| //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This provides C++ code generation targeting the Itanium C++ ABI. The class |
| // in this file generates structures that follow the Itanium C++ ABI, which is |
| // documented at: |
| // https://itanium-cxx-abi.github.io/cxx-abi/abi.html |
| // https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html |
| // |
| // It also supports the closely-related ARM ABI, documented at: |
| // https://developer.arm.com/documentation/ihi0041/g/ |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CGCleanup.h" |
| #include "CGRecordLayout.h" |
| #include "CGVTables.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/Type.h" |
| #include "clang/CodeGen/ConstantInitBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| |
| #include <optional> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| class ItaniumCXXABI : public CodeGen::CGCXXABI { |
| /// VTables - All the vtables which have been defined. |
| llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables; |
| |
| /// All the thread wrapper functions that have been used. |
| llvm::SmallVector<std::pair<const VarDecl *, llvm::Function *>, 8> |
| ThreadWrappers; |
| |
| protected: |
| bool UseARMMethodPtrABI; |
| bool UseARMGuardVarABI; |
| bool Use32BitVTableOffsetABI; |
| |
| ItaniumMangleContext &getMangleContext() { |
| return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext()); |
| } |
| |
| public: |
| ItaniumCXXABI(CodeGen::CodeGenModule &CGM, |
| bool UseARMMethodPtrABI = false, |
| bool UseARMGuardVarABI = false) : |
| CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), |
| UseARMGuardVarABI(UseARMGuardVarABI), |
| Use32BitVTableOffsetABI(false) { } |
| |
| bool classifyReturnType(CGFunctionInfo &FI) const override; |
| |
| RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { |
| // If C++ prohibits us from making a copy, pass by address. |
| if (!RD->canPassInRegisters()) |
| return RAA_Indirect; |
| return RAA_Default; |
| } |
| |
| bool isThisCompleteObject(GlobalDecl GD) const override { |
| // The Itanium ABI has separate complete-object vs. base-object |
| // variants of both constructors and destructors. |
| if (isa<CXXDestructorDecl>(GD.getDecl())) { |
| switch (GD.getDtorType()) { |
| case Dtor_Complete: |
| case Dtor_Deleting: |
| return true; |
| |
| case Dtor_Base: |
| return false; |
| |
| case Dtor_Comdat: |
| llvm_unreachable("emitting dtor comdat as function?"); |
| } |
| llvm_unreachable("bad dtor kind"); |
| } |
| if (isa<CXXConstructorDecl>(GD.getDecl())) { |
| switch (GD.getCtorType()) { |
| case Ctor_Complete: |
| return true; |
| |
| case Ctor_Base: |
| return false; |
| |
| case Ctor_CopyingClosure: |
| case Ctor_DefaultClosure: |
| llvm_unreachable("closure ctors in Itanium ABI?"); |
| |
| case Ctor_Comdat: |
| llvm_unreachable("emitting ctor comdat as function?"); |
| } |
| llvm_unreachable("bad dtor kind"); |
| } |
| |
| // No other kinds. |
| return false; |
| } |
| |
| bool isZeroInitializable(const MemberPointerType *MPT) override; |
| |
| llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
| |
| CGCallee |
| EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, |
| const Expr *E, |
| Address This, |
| llvm::Value *&ThisPtrForCall, |
| llvm::Value *MemFnPtr, |
| const MemberPointerType *MPT) override; |
| |
| llvm::Value * |
| EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
| Address Base, |
| llvm::Value *MemPtr, |
| const MemberPointerType *MPT) override; |
| |
| llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
| const CastExpr *E, |
| llvm::Value *Src) override; |
| llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
| llvm::Constant *Src) override; |
| |
| llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
| |
| llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
| llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
| CharUnits offset) override; |
| llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
| llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, |
| CharUnits ThisAdjustment); |
| |
| llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
| llvm::Value *L, llvm::Value *R, |
| const MemberPointerType *MPT, |
| bool Inequality) override; |
| |
| llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| llvm::Value *Addr, |
| const MemberPointerType *MPT) override; |
| |
| void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
| Address Ptr, QualType ElementType, |
| const CXXDestructorDecl *Dtor) override; |
