blob: 29a88480fd9fef909ef1de8bd513193c4ffe6045 [file] [log] [blame]
//===- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass is responsible for finalizing the functions frame layout, saving
// callee saved registers, and for emitting prolog & epilog code for the
// function.
//
// This pass must be run after register allocation. After this pass is
// executed, it is illegal to construct MO_FrameIndex operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "prologepilog"
using MBBVector = SmallVector<MachineBasicBlock *, 4>;
STATISTIC(NumLeafFuncWithSpills, "Number of leaf functions with CSRs");
STATISTIC(NumFuncSeen, "Number of functions seen in PEI");
namespace {
class PEI : public MachineFunctionPass {
public:
static char ID;
PEI() : MachineFunctionPass(ID) {
initializePEIPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool runOnMachineFunction(MachineFunction &MF) override;
private:
RegScavenger *RS;
// MinCSFrameIndex, MaxCSFrameIndex - Keeps the range of callee saved
// stack frame indexes.
unsigned MinCSFrameIndex = std::numeric_limits<unsigned>::max();
unsigned MaxCSFrameIndex = 0;
// Save and Restore blocks of the current function. Typically there is a
// single save block, unless Windows EH funclets are involved.
MBBVector SaveBlocks;
MBBVector RestoreBlocks;
// Flag to control whether to use the register scavenger to resolve
// frame index materialization registers. Set according to
// TRI->requiresFrameIndexScavenging() for the current function.
bool FrameIndexVirtualScavenging;
// Flag to control whether the scavenger should be passed even though
// FrameIndexVirtualScavenging is used.
bool FrameIndexEliminationScavenging;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
void calculateCallFrameInfo(MachineFunction &MF);
void calculateSaveRestoreBlocks(MachineFunction &MF);
void spillCalleeSavedRegs(MachineFunction &MF);
void calculateFrameObjectOffsets(MachineFunction &MF);
void replaceFrameIndices(MachineFunction &MF);
void replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj);
void insertPrologEpilogCode(MachineFunction &MF);
};
} // end anonymous namespace
char PEI::ID = 0;
char &llvm::PrologEpilogCodeInserterID = PEI::ID;
INITIALIZE_PASS_BEGIN(PEI, DEBUG_TYPE, "Prologue/Epilogue Insertion", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(PEI, DEBUG_TYPE,
"Prologue/Epilogue Insertion & Frame Finalization", false,
false)
MachineFunctionPass *llvm::createPrologEpilogInserterPass() {
return new PEI();
}
STATISTIC(NumBytesStackSpace,
"Number of bytes used for stack in all functions");
void PEI::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// StackObjSet - A set of stack object indexes
using StackObjSet = SmallSetVector<int, 8>;
using SavedDbgValuesMap =
SmallDenseMap<MachineBasicBlock *, SmallVector<MachineInstr *, 4>, 4>;
/// Stash DBG_VALUEs that describe parameters and which are placed at the start
/// of the block. Later on, after the prologue code has been emitted, the
/// stashed DBG_VALUEs will be reinserted at the start of the block.
static void stashEntryDbgValues(MachineBasicBlock &MBB,
SavedDbgValuesMap &EntryDbgValues) {
SmallVector<const MachineInstr *, 4> FrameIndexValues;
for (auto &MI : MBB) {
if (!MI.isDebugInstr())
break;
if (!MI.isDebugValue() || !MI.getDebugVariable()->isParameter())
continue;
if (any_of(MI.debug_operands(),
[](const MachineOperand &MO) { return MO.isFI(); })) {
// We can only emit valid locations for frame indices after the frame
// setup, so do not stash away them.
FrameIndexValues.push_back(&MI);
continue;
}
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
auto Overlaps = [Var, Expr](const MachineInstr *DV) {
return Var == DV->getDebugVariable() &&
Expr->fragmentsOverlap(DV->getDebugExpression());
};
// See if the debug value overlaps with any preceding debug value that will
// not be stashed. If that is the case, then we can't stash this value, as
// we would then reorder the values at reinsertion.
if (llvm::none_of(FrameIndexValues, Overlaps))
EntryDbgValues[&MBB].push_back(&MI);
}
// Remove stashed debug values from the block.
if (EntryDbgValues.count(&MBB))
for (auto *MI : EntryDbgValues[&MBB])
MI->removeFromParent();
}
/// runOnMachineFunction - Insert prolog/epilog code and replace abstract
/// frame indexes with appropriate references.
bool PEI::runOnMachineFunction(MachineFunction &MF) {
NumFuncSeen++;
const Function &F = MF.getFunction();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
RS = TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr;
FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(MF);
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
// Calculate the MaxCallFrameSize and AdjustsStack variables for the
// function's frame information. Also eliminates call frame pseudo
// instructions.
calculateCallFrameInfo(MF);
// Determine placement of CSR spill/restore code and prolog/epilog code:
// place all spills in the entry block, all restores in return blocks.
calculateSaveRestoreBlocks(MF);
// Stash away DBG_VALUEs that should not be moved by insertion of prolog code.
SavedDbgValuesMap EntryDbgValues;
for (MachineBasicBlock *SaveBlock : SaveBlocks)
stashEntryDbgValues(*SaveBlock, EntryDbgValues);
// Handle CSR spilling and restoring, for targets that need it.
if (MF.getTarget().usesPhysRegsForValues())
spillCalleeSavedRegs(MF);
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameFinalized(MF, RS);
// Calculate actual frame offsets for all abstract stack objects...
calculateFrameObjectOffsets(MF);
// Add prolog and epilog code to the function. This function is required
// to align the stack frame as necessary for any stack variables or
// called functions. Because of this, calculateCalleeSavedRegisters()
// must be called before this function in order to set the AdjustsStack
// and MaxCallFrameSize variables.
if (!F.hasFnAttribute(Attribute::Naked))
insertPrologEpilogCode(MF);
// Reinsert stashed debug values at the start of the entry blocks.
for (auto &I : EntryDbgValues)
I.first->insert(I.first->begin(), I.second.begin(), I.second.end());
// Allow the target machine to make final modifications to the function
// before the frame layout is finalized.
