| //===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <numeric> |
| |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" |
| #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" |
| #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/TypeUtilities.h" |
| |
| #define DEBUG_TYPE "vector-drop-unit-dim" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| // Trims leading one dimensions from `oldType` and returns the result type. |
| // Returns `vector<1xT>` if `oldType` only has one element. |
| static VectorType trimLeadingOneDims(VectorType oldType) { |
| ArrayRef<int64_t> oldShape = oldType.getShape(); |
| ArrayRef<int64_t> newShape = oldShape; |
| |
| ArrayRef<bool> oldScalableDims = oldType.getScalableDims(); |
| ArrayRef<bool> newScalableDims = oldScalableDims; |
| |
| while (!newShape.empty() && newShape.front() == 1 && |
| !newScalableDims.front()) { |
| newShape = newShape.drop_front(1); |
| newScalableDims = newScalableDims.drop_front(1); |
| } |
| |
| // Make sure we have at least 1 dimension per vector type requirements. |
| if (newShape.empty()) { |
| newShape = oldShape.take_back(); |
| newScalableDims = oldType.getScalableDims().take_back(); |
| } |
| return VectorType::get(newShape, oldType.getElementType(), newScalableDims); |
| } |
| |
| /// Return a smallVector of size `rank` containing all zeros. |
| static SmallVector<int64_t> splatZero(int64_t rank) { |
| return SmallVector<int64_t>(rank, 0); |
| } |
| namespace { |
| |
| // Casts away leading one dimensions in vector.extract_strided_slice's vector |
| // input by inserting vector.broadcast. |
| struct CastAwayExtractStridedSliceLeadingOneDim |
| : public OpRewritePattern<vector::ExtractStridedSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, |
| PatternRewriter &rewriter) const override { |
| // vector.extract_strided_slice requires the input and output vector to have |
| // the same rank. Here we drop leading one dimensions from the input vector |
| // type to make sure we don't cause mismatch. |
| VectorType oldSrcType = extractOp.getSourceVectorType(); |
| VectorType newSrcType = trimLeadingOneDims(oldSrcType); |
| |
| if (newSrcType.getRank() == oldSrcType.getRank()) |
| return failure(); |
| |
| int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank(); |
| |
| VectorType oldDstType = extractOp.getType(); |
| VectorType newDstType = |
| VectorType::get(oldDstType.getShape().drop_front(dropCount), |
| oldDstType.getElementType(), |
| oldDstType.getScalableDims().drop_front(dropCount)); |
| |
| Location loc = extractOp.getLoc(); |
| |
| Value newSrcVector = rewriter.create<vector::ExtractOp>( |
| loc, extractOp.getVector(), splatZero(dropCount)); |
| |
| // The offsets/sizes/strides attribute can have a less number of elements |
| // than the input vector's rank: it is meant for the leading dimensions. |
| auto newOffsets = rewriter.getArrayAttr( |
| extractOp.getOffsets().getValue().drop_front(dropCount)); |
| auto newSizes = rewriter.getArrayAttr( |
| extractOp.getSizes().getValue().drop_front(dropCount)); |
| auto newStrides = rewriter.getArrayAttr( |
| extractOp.getStrides().getValue().drop_front(dropCount)); |
| |
| auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( |
| loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides); |
| |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType, |
| newExtractOp); |
| |
| return success(); |
| } |
| }; |
| |
| // Casts away leading one dimensions in vector.insert_strided_slice's vector |
| // inputs by inserting vector.broadcast. |
| struct CastAwayInsertStridedSliceLeadingOneDim |
| : public OpRewritePattern<vector::InsertStridedSliceOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp, |
| PatternRewriter &rewriter) const override { |
| VectorType oldSrcType = insertOp.getSourceVectorType(); |
| VectorType newSrcType = trimLeadingOneDims(oldSrcType); |
| VectorType oldDstType = insertOp.getDestVectorType(); |
| VectorType newDstType = trimLeadingOneDims(oldDstType); |
| |
| int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank(); |
| int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank(); |
| if (srcDropCount == 0 && dstDropCount == 0) |
| return failure(); |
| |
| // Trim leading one dimensions from both operands. |
| Location loc = insertOp.getLoc(); |
| |