| |
| void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
| void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
| |
| void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
| |
| llvm::CallInst * |
| emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| llvm::Value *Exn) override; |
| |
| void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD); |
| llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
| CatchTypeInfo |
| getAddrOfCXXCatchHandlerType(QualType Ty, |
| QualType CatchHandlerType) override { |
| return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0}; |
| } |
| |
| bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override; |
| void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
| llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
| Address ThisPtr, |
| llvm::Type *StdTypeInfoPtrTy) override; |
| |
| bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| QualType SrcRecordTy) override; |
| |
| /// Determine whether we know that all instances of type RecordTy will have |
| /// the same vtable pointer values, that is distinct from all other vtable |
| /// pointers. While this is required by the Itanium ABI, it doesn't happen in |
| /// practice in some cases due to language extensions. |
| bool hasUniqueVTablePointer(QualType RecordTy) { |
| const CXXRecordDecl *RD = RecordTy->getAsCXXRecordDecl(); |
| |
| // Under -fapple-kext, multiple definitions of the same vtable may be |
| // emitted. |
| if (!CGM.getCodeGenOpts().AssumeUniqueVTables || |
| getContext().getLangOpts().AppleKext) |
| return false; |
| |
| // If the type_info* would be null, the vtable might be merged with that of |
| // another type. |
| if (!CGM.shouldEmitRTTI()) |
| return false; |
| |
| // If there's only one definition of the vtable in the program, it has a |
| // unique address. |
| if (!llvm::GlobalValue::isWeakForLinker(CGM.getVTableLinkage(RD))) |
| return true; |
| |
| // Even if there are multiple definitions of the vtable, they are required |
| // by the ABI to use the same symbol name, so should be merged at load |
| // time. However, if the class has hidden visibility, there can be |
| // different versions of the class in different modules, and the ABI |
| // library might treat them as being the same. |
| if (CGM.GetLLVMVisibility(RD->getVisibility()) != |
| llvm::GlobalValue::DefaultVisibility) |
| return false; |
| |
| return true; |
| } |
| |
| bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
| return hasUniqueVTablePointer(DestRecordTy); |
| } |
| |
| llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
| QualType SrcRecordTy, QualType DestTy, |
| QualType DestRecordTy, |
| llvm::BasicBlock *CastEnd) override; |
| |
| llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address ThisAddr, |
| QualType SrcRecordTy, QualType DestTy, |
| QualType DestRecordTy, |
| llvm::BasicBlock *CastSuccess, |
| llvm::BasicBlock *CastFail) override; |
| |
| llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
| QualType SrcRecordTy) override; |
| |
| bool EmitBadCastCall(CodeGenFunction &CGF) override; |
| |
| llvm::Value * |
| GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
| const CXXRecordDecl *ClassDecl, |
| const CXXRecordDecl *BaseClassDecl) override; |
| |
| void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
| |
| AddedStructorArgCounts |
| buildStructorSignature(GlobalDecl GD, |
| SmallVectorImpl<CanQualType> &ArgTys) override; |
| |
| bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
| CXXDtorType DT) const override { |
| // Itanium does not emit any destructor variant as an inline thunk. |
| // Delegating may occur as an optimization, but all variants are either |
| // emitted with external linkage or as linkonce if they are inline and used. |
| return false; |
| } |
| |
| void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
| |
| void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
| FunctionArgList &Params) override; |
| |
| void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
| |
| AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
| const CXXConstructorDecl *D, |
| CXXCtorType Type, |
| bool ForVirtualBase, |
| bool Delegating) override; |
| |
| llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
| const CXXDestructorDecl *DD, |
| CXXDtorType Type, |
| bool ForVirtualBase, |
| bool Delegating) override; |
| |
| void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
| CXXDtorType Type, bool ForVirtualBase, |
