchedDFSImpl Impl(*this); |
| for (const SUnit &SU : SUnits) { |
| if (Impl.isVisited(&SU) || hasDataSucc(&SU)) |
| continue; |
| |
| SchedDAGReverseDFS DFS; |
| Impl.visitPreorder(&SU); |
| DFS.follow(&SU); |
| while (true) { |
| // Traverse the leftmost path as far as possible. |
| while (DFS.getPred() != DFS.getPredEnd()) { |
| const SDep &PredDep = *DFS.getPred(); |
| DFS.advance(); |
| // Ignore non-data edges. |
| if (PredDep.getKind() != SDep::Data |
| || PredDep.getSUnit()->isBoundaryNode()) { |
| continue; |
| } |
| // An already visited edge is a cross edge, assuming an acyclic DAG. |
| if (Impl.isVisited(PredDep.getSUnit())) { |
| Impl.visitCrossEdge(PredDep, DFS.getCurr()); |
| continue; |
| } |
| Impl.visitPreorder(PredDep.getSUnit()); |
| DFS.follow(PredDep.getSUnit()); |
| } |
| // Visit the top of the stack in postorder and backtrack. |
| const SUnit *Child = DFS.getCurr(); |
| const SDep *PredDep = DFS.backtrack(); |
| Impl.visitPostorderNode(Child); |
| if (PredDep) |
| Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); |
| if (DFS.isComplete()) |
| break; |
| } |
| } |
| Impl.finalize(); |
| } |
| |
| /// The root of the given SubtreeID was just scheduled. For all subtrees |
| /// connected to this tree, record the depth of the connection so that the |
| /// nearest connected subtrees can be prioritized. |
| void SchedDFSResult::scheduleTree(unsigned SubtreeID) { |
| for (const Connection &C : SubtreeConnections[SubtreeID]) { |
| SubtreeConnectLevels[C.TreeID] = |
| std::max(SubtreeConnectLevels[C.TreeID], C.Level); |
| LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" |
| << SubtreeConnectLevels[C.TreeID] << '\n'); |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { |
| OS << InstrCount << " / " << Length << " = "; |
| if (!Length) |
| OS << "BADILP"; |
| else |
| OS << format("%g", ((double)InstrCount / Length)); |
| } |
| |
| LLVM_DUMP_METHOD void ILPValue::dump() const { |
| dbgs() << *this << '\n'; |
| } |
| |
| namespace llvm { |
| |
| LLVM_DUMP_METHOD |
| raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { |
| Val.print(OS); |
| return OS; |
| } |
| |
| } // end namespace llvm |
| |
| #endif |