| Value newSrcVector = rewriter.create<vector::ExtractOp>( |
| loc, insertOp.getValueToStore(), splatZero(srcDropCount)); |
| Value newDstVector = rewriter.create<vector::ExtractOp>( |
| loc, insertOp.getDest(), splatZero(dstDropCount)); |
| |
| auto newOffsets = rewriter.getArrayAttr( |
| insertOp.getOffsets().getValue().take_back(newDstType.getRank())); |
| auto newStrides = rewriter.getArrayAttr( |
| insertOp.getStrides().getValue().take_back(newSrcType.getRank())); |
| |
| auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>( |
| loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides); |
| |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType, |
| newInsertOp); |
| |
| return success(); |
| } |
| }; |
| |
| // Casts away leading one dimensions in vector.insert's vector inputs by |
| // inserting vector.broadcast. |
| struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::InsertOp insertOp, |
| PatternRewriter &rewriter) const override { |
| Type oldSrcType = insertOp.getValueToStoreType(); |
| Type newSrcType = oldSrcType; |
| int64_t oldSrcRank = 0, newSrcRank = 0; |
| if (auto type = dyn_cast<VectorType>(oldSrcType)) { |
| newSrcType = trimLeadingOneDims(type); |
| oldSrcRank = type.getRank(); |
| newSrcRank = cast<VectorType>(newSrcType).getRank(); |
| } |
| |
| VectorType oldDstType = insertOp.getDestVectorType(); |
| VectorType newDstType = trimLeadingOneDims(oldDstType); |
| |
| int64_t srcDropCount = oldSrcRank - newSrcRank; |
| int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank(); |
| if (srcDropCount == 0 && dstDropCount == 0) |
| return failure(); |
| |
| // Trim leading one dimensions from both operands. |
| Location loc = insertOp.getLoc(); |
| |
| Value newSrcVector = insertOp.getValueToStore(); |
| if (oldSrcRank != 0) { |
| newSrcVector = rewriter.create<vector::ExtractOp>( |
| loc, insertOp.getValueToStore(), splatZero(srcDropCount)); |
| } |
| Value newDstVector = rewriter.create<vector::ExtractOp>( |
| loc, insertOp.getDest(), splatZero(dstDropCount)); |
| |
| // New position rank needs to be computed in two steps: (1) if destination |
| // type has leading unit dims, we also trim the position array accordingly, |
| // then (2) if source type also has leading unit dims, we need to append |
| // zeroes to the position array accordingly. |
| unsigned oldPosRank = insertOp.getNumIndices(); |
| unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount); |
| SmallVector<OpFoldResult> oldPosition = insertOp.getMixedPosition(); |
| SmallVector<OpFoldResult> newPosition = |
| llvm::to_vector(ArrayRef(oldPosition).take_back(newPosRank)); |
| newPosition.resize(newDstType.getRank() - newSrcRank, |
| rewriter.getI64IntegerAttr(0)); |
| |
| auto newInsertOp = rewriter.create<vector::InsertOp>( |
| loc, newSrcVector, newDstVector, newPosition); |
| |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType, |
| newInsertOp); |
| |
| return success(); |
| } |
| }; |
| |
| static Value dropUnitDimsFromMask(OpBuilder &b, Location loc, Value mask, |
| VectorType newType, AffineMap newMap, |
| VectorType oldMaskType) { |
| // Infer the type of the new mask from the new map. |
| VectorType newMaskType = inferTransferOpMaskType(newType, newMap); |
| |
| // If the new mask is broadcastable to the old result type, we can safely |
| // use a `vector.extract` to get the new mask. Otherwise the best we can |
| // do is shape cast. |
| if (vector::isBroadcastableTo(newMaskType, oldMaskType) == |
| BroadcastableToResult::Success) { |
| int64_t dropDim = oldMaskType.getRank() - newMaskType.getRank(); |
| return b.create<vector::ExtractOp>(loc, mask, splatZero(dropDim)); |
| } |
| return b.create<vector::ShapeCastOp>(loc, newMaskType, mask); |
| } |
| |
| // Turns vector.transfer_read on vector with leading 1 dimensions into |
| // vector.shape_cast followed by vector.transfer_read on vector without leading |
| // 1 dimensions. |
| struct CastAwayTransferReadLeadingOneDim |
| : public OpRewritePattern<vector::TransferReadOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferReadOp read, |
| PatternRewriter &rewriter) const override { |
| // TODO(#78787): Not supported masked op yet. |
| if (cast<MaskableOpInterface>(read.getOperation()).isMasked()) |
| return failure(); |
| // TODO: support 0-d corner case. |