| bool Delegating, Address This, |
| QualType ThisTy) override; |
| |
| void emitVTableDefinitions(CodeGenVTables &CGVT, |
| const CXXRecordDecl *RD) override; |
| |
| bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
| CodeGenFunction::VPtr Vptr) override; |
| |
| bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
| return true; |
| } |
| |
| llvm::Constant * |
| getVTableAddressPoint(BaseSubobject Base, |
| const CXXRecordDecl *VTableClass) override; |
| |
| llvm::Value *getVTableAddressPointInStructor( |
| CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
| BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
| |
| llvm::Value *getVTableAddressPointInStructorWithVTT( |
| CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
| BaseSubobject Base, const CXXRecordDecl *NearestVBase); |
| |
| llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
| CharUnits VPtrOffset) override; |
| |
| CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
| Address This, llvm::Type *Ty, |
| SourceLocation Loc) override; |
| |
| llvm::Value * |
| EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, |
| CXXDtorType DtorType, Address This, |
| DeleteOrMemberCallExpr E, |
| llvm::CallBase **CallOrInvoke) override; |
| |
| void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
| |
| bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; |
| bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl *RD) const; |
| |
| void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, |
| bool ReturnAdjustment) override { |
| // Allow inlining of thunks by emitting them with available_externally |
| // linkage together with vtables when needed. |
| if (ForVTable && !Thunk->hasLocalLinkage()) |
| Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); |
| CGM.setGVProperties(Thunk, GD); |
| } |
| |
| bool exportThunk() override { return true; } |
| |
| llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
| const CXXRecordDecl *UnadjustedThisClass, |
| const ThunkInfo &TI) override; |
| |
| llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
| const CXXRecordDecl *UnadjustedRetClass, |
| const ReturnAdjustment &RA) override; |
| |
| size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, |
| FunctionArgList &Args) const override { |
| assert(!Args.empty() && "expected the arglist to not be empty!"); |
| return Args.size() - 1; |
| } |
| |
| StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; } |
| StringRef GetDeletedVirtualCallName() override |
| { return "__cxa_deleted_virtual"; } |
| |
| CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
| Address InitializeArrayCookie(CodeGenFunction &CGF, |
| Address NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType) override; |
| llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
| Address allocPtr, |
| CharUnits cookieSize) override; |
| |
| void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::GlobalVariable *DeclPtr, |
| bool PerformInit) override; |
| void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::FunctionCallee dtor, |
| llvm::Constant *addr) override; |
| |
| llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| llvm::Value *Val); |
| void EmitThreadLocalInitFuncs( |
| CodeGenModule &CGM, |
| ArrayRef<const VarDecl *> CXXThreadLocals, |
| ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
| |
| bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
| return !isEmittedWithConstantInitializer(VD) || |
| mayNeedDestruction(VD); |
| } |
| LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
| QualType LValType) override; |
| |
| bool NeedsVTTParameter(GlobalDecl GD) override; |
| |
| llvm::Constant * |
| getOrCreateVirtualFunctionPointerThunk(const CXXMethodDecl *MD); |
| |
| /**************************** RTTI Uniqueness ******************************/ |
| |
| protected: |
| /// Returns true if the ABI requires RTTI type_info objects to be unique |
| /// across a program. |
| virtual bool shouldRTTIBeUnique() const { return true; } |
| |
| public: |
| /// What sort of unique-RTTI behavior should we use? |
| enum RTTIUniquenessKind { |
| /// We are guaranteeing, or need to guarantee, that the RTTI string |
| /// is unique. |
| RUK_Unique, |
| |
| /// We are not guaranteeing uniqueness for the RTTI string, so we |
| /// can demote to hidden visibility but must use string comparisons. |
| RUK_NonUniqueHidden, |
| |
| /// We are not guaranteeing uniqueness for the RTTI string, so we |