TFI->processFunctionBeforeFrameIndicesReplaced(MF, RS);
// Replace all MO_FrameIndex operands with physical register references
// and actual offsets.
//
replaceFrameIndices(MF);
// If register scavenging is needed, as we've enabled doing it as a
// post-pass, scavenge the virtual registers that frame index elimination
// inserted.
if (TRI->requiresRegisterScavenging(MF) && FrameIndexVirtualScavenging)
scavengeFrameVirtualRegs(MF, *RS);
// Warn on stack size when we exceeds the given limit.
MachineFrameInfo &MFI = MF.getFrameInfo();
uint64_t StackSize = MFI.getStackSize();
unsigned Threshold = UINT_MAX;
if (MF.getFunction().hasFnAttribute("warn-stack-size")) {
bool Failed = MF.getFunction()
.getFnAttribute("warn-stack-size")
.getValueAsString()
.getAsInteger(10, Threshold);
// Verifier should have caught this.
assert(!Failed && "Invalid warn-stack-size fn attr value");
(void)Failed;
}
if (StackSize > Threshold) {
DiagnosticInfoStackSize DiagStackSize(F, StackSize, Threshold, DS_Warning);
F.getContext().diagnose(DiagStackSize);
}
ORE->emit([&]() {
return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "StackSize",
MF.getFunction().getSubprogram(),
&MF.front())
<< ore::NV("NumStackBytes", StackSize) << " stack bytes in function";
});
delete RS;
SaveBlocks.clear();
RestoreBlocks.clear();
MFI.setSavePoint(nullptr);
MFI.setRestorePoint(nullptr);
return true;
}
/// Calculate the MaxCallFrameSize and AdjustsStack
/// variables for the function's frame information and eliminate call frame
/// pseudo instructions.
void PEI::calculateCallFrameInfo(MachineFunction &MF) {
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned MaxCallFrameSize = 0;
bool AdjustsStack = MFI.adjustsStack();
// Get the function call frame set-up and tear-down instruction opcode
unsigned FrameSetupOpcode = TII.getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
// Early exit for targets which have no call frame setup/destroy pseudo
// instructions.
if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
return;
std::vector<MachineBasicBlock::iterator> FrameSDOps;
for (MachineBasicBlock &BB : MF)
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I)
if (TII.isFrameInstr(*I)) {
unsigned Size = TII.getFrameSize(*I);
if (Size > MaxCallFrameSize) MaxCallFrameSize = Size;
AdjustsStack = true;
FrameSDOps.push_back(I);
} else if (I->isInlineAsm()) {
// Some inline asm's need a stack frame, as indicated by operand 1.
unsigned ExtraInfo = I->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
AdjustsStack = true;
}
assert(!MFI.isMaxCallFrameSizeComputed() ||
(MFI.getMaxCallFrameSize() == MaxCallFrameSize &&
MFI.adjustsStack() == AdjustsStack));
MFI.setAdjustsStack(AdjustsStack);
MFI.setMaxCallFrameSize(MaxCallFrameSize);
for (MachineBasicBlock::iterator I : FrameSDOps) {
// If call frames are not being included as part of the stack frame, and
// the target doesn't indicate otherwise, remove the call frame pseudos
// here. The sub/add sp instruction pairs are still inserted, but we don't
// need to track the SP adjustment for frame index elimination.
if (TFI->canSimplifyCallFramePseudos(MF))
TFI->eliminateCallFramePseudoInstr(MF, *I->getParent(), I);
}
}
/// Compute the sets of entry and return blocks for saving and restoring
/// callee-saved registers, and placing prolog and epilog code.
void PEI::calculateSaveRestoreBlocks(MachineFunction &MF) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
// Even when we do not change any CSR, we still want to insert the
// prologue and epilogue of the function.
// So set the save points for those.
// Use the points found by shrink-wrapping, if any.
if (MFI.getSavePoint()) {
SaveBlocks.push_back(MFI.getSavePoint());
assert(MFI.getRestorePoint() && "Both restore and save must be set");
MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
// If RestoreBlock does not have any successor and is not a return block
// then the end point is unreachable and we do not need to insert any
// epilogue.
if (!RestoreBlock->succ_empty() || RestoreBlock->isReturnBlock())
RestoreBlocks.push_back(RestoreBlock);
return;
}
// Save refs to entry and return blocks.