| if (read.getTransferRank() == 0) |
| return failure(); |
| |
| auto shapedType = cast<ShapedType>(read.getSource().getType()); |
| if (shapedType.getElementType() != read.getVectorType().getElementType()) |
| return failure(); |
| |
| VectorType oldType = read.getVectorType(); |
| VectorType newType = trimLeadingOneDims(oldType); |
| |
| if (newType == oldType) |
| return failure(); |
| |
| AffineMap oldMap = read.getPermutationMap(); |
| ArrayRef<AffineExpr> newResults = |
| oldMap.getResults().take_back(newType.getRank()); |
| AffineMap newMap = |
| AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults, |
| rewriter.getContext()); |
| |
| ArrayAttr inBoundsAttr; |
| if (read.getInBounds()) |
| inBoundsAttr = rewriter.getArrayAttr( |
| read.getInBoundsAttr().getValue().take_back(newType.getRank())); |
| |
| Value mask = Value(); |
| if (read.getMask()) { |
| VectorType maskType = read.getMaskType(); |
| mask = dropUnitDimsFromMask(rewriter, read.getLoc(), read.getMask(), |
| newType, newMap, maskType); |
| } |
| |
| auto newRead = rewriter.create<vector::TransferReadOp>( |
| read.getLoc(), newType, read.getSource(), read.getIndices(), |
| AffineMapAttr::get(newMap), read.getPadding(), mask, inBoundsAttr); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead); |
| |
| return success(); |
| } |
| }; |
| |
| // Turns vector.transfer_write on vector with leading 1 dimensions into |
| // vector.shape_cast followed by vector.transfer_write on vector without leading |
| // 1 dimensions. |
| struct CastAwayTransferWriteLeadingOneDim |
| : public OpRewritePattern<vector::TransferWriteOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::TransferWriteOp write, |
| PatternRewriter &rewriter) const override { |
| // TODO(#78787): Not supported masked op yet. |
| if (cast<MaskableOpInterface>(write.getOperation()).isMasked()) |
| return failure(); |
| // TODO: support 0-d corner case. |
| if (write.getTransferRank() == 0) |
| return failure(); |
| |
| auto shapedType = dyn_cast<ShapedType>(write.getSource().getType()); |
| if (shapedType.getElementType() != write.getVectorType().getElementType()) |
| return failure(); |
| |
| VectorType oldType = write.getVectorType(); |
| VectorType newType = trimLeadingOneDims(oldType); |
| if (newType == oldType) |
| return failure(); |
| int64_t dropDim = oldType.getRank() - newType.getRank(); |
| |
| AffineMap oldMap = write.getPermutationMap(); |
| ArrayRef<AffineExpr> newResults = |
| oldMap.getResults().take_back(newType.getRank()); |
| AffineMap newMap = |
| AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults, |
| rewriter.getContext()); |
| |
| ArrayAttr inBoundsAttr; |
| if (write.getInBounds()) |
| inBoundsAttr = rewriter.getArrayAttr( |
| write.getInBoundsAttr().getValue().take_back(newType.getRank())); |
| |
| auto newVector = rewriter.create<vector::ExtractOp>( |
| write.getLoc(), write.getVector(), splatZero(dropDim)); |
| |
| if (write.getMask()) { |
| VectorType maskType = write.getMaskType(); |
| Value newMask = dropUnitDimsFromMask( |
| rewriter, write.getLoc(), write.getMask(), newType, newMap, maskType); |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| write, newVector, write.getSource(), write.getIndices(), |
| AffineMapAttr::get(newMap), newMask, inBoundsAttr); |
| return success(); |
| } |
| |
| rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( |
| write, newVector, write.getSource(), write.getIndices(), |
| AffineMapAttr::get(newMap), inBoundsAttr); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| FailureOr<Value> |
| mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp, |
| MaskingOpInterface maskingOp, |
| RewriterBase &rewriter) { |
| VectorType oldAccType = dyn_cast<VectorType>(contractOp.getAccType()); |
| if (oldAccType == nullptr) |
| return failure(); |
| if (oldAccType.getRank() < 2) |
| return failure(); |
| if (oldAccType.getShape()[0] != 1) |
| return failure(); |
| // currently we support only dropping one dim but the pattern can be applied |
| // greedily to drop more. |
| int64_t dropDim = 1; |
| |
| auto oldIndexingMaps = contractOp.getIndexingMapsArray(); |
| SmallVector<AffineMap> newIndexingMaps; |
| |
| auto oldIteratorTypes = contractOp.getIteratorTypes(); |
| SmallVector<Attribute> newIteratorTypes; |
| |
| int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0); |
