| //===- MachineSink.cpp - Sinking for machine instructions -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass moves instructions into successor blocks when possible, so that |
| // they aren't executed on paths where their results aren't needed. |
| // |
| // This pass is not intended to be a replacement or a complete alternative |
| // for an LLVM-IR-level sinking pass. It is only designed to sink simple |
| // constructs that are not exposed before lowering and instruction selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachinePostDominators.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <map> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "machine-sink" |
| |
| static cl::opt<bool> |
| SplitEdges("machine-sink-split", |
| cl::desc("Split critical edges during machine sinking"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| UseBlockFreqInfo("machine-sink-bfi", |
| cl::desc("Use block frequency info to find successors to sink"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<unsigned> SplitEdgeProbabilityThreshold( |
| "machine-sink-split-probability-threshold", |
| cl::desc( |
| "Percentage threshold for splitting single-instruction critical edge. " |
| "If the branch threshold is higher than this threshold, we allow " |
| "speculative execution of up to 1 instruction to avoid branching to " |
| "splitted critical edge"), |
| cl::init(40), cl::Hidden); |
| |
| static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( |
| "machine-sink-load-instrs-threshold", |
| cl::desc("Do not try to find alias store for a load if there is a in-path " |
| "block whose instruction number is higher than this threshold."), |
| cl::init(2000), cl::Hidden); |
| |
| static cl::opt<unsigned> SinkLoadBlocksThreshold( |
| "machine-sink-load-blocks-threshold", |
| cl::desc("Do not try to find alias store for a load if the block number in " |
| "the straight line is higher than this threshold."), |
| cl::init(20), cl::Hidden); |
| |
| static cl::opt<bool> |
| SinkInstsIntoLoop("sink-insts-to-avoid-spills", |
| cl::desc("Sink instructions into loops to avoid " |
| "register spills"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<unsigned> SinkIntoLoopLimit( |
| "machine-sink-loop-limit", |
| cl::desc("The maximum number of instructions considered for loop sinking."), |
| cl::init(50), cl::Hidden); |
| |
| STATISTIC(NumSunk, "Number of machine instructions sunk"); |
| STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); |
| STATISTIC(NumSplit, "Number of critical edges split"); |
| STATISTIC(NumCoalesces, "Number of copies coalesced"); |
| STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); |
| |
| namespace { |
| |
| class MachineSinking : public MachineFunctionPass { |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| MachineRegisterInfo *MRI; // Machine register information |
| MachineDominatorTree *DT; // Machine dominator tree |
| MachinePostDominatorTree *PDT; // Machine post dominator tree |
| MachineLoopInfo *LI; |
| MachineBlockFrequencyInfo *MBFI; |
| const MachineBranchProbabilityInfo *MBPI; |
| AliasAnalysis *AA; |
| RegisterClassInfo RegClassInfo; |
| |
| // Remember which edges have been considered for breaking. |
| SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> |
| CEBCandidates; |
| // Remember which edges we are about to split. |
| // This is different from CEBCandidates since those edges |
| // will be split. |
| SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; |
| |
| DenseSet<Register> RegsToClearKillFlags; |
| |
| using AllSuccsCache = |
| std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; |
| |
| /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is |
| /// post-dominated by another DBG_VALUE of the same variable location. |
| /// This is necessary to detect sequences such as: |
| /// %0 = someinst |
| /// DBG_VALUE %0, !123, !DIExpression() |
| /// %1 = anotherinst |
| /// DBG_VALUE %1, !123, !DIExpression() |
| /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that |
| /// would re-order assignments. |
| using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; |
| |
| /// Record of DBG_VALUE uses of vregs in a block, so that we can identify |
| /// debug instructions to sink. |
| SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; |
| |
| /// Record of debug variables that have had their locations set in the |
| /// current block. |
| DenseSet<DebugVariable> SeenDbgVars; |
| |
| std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> |
| HasStoreCache; |
| std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, |
| std::vector<MachineInstr *>> |
| StoreInstrCache; |
| |
| /// Cached BB's register pressure. |
| std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; |
| |
| public: |
| static char ID; // Pass identification |
| |
| MachineSinking() : MachineFunctionPass(ID) { |
| initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachinePostDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineBranchProbabilityInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| if (UseBlockFreqInfo) |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| } |
| |
| void releaseMemory() override { |
| CEBCandidates.clear(); |
| } |
| |
| private: |
| bool ProcessBlock(MachineBasicBlock &MBB); |
| void ProcessDbgInst(MachineInstr &MI); |
| bool isWorthBreakingCriticalEdge(MachineInstr &MI, |
| MachineBasicBlock *From, |
| MachineBasicBlock *To); |
| |
| bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, |
| MachineInstr &MI); |
| |
| /// Postpone the splitting of the given critical |
| /// edge (\p From, \p To). |
| /// |
| /// We do not split the edges on the fly. Indeed, this invalidates |
| /// the dominance information and thus triggers a lot of updates |
| /// of that information underneath. |
| /// Instead, we postpone all the splits after each iteration of |
| /// the main loop. That way, the information is at least valid |
| /// for the lifetime of an iteration. |
| /// |
| /// \return True if the edge is marked as toSplit, false otherwise. |
| /// False can be returned if, for instance, this is not profitable. |
| bool PostponeSplitCriticalEdge(MachineInstr &MI, |
| MachineBasicBlock *From, |
| MachineBasicBlock *To, |
| bool BreakPHIEdge); |
| bool SinkInstruction(MachineInstr &MI, bool &SawStore, |
| AllSuccsCache &AllSuccessors); |
| |
| /// If we sink a COPY inst, some debug users of it's destination may no |
| /// longer be dominated by the COPY, and will eventually be dropped. |
| /// This is easily rectified by forwarding the non-dominated debug uses |
| /// to the copy source. |
| void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, |
| MachineBasicBlock *TargetBlock); |
| bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, |
| MachineBasicBlock *DefMBB, bool &BreakPHIEdge, |
| bool &LocalUse) const; |
| MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, |
| bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); |
| |
| void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, |
| SmallVectorImpl<MachineInstr *> &Candidates); |
| bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); |
| |
| bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *SuccToSinkTo, |
| AllSuccsCache &AllSuccessors); |
| |
| bool PerformTrivialForwardCoalescing(MachineInstr &MI, |
| MachineBasicBlock *MBB); |
| |
| SmallVector<MachineBasicBlock *, 4> & |
| GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, |
| AllSuccsCache &AllSuccessors) const; |
| |
| std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineSinking::ID = 0; |
| |