| /// have to use string comparisons, but we also have to emit it with |
| /// non-hidden visibility. |
| RUK_NonUniqueVisible |
| }; |
| |
| /// Return the required visibility status for the given type and linkage in |
| /// the current ABI. |
| RTTIUniquenessKind |
| classifyRTTIUniqueness(QualType CanTy, |
| llvm::GlobalValue::LinkageTypes Linkage) const; |
| friend class ItaniumRTTIBuilder; |
| |
| void emitCXXStructor(GlobalDecl GD) override; |
| |
| std::pair<llvm::Value *, const CXXRecordDecl *> |
| LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| const CXXRecordDecl *RD) override; |
| |
| private: |
| llvm::Constant * |
| getSignedVirtualMemberFunctionPointer(const CXXMethodDecl *MD); |
| |
| bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { |
| const auto &VtableLayout = |
| CGM.getItaniumVTableContext().getVTableLayout(RD); |
| |
| for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
| // Skip empty slot. |
| if (!VtableComponent.isUsedFunctionPointerKind()) |
| continue; |
| |
| const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
| const FunctionDecl *FD = Method->getDefinition(); |
| const bool IsInlined = |
| Method->getCanonicalDecl()->isInlined() || (FD && FD->isInlined()); |
| if (!IsInlined) |
| continue; |
| |
| StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl()); |
| auto *Entry = CGM.GetGlobalValue(Name); |
| // This checks if virtual inline function has already been emitted. |
| // Note that it is possible that this inline function would be emitted |
| // after trying to emit vtable speculatively. Because of this we do |
| // an extra pass after emitting all deferred vtables to find and emit |
| // these vtables opportunistically. |
| if (!Entry || Entry->isDeclaration()) |
| return true; |
| } |
| return false; |
| } |
| |
| bool isVTableHidden(const CXXRecordDecl *RD) const { |
| const auto &VtableLayout = |
| CGM.getItaniumVTableContext().getVTableLayout(RD); |
| |
| for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
| if (VtableComponent.isRTTIKind()) { |
| const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); |
| if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) |
| return true; |
| } else if (VtableComponent.isUsedFunctionPointerKind()) { |
| const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
| if (Method->getVisibility() == Visibility::HiddenVisibility && |
| !Method->isDefined()) |
| return true; |
| } |
| } |
| return false; |
| } |
| }; |
| |
| class ARMCXXABI : public ItaniumCXXABI { |
| public: |
| ARMCXXABI(CodeGen::CodeGenModule &CGM) : |
| ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| /*UseARMGuardVarABI=*/true) {} |
| |
| bool constructorsAndDestructorsReturnThis() const override { return true; } |
| |
| void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, |
| QualType ResTy) override; |
| |
| CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
| Address InitializeArrayCookie(CodeGenFunction &CGF, |
| Address NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType) override; |
| llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, |
| CharUnits cookieSize) override; |
| }; |
| |
| class AppleARM64CXXABI : public ARMCXXABI { |
| public: |
| AppleARM64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { |
| Use32BitVTableOffsetABI = true; |
| } |
| |
| // ARM64 libraries are prepared for non-unique RTTI. |
| bool shouldRTTIBeUnique() const override { return false; } |
| }; |
| |
| class FuchsiaCXXABI final : public ItaniumCXXABI { |
| public: |
| explicit FuchsiaCXXABI(CodeGen::CodeGenModule &CGM) |
| : ItaniumCXXABI(CGM) {} |
| |
| private: |
| bool constructorsAndDestructorsReturnThis() const override { return true; } |
| }; |
| |
| class WebAssemblyCXXABI final : public ItaniumCXXABI { |
| public: |
| explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) |
| : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| /*UseARMGuardVarABI=*/true) {} |
| void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
| llvm::CallInst * |
| emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| llvm::Value *Exn) override; |
| |
| private: |
| bool constructorsAndDestructorsReturnThis() const override { return true; } |
| bool canCallMismatchedFunctionType() const override { return false; } |
| }; |
| |
| class XLCXXABI final : public ItaniumCXXABI { |
| public: |
| explicit XLCXXABI(CodeGen::CodeGenModule &CGM) |
| : ItaniumCXXABI(CGM) {} |
| |
| void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::FunctionCallee dtor, |