| |
| if (!isParallelIterator(oldIteratorTypes[dimToDrop])) |
| // only parallel type iterators can be dropped. |
| return failure(); |
| |
| for (const auto &it : llvm::enumerate(oldIteratorTypes)) { |
| int64_t currDim = it.index(); |
| if (currDim == dimToDrop) |
| continue; |
| newIteratorTypes.push_back(it.value()); |
| } |
| |
| SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(), |
| contractOp.getAcc()}; |
| SmallVector<Value> newOperands; |
| auto loc = contractOp.getLoc(); |
| |
| for (const auto &it : llvm::enumerate(oldIndexingMaps)) { |
| // Check if the dim to be dropped exists as a leading dim in the operand |
| // if it does then we use vector.extract to drop it. |
| bool validExtract = false; |
| SmallVector<AffineExpr> results; |
| auto map = it.value(); |
| int64_t orginalZeroDim = it.value().getDimPosition(0); |
| if (orginalZeroDim != dimToDrop) { |
| // There are two reasons to be in this path, 1. We need to |
| // transpose the operand to make the dim to be dropped |
| // leading. 2. The dim to be dropped does not exist and in |
| // that case we dont want to add a unit transpose but we must |
| // check all the indices to make sure this is the case. |
| bool transposeNeeded = false; |
| SmallVector<int64_t> perm; |
| SmallVector<AffineExpr> transposeResults; |
| |
| for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| int64_t currDim = map.getDimPosition(i); |
| if (currDim == dimToDrop) { |
| transposeNeeded = true; |
| perm.insert(perm.begin(), i); |
| auto targetExpr = rewriter.getAffineDimExpr(currDim); |
| transposeResults.insert(transposeResults.begin(), targetExpr); |
| } else { |
| perm.push_back(i); |
| auto targetExpr = rewriter.getAffineDimExpr(currDim); |
| transposeResults.push_back(targetExpr); |
| } |
| } |
| |
| // Checks if only the outer, unit dimensions (of size 1) are permuted. |
| // Such transposes do not materially effect the underlying vector and can |
| // be omitted. EG: perm [1, 0, 2] applied to vector<1x1x8xi32> |
| bool transposeNonOuterUnitDims = false; |
| auto operandShape = cast<ShapedType>(operands[it.index()].getType()); |
| for (auto [index, dim] : |
| llvm::enumerate(ArrayRef<int64_t>(perm).drop_back(1))) { |
| if (dim != static_cast<int64_t>(index) && |
| operandShape.getDimSize(index) != 1) { |
| transposeNonOuterUnitDims = true; |
| break; |
| } |
| } |
| |
| // Do the transpose now if needed so that we can drop the |
| // correct dim using extract later. |
| if (transposeNeeded) { |
| map = AffineMap::get(map.getNumDims(), 0, transposeResults, |
| contractOp.getContext()); |
| if (transposeNonOuterUnitDims) { |
| operands[it.index()] = rewriter.createOrFold<vector::TransposeOp>( |
| loc, operands[it.index()], perm); |
| } |
| } |
| } |
| // We have taken care to have the dim to be dropped be |
| // the leading dim. If its still not leading that means it |
| // does not exist in this operand and hence we do not need |
| // an extract. |
| if (map.getDimPosition(0) == dimToDrop) |
| validExtract = true; |
| |
| for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { |
| int64_t currDim = map.getDimPosition(i); |
| if (currDim == dimToDrop) |
| // This is the dim we are dropping. |
| continue; |
| auto targetExpr = rewriter.getAffineDimExpr( |
| currDim < dimToDrop ? currDim : currDim - 1); |
| results.push_back(targetExpr); |
| } |
| newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results, |
| contractOp.getContext())); |
| // Extract if its a valid extraction, otherwise use the operand |
| // without extraction. |
| newOperands.push_back( |
| validExtract ? rewriter.create<vector::ExtractOp>( |
| loc, operands[it.index()], splatZero(dropDim)) |
| : operands[it.index()]); |
| } |
| |
| // Depending on whether this vector.contract is masked, the replacing Op |
| // should either be a new vector.contract Op or vector.mask Op. |
| Operation *newOp = rewriter.create<vector::ContractionOp>( |
| loc, newOperands[0], newOperands[1], newOperands[2], |
| rewriter.getAffineMapArrayAttr(newIndexingMaps), |
| rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind()); |
| |
| if (maskingOp) { |
| auto newMask = rewriter.create<vector::ExtractOp>(loc, maskingOp.getMask(), |
| splatZero(dropDim)); |
| |
| newOp = mlir::vector::maskOperation(rewriter, newOp, newMask); |