| char &llvm::MachineSinkingID = MachineSinking::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, |
| "Machine code sinking", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, |
| "Machine code sinking", false, false) |
| |
| bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, |
| MachineBasicBlock *MBB) { |
| if (!MI.isCopy()) |
| return false; |
| |
| Register SrcReg = MI.getOperand(1).getReg(); |
| Register DstReg = MI.getOperand(0).getReg(); |
| if (!Register::isVirtualRegister(SrcReg) || |
| !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) |
| return false; |
| |
| const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); |
| const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); |
| if (SRC != DRC) |
| return false; |
| |
| MachineInstr *DefMI = MRI->getVRegDef(SrcReg); |
| if (DefMI->isCopyLike()) |
| return false; |
| LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); |
| LLVM_DEBUG(dbgs() << "*** to: " << MI); |
| MRI->replaceRegWith(DstReg, SrcReg); |
| MI.eraseFromParent(); |
| |
| // Conservatively, clear any kill flags, since it's possible that they are no |
| // longer correct. |
| MRI->clearKillFlags(SrcReg); |
| |
| ++NumCoalesces; |
| return true; |
| } |
| |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified register |
| /// occur in blocks dominated by the specified block. If any use is in the |
| /// definition block, then return false since it is never legal to move def |
| /// after uses. |
| bool MachineSinking::AllUsesDominatedByBlock(Register Reg, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *DefMBB, |
| bool &BreakPHIEdge, |
| bool &LocalUse) const { |
| assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); |
| |
| // Ignore debug uses because debug info doesn't affect the code. |
| if (MRI->use_nodbg_empty(Reg)) |
| return true; |
| |
| // BreakPHIEdge is true if all the uses are in the successor MBB being sunken |
| // into and they are all PHI nodes. In this case, machine-sink must break |
| // the critical edge first. e.g. |
| // |
| // %bb.1: |
| // Predecessors according to CFG: %bb.0 |
| // ... |
| // %def = DEC64_32r %x, implicit-def dead %eflags |
| // ... |
| // JE_4 <%bb.37>, implicit %eflags |
| // Successors according to CFG: %bb.37 %bb.2 |
| // |
| // %bb.2: |
| // %p = PHI %y, %bb.0, %def, %bb.1 |
| if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { |
| MachineInstr *UseInst = MO.getParent(); |
| unsigned OpNo = UseInst->getOperandNo(&MO); |
| MachineBasicBlock *UseBlock = UseInst->getParent(); |
| return UseBlock == MBB && UseInst->isPHI() && |
| UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; |
| })) { |
| BreakPHIEdge = true; |
| return true; |
| } |
| |
| for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { |
| // Determine the block of the use. |
| MachineInstr *UseInst = MO.getParent(); |
| unsigned OpNo = &MO - &UseInst->getOperand(0); |
| MachineBasicBlock *UseBlock = UseInst->getParent(); |
| if (UseInst->isPHI()) { |
| // PHI nodes use the operand in the predecessor block, not the block with |
| // the PHI. |
| UseBlock = UseInst->getOperand(OpNo+1).getMBB(); |
| } else if (UseBlock == DefMBB) { |
| LocalUse = true; |
| return false; |
| } |
| |
| // Check that it dominates. |
| if (!DT->dominates(MBB, UseBlock)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Return true if this machine instruction loads from global offset table or |
| /// constant pool. |
| static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { |
| assert(MI.mayLoad() && "Expected MI that loads!"); |
| |
| // If we lost memory operands, conservatively assume that the instruction |
| // reads from everything.. |
| if (MI.memoperands_empty()) |
| return true; |
| |
| for (MachineMemOperand *MemOp : MI.memoperands()) |
| if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) |
| if (PSV->isGOT() || PSV->isConstantPool()) |
| return true; |
| |
| return false; |
| } |
| |
| void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, |
| SmallVectorImpl<MachineInstr *> &Candidates) { |
| for (auto &MI : *BB) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); |
| if (!TII->shouldSink(MI)) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " |
| "target\n"); |
| continue; |
| } |
| if (!L->isLoopInvariant(MI)) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); |
| continue; |
| } |
| bool DontMoveAcrossStore = true; |
| if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); |
| continue; |
| } |
| if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); |
| continue; |
| } |
| if (MI.isConvergent()) |
| continue; |
| |
| const MachineOperand &MO = MI.getOperand(0); |
| if (!MO.isReg() || !MO.getReg() || !MO.isDef()) |
| continue; |
| if (!MRI->hasOneDef(MO.getReg())) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); |
| Candidates.push_back(&MI); |
| } |
| } |
| |
| bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); |
| |
| TII = MF.getSubtarget().getInstrInfo(); |
| TRI = MF.getSubtarget().getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| PDT = &getAnalysis<MachinePostDominatorTree>(); |
| LI = &getAnalysis<MachineLoopInfo>(); |
| MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; |
| MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| RegClassInfo.runOnMachineFunction(MF); |
| |
| bool EverMadeChange = false; |
| |
| while (true) { |
| bool MadeChange = false; |
| |
| // Process all basic blocks. |
| CEBCandidates.clear(); |
| ToSplit.clear(); |
| for (auto &MBB: MF) |
| MadeChange |= ProcessBlock(MBB); |
| |
| // If we have anything we marked as toSplit, split it now. |
| for (auto &Pair : ToSplit) { |
| auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); |
| if (NewSucc != nullptr) { |
| LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " |
| << printMBBReference(*Pair.first) << " -- " |
| << printMBBReference(*NewSucc) << " -- " |
| << printMBBReference(*Pair.second) << '\n'); |
| if (MBFI) |
| MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); |
| |
| MadeChange = true; |
| ++NumSplit; |
| } else |
| LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); |
| } |
| // If this iteration over the code changed anything, keep iterating. |
| if (!MadeChange) break; |
| EverMadeChange = true; |
| } |
| |
| if (SinkInstsIntoLoop) { |
| SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); |
| for (auto *L : Loops) { |
| MachineBasicBlock *Preheader = LI->findLoopPreheader(L); |
| if (!Preheader) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); |
| continue; |
| } |
| SmallVector<MachineInstr *, 8> Candidates; |
| FindLoopSinkCandidates(L, Preheader, Candidates); |
| |
| // Walk the candidates in reverse order so that we start with the use |
| // of a def-use chain, if there is any. |
| // TODO: Sort the candidates using a cost-model. |
| unsigned i = 0; |
| for (MachineInstr *I : llvm::reverse(Candidates)) { |
| if (i++ == SinkIntoLoopLimit) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to " |
| "be analysed."); |
| break; |
| } |
| |
| if (!SinkIntoLoop(L, *I)) |
| break; |
| EverMadeChange = true; |
| ++NumLoopSunk; |
| } |
| } |
| } |
| |
| HasStoreCache.clear(); |
| StoreInstrCache.clear(); |
| |
| // Now clear any kill flags for recorded registers. |
| for (auto I : RegsToClearKillFlags) |
| MRI->clearKillFlags(I); |
| RegsToClearKillFlags.clear(); |
| |
| return EverMadeChange; |
| } |
| |
| bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { |
| // Can't sink anything out of a block that has less than two successors. |
| if (MBB.succ_size() <= 1 || MBB.empty()) return false; |
| |
| // Don't bother sinking code out of unreachable blocks. In addition to being |
| // unprofitable, it can also lead to infinite looping, because in an |
| // unreachable loop there may be nowhere to stop. |
| if (!DT->isReachableFromEntry(&MBB)) return false; |
| |
| bool MadeChange = false; |
| |
| // Cache all successors, sorted by frequency info and loop depth. |
| AllSuccsCache AllSuccessors; |
| |
| // Walk the basic block bottom-up. Remember if we saw a store. |
| MachineBasicBlock::iterator I = MBB.end(); |
| --I; |
| bool ProcessedBegin, SawStore = false; |
| do { |
| MachineInstr &MI = *I; // The instruction to sink. |
| |
| // Predecrement I (if it's not begin) so that it isn't invalidated by |
| // sinking. |
| ProcessedBegin = I == MBB.begin(); |
| if (!ProcessedBegin) |
| --I; |
| |
| if (MI.isDebugOrPseudoInstr()) { |
| if (MI.isDebugValue()) |
| ProcessDbgInst(MI); |
| continue; |
| } |
| |
| bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); |
| if (Joined) { |
| MadeChange = true; |
| continue; |
| } |
| |
| if (SinkInstruction(MI, SawStore, AllSuccessors)) { |
| ++NumSunk; |
| MadeChange = true; |
| } |
| |
| // If we just processed the first instruction in the block, we're done. |
| } while (!ProcessedBegin); |
| |
| SeenDbgUsers.clear(); |
| SeenDbgVars.clear(); |
| // recalculate the bb register pressure after sinking one BB. |
| CachedRegisterPressure.clear(); |
| |
| return MadeChange; |
| } |
| |
| void MachineSinking::ProcessDbgInst(MachineInstr &MI) { |
| // When we see DBG_VALUEs for registers, record any vreg it reads, so that |
| // we know what to sink if the vreg def sinks. |
| assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); |
| |
| DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), |
| MI.getDebugLoc()->getInlinedAt()); |
| bool SeenBefore = SeenDbgVars.contains(Var); |
| |
| for (MachineOperand &MO : MI.debug_operands()) { |
| if (MO.isReg() && MO.getReg().isVirtual()) |
| SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); |
| } |
| |
| // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. |
| SeenDbgVars.insert(Var); |
| } |
| |
| bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, |
| MachineBasicBlock *From, |
| MachineBasicBlock *To) { |
| // FIXME: Need much better heuristics. |
| |
| // If the pass has already considered breaking this edge (during this pass |
| // through the function), then let's go ahead and break it. This means |
| // sinking multiple "cheap" instructions into the same block. |
| if (!CEBCandidates.insert(std::make_pair(From, To)).second) |
| return true; |
| |
| if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) |
| return true; |
| |
| if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= |
| BranchProbability(SplitEdgeProbabilityThreshold, 100)) |
| return true; |
| |
| // MI is cheap, we probably don't want to break the critical edge for it. |
| // However, if this would allow some definitions of its source operands |
| // to be sunk then it's probably worth it. |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // We don't move live definitions of physical registers, |
| // so sinking their uses won't enable any opportunities. |
| if (Register::isPhysicalRegister(Reg)) |
| continue; |
| |
| // If this instruction is the only user of a virtual register, |
| // check if breaking the edge will enable sinking |
| // both this instruction and the defining instruction. |
| if (MRI->hasOneNonDBGUse(Reg)) { |
| // If the definition resides in same MBB, |
| // claim it's likely we can sink these together. |
| // If definition resides elsewhere, we aren't |
| // blocking it from being sunk so don't break the edge. |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| if (DefMI->getParent() == MI.getParent()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, |
| MachineBasicBlock *FromBB, |
| MachineBasicBlock *ToBB, |
| bool BreakPHIEdge) { |
| if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) |
| return false; |
| |
| // Avoid breaking back edge. From == To means backedge for single BB loop. |
| if (!SplitEdges || FromBB == ToBB) |
| return false; |
| |
| // Check for backedges of more "complex" loops. |
| if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && |
| LI->isLoopHeader(ToBB)) |
| return false; |
| |
| // It's not always legal to break critical edges and sink the computation |
| // to the edge. |
| // |
| // %bb.1: |
| // v1024 |
| // Beq %bb.3 |
| // <fallthrough> |
| // %bb.2: |
| // ... no uses of v1024 |
| // <fallthrough> |
| // %bb.3: |
| // ... |
| // = v1024 |
| // |
| // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: |
| // |
| // %bb.1: |
| // ... |
| // Bne %bb.2 |
| // %bb.4: |
| // v1024 = |
| // B %bb.3 |
| // %bb.2: |
| // ... no uses of v1024 |
| // <fallthrough> |
| // %bb.3: |
| // ... |
| // = v1024 |
| // |
| // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 |
| // flow. We need to ensure the new basic block where the computation is |
| // sunk to dominates all the uses. |
| // It's only legal to break critical edge and sink the computation to the |
| // new block if all the predecessors of "To", except for "From", are |
| // not dominated by "From". Given SSA property, this means these |
| // predecessors are dominated by "To". |
| // |
| // There is no need to do this check if all the uses are PHI nodes. PHI |
| // sources are only defined on the specific predecessor edges. |
| if (!BreakPHIEdge) { |
| for (MachineBasicBlock *Pred : ToBB->predecessors()) |
| if (Pred != FromBB && !DT->dominates(ToBB, Pred)) |
| return false; |
| } |
| |
| ToSplit.insert(std::make_pair(FromBB, ToBB)); |
| |
| return true; |
| } |
| |
| std::vector<unsigned> & |
| MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { |
| // Currently to save compiling time, MBB's register pressure will not change |
| // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's |
| // register pressure is changed after sinking any instructions into it. |
| // FIXME: need a accurate and cheap register pressure estiminate model here. |
| auto RP = CachedRegisterPressure.find(&MBB); |
| if (RP != CachedRegisterPressure.end()) |
| return RP->second; |
| |
| RegionPressure Pressure; |
| RegPressureTracker RPTracker(Pressure); |
| |
| // Initialize the register pressure tracker. |
| RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), |
| /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); |
| |
| for (MachineBasicBlock::iterator MII = MBB.instr_end(), |
| MIE = MBB.instr_begin(); |
| MII != MIE; --MII) { |
| MachineInstr &MI = *std::prev(MII); |
| if (MI.isDebugInstr() || MI.isPseudoProbe()) |
| continue; |
| RegisterOperands RegOpers; |
| RegOpers.collect(MI, *TRI, *MRI, false, false); |
| RPTracker.recedeSkipDebugValues(); |
| assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); |
| RPTracker.recede(RegOpers); |
| } |
| |
| RPTracker.closeRegion(); |
| auto It = CachedRegisterPressure.insert( |
| std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); |
| return It.first->second; |
| } |
| |
| /// isProfitableToSinkTo - Return true if it is profitable to sink MI. |
| bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock *SuccToSinkTo, |
| AllSuccsCache &AllSuccessors) { |
| assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); |
| |
| if (MBB == SuccToSinkTo) |
| return false; |
| |
| // It is profitable if SuccToSinkTo does not post dominate current block. |
| if (!PDT->dominates(SuccToSinkTo, MBB)) |
| return true; |
| |
| // It is profitable to sink an instruction from a deeper loop to a shallower |
| // loop, even if the latter post-dominates the former (PR21115). |
| if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) |
| return true; |
| |
| // Check if only use in post dominated block is PHI instruction. |
| bool NonPHIUse = false; |
| for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { |
| MachineBasicBlock *UseBlock = UseInst.getParent(); |
| if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) |
| NonPHIUse = true; |
| } |
| if (!NonPHIUse) |
| return true; |
| |
| // If SuccToSinkTo post dominates then also it may be profitable if MI |
| // can further profitably sinked into another block in next round. |
| bool BreakPHIEdge = false; |
| // FIXME - If finding successor is compile time expensive then cache results. |
| if (MachineBasicBlock *MBB2 = |
| FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) |
| return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); |
| |
| MachineLoop *ML = LI->getLoopFor(MBB); |
| |
| // If the instruction is not inside a loop, it is not profitable to sink MI to |
| // a post dominate block SuccToSinkTo. |
| if (!ML) |
| return false; |
| |
| auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { |
| unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; |
| const int *PS = TRI->getRegClassPressureSets(RC); |
| // Get register pressure for block SuccToSinkTo. |
| std::vector<unsigned> BBRegisterPressure = |
| getBBRegisterPressure(*SuccToSinkTo); |
| for (; *PS != -1; PS++) |
| // check if any register pressure set exceeds limit in block SuccToSinkTo |
| // after sinking. |
| if (Weight + BBRegisterPressure[*PS] >= |
| TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) |
| return true; |
| return false; |
| }; |
| |
| // If this instruction is inside a loop and sinking this instruction can make |
| // more registers live range shorten, it is still prifitable. |
| for (const MachineOperand &MO : MI.operands()) { |
| // Ignore non-register operands. |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| |
| // Don't handle physical register. |
| if (Register::isPhysicalRegister(Reg)) |
| return false; |
| |
| // Users for the defs are all dominated by SuccToSinkTo. |
| if (MO.isDef()) { |
| // This def register's live range is shortened after sinking. |
| bool LocalUse = false; |
| if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, |
| LocalUse)) |
| return false; |
| } else { |
| MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| // DefMI is defined outside of loop. There should be no live range |
| // impact for this operand. Defination outside of loop means: |
| // 1: defination is outside of loop. |
| // 2: defination is in this loop, but it is a PHI in the loop header. |
| if (LI->getLoopFor(DefMI->getParent()) != ML || |
| (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) |
| continue; |
| // The DefMI is defined inside the loop. |
| // If sinking this operand makes some register pressure set exceed limit, |
| // it is not profitable. |
| if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { |
| LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); |
| return false; |
| } |
| } |
| } |
| |
| // If MI is in loop and all its operands are alive across the whole loop or if |
| // no operand sinking make register pressure set exceed limit, it is |
| // profitable to sink MI. |
| return true; |
| } |
| |
| /// Get the sorted sequence of successors for this MachineBasicBlock, possibly |
| /// computing it if it was not already cached. |
| SmallVector<MachineBasicBlock *, 4> & |
| MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, |
| AllSuccsCache &AllSuccessors) const { |
| // Do we have the sorted successors in cache ? |
| auto Succs = AllSuccessors.find(MBB); |
| if (Succs != AllSuccessors.end()) |
| return Succs->second; |
| |
| SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); |
| |
| // Handle cases where sinking can happen but where the sink point isn't a |
| // successor. For example: |
| // |
| // x = computation |
| // if () {} else {} |
| // use x |
| // |
| for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { |
| // DomTree children of MBB that have MBB as immediate dominator are added. |
| if (DTChild->getIDom()->getBlock() == MI.getParent() && |
| // Skip MBBs already added to the AllSuccs vector above. |
| !MBB->isSuccessor(DTChild->getBlock())) |
| AllSuccs.push_back(DTChild->getBlock()); |
| } |
| |
| // Sort Successors according to their loop depth or block frequency info. |
| llvm::stable_sort( |
| AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { |
| uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; |
| uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; |
| bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; |
| return HasBlockFreq ? LHSFreq < RHSFreq |
| : LI->getLoopDepth(L) < LI->getLoopDepth(R); |
| }); |
| |
| auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); |
| |
| return it.first->second; |
| } |
| |
| /// FindSuccToSinkTo - Find a successor to sink this instruction to. |
| MachineBasicBlock * |
| MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, |
| bool &BreakPHIEdge, |
| AllSuccsCache &AllSuccessors) { |
| assert (MBB && "Invalid MachineBasicBlock!"); |
| |
| // Loop over all the operands of the specified instruction. If there is |
| // anything we can't handle, bail out. |
| |
| // SuccToSinkTo - This is the successor to sink this instruction to, once we |
| // decide. |
| MachineBasicBlock *SuccToSinkTo = nullptr; |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg()) continue; // Ignore non-register operands. |
| |
| Register Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| if (Register::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!MRI->isConstantPhysReg(Reg)) |
| return nullptr; |
| } else if (!MO.isDead()) { |
| // A def that isn't dead. We can't move it. |
| return nullptr; |
| } |
| } else { |
| // Virtual register uses are always safe to sink. |
| if (MO.isUse()) continue; |
| |
| // If it's not safe to move defs of the register class, then abort. |
| if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) |
| return nullptr; |
| |
| // Virtual register defs can only be sunk if all their uses are in blocks |
| // dominated by one of the successors. |
| if (SuccToSinkTo) { |
| // If a previous operand picked a block to sink to, then this operand |
| // must be sinkable to the same block. |
| bool LocalUse = false; |
| if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, |
| BreakPHIEdge, LocalUse)) |
| return nullptr; |
| |
| continue; |
| } |
| |
| // Otherwise, we should look at all the successors and decide which one |
| // we should sink to. If we have reliable block frequency information |
| // (frequency != 0) available, give successors with smaller frequencies |
| // higher priority, otherwise prioritize smaller loop depths. |
| for (MachineBasicBlock *SuccBlock : |
| GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { |
| bool LocalUse = false; |
| if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, |
| BreakPHIEdge, LocalUse)) { |
| SuccToSinkTo = SuccBlock; |
| break; |
| } |
| if (LocalUse) |
| // Def is used locally, it's never safe to move this def. |
| return nullptr; |
| } |
| |
| // If we couldn't find a block to sink to, ignore this instruction. |
| if (!SuccToSinkTo) |
| return nullptr; |
| if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) |
| return nullptr; |
| } |
| } |
| |
| // It is not possible to sink an instruction into its own block. This can |
| // happen with loops. |
| if (MBB == SuccToSinkTo) |
| return nullptr; |
| |
| // It's not safe to sink instructions to EH landing pad. Control flow into |