SaveBlocks.push_back(&MF.front());
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
SaveBlocks.push_back(&MBB);
if (MBB.isReturnBlock())
RestoreBlocks.push_back(&MBB);
}
}
static void assignCalleeSavedSpillSlots(MachineFunction &F,
const BitVector &SavedRegs,
unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) {
if (SavedRegs.empty())
return;
const TargetRegisterInfo *RegInfo = F.getSubtarget().getRegisterInfo();
const MCPhysReg *CSRegs = F.getRegInfo().getCalleeSavedRegs();
BitVector CSMask(SavedRegs.size());
for (unsigned i = 0; CSRegs[i]; ++i)
CSMask.set(CSRegs[i]);
std::vector<CalleeSavedInfo> CSI;
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
if (SavedRegs.test(Reg)) {
bool SavedSuper = false;
for (const MCPhysReg &SuperReg : RegInfo->superregs(Reg)) {
// Some backends set all aliases for some registers as saved, such as
// Mips's $fp, so they appear in SavedRegs but not CSRegs.
if (SavedRegs.test(SuperReg) && CSMask.test(SuperReg)) {
SavedSuper = true;
break;
}
}
if (!SavedSuper)
CSI.push_back(CalleeSavedInfo(Reg));
}
}
const TargetFrameLowering *TFI = F.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = F.getFrameInfo();
if (!TFI->assignCalleeSavedSpillSlots(F, RegInfo, CSI, MinCSFrameIndex,
MaxCSFrameIndex)) {
// If target doesn't implement this, use generic code.
if (CSI.empty())
return; // Early exit if no callee saved registers are modified!
unsigned NumFixedSpillSlots;
const TargetFrameLowering::SpillSlot *FixedSpillSlots =
TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots);
// Now that we know which registers need to be saved and restored, allocate
// stack slots for them.
for (auto &CS : CSI) {
// If the target has spilled this register to another register, we don't
// need to allocate a stack slot.
if (CS.isSpilledToReg())
continue;
unsigned Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
int FrameIdx;
if (RegInfo->hasReservedSpillSlot(F, Reg, FrameIdx)) {
CS.setFrameIdx(FrameIdx);
continue;
}
// Check to see if this physreg must be spilled to a particular stack slot
// on this target.
const TargetFrameLowering::SpillSlot *FixedSlot = FixedSpillSlots;
while (FixedSlot != FixedSpillSlots + NumFixedSpillSlots &&
FixedSlot->Reg != Reg)
++FixedSlot;
unsigned Size = RegInfo->getSpillSize(*RC);
if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) {
// Nope, just spill it anywhere convenient.
Align Alignment = RegInfo->getSpillAlign(*RC);
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Alignment = std::min(Alignment, TFI->getStackAlign());
FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
} else {
// Spill it to the stack where we must.
FrameIdx = MFI.CreateFixedSpillStackObject(Size, FixedSlot->Offset);
}
CS.setFrameIdx(FrameIdx);
}
}
MFI.setCalleeSavedInfo(CSI);
}
/// Helper function to update the liveness information for the callee-saved
/// registers.
static void updateLiveness(MachineFunction &MF) {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Visited will contain all the basic blocks that are in the region
// where the callee saved registers are alive:
// - Anything that is not Save or Restore -> LiveThrough.
// - Save -> LiveIn.
// - Restore -> LiveOut.
// The live-out is not attached to the block, so no need to keep
// Restore in this set.
SmallPtrSet<MachineBasicBlock *, 8> Visited;
SmallVector<MachineBasicBlock *, 8> WorkList;
MachineBasicBlock *Entry = &MF.front();
MachineBasicBlock *Save = MFI.getSavePoint();
if (!Save)
Save = Entry;
if (Entry != Save) {
WorkList.push_back(Entry);
Visited.insert(Entry);
}
Visited.insert(Save);
MachineBasicBlock *Restore = MFI.getRestorePoint();
if (Restore)
// By construction Restore cannot be visited, otherwise it
// means there exists a path to Restore that does not go
// through Save.
WorkList.push_back(Restore);
while (!WorkList.empty()) {
const MachineBasicBlock *CurBB = WorkList.pop_back_val();
// By construction, the region that is after the save point is
// dominated by the Save and post-dominated by the Restore.
if (CurBB == Save && Save != Restore)
continue;
// Enqueue all the successors not already visited.
// Those are by construction either before Save or after Restore.
for (MachineBasicBlock *SuccBB : CurBB->successors())
if (Visited.insert(SuccBB).second)
WorkList.push_back(SuccBB);
}
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
for (const CalleeSavedInfo &I : CSI) {
for (MachineBasicBlock *MBB : Visited) {
MCPhysReg Reg = I.getReg();
// Add the callee-saved register as live-in.
// It's killed at the spill.
if (!MRI.isReserved(Reg) && !MBB->isLiveIn(Reg))
MBB->addLiveIn(Reg);
}
// If callee-saved register is spilled to another register rather than
// spilling to stack, the destination register has to be marked as live for
// each MBB between the prologue and epilogue so that it is not clobbered
// before it is reloaded in the epilogue. The Visited set contains all
// blocks outside of the region delimited by prologue/epilogue.
if (I.isSpilledToReg()) {
for (MachineBasicBlock &MBB : MF) {
if (Visited.count(&MBB))
continue;
MCPhysReg DstReg = I.getDstReg();
if (!MBB.isLiveIn(DstReg))
MBB.addLiveIn(DstReg);
}
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRSaves(MachineBasicBlock &SaveBlock,
ArrayRef<CalleeSavedInfo> CSI) {
MachineFunction &MF = *SaveBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineBasicBlock::iterator I = SaveBlock.begin();
if (!TFI->spillCalleeSavedRegisters(SaveBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CS : CSI) {
// Insert the spill to the stack frame.
unsigned Reg = CS.getReg();
if (CS.isSpilledToReg()) {
BuildMI(SaveBlock, I, DebugLoc(),
TII.get(TargetOpcode::COPY), CS.getDstReg())
.addReg(Reg, getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(SaveBlock, I, Reg, true, CS.getFrameIdx(), RC,
TRI);
}
}
}
}
/// Insert restore code for the callee-saved registers used in the function.
static void insertCSRRestores(MachineBasicBlock &RestoreBlock,
std::vector<CalleeSavedInfo> &CSI) {
MachineFunction &MF = *RestoreBlock.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Restore all registers immediately before the return and any
// terminators that precede it.