| } |
| |
| return rewriter |
| .create<vector::BroadcastOp>(loc, contractOp->getResultTypes()[0], |
| newOp->getResults()[0]) |
| .getResult(); |
| } |
| |
| namespace { |
| |
| /// Turns vector.contract on vector with leading 1 dimensions into |
| /// vector.extract followed by vector.contract on vector without leading |
| /// 1 dimensions. Also performs transpose of lhs and rhs operands if required |
| /// prior to extract. |
| struct CastAwayContractionLeadingOneDim |
| : public MaskableOpRewritePattern<vector::ContractionOp> { |
| using MaskableOpRewritePattern::MaskableOpRewritePattern; |
| |
| FailureOr<Value> |
| matchAndRewriteMaskableOp(vector::ContractionOp contractOp, |
| MaskingOpInterface maskingOp, |
| PatternRewriter &rewriter) const override { |
| return castAwayContractionLeadingOneDim(contractOp, maskingOp, rewriter); |
| } |
| }; |
| |
| /// Looks at elementwise operations on vectors with at least one leading |
| /// dimension equal 1, e.g. vector<1x[4]x1xf32> (but not vector<2x[4]x1xf32>), |
| /// and cast aways the leading one dimensions (_plural_) and then broadcasts |
| /// the results. |
| /// |
| /// Example before: |
| /// %1 = arith.mulf %arg0, %arg1 : vector<1x4x1xf32> |
| /// Example after: |
| /// %2 = arith.mulf %0, %1 : vector<4x1xf32> |
| /// %3 = vector.broadcast %2 : vector<4x1xf32> to vector<1x4x1xf32> |
| /// |
| /// Does support scalable vectors. |
| class CastAwayElementwiseLeadingOneDim : public RewritePattern { |
| public: |
| CastAwayElementwiseLeadingOneDim(MLIRContext *context, |
| PatternBenefit benefit = 1) |
| : RewritePattern(MatchAnyOpTypeTag(), benefit, context) {} |
| |
| LogicalResult matchAndRewrite(Operation *op, |
| PatternRewriter &rewriter) const override { |
| if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1) |
| return failure(); |
| auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0]); |
| if (!vecType) |
| return failure(); |
| VectorType newVecType = trimLeadingOneDims(vecType); |
| if (newVecType == vecType) |
| return failure(); |
| int64_t dropDim = vecType.getRank() - newVecType.getRank(); |
| SmallVector<Value, 4> newOperands; |
| for (Value operand : op->getOperands()) { |
| if (auto opVecType = dyn_cast<VectorType>(operand.getType())) { |
| newOperands.push_back(rewriter.create<vector::ExtractOp>( |
| op->getLoc(), operand, splatZero(dropDim))); |
| } else { |
| newOperands.push_back(operand); |
| } |
| } |
| Operation *newOp = |
| rewriter.create(op->getLoc(), op->getName().getIdentifier(), |
| newOperands, newVecType, op->getAttrs()); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType, |
| newOp->getResult(0)); |
| return success(); |
| } |
| }; |
| |
| // Drops leading 1 dimensions from vector.constant_mask and inserts a |
| // vector.broadcast back to the original shape. |
| struct CastAwayConstantMaskLeadingOneDim |
| : public OpRewritePattern<vector::ConstantMaskOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::ConstantMaskOp mask, |
| PatternRewriter &rewriter) const override { |
| VectorType oldType = mask.getType(); |
| VectorType newType = trimLeadingOneDims(oldType); |
| |
| if (newType == oldType) |
| return failure(); |
| |
| int64_t dropDim = oldType.getRank() - newType.getRank(); |
| ArrayRef<int64_t> dimSizes = mask.getMaskDimSizes(); |
| |
| // If any of the dropped unit dims has a size of `0`, the entire mask is a |
| // zero mask, else the unit dim has no effect on the mask. |
| int64_t flatLeadingSize = |
| std::accumulate(dimSizes.begin(), dimSizes.begin() + dropDim + 1, |
| static_cast<int64_t>(1), std::multiplies<int64_t>()); |
| SmallVector<int64_t> newDimSizes = {flatLeadingSize}; |
| newDimSizes.append(dimSizes.begin() + dropDim + 1, dimSizes.end()); |
| |
| auto newMask = rewriter.create<vector::ConstantMaskOp>( |
| mask.getLoc(), newType, newDimSizes); |
| rewriter.replaceOpWithNewOp<vector::BroadcastOp>(mask, oldType, newMask); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns |
| .add<CastAwayExtractStridedSliceLeadingOneDim, |
| CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim, |
| CastAwayConstantMaskLeadingOneDim, CastAwayTransferReadLeadingOneDim, |
| CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim, |
| CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit); |
| } |