| llvm::Constant *addr) override; |
| |
| bool useSinitAndSterm() const override { return true; } |
| |
| private: |
| void emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
| llvm::Constant *addr); |
| }; |
| } |
| |
| CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { |
| switch (CGM.getContext().getCXXABIKind()) { |
| // For IR-generation purposes, there's no significant difference |
| // between the ARM and iOS ABIs. |
| case TargetCXXABI::GenericARM: |
| case TargetCXXABI::iOS: |
| case TargetCXXABI::WatchOS: |
| return new ARMCXXABI(CGM); |
| |
| case TargetCXXABI::AppleARM64: |
| return new AppleARM64CXXABI(CGM); |
| |
| case TargetCXXABI::Fuchsia: |
| return new FuchsiaCXXABI(CGM); |
| |
| // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't |
| // include the other 32-bit ARM oddities: constructor/destructor return values |
| // and array cookies. |
| case TargetCXXABI::GenericAArch64: |
| return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
| /*UseARMGuardVarABI=*/true); |
| |
| case TargetCXXABI::GenericMIPS: |
| return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); |
| |
| case TargetCXXABI::WebAssembly: |
| return new WebAssemblyCXXABI(CGM); |
| |
| case TargetCXXABI::XL: |
| return new XLCXXABI(CGM); |
| |
| case TargetCXXABI::GenericItanium: |
| return new ItaniumCXXABI(CGM); |
| |
| case TargetCXXABI::Microsoft: |
| llvm_unreachable("Microsoft ABI is not Itanium-based"); |
| } |
| llvm_unreachable("bad ABI kind"); |
| } |
| |
| llvm::Type * |
| ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
| if (MPT->isMemberDataPointer()) |
| return CGM.PtrDiffTy; |
| return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy); |
| } |
| |
| /// In the Itanium and ARM ABIs, method pointers have the form: |
| /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; |
| /// |
| /// In the Itanium ABI: |
| /// - method pointers are virtual if (memptr.ptr & 1) is nonzero |
| /// - the this-adjustment is (memptr.adj) |
| /// - the virtual offset is (memptr.ptr - 1) |
| /// |
| /// In the ARM ABI: |
| /// - method pointers are virtual if (memptr.adj & 1) is nonzero |
| /// - the this-adjustment is (memptr.adj >> 1) |
| /// - the virtual offset is (memptr.ptr) |
| /// ARM uses 'adj' for the virtual flag because Thumb functions |
| /// may be only single-byte aligned. |
| /// |
| /// If the member is virtual, the adjusted 'this' pointer points |
| /// to a vtable pointer from which the virtual offset is applied. |
| /// |
| /// If the member is non-virtual, memptr.ptr is the address of |
| /// the function to call. |
| CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( |
| CodeGenFunction &CGF, const Expr *E, Address ThisAddr, |
| llvm::Value *&ThisPtrForCall, |
| llvm::Value *MemFnPtr, const MemberPointerType *MPT) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| const FunctionProtoType *FPT = |
| MPT->getPointeeType()->castAs<FunctionProtoType>(); |
| auto *RD = MPT->getMostRecentCXXRecordDecl(); |
| |
| llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); |
| |
| llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); |
| llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); |
| llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); |
| |
| // Extract memptr.adj, which is in the second field. |
| llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); |
| |
| // Compute the true adjustment. |
| llvm::Value *Adj = RawAdj; |
| if (UseARMMethodPtrABI) |
| Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); |
| |
| // Apply the adjustment and cast back to the original struct type |
| // for consistency. |
| llvm::Value *This = ThisAddr.emitRawPointer(CGF); |
| This = Builder.CreateInBoundsGEP(Builder.getInt8Ty(), This, Adj); |
| ThisPtrForCall = This; |
| |
| // Load the function pointer. |
| llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); |
| |
| // If the LSB in the function pointer is 1, the function pointer points to |
| // a virtual function. |
| llvm::Value *IsVirtual; |
| if (UseARMMethodPtrABI) |
| IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); |
| else |
| IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); |
| IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); |
| Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); |
| |
| // In the virtual path, the adjustment left 'This' pointing to the |
| // vtable of the correct base subobject. The "function pointer" is an |