MachineBasicBlock::iterator I = RestoreBlock.getFirstTerminator();
if (!TFI->restoreCalleeSavedRegisters(RestoreBlock, I, CSI, TRI)) {
for (const CalleeSavedInfo &CI : reverse(CSI)) {
unsigned Reg = CI.getReg();
if (CI.isSpilledToReg()) {
BuildMI(RestoreBlock, I, DebugLoc(), TII.get(TargetOpcode::COPY), Reg)
.addReg(CI.getDstReg(), getKillRegState(true));
} else {
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(RestoreBlock, I, Reg, CI.getFrameIdx(), RC, TRI);
assert(I != RestoreBlock.begin() &&
"loadRegFromStackSlot didn't insert any code!");
// Insert in reverse order. loadRegFromStackSlot can insert
// multiple instructions.
}
}
}
}
void PEI::spillCalleeSavedRegs(MachineFunction &MF) {
// We can't list this requirement in getRequiredProperties because some
// targets (WebAssembly) use virtual registers past this point, and the pass
// pipeline is set up without giving the passes a chance to look at the
// TargetMachine.
// FIXME: Find a way to express this in getRequiredProperties.
assert(MF.getProperties().hasProperty(
MachineFunctionProperties::Property::NoVRegs));
const Function &F = MF.getFunction();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
MachineFrameInfo &MFI = MF.getFrameInfo();
MinCSFrameIndex = std::numeric_limits<unsigned>::max();
MaxCSFrameIndex = 0;
// Determine which of the registers in the callee save list should be saved.
BitVector SavedRegs;
TFI->determineCalleeSaves(MF, SavedRegs, RS);
// Assign stack slots for any callee-saved registers that must be spilled.
assignCalleeSavedSpillSlots(MF, SavedRegs, MinCSFrameIndex, MaxCSFrameIndex);
// Add the code to save and restore the callee saved registers.
if (!F.hasFnAttribute(Attribute::Naked)) {
MFI.setCalleeSavedInfoValid(true);
std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
if (!CSI.empty()) {
if (!MFI.hasCalls())
NumLeafFuncWithSpills++;
for (MachineBasicBlock *SaveBlock : SaveBlocks)
insertCSRSaves(*SaveBlock, CSI);
// Update the live-in information of all the blocks up to the save point.
updateLiveness(MF);
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
insertCSRRestores(*RestoreBlock, CSI);
}
}
}
/// AdjustStackOffset - Helper function used to adjust the stack frame offset.
static inline void AdjustStackOffset(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, int64_t &Offset,
Align &MaxAlign, unsigned Skew) {
// If the stack grows down, add the object size to find the lowest address.
if (StackGrowsDown)
Offset += MFI.getObjectSize(FrameIdx);
Align Alignment = MFI.getObjectAlign(FrameIdx);
// If the alignment of this object is greater than that of the stack, then
// increase the stack alignment to match.
MaxAlign = std::max(MaxAlign, Alignment);
// Adjust to alignment boundary.
Offset = alignTo(Offset, Alignment, Skew);
if (StackGrowsDown) {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << -Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, -Offset); // Set the computed offset
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") at SP[" << Offset
<< "]\n");
MFI.setObjectOffset(FrameIdx, Offset);
Offset += MFI.getObjectSize(FrameIdx);
}
}
/// Compute which bytes of fixed and callee-save stack area are unused and keep
/// track of them in StackBytesFree.
static inline void
computeFreeStackSlots(MachineFrameInfo &MFI, bool StackGrowsDown,
unsigned MinCSFrameIndex, unsigned MaxCSFrameIndex,
int64_t FixedCSEnd, BitVector &StackBytesFree) {
// Avoid undefined int64_t -> int conversion below in extreme case.
if (FixedCSEnd > std::numeric_limits<int>::max())
return;
StackBytesFree.resize(FixedCSEnd, true);
SmallVector<int, 16> AllocatedFrameSlots;
// Add fixed objects.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i)
// StackSlot scavenging is only implemented for the default stack.
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
// Add callee-save objects if there are any.
if (MinCSFrameIndex <= MaxCSFrameIndex) {
for (int i = MinCSFrameIndex; i <= (int)MaxCSFrameIndex; ++i)
if (MFI.getStackID(i) == TargetStackID::Default)
AllocatedFrameSlots.push_back(i);
}
for (int i : AllocatedFrameSlots) {
// These are converted from int64_t, but they should always fit in int
// because of the FixedCSEnd check above.
int ObjOffset = MFI.getObjectOffset(i);
int ObjSize = MFI.getObjectSize(i);
int ObjStart, ObjEnd;
if (StackGrowsDown) {
// ObjOffset is negative when StackGrowsDown is true.
ObjStart = -ObjOffset - ObjSize;
ObjEnd = -ObjOffset;
} else {
ObjStart = ObjOffset;
ObjEnd = ObjOffset + ObjSize;
}
// Ignore fixed holes that are in the previous stack frame.
if (ObjEnd > 0)
StackBytesFree.reset(ObjStart, ObjEnd);
}
}
/// Assign frame object to an unused portion of the stack in the fixed stack
/// object range. Return true if the allocation was successful.
static inline bool scavengeStackSlot(MachineFrameInfo &MFI, int FrameIdx,
bool StackGrowsDown, Align MaxAlign,
BitVector &StackBytesFree) {
if (MFI.isVariableSizedObjectIndex(FrameIdx))
return false;
if (StackBytesFree.none()) {
// clear it to speed up later scavengeStackSlot calls to
// StackBytesFree.none()
StackBytesFree.clear();
return false;
}
Align ObjAlign = MFI.getObjectAlign(FrameIdx);
if (ObjAlign > MaxAlign)
return false;
int64_t ObjSize = MFI.getObjectSize(FrameIdx);
int FreeStart;
for (FreeStart = StackBytesFree.find_first(); FreeStart != -1;
FreeStart = StackBytesFree.find_next(FreeStart)) {
// Check that free space has suitable alignment.
unsigned ObjStart = StackGrowsDown ? FreeStart + ObjSize : FreeStart;
if (alignTo(ObjStart, ObjAlign) != ObjStart)
continue;
if (FreeStart + ObjSize > StackBytesFree.size())
return false;
bool AllBytesFree = true;
for (unsigned Byte = 0; Byte < ObjSize; ++Byte)
if (!StackBytesFree.test(FreeStart + Byte)) {
AllBytesFree = false;
break;
}
if (AllBytesFree)
break;
}
if (FreeStart == -1)
return false;
if (StackGrowsDown) {
int ObjStart = -(FreeStart + ObjSize);
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< ObjStart << "]\n");
MFI.setObjectOffset(FrameIdx, ObjStart);
} else {
LLVM_DEBUG(dbgs() << "alloc FI(" << FrameIdx << ") scavenged at SP["
<< FreeStart << "]\n");
MFI.setObjectOffset(FrameIdx, FreeStart);
}
StackBytesFree.reset(FreeStart, FreeStart + ObjSize);
return true;
}
/// AssignProtectedObjSet - Helper function to assign large stack objects (i.e.,
/// those required to be close to the Stack Protector) to stack offsets.
static void AssignProtectedObjSet(const StackObjSet &UnassignedObjs,
SmallSet<int, 16> &ProtectedObjs,
MachineFrameInfo &MFI, bool StackGrowsDown,
int64_t &Offset, Align &MaxAlign,
unsigned Skew) {
for (int i : UnassignedObjs) {
AdjustStackOffset(MFI, i, StackGrowsDown, Offset, MaxAlign, Skew);
ProtectedObjs.insert(i);
}
}
/// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the
/// abstract stack objects.
void PEI::calculateFrameObjectOffsets(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
bool StackGrowsDown =
TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
// Loop over all of the stack objects, assigning sequential addresses...
MachineFrameInfo &MFI = MF.getFrameInfo();
// Start at the beginning of the local area.
// The Offset is the distance from the stack top in the direction
// of stack growth -- so it's always nonnegative.
int LocalAreaOffset = TFI.getOffsetOfLocalArea();
if (StackGrowsDown)
LocalAreaOffset = -LocalAreaOffset;
assert(LocalAreaOffset >= 0
&& "Local area offset should be in direction of stack growth");
int64_t Offset = LocalAreaOffset;
// Skew to be applied to alignment.
unsigned Skew = TFI.getStackAlignmentSkew(MF);
#ifdef EXPENSIVE_CHECKS
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i)
if (!MFI.isDeadObjectIndex(i) &&
MFI.getStackID(i) == TargetStackID::Default)
assert(MFI.getObjectAlign(i) <= MFI.getMaxAlign() &&
"MaxAlignment is invalid");
#endif
// If there are fixed sized objects that are preallocated in the local area,
// non-fixed objects can't be allocated right at the start of local area.
// Adjust 'Offset' to point to the end of last fixed sized preallocated
// object.
for (int i = MFI.getObjectIndexBegin(); i != 0; ++i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
int64_t FixedOff;
if (StackGrowsDown) {
// The maximum distance from the stack pointer is at lower address of
// the object -- which is given by offset. For down growing stack
// the offset is negative, so we negate the offset to get the distance.
FixedOff = -MFI.getObjectOffset(i);
} else {
// The maximum distance from the start pointer is at the upper
// address of the object.
FixedOff = MFI.getObjectOffset(i) + MFI.getObjectSize(i);
}
if (FixedOff > Offset) Offset = FixedOff;
}
// First assign frame offsets to stack objects that are used to spill
// callee saved registers.
if (StackGrowsDown && MaxCSFrameIndex >= MinCSFrameIndex) {
for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
// If the stack grows down, we need to add the size to find the lowest
// address of the object.
Offset += MFI.getObjectSize(i);
// Adjust to alignment boundary
Offset = alignTo(Offset, MFI.getObjectAlign(i), Skew);
LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << -Offset << "]\n");
MFI.setObjectOffset(i, -Offset); // Set the computed offset
}
} else if (MaxCSFrameIndex >= MinCSFrameIndex) {
// Be careful about underflow in comparisons agains MinCSFrameIndex.
for (unsigned i = MaxCSFrameIndex; i != MinCSFrameIndex - 1; --i) {
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
if (MFI.isDeadObjectIndex(i))
continue;
// Adjust to alignment boundary
Offset = alignTo(Offset, MFI.getObjectAlign(i), Skew);
LLVM_DEBUG(dbgs() << "alloc FI(" << i << ") at SP[" << Offset << "]\n");
MFI.setObjectOffset(i, Offset);
Offset += MFI.getObjectSize(i);
}
}
// FixedCSEnd is the stack offset to the end of the fixed and callee-save
// stack area.
int64_t FixedCSEnd = Offset;
Align MaxAlign = MFI.getMaxAlign();
// Make sure the special register scavenging spill slot is closest to the
// incoming stack pointer if a frame pointer is required and is closer
// to the incoming rather than the final stack pointer.
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
bool EarlyScavengingSlots = TFI.allocateScavengingFrameIndexesNearIncomingSP(MF);
if (RS && EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (int SFI : SFIs)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew);
}
// FIXME: Once this is working, then enable flag will change to a target
// check for whether the frame is large enough to want to use virtual
// frame index registers. Functions which don't want/need this optimization
// will continue to use the existing code path.
if (MFI.getUseLocalStackAllocationBlock()) {
Align Alignment = MFI.getLocalFrameMaxAlign();
// Adjust to alignment boundary.
Offset = alignTo(Offset, Alignment, Skew);
LLVM_DEBUG(dbgs() << "Local frame base offset: " << Offset << "\n");
// Resolve offsets for objects in the local block.
for (unsigned i = 0, e = MFI.getLocalFrameObjectCount(); i != e; ++i) {
std::pair<int, int64_t> Entry = MFI.getLocalFrameObjectMap(i);
int64_t FIOffset = (StackGrowsDown ? -Offset : Offset) + Entry.second;
LLVM_DEBUG(dbgs() << "alloc FI(" << Entry.first << ") at SP[" << FIOffset
<< "]\n");
MFI.setObjectOffset(Entry.first, FIOffset);
}
// Allocate the local block
Offset += MFI.getLocalFrameSize();
MaxAlign = std::max(Alignment, MaxAlign);
}
// Retrieve the Exception Handler registration node.
int EHRegNodeFrameIndex = std::numeric_limits<int>::max();
if (const WinEHFuncInfo *FuncInfo = MF.getWinEHFuncInfo())
EHRegNodeFrameIndex = FuncInfo->EHRegNodeFrameIndex;
// Make sure that the stack protector comes before the local variables on the
// stack.
SmallSet<int, 16> ProtectedObjs;
if (MFI.hasStackProtectorIndex()) {
int StackProtectorFI = MFI.getStackProtectorIndex();
StackObjSet LargeArrayObjs;
StackObjSet SmallArrayObjs;
StackObjSet AddrOfObjs;
// If we need a stack protector, we need to make sure that
// LocalStackSlotPass didn't already allocate a slot for it.
// If we are told to use the LocalStackAllocationBlock, the stack protector
// is expected to be already pre-allocated.
if (!MFI.getUseLocalStackAllocationBlock())
AdjustStackOffset(MFI, StackProtectorFI, StackGrowsDown, Offset, MaxAlign,
Skew);
else if (!MFI.isObjectPreAllocated(MFI.getStackProtectorIndex()))
llvm_unreachable(
"Stack protector not pre-allocated by LocalStackSlotPass.");
// Assign large stack objects first.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (StackProtectorFI == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
switch (MFI.getObjectSSPLayout(i)) {
case MachineFrameInfo::SSPLK_None:
continue;
case MachineFrameInfo::SSPLK_SmallArray:
SmallArrayObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_AddrOf:
AddrOfObjs.insert(i);
continue;
case MachineFrameInfo::SSPLK_LargeArray:
LargeArrayObjs.insert(i);
continue;
}
llvm_unreachable("Unexpected SSPLayoutKind.");
}
// We expect **all** the protected stack objects to be pre-allocated by
// LocalStackSlotPass. If it turns out that PEI still has to allocate some
// of them, we may end up messing up the expected order of the objects.
if (MFI.getUseLocalStackAllocationBlock() &&
!(LargeArrayObjs.empty() && SmallArrayObjs.empty() &&
AddrOfObjs.empty()))
llvm_unreachable("Found protected stack objects not pre-allocated by "
"LocalStackSlotPass.");
AssignProtectedObjSet(LargeArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(SmallArrayObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
AssignProtectedObjSet(AddrOfObjs, ProtectedObjs, MFI, StackGrowsDown,
Offset, MaxAlign, Skew);
}
SmallVector<int, 8> ObjectsToAllocate;
// Then prepare to assign frame offsets to stack objects that are not used to
// spill callee saved registers.
for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
if (MFI.isObjectPreAllocated(i) && MFI.getUseLocalStackAllocationBlock())
continue;
if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex)
continue;
if (RS && RS->isScavengingFrameIndex((int)i))
continue;
if (MFI.isDeadObjectIndex(i))
continue;
if (MFI.getStackProtectorIndex() == (int)i || EHRegNodeFrameIndex == (int)i)
continue;
if (ProtectedObjs.count(i))
continue;
if (MFI.getStackID(i) !=
TargetStackID::Default) // Only allocate objects on the default stack.
continue;
// Add the objects that we need to allocate to our working set.
ObjectsToAllocate.push_back(i);
}
// Allocate the EH registration node first if one is present.
if (EHRegNodeFrameIndex != std::numeric_limits<int>::max())
AdjustStackOffset(MFI, EHRegNodeFrameIndex, StackGrowsDown, Offset,
MaxAlign, Skew);
// Give the targets a chance to order the objects the way they like it.
if (MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MF.getTarget().Options.StackSymbolOrdering)
TFI.orderFrameObjects(MF, ObjectsToAllocate);
// Keep track of which bytes in the fixed and callee-save range are used so we
// can use the holes when allocating later stack objects. Only do this if
// stack protector isn't being used and the target requests it and we're
// optimizing.
BitVector StackBytesFree;
if (!ObjectsToAllocate.empty() &&
MF.getTarget().getOptLevel() != CodeGenOpt::None &&
MFI.getStackProtectorIndex() < 0 && TFI.enableStackSlotScavenging(MF))
computeFreeStackSlots(MFI, StackGrowsDown, MinCSFrameIndex, MaxCSFrameIndex,
FixedCSEnd, StackBytesFree);
// Now walk the objects and actually assign base offsets to them.
for (auto &Object : ObjectsToAllocate)
if (!scavengeStackSlot(MFI, Object, StackGrowsDown, MaxAlign,
StackBytesFree))
AdjustStackOffset(MFI, Object, StackGrowsDown, Offset, MaxAlign, Skew);
// Make sure the special register scavenging spill slot is closest to the
// stack pointer.
if (RS && !EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
for (int SFI : SFIs)
AdjustStackOffset(MFI, SFI, StackGrowsDown, Offset, MaxAlign, Skew);
}
if (!TFI.targetHandlesStackFrameRounding()) {
// If we have reserved argument space for call sites in the function
// immediately on entry to the current function, count it as part of the
// overall stack size.
if (MFI.adjustsStack() && TFI.hasReservedCallFrame(MF))
Offset += MFI.getMaxCallFrameSize();
// Round up the size to a multiple of the alignment. If the function has
// any calls or alloca's, align to the target's StackAlignment value to
// ensure that the callee's frame or the alloca data is suitably aligned;
// otherwise, for leaf functions, align to the TransientStackAlignment
// value.
Align StackAlign;
if (MFI.adjustsStack() || MFI.hasVarSizedObjects() ||
(RegInfo->hasStackRealignment(MF) && MFI.getObjectIndexEnd() != 0))
StackAlign = TFI.getStackAlign();
else
StackAlign = TFI.getTransientStackAlign();
// If the frame pointer is eliminated, all frame offsets will be relative to
// SP not FP. Align to MaxAlign so this works.
StackAlign = std::max(StackAlign, MaxAlign);
int64_t OffsetBeforeAlignment = Offset;
Offset = alignTo(Offset, StackAlign, Skew);
// If we have increased the offset to fulfill the alignment constrants,
// then the scavenging spill slots may become harder to reach from the
// stack pointer, float them so they stay close.
if (StackGrowsDown && OffsetBeforeAlignment != Offset && RS &&
!EarlyScavengingSlots) {
SmallVector<int, 2> SFIs;
RS->getScavengingFrameIndices(SFIs);
LLVM_DEBUG(if (!SFIs.empty()) llvm::dbgs()
<< "Adjusting emergency spill slots!\n";);
int64_t Delta = Offset - OffsetBeforeAlignment;
for (int SFI : SFIs) {
LLVM_DEBUG(llvm::dbgs()
<< "Adjusting offset of emergency spill slot #" << SFI
<< " from " << MFI.getObjectOffset(SFI););
MFI.setObjectOffset(SFI, MFI.getObjectOffset(SFI) - Delta);
LLVM_DEBUG(llvm::dbgs() << " to " << MFI.getObjectOffset(SFI) << "\n";);
}
}
}
// Update frame info to pretend that this is part of the stack...
int64_t StackSize = Offset - LocalAreaOffset;
MFI.setStackSize(StackSize);
NumBytesStackSpace += StackSize;
}
/// insertPrologEpilogCode - Scan the function for modified callee saved
/// registers, insert spill code for these callee saved registers, then add
/// prolog and epilog code to the function.
void PEI::insertPrologEpilogCode(MachineFunction &MF) {
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
// Add prologue to the function...
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.emitPrologue(MF, *SaveBlock);
// Add epilogue to restore the callee-save registers in each exiting block.
for (MachineBasicBlock *RestoreBlock : RestoreBlocks)
TFI.emitEpilogue(MF, *RestoreBlock);
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.inlineStackProbe(MF, *SaveBlock);
// Emit additional code that is required to support segmented stacks, if
// we've been asked for it. This, when linked with a runtime with support
// for segmented stacks (libgcc is one), will result in allocating stack
// space in small chunks instead of one large contiguous block.
if (MF.shouldSplitStack()) {
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForSegmentedStacks(MF, *SaveBlock);
// Record that there are split-stack functions, so we will emit a
// special section to tell the linker.
MF.getMMI().setHasSplitStack(true);
} else
MF.getMMI().setHasNosplitStack(true);
// Emit additional code that is required to explicitly handle the stack in
// HiPE native code (if needed) when loaded in the Erlang/OTP runtime. The
// approach is rather similar to that of Segmented Stacks, but it uses a
// different conditional check and another BIF for allocating more stack
// space.
if (MF.getFunction().getCallingConv() == CallingConv::HiPE)
for (MachineBasicBlock *SaveBlock : SaveBlocks)
TFI.adjustForHiPEPrologue(MF, *SaveBlock);
}
/// replaceFrameIndices - Replace all MO_FrameIndex operands with physical
/// register references and actual offsets.
void PEI::replaceFrameIndices(MachineFunction &MF) {
const auto &ST = MF.getSubtarget();
const TargetFrameLowering &TFI = *ST.getFrameLowering();
if (!TFI.needsFrameIndexResolution(MF))
return;
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
// Allow the target to determine this after knowing the frame size.
FrameIndexEliminationScavenging = (RS && !FrameIndexVirtualScavenging) ||
TRI->requiresFrameIndexReplacementScavenging(MF);
// Store SPAdj at exit of a basic block.
SmallVector<int, 8> SPState;
SPState.resize(MF.getNumBlockIDs());
df_iterator_default_set<MachineBasicBlock*> Reachable;
// Iterate over the reachable blocks in DFS order.
for (auto DFI = df_ext_begin(&MF, Reachable), DFE = df_ext_end(&MF, Reachable);
DFI != DFE; ++DFI) {
int SPAdj = 0;
// Check the exit state of the DFS stack predecessor.
if (DFI.getPathLength() >= 2) {
MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
assert(Reachable.count(StackPred) &&
"DFS stack predecessor is already visited.\n");
SPAdj = SPState[StackPred->getNumber()];
}
MachineBasicBlock *BB = *DFI;
replaceFrameIndices(BB, MF, SPAdj);
SPState[BB->getNumber()] = SPAdj;
}
// Handle the unreachable blocks.
for (auto &BB : MF) {
if (Reachable.count(&BB))
// Already handled in DFS traversal.
continue;
int SPAdj = 0;
replaceFrameIndices(&BB, MF, SPAdj);
}
}
void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &MF,
int &SPAdj) {
assert(MF.getSubtarget().getRegisterInfo() &&
"getRegisterInfo() must be implemented!");
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (RS && FrameIndexEliminationScavenging)
RS->enterBasicBlock(*BB);
bool InsideCallSequence = false;
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
if (TII.isFrameInstr(*I)) {
InsideCallSequence = TII.isFrameSetup(*I);
SPAdj += TII.getSPAdjust(*I);
I = TFI->eliminateCallFramePseudoInstr(MF, *BB, I);
continue;
}
MachineInstr &MI = *I;
bool DoIncr = true;
bool DidFinishLoop = true;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isFI())
continue;
// Frame indices in debug values are encoded in a target independent
// way with simply the frame index and offset rather than any
// target-specific addressing mode.
if (MI.isDebugValue()) {
MachineOperand &Op = MI.getOperand(i);
assert(
MI.isDebugOperand(&Op) &&
"Frame indices can only appear as a debug operand in a DBG_VALUE*"
" machine instruction");
Register Reg;
unsigned FrameIdx = Op.getIndex();
unsigned Size = MF.getFrameInfo().getObjectSize(FrameIdx);
StackOffset Offset =
TFI->getFrameIndexReference(MF, FrameIdx, Reg);
Op.ChangeToRegister(Reg, false /*isDef*/);
const DIExpression *DIExpr = MI.getDebugExpression();
// If we have a direct DBG_VALUE, and its location expression isn't
// currently complex, then adding an offset will morph it into a
// complex location that is interpreted as being a memory address.
// This changes a pointer-valued variable to dereference that pointer,
// which is incorrect. Fix by adding DW_OP_stack_value.
if (MI.isNonListDebugValue()) {
unsigned PrependFlags = DIExpression::ApplyOffset;
if (!MI.isIndirectDebugValue() && !DIExpr->isComplex())
PrependFlags |= DIExpression::StackValue;
// If we have DBG_VALUE that is indirect and has a Implicit location
// expression need to insert a deref before prepending a Memory
// location expression. Also after doing this we change the DBG_VALUE
// to be direct.
if (MI.isIndirectDebugValue() && DIExpr->isImplicit()) {
SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
bool WithStackValue = true;
DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
// Make the DBG_VALUE direct.
MI.getDebugOffset().ChangeToRegister(0, false);
}
DIExpr = TRI.prependOffsetExpression(DIExpr, PrependFlags, Offset);
} else {
// The debug operand at DebugOpIndex was a frame index at offset
// `Offset`; now the operand has been replaced with the frame
// register, we must add Offset with `register x, plus Offset`.
unsigned DebugOpIndex = MI.getDebugOperandIndex(&Op);
SmallVector<uint64_t, 3> Ops;
TRI.getOffsetOpcodes(Offset, Ops);
DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, DebugOpIndex);
}
MI.getDebugExpressionOp().setMetadata(DIExpr);
continue;
} else if (MI.isDebugPHI()) {
// Allow stack ref to continue onwards.
continue;
}
// TODO: This code should be commoned with the code for
// PATCHPOINT. There's no good reason for the difference in
// implementation other than historical accident. The only
// remaining difference is the unconditional use of the stack
// pointer as the base register.
if (MI.getOpcode() == TargetOpcode::STATEPOINT) {
assert((!MI.isDebugValue() || i == 0) &&
"Frame indicies can only appear as the first operand of a "
"DBG_VALUE machine instruction");
Register Reg;
MachineOperand &Offset = MI.getOperand(i + 1);
StackOffset refOffset = TFI->getFrameIndexReferencePreferSP(
MF, MI.getOperand(i).getIndex(), Reg, /*IgnoreSPUpdates*/ false);
assert(!refOffset.getScalable() &&
"Frame offsets with a scalable component are not supported");
Offset.setImm(Offset.getImm() + refOffset.getFixed() + SPAdj);
MI.getOperand(i).ChangeToRegister(Reg, false /*isDef*/);
continue;
}
// Some instructions (e.g. inline asm instructions) can have
// multiple frame indices and/or cause eliminateFrameIndex
// to insert more than one instruction. We need the register
// scavenger to go through all of these instructions so that
// it can update its register information. We keep the
// iterator at the point before insertion so that we can
// revisit them in full.
bool AtBeginning = (I == BB->begin());
if (!AtBeginning) --I;
// If this instruction has a FrameIndex operand, we need to
// use that target machine register info object to eliminate
// it.
TRI.eliminateFrameIndex(MI, SPAdj, i,
FrameIndexEliminationScavenging ? RS : nullptr);
// Reset the iterator if we were at the beginning of the BB.
if (AtBeginning) {
I = BB->begin();
DoIncr = false;
}
DidFinishLoop = false;
break;
}
// If we are looking at a call sequence, we need to keep track of
// the SP adjustment made by each instruction in the sequence.
// This includes both the frame setup/destroy pseudos (handled above),
// as well as other instructions that have side effects w.r.t the SP.
// Note that this must come after eliminateFrameIndex, because
// if I itself referred to a frame index, we shouldn't count its own
// adjustment.
if (DidFinishLoop && InsideCallSequence)
SPAdj += TII.getSPAdjust(MI);
if (DoIncr && I != BB->end()) ++I;
// Update register states.
if (RS && FrameIndexEliminationScavenging && DidFinishLoop)
RS->forward(MI);
}
}