| // landing pad is implicitly defined. |
| if (SuccToSinkTo && SuccToSinkTo->isEHPad()) |
| return nullptr; |
| |
| // It ought to be okay to sink instructions into an INLINEASM_BR target, but |
| // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in |
| // the source block (which this code does not yet do). So for now, forbid |
| // doing so. |
| if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) |
| return nullptr; |
| |
| return SuccToSinkTo; |
| } |
| |
| /// Return true if MI is likely to be usable as a memory operation by the |
| /// implicit null check optimization. |
| /// |
| /// This is a "best effort" heuristic, and should not be relied upon for |
| /// correctness. This returning true does not guarantee that the implicit null |
| /// check optimization is legal over MI, and this returning false does not |
| /// guarantee MI cannot possibly be used to do a null check. |
| static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) { |
| using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; |
| |
| auto *MBB = MI.getParent(); |
| if (MBB->pred_size() != 1) |
| return false; |
| |
| auto *PredMBB = *MBB->pred_begin(); |
| auto *PredBB = PredMBB->getBasicBlock(); |
| |
| // Frontends that don't use implicit null checks have no reason to emit |
| // branches with make.implicit metadata, and this function should always |
| // return false for them. |
| if (!PredBB || |
| !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) |
| return false; |
| |
| const MachineOperand *BaseOp; |
| int64_t Offset; |
| bool OffsetIsScalable; |
| if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) |
| return false; |
| |
| if (!BaseOp->isReg()) |
| return false; |
| |
| if (!(MI.mayLoad() && !MI.isPredicable())) |
| return false; |
| |
| MachineBranchPredicate MBP; |
| if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) |
| return false; |
| |
| return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && |
| (MBP.Predicate == MachineBranchPredicate::PRED_NE || |
| MBP.Predicate == MachineBranchPredicate::PRED_EQ) && |
| MBP.LHS.getReg() == BaseOp->getReg(); |
| } |
| |
| /// If the sunk instruction is a copy, try to forward the copy instead of |
| /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if |
| /// there's any subregister weirdness involved. Returns true if copy |
| /// propagation occurred. |
| static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, |
| Register Reg) { |
| const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); |
| const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); |
| |
| // Copy DBG_VALUE operand and set the original to undef. We then check to |
| // see whether this is something that can be copy-forwarded. If it isn't, |
| // continue around the loop. |
| |
| const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; |
| auto CopyOperands = TII.isCopyInstr(SinkInst); |
| if (!CopyOperands) |
| return false; |
| SrcMO = CopyOperands->Source; |
| DstMO = CopyOperands->Destination; |
| |
| // Check validity of forwarding this copy. |
| bool PostRA = MRI.getNumVirtRegs() == 0; |
| |
| // Trying to forward between physical and virtual registers is too hard. |
| if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) |
| return false; |
| |
| // Only try virtual register copy-forwarding before regalloc, and physical |
| // register copy-forwarding after regalloc. |
| bool arePhysRegs = !Reg.isVirtual(); |
| if (arePhysRegs != PostRA) |
| return false; |
| |
| // Pre-regalloc, only forward if all subregisters agree (or there are no |
| // subregs at all). More analysis might recover some forwardable copies. |
| if (!PostRA) |
| for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) |
| if (DbgMO.getSubReg() != SrcMO->getSubReg() || |
| DbgMO.getSubReg() != DstMO->getSubReg()) |
| return false; |
| |
| // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register |
| // of this copy. Only forward the copy if the DBG_VALUE operand exactly |
| // matches the copy destination. |
| if (PostRA && Reg != DstMO->getReg()) |
| return false; |
| |
| for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { |
| DbgMO.setReg(SrcMO->getReg()); |
| DbgMO.setSubReg(SrcMO->getSubReg()); |
| } |
| return true; |
| } |
| |
| using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; |
| /// Sink an instruction and its associated debug instructions. |
| static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, |
| MachineBasicBlock::iterator InsertPos, |
| SmallVectorImpl<MIRegs> &DbgValuesToSink) { |
| |
| // If we cannot find a location to use (merge with), then we erase the debug |
| // location to prevent debug-info driven tools from potentially reporting |
| // wrong location information. |
| if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) |
| MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), |
| InsertPos->getDebugLoc())); |
| else |
| MI.setDebugLoc(DebugLoc()); |
| |
| // Move the instruction. |
| MachineBasicBlock *ParentBlock = MI.getParent(); |
| SuccToSinkTo.splice(InsertPos, ParentBlock, MI, |
| ++MachineBasicBlock::iterator(MI)); |
| |
| // Sink a copy of debug users to the insert position. Mark the original |
| // DBG_VALUE location as 'undef', indicating that any earlier variable |
| // location should be terminated as we've optimised away the value at this |
| // point. |
| for (auto DbgValueToSink : DbgValuesToSink) { |
| MachineInstr *DbgMI = DbgValueToSink.first; |
| MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); |
| SuccToSinkTo.insert(InsertPos, NewDbgMI); |
| |
| bool PropagatedAllSunkOps = true; |
| for (unsigned Reg : DbgValueToSink.second) { |
| if (DbgMI->hasDebugOperandForReg(Reg)) { |
| if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { |
| PropagatedAllSunkOps = false; |
| break; |
| } |
| } |
| } |
| if (!PropagatedAllSunkOps) |
| DbgMI->setDebugValueUndef(); |
| } |
| } |
| |
| /// hasStoreBetween - check if there is store betweeen straight line blocks From |
| /// and To. |
| bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, |
| MachineBasicBlock *To, MachineInstr &MI) { |
| // Make sure From and To are in straight line which means From dominates To |
| // and To post dominates From. |
| if (!DT->dominates(From, To) || !PDT->dominates(To, From)) |
| return true; |
| |
| auto BlockPair = std::make_pair(From, To); |
| |
| // Does these two blocks pair be queried before and have a definite cached |
| // result? |
| if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) |
| return HasStoreCache[BlockPair]; |
| |
| if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) |
| return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { |
| return I->mayAlias(AA, MI, false); |
| }); |
| |
| bool SawStore = false; |
| bool HasAliasedStore = false; |
| DenseSet<MachineBasicBlock *> HandledBlocks; |
| DenseSet<MachineBasicBlock *> HandledDomBlocks; |
| // Go through all reachable blocks from From. |
| for (MachineBasicBlock *BB : depth_first(From)) { |
| // We insert the instruction at the start of block To, so no need to worry |
| // about stores inside To. |
| // Store in block From should be already considered when just enter function |
| // SinkInstruction. |
| if (BB == To || BB == From) |
| continue; |
| |
| // We already handle this BB in previous iteration. |
| if (HandledBlocks.count(BB)) |
| continue; |
| |
| HandledBlocks.insert(BB); |
| // To post dominates BB, it must be a path from block From. |
| if (PDT->dominates(To, BB)) { |
| if (!HandledDomBlocks.count(BB)) |
| HandledDomBlocks.insert(BB); |
| |
| // If this BB is too big or the block number in straight line between From |