| // offset within the vtable (+1 for the virtual flag on non-ARM). |
| CGF.EmitBlock(FnVirtual); |
| |
| // Cast the adjusted this to a pointer to vtable pointer and load. |
| llvm::Type *VTableTy = CGF.CGM.GlobalsInt8PtrTy; |
| CharUnits VTablePtrAlign = |
| CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD, |
| CGF.getPointerAlign()); |
| llvm::Value *VTable = CGF.GetVTablePtr( |
| Address(This, ThisAddr.getElementType(), VTablePtrAlign), VTableTy, RD); |
| |
| // Apply the offset. |
| // On ARM64, to reserve extra space in virtual member function pointers, |
| // we only pay attention to the low 32 bits of the offset. |
| llvm::Value *VTableOffset = FnAsInt; |
| if (!UseARMMethodPtrABI) |
| VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); |
| if (Use32BitVTableOffsetABI) { |
| VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty); |
| VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy); |
| } |
| |
| // Check the address of the function pointer if CFI on member function |
| // pointers is enabled. |
| llvm::Constant *CheckSourceLocation; |
| llvm::Constant *CheckTypeDesc; |
| bool ShouldEmitCFICheck = CGF.SanOpts.has(SanitizerKind::CFIMFCall) && |
| CGM.HasHiddenLTOVisibility(RD); |
| bool ShouldEmitVFEInfo = CGM.getCodeGenOpts().VirtualFunctionElimination && |
| CGM.HasHiddenLTOVisibility(RD); |
| bool ShouldEmitWPDInfo = |
| CGM.getCodeGenOpts().WholeProgramVTables && |
| // Don't insert type tests if we are forcing public visibility. |
| !CGM.AlwaysHasLTOVisibilityPublic(RD); |
| llvm::Value *VirtualFn = nullptr; |
| |
| { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| llvm::Value *TypeId = nullptr; |
| llvm::Value *CheckResult = nullptr; |
| |
| if (ShouldEmitCFICheck || ShouldEmitVFEInfo || ShouldEmitWPDInfo) { |
| // If doing CFI, VFE or WPD, we will need the metadata node to check |
| // against. |
| llvm::Metadata *MD = |
| CGM.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT, 0)); |
| TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); |
| } |
| |
| if (ShouldEmitVFEInfo) { |
| llvm::Value *VFPAddr = |
| Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
| |
| // If doing VFE, load from the vtable with a type.checked.load intrinsic |
| // call. Note that we use the GEP to calculate the address to load from |
| // and pass 0 as the offset to the intrinsic. This is because every |
| // vtable slot of the correct type is marked with matching metadata, and |
| // we know that the load must be from one of these slots. |
| llvm::Value *CheckedLoad = Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), |
| {VFPAddr, llvm::ConstantInt::get(CGM.Int32Ty, 0), TypeId}); |
| CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); |
| VirtualFn = Builder.CreateExtractValue(CheckedLoad, 0); |
| } else { |
| // When not doing VFE, emit a normal load, as it allows more |
| // optimisations than type.checked.load. |
| if (ShouldEmitCFICheck || ShouldEmitWPDInfo) { |
| llvm::Value *VFPAddr = |
| Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
| llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) |
| ? llvm::Intrinsic::type_test |
| : llvm::Intrinsic::public_type_test; |
| |
| CheckResult = |
| Builder.CreateCall(CGM.getIntrinsic(IID), {VFPAddr, TypeId}); |
| } |
| |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| VirtualFn = CGF.Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::load_relative, |
| {VTableOffset->getType()}), |
| {VTable, VTableOffset}); |
| } else { |
| llvm::Value *VFPAddr = |
| CGF.Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
| VirtualFn = CGF.Builder.CreateAlignedLoad(CGF.UnqualPtrTy, VFPAddr, |
| CGF.getPointerAlign(), |
| "memptr.virtualfn"); |
| } |
| } |
| assert(VirtualFn && "Virtual fuction pointer not created!"); |
| assert((!ShouldEmitCFICheck || !ShouldEmitVFEInfo || !ShouldEmitWPDInfo || |
| CheckResult) && |
| "Check result required but not created!"); |
| |
| if (ShouldEmitCFICheck) { |
| // If doing CFI, emit the check. |
| CheckSourceLocation = CGF.EmitCheckSourceLocation(E->getBeginLoc()); |
| CheckTypeDesc = CGF.EmitCheckTypeDescriptor(QualType(MPT, 0)); |
| llvm::Constant *StaticData[] = { |
| llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_VMFCall), |
| CheckSourceLocation, |
| CheckTypeDesc, |
| }; |
| |
| if (CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIMFCall)) { |
| CGF.EmitTrapCheck(CheckResult, SanitizerHandler::CFICheckFail); |
| } else { |
| llvm::Value *AllVtables = llvm::MetadataAsValue::get( |
| CGM.getLