| //===- HLSLRootSignatureValidations.cpp - HLSL Root Signature helpers -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file This file contains helpers for working with HLSL Root Signatures. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Frontend/HLSL/RootSignatureValidations.h" |
| |
| #include <cmath> |
| |
| namespace llvm { |
| namespace hlsl { |
| namespace rootsig { |
| |
| bool verifyRootFlag(uint32_t Flags) { return (Flags & ~0xfff) == 0; } |
| |
| bool verifyVersion(uint32_t Version) { return (Version == 1 || Version == 2); } |
| |
| bool verifyRegisterValue(uint32_t RegisterValue) { |
| return RegisterValue != ~0U; |
| } |
| |
| // This Range is reserverved, therefore invalid, according to the spec |
| // https://github.com/llvm/wg-hlsl/blob/main/proposals/0002-root-signature-in-clang.md#all-the-values-should-be-legal |
| bool verifyRegisterSpace(uint32_t RegisterSpace) { |
| return !(RegisterSpace >= 0xFFFFFFF0 && RegisterSpace <= 0xFFFFFFFF); |
| } |
| |
| bool verifyRootDescriptorFlag(uint32_t Version, uint32_t FlagsVal) { |
| using FlagT = dxbc::RootDescriptorFlags; |
| FlagT Flags = FlagT(FlagsVal); |
| if (Version == 1) |
| return Flags == FlagT::DataVolatile; |
| |
| assert(Version == 2 && "Provided invalid root signature version"); |
| |
| // The data-specific flags are mutually exclusive. |
| FlagT DataFlags = FlagT::DataVolatile | FlagT::DataStatic | |
| FlagT::DataStaticWhileSetAtExecute; |
| |
| if (popcount(llvm::to_underlying(Flags & DataFlags)) > 1) |
| return false; |
| |
| // Only a data flag or no flags is valid |
| return (Flags | DataFlags) == DataFlags; |
| } |
| |
| bool verifyRangeType(uint32_t Type) { |
| switch (Type) { |
| case llvm::to_underlying(dxbc::DescriptorRangeType::CBV): |
| case llvm::to_underlying(dxbc::DescriptorRangeType::SRV): |
| case llvm::to_underlying(dxbc::DescriptorRangeType::UAV): |
| case llvm::to_underlying(dxbc::DescriptorRangeType::Sampler): |
| return true; |
| }; |
| |
| return false; |
| } |
| |
| bool verifyDescriptorRangeFlag(uint32_t Version, uint32_t Type, |
| uint32_t FlagsVal) { |
| using FlagT = dxbc::DescriptorRangeFlags; |
| FlagT Flags = FlagT(FlagsVal); |
| |
| const bool IsSampler = |
| (Type == llvm::to_underlying(dxbc::DescriptorRangeType::Sampler)); |
| |
| if (Version == 1) { |
| // Since the metadata is unversioned, we expect to explicitly see the values |
| // that map to the version 1 behaviour here. |
| if (IsSampler) |
| return Flags == FlagT::DescriptorsVolatile; |
| return Flags == (FlagT::DataVolatile | FlagT::DescriptorsVolatile); |
| } |
| |
| // The data-specific flags are mutually exclusive. |
| FlagT DataFlags = FlagT::DataVolatile | FlagT::DataStatic | |
| FlagT::DataStaticWhileSetAtExecute; |
| |
| if (popcount(llvm::to_underlying(Flags & DataFlags)) > 1) |
| return false; |
| |
| // The descriptor-specific flags are mutually exclusive. |
| FlagT DescriptorFlags = FlagT::DescriptorsStaticKeepingBufferBoundsChecks | |
| FlagT::DescriptorsVolatile; |
| if (popcount(llvm::to_underlying(Flags & DescriptorFlags)) > 1) |
| return false; |
| |
| // For volatile descriptors, DATA_is never valid. |
| if ((Flags & FlagT::DescriptorsVolatile) == FlagT::DescriptorsVolatile) { |
| FlagT Mask = FlagT::DescriptorsVolatile; |
| if (!IsSampler) { |
| Mask |= FlagT::DataVolatile; |
| Mask |= FlagT::DataStaticWhileSetAtExecute; |
| } |
| return (Flags & ~Mask) == FlagT::None; |
| } |
| |
| // For "KEEPING_BUFFER_BOUNDS_CHECKS" descriptors, |
| // the other data-specific flags may all be set. |
| if ((Flags & FlagT::DescriptorsStaticKeepingBufferBoundsChecks) == |
| FlagT::DescriptorsStaticKeepingBufferBoundsChecks) { |
| FlagT Mask = FlagT::DescriptorsStaticKeepingBufferBoundsChecks; |
| if (!IsSampler) { |
| Mask |= FlagT::DataVolatile; |
| Mask |= FlagT::DataStatic; |
| Mask |= FlagT::DataStaticWhileSetAtExecute; |
| } |
| return (Flags & ~Mask) == FlagT::None; |
| } |
| |
| // When no descriptor flag is set, any data flag is allowed. |
| FlagT Mask = FlagT::None; |
| if (!IsSampler) { |
| Mask |= FlagT::DataVolatile; |
| Mask |= FlagT::DataStaticWhileSetAtExecute; |
| Mask |= FlagT::DataStatic; |
| } |
| return (Flags & ~Mask) == FlagT::None; |
| } |
| |
| bool verifyNumDescriptors(uint32_t NumDescriptors) { |
| return NumDescriptors > 0; |
| } |
| |
| bool verifySamplerFilter(uint32_t Value) { |
| switch (Value) { |
| #define FILTER(Num, Val) case llvm::to_underlying(dxbc::SamplerFilter::Val): |
| #include "llvm/BinaryFormat/DXContainerConstants.def" |
| return true; |
| } |
| return false; |
| } |
| |
| // Values allowed here: |
| // https://learn.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_texture_address_mode#syntax |
| bool verifyAddress(uint32_t Address) { |
| switch (Address) { |
| #define TEXTURE_ADDRESS_MODE(Num, Val) \ |
| case llvm::to_underlying(dxbc::TextureAddressMode::Val): |
| #include "llvm/BinaryFormat/DXContainerConstants.def" |
| return true; |
| } |
| return false; |
| } |
| |
| bool verifyMipLODBias(float MipLODBias) { |
| return MipLODBias >= -16.f && MipLODBias <= 15.99f; |
| } |
| |
| bool verifyMaxAnisotropy(uint32_t MaxAnisotropy) { |
| return MaxAnisotropy <= 16u; |
| } |
| |
| bool verifyComparisonFunc(uint32_t ComparisonFunc) { |
| switch (ComparisonFunc) { |
| #define COMPARISON_FUNC(Num, Val) \ |
| case llvm::to_underlying(dxbc::ComparisonFunc::Val): |
| #include "llvm/BinaryFormat/DXContainerConstants.def" |
| return true; |
| } |
| return false; |
| } |
| |
| bool verifyBorderColor(uint32_t BorderColor) { |
| switch (BorderColor) { |
| #define STATIC_BORDER_COLOR(Num, Val) \ |
| case llvm::to_underlying(dxbc::StaticBorderColor::Val): |
| #include "llvm/BinaryFormat/DXContainerConstants.def" |
| return true; |
| } |
| return false; |
| } |
| |
| bool verifyLOD(float LOD) { return !std::isnan(LOD); } |
| |
| std::optional<const RangeInfo *> |
| ResourceRange::getOverlapping(const RangeInfo &Info) const { |
| MapT::const_iterator Interval = Intervals.find(Info.LowerBound); |
| if (!Interval.valid() || Info.UpperBound < Interval.start()) |
| return std::nullopt; |
| return Interval.value(); |
| } |
| |
| const RangeInfo *ResourceRange::lookup(uint32_t X) const { |
| return Intervals.lookup(X, nullptr); |
| } |
| |
| void ResourceRange::clear() { return Intervals.clear(); } |
| |
| std::optional<const RangeInfo *> ResourceRange::insert(const RangeInfo &Info) { |
| uint32_t LowerBound = Info.LowerBound; |
| uint32_t UpperBound = Info.UpperBound; |
| |
| std::optional<const RangeInfo *> Res = std::nullopt; |
| MapT::iterator Interval = Intervals.begin(); |
| |
| while (true) { |
| if (UpperBound < LowerBound) |
| break; |
| |
| Interval.advanceTo(LowerBound); |
| if (!Interval.valid()) // No interval found |
| break; |
| |
| // Let Interval = [x;y] and [LowerBound;UpperBound] = [a;b] and note that |
| // a <= y implicitly from Intervals.find(LowerBound) |
| if (UpperBound < Interval.start()) |
| break; // found interval does not overlap with inserted one |
| |
| if (!Res.has_value()) // Update to be the first found intersection |
| Res = Interval.value(); |
| |
| if (Interval.start() <= LowerBound && UpperBound <= Interval.stop()) { |
| // x <= a <= b <= y implies that [a;b] is covered by [x;y] |
| // -> so we don't need to insert this, report an overlap |
| return Res; |
| } else if (LowerBound <= Interval.start() && |
| Interval.stop() <= UpperBound) { |
| // a <= x <= y <= b implies that [x;y] is covered by [a;b] |
| // -> so remove the existing interval that we will cover with the |
| // overwrite |
| Interval.erase(); |
| } else if (LowerBound < Interval.start() && UpperBound <= Interval.stop()) { |
| // a < x <= b <= y implies that [a; x] is not covered but [x;b] is |
| // -> so set b = x - 1 such that [a;x-1] is now the interval to insert |
| UpperBound = Interval.start() - 1; |
| } else if (Interval.start() <= LowerBound && Interval.stop() < UpperBound) { |
| // a < x <= b <= y implies that [y; b] is not covered but [a;y] is |
| // -> so set a = y + 1 such that [y+1;b] is now the interval to insert |
| LowerBound = Interval.stop() + 1; |
| } |
| } |
| |
| assert(LowerBound <= UpperBound && "Attempting to insert an empty interval"); |
| Intervals.insert(LowerBound, UpperBound, &Info); |
| return Res; |
| } |
| |
| llvm::SmallVector<OverlappingRanges> |
| findOverlappingRanges(ArrayRef<RangeInfo> Infos) { |
| // It is expected that Infos is filled with valid RangeInfos and that |
| // they are sorted with respect to the RangeInfo <operator |
| assert(llvm::is_sorted(Infos) && "Ranges must be sorted"); |
| |
| llvm::SmallVector<OverlappingRanges> Overlaps; |
| using GroupT = std::pair<dxil::ResourceClass, /*Space*/ uint32_t>; |
| |
| // First we will init our state to track: |
| if (Infos.size() == 0) |
| return Overlaps; // No ranges to overlap |
| GroupT CurGroup = {Infos[0].Class, Infos[0].Space}; |
| |
| // Create a ResourceRange for each Visibility |
| ResourceRange::MapT::Allocator Allocator; |
| std::array<ResourceRange, 8> Ranges = { |
| ResourceRange(Allocator), // All |
| ResourceRange(Allocator), // Vertex |
| ResourceRange(Allocator), // Hull |
| ResourceRange(Allocator), // Domain |
| ResourceRange(Allocator), // Geometry |
| ResourceRange(Allocator), // Pixel |
| ResourceRange(Allocator), // Amplification |
| ResourceRange(Allocator), // Mesh |
| }; |
| |
| // Reset the ResourceRanges for when we iterate through a new group |
| auto ClearRanges = [&Ranges]() { |
| for (ResourceRange &Range : Ranges) |
| Range.clear(); |
| }; |
| |
| // Iterate through collected RangeInfos |
| for (const RangeInfo &Info : Infos) { |
| GroupT InfoGroup = {Info.Class, Info.Space}; |
| // Reset our ResourceRanges when we enter a new group |
| if (CurGroup != InfoGroup) { |
| ClearRanges(); |
| CurGroup = InfoGroup; |
| } |
| |
| // Insert range info into corresponding Visibility ResourceRange |
| ResourceRange &VisRange = Ranges[llvm::to_underlying(Info.Visibility)]; |
| if (std::optional<const RangeInfo *> Overlapping = VisRange.insert(Info)) |
| Overlaps.push_back(OverlappingRanges(&Info, Overlapping.value())); |
| |
| // Check for overlap in all overlapping Visibility ResourceRanges |
| // |
| // If the range that we are inserting has ShaderVisiblity::All it needs to |
| // check for an overlap in all other visibility types as well. |
| // Otherwise, the range that is inserted needs to check that it does not |
| // overlap with ShaderVisibility::All. |
| // |
| // OverlapRanges will be an ArrayRef to all non-all visibility |
| // ResourceRanges in the former case and it will be an ArrayRef to just the |
| // all visiblity ResourceRange in the latter case. |
| ArrayRef<ResourceRange> OverlapRanges = |
| Info.Visibility == llvm::dxbc::ShaderVisibility::All |
| ? ArrayRef<ResourceRange>{Ranges}.drop_front() |
| : ArrayRef<ResourceRange>{Ranges}.take_front(); |
| |
| for (const ResourceRange &Range : OverlapRanges) |
| if (std::optional<const RangeInfo *> Overlapping = |
| Range.getOverlapping(Info)) |
| Overlaps.push_back(OverlappingRanges(&Info, Overlapping.value())); |
| } |
| |
| return Overlaps; |
| } |
| |
| } // namespace rootsig |
| } // namespace hlsl |
| } // namespace llvm |