| // and To is too big, stop searching to save compiling time. |
| if (BB->size() > SinkLoadInstsPerBlockThreshold || |
| HandledDomBlocks.size() > SinkLoadBlocksThreshold) { |
| for (auto *DomBB : HandledDomBlocks) { |
| if (DomBB != BB && DT->dominates(DomBB, BB)) |
| HasStoreCache[std::make_pair(DomBB, To)] = true; |
| else if(DomBB != BB && DT->dominates(BB, DomBB)) |
| HasStoreCache[std::make_pair(From, DomBB)] = true; |
| } |
| HasStoreCache[BlockPair] = true; |
| return true; |
| } |
| |
| for (MachineInstr &I : *BB) { |
| // Treat as alias conservatively for a call or an ordered memory |
| // operation. |
| if (I.isCall() || I.hasOrderedMemoryRef()) { |
| for (auto *DomBB : HandledDomBlocks) { |
| if (DomBB != BB && DT->dominates(DomBB, BB)) |
| HasStoreCache[std::make_pair(DomBB, To)] = true; |
| else if(DomBB != BB && DT->dominates(BB, DomBB)) |
| HasStoreCache[std::make_pair(From, DomBB)] = true; |
| } |
| HasStoreCache[BlockPair] = true; |
| return true; |
| } |
| |
| if (I.mayStore()) { |
| SawStore = true; |
| // We still have chance to sink MI if all stores between are not |
| // aliased to MI. |
| // Cache all store instructions, so that we don't need to go through |
| // all From reachable blocks for next load instruction. |
| if (I.mayAlias(AA, MI, false)) |
| HasAliasedStore = true; |
| StoreInstrCache[BlockPair].push_back(&I); |
| } |
| } |
| } |
| } |
| // If there is no store at all, cache the result. |
| if (!SawStore) |
| HasStoreCache[BlockPair] = false; |
| return HasAliasedStore; |
| } |
| |
| /// Sink instructions into loops if profitable. This especially tries to prevent |
| /// register spills caused by register pressure if there is little to no |
| /// overhead moving instructions into loops. |
| bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); |
| MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| assert(Preheader && "Loop sink needs a preheader block"); |
| MachineBasicBlock *SinkBlock = nullptr; |
| bool CanSink = true; |
| const MachineOperand &MO = I.getOperand(0); |
| |
| for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); |
| if (!L->contains(&MI)) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); |
| CanSink = false; |
| break; |
| } |
| |
| // FIXME: Come up with a proper cost model that estimates whether sinking |
| // the instruction (and thus possibly executing it on every loop |
| // iteration) is more expensive than a register. |
| // For now assumes that copies are cheap and thus almost always worth it. |
| if (!MI.isCopy()) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); |
| CanSink = false; |
| break; |
| } |
| if (!SinkBlock) { |
| SinkBlock = MI.getParent(); |
| LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " |
| << printMBBReference(*SinkBlock) << "\n"); |
| continue; |
| } |
| SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); |
| if (!SinkBlock) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); |
| CanSink = false; |
| break; |
| } |
| LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << |
| printMBBReference(*SinkBlock) << "\n"); |
| } |
| |
| if (!CanSink) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); |
| return false; |
| } |
| if (!SinkBlock) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); |
| return false; |
| } |
| if (SinkBlock == Preheader) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); |
| return false; |
| } |
| if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { |
| LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n"); |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); |
| SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); |
| |
| // The instruction is moved from its basic block, so do not retain the |
| // debug information. |
| assert(!I.isDebugInstr() && "Should not sink debug inst"); |
| I.setDebugLoc(DebugLoc()); |
| return true; |
| } |
| |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine |
| /// instruction out of its current block into a successor. |
| bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, |
| AllSuccsCache &AllSuccessors) { |
| // Don't sink instructions that the target prefers not to sink. |
| if (!TII->shouldSink(MI)) |
| return false; |
| |
| // Check if it's safe to move the instruction. |
| if (!MI.isSafeToMove(AA, SawStore)) |
| return false; |
| |
| // Convergent operations may not be made control-dependent on additional |
| // values. |
| if (MI.isConvergent()) |
| return false; |
| |
| // Don't break implicit null checks. This is a performance heuristic, and not |
| // required for correctness. |
| if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) |
| return false; |
| |
| // FIXME: This should include support for sinking instructions within the |
| // block they are currently in to shorten the live ranges. We often get |
| // instructions sunk into the top of a large block, but it would be better to |
| // also sink them down before their first use in the block. This xform has to |
| // be careful not to *increase* register pressure though, e.g. sinking |
| // "x = y + z" down if it kills y and z would increase the live ranges of y |
| // and z and only shrink the live range of x. |
| |
| bool BreakPHIEdge = false; |
| MachineBasicBlock *ParentBlock = MI.getParent(); |
| MachineBasicBlock *SuccToSinkTo = |
| FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); |
| |
| // If there are no outputs, it must have side-effects. |
| if (!SuccToSinkTo) |
| return false; |
| |
| // If the instruction to move defines a dead physical register which is live |
| // when leaving the basic block, don't move it because it could turn into a |
| // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || MO.isUse()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (Reg == 0 || !Register::isPhysicalRegister(Reg)) |
| continue; |
| if (SuccToSinkTo->isLiveIn(Reg)) |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); |
| |
| // If the block has multiple predecessors, this is a critical edge. |
| // Decide if we can sink along it or need to break the edge. |
| if (SuccToSinkTo->pred_size() > 1) { |
| // We cannot sink a load across a critical edge - there may be stores in |
| // other code paths. |
| bool TryBreak = false; |
| bool Store = |
| MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; |
| if (!MI.isSafeToMove(AA, Store)) { |
| LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); |
| TryBreak = true; |
| } |
| |
| // We don't want to sink across a critical edge if we don't dominate the |
| // successor. We could be introducing calculations to new code paths. |
| if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { |
| LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); |
| TryBreak = true; |
| } |
| |
| // Don't sink instructions into a loop. |
| if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { |
| LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); |
| TryBreak = true; |
| } |
| |
| // Otherwise we are OK with sinking along a critical edge. |
| if (!TryBreak) |
| LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); |
| else { |
| // Mark this edge as to be split. |
| // If the edge can actually be split, the next iteration of the main loop |
| // will sink MI in the newly created block. |
| bool Status = |
| PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); |
| if (!Status) |
| LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " |
| "break critical edge\n"); |
| // The instruction will not be sunk this time. |
| return false; |
| } |
| } |
| |
| if (BreakPHIEdge) { |
| // BreakPHIEdge is true if all the uses are in the successor MBB being |
| // sunken into and they are all PHI nodes. In this case, machine-sink must |
| // break the critical edge first. |
| bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, |
| SuccToSinkTo, BreakPHIEdge); |
| if (!Status) |
| LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " |
| "break critical edge\n"); |
| // The instruction will not be sunk this time. |
| return false; |
| } |
| |
| // Determine where to insert into. Skip phi nodes. |
| MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); |
| while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) |
| ++InsertPos; |
| |
| // Collect debug users of any vreg that this inst defines. |
| SmallVector<MIRegs, 4> DbgUsersToSink; |
| for (auto &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) |
| continue; |
| if (!SeenDbgUsers.count(MO.getReg())) |
| continue; |
| |
| // Sink any users that don't pass any other DBG_VALUEs for this variable. |
| auto &Users = SeenDbgUsers[MO.getReg()]; |
| for (auto &User : Users) { |
| MachineInstr *DbgMI = User.getPointer(); |
| if (User.getInt()) { |
| // This DBG_VALUE would re-order assignments. If we can't copy-propagate |
| // it, it can't be recovered. Set it undef. |
| if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) |
| DbgMI->setDebugValueUndef(); |
| } else { |
| DbgUsersToSink.push_back( |
| {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); |
| } |
| } |
| } |
| |
| // After sinking, some debug users may not be dominated any more. If possible, |
| // copy-propagate their operands. As it's expensive, don't do this if there's |
| // no debuginfo in the program. |
| if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) |
| SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); |
| |
| performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); |
| |
| // Conservatively, clear any kill flags, since it's possible that they are no |
| // longer correct. |
| // Note that we have to clear the kill flags for any register this instruction |
| // uses as we may sink over another instruction which currently kills the |
| // used registers. |
| for (MachineOperand &MO : MI.operands()) { |
| if (MO.isReg() && MO.isUse()) |
| RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. |
| } |
| |
| return true; |
| } |
| |
| void MachineSinking::SalvageUnsunkDebugUsersOfCopy( |
| MachineInstr &MI, MachineBasicBlock *TargetBlock) { |
| assert(MI.isCopy()); |
| assert(MI.getOperand(1).isReg()); |
| |
| // Enumerate all users of vreg operands that are def'd. Skip those that will |
| // be sunk. For the rest, if they are not dominated by the block we will sink |
| // MI into, propagate the copy source to them. |
| SmallVector<MachineInstr *, 4> DbgDefUsers; |
| SmallVector<Register, 4> DbgUseRegs; |
| const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| for (auto &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) |
| continue; |
| DbgUseRegs.push_back(MO.getReg()); |
| for (auto &User : MRI.use_instructions(MO.getReg())) { |
| if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) |
| continue; |
| |
| // If is in same block, will either sink or be use-before-def. |
| if (User.getParent() == MI.getParent()) |
| continue; |
| |
| assert(User.hasDebugOperandForReg(MO.getReg()) && |
| "DBG_VALUE user of vreg, but has no operand for it?"); |
| DbgDefUsers.push_back(&User); |
| } |
| } |
| |
| // Point the users of this copy that are no longer dominated, at the source |
| // of the copy. |
| for (auto *User : DbgDefUsers) { |
| for (auto &Reg : DbgUseRegs) { |
| for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { |
| DbgOp.setReg(MI.getOperand(1).getReg()); |
| DbgOp.setSubReg(MI.getOperand(1).getSubReg()); |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // This pass is not intended to be a replacement or a complete alternative |
| // for the pre-ra machine sink pass. It is only designed to sink COPY |
| // instructions which should be handled after RA. |
| // |
| // This pass sinks COPY instructions into a successor block, if the COPY is not |
| // used in the current block and the COPY is live-in to a single successor |
| // (i.e., doesn't require the COPY to be duplicated). This avoids executing the |
| // copy on paths where their results aren't needed. This also exposes |
| // additional opportunites for dead copy elimination and shrink wrapping. |
| // |
| // These copies were either not handled by or are inserted after the MachineSink |
| // pass. As an example of the former case, the MachineSink pass cannot sink |
| // COPY instructions with allocatable source registers; for AArch64 these type |
| // of copy instructions are frequently used to move function parameters (PhyReg) |
| // into virtual registers in the entry block. |
| // |
| // For the machine IR below, this pass will sink %w19 in the entry into its |
| // successor (%bb.1) because %w19 is only live-in in %bb.1. |
| // %bb.0: |
| // %wzr = SUBSWri %w1, 1 |
| // %w19 = COPY %w0 |
| // Bcc 11, %bb.2 |
| // %bb.1: |
| // Live Ins: %w19 |
| // BL @fun |
| // %w0 = ADDWrr %w0, %w19 |
| // RET %w0 |
| // %bb.2: |
| // %w0 = COPY %wzr |
| // RET %w0 |
| // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be |
| // able to see %bb.0 as a candidate. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| |
| class PostRAMachineSinking : public MachineFunctionPass { |
| public: |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| static char ID; |
| PostRAMachineSinking() : MachineFunctionPass(ID) {} |
| StringRef getPassName() const override { return "PostRA Machine Sink"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| private: |
| /// Track which register units have been modified and used. |
| LiveRegUnits ModifiedRegUnits, UsedRegUnits; |
| |
| /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an |
| /// entry in this map for each unit it touches. The DBG_VALUE's entry |
| /// consists of a pointer to the instruction itself, and a vector of registers |
| /// referred to by the instruction that overlap the key register unit. |
| DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; |
| |
| /// Sink Copy instructions unused in the same block close to their uses in |
| /// successors. |
| bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, |
| const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); |
| }; |
| } // namespace |
| |
| char PostRAMachineSinking::ID = 0; |
| char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; |
| |
| INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", |
| "PostRA Machine Sink", false, false) |
| |
| static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, |
| const TargetRegisterInfo *TRI) { |
| LiveRegUnits LiveInRegUnits(*TRI); |
| LiveInRegUnits.addLiveIns(MBB); |
| return !LiveInRegUnits.available(Reg); |
| } |
| |
| static MachineBasicBlock * |
| getSingleLiveInSuccBB(MachineBasicBlock &CurBB, |
| const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, |
| unsigned Reg, const TargetRegisterInfo *TRI) { |
| // Try to find a single sinkable successor in which Reg is live-in. |
| MachineBasicBlock *BB = nullptr; |
| for (auto *SI : SinkableBBs) { |
| if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { |
| // If BB is set here, Reg is live-in to at least two sinkable successors, |
| // so quit. |
| if (BB) |
| return nullptr; |
| BB = SI; |
| } |
| } |
| // Reg is not live-in to any sinkable successors. |
| if (!BB) |
| return nullptr; |
| |
| // Check if any register aliased with Reg is live-in in other successors. |
| for (auto *SI : CurBB.successors()) { |
| if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) |
| return nullptr; |
| } |
| return BB; |
| } |
| |
| static MachineBasicBlock * |
| getSingleLiveInSuccBB(MachineBasicBlock &CurBB, |
| const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, |
| ArrayRef<unsigned> DefedRegsInCopy, |
| const TargetRegisterInfo *TRI) { |
| MachineBasicBlock *SingleBB = nullptr; |
| for (auto DefReg : DefedRegsInCopy) { |
| MachineBasicBlock *BB = |
| getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); |
| if (!BB || (SingleBB && SingleBB != BB)) |
| return nullptr; |
| SingleBB = BB; |
| } |
| return SingleBB; |
| } |
| |
| static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, |
| SmallVectorImpl<unsigned> &UsedOpsInCopy, |
| LiveRegUnits &UsedRegUnits, |
| const TargetRegisterInfo *TRI) { |
| for (auto U : UsedOpsInCopy) { |
| MachineOperand &MO = MI->getOperand(U); |
| Register SrcReg = MO.getReg(); |
| if (!UsedRegUnits.available(SrcReg)) { |
| MachineBasicBlock::iterator NI = std::next(MI->getIterator()); |
| for (MachineInstr &UI : make_range(NI, CurBB.end())) { |
| if (UI.killsRegister(SrcReg, TRI)) { |
| UI.clearRegisterKills(SrcReg, TRI); |
| MO.setIsKill(true); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, |
| SmallVectorImpl<unsigned> &UsedOpsInCopy, |
| SmallVectorImpl<unsigned> &DefedRegsInCopy) { |
| MachineFunction &MF = *SuccBB->getParent(); |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| for (unsigned DefReg : DefedRegsInCopy) |
| for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) |
| SuccBB->removeLiveIn(*S); |
| for (auto U : UsedOpsInCopy) { |
| Register SrcReg = MI->getOperand(U).getReg(); |
| LaneBitmask Mask; |
| for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { |
| Mask |= (*S).second; |
| } |
| SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); |
| } |
| SuccBB->sortUniqueLiveIns(); |
| } |
| |
| static bool hasRegisterDependency(MachineInstr *MI, |
| SmallVectorImpl<unsigned> &UsedOpsInCopy, |
| SmallVectorImpl<unsigned> &DefedRegsInCopy, |
| LiveRegUnits &ModifiedRegUnits, |
| LiveRegUnits &UsedRegUnits) { |
| bool HasRegDependency = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (MO.isDef()) { |
| if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { |
| HasRegDependency = true; |
| break; |
| } |
| DefedRegsInCopy.push_back(Reg); |
| |
| // FIXME: instead of isUse(), readsReg() would be a better fix here, |
| // For example, we can ignore modifications in reg with undef. However, |
| // it's not perfectly clear if skipping the internal read is safe in all |
| // other targets. |
| } else if (MO.isUse()) { |
| if (!ModifiedRegUnits.available(Reg)) { |
| HasRegDependency = true; |
| break; |
| } |
| UsedOpsInCopy.push_back(i); |
| } |
| } |
| return HasRegDependency; |
| } |
| |
| static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, |
| const TargetRegisterInfo *TRI) { |
| SmallSet<MCRegister, 4> RegUnits; |
| for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) |
| RegUnits.insert(*RI); |
| return RegUnits; |
| } |
| |
| bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, |
| MachineFunction &MF, |
| const TargetRegisterInfo *TRI, |
| const TargetInstrInfo *TII) { |
| SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; |
| // FIXME: For now, we sink only to a successor which has a single predecessor |
| // so that we can directly sink COPY instructions to the successor without |
| // adding any new block or branch instruction. |
| for (MachineBasicBlock *SI : CurBB.successors()) |
| if (!SI->livein_empty() && SI->pred_size() == 1) |
| SinkableBBs.insert(SI); |
| |
| if (SinkableBBs.empty()) |
| return false; |
| |
| bool Changed = false; |
| |
| // Track which registers have been modified and used between the end of the |
| // block and the current instruction. |
| ModifiedRegUnits.clear(); |
| UsedRegUnits.clear(); |
| SeenDbgInstrs.clear(); |
| |
| for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { |
| // Track the operand index for use in Copy. |
| SmallVector<unsigned, 2> UsedOpsInCopy; |
| // Track the register number defed in Copy. |
| SmallVector<unsigned, 2> DefedRegsInCopy; |
| |
| // We must sink this DBG_VALUE if its operand is sunk. To avoid searching |
| // for DBG_VALUEs later, record them when they're encountered. |
| if (MI.isDebugValue()) { |
| SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; |
| bool IsValid = true; |
| for (MachineOperand &MO : MI.debug_operands()) { |
| if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { |
| // Bail if we can already tell the sink would be rejected, rather |
| // than needlessly accumulating lots of DBG_VALUEs. |
| if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, |
| ModifiedRegUnits, UsedRegUnits)) { |
| IsValid = false; |
| break; |
| } |
| |
| // Record debug use of each reg unit. |
| SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI); |
| for (MCRegister Reg : RegUnits) |
| MIUnits[Reg].push_back(MO.getReg()); |
| } |
| } |
| if (IsValid) { |
| for (auto RegOps : MIUnits) |
| SeenDbgInstrs[RegOps.first].push_back({&MI, RegOps.second}); |
| } |
| continue; |
| } |
| |
| if (MI.isDebugOrPseudoInstr()) |
| continue; |
| |
| // Do not move any instruction across function call. |
| if (MI.isCall()) |
| return false; |
| |
| if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, |
| TRI); |
| continue; |
| } |
| |
| // Don't sink the COPY if it would violate a register dependency. |
| if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, |
| ModifiedRegUnits, UsedRegUnits)) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, |
| TRI); |
| continue; |
| } |
| assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && |
| "Unexpect SrcReg or DefReg"); |
| MachineBasicBlock *SuccBB = |
| getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); |
| // Don't sink if we cannot find a single sinkable successor in which Reg |
| // is live-in. |
| if (!SuccBB) { |
| LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, |
| TRI); |
| continue; |
| } |
| assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && |
| "Unexpected predecessor"); |
| |
| // Collect DBG_VALUEs that must sink with this copy. We've previously |
| // recorded which reg units that DBG_VALUEs read, if this instruction |
| // writes any of those units then the corresponding DBG_VALUEs must sink. |
| MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; |
| for (auto &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| |
| SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); |
| for (MCRegister Reg : Units) { |
| for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) { |
| auto &Regs = DbgValsToSinkMap[MIRegs.first]; |
| for (unsigned Reg : MIRegs.second) |
| Regs.push_back(Reg); |
| } |
| } |
| } |
| SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(), |
| DbgValsToSinkMap.end()); |
| |
| // Clear the kill flag if SrcReg is killed between MI and the end of the |
| // block. |
| clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); |
| MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); |
| performSink(MI, *SuccBB, InsertPos, DbgValsToSink); |
| updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); |
| |
| Changed = true; |
| ++NumPostRACopySink; |
| } |
| return Changed; |
| } |
| |
| bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| bool Changed = false; |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| |
| ModifiedRegUnits.init(*TRI); |
| UsedRegUnits.init(*TRI); |
| for (auto &BB : MF) |
| Changed |= tryToSinkCopy(BB, MF, TRI, TII); |
| |
| return Changed; |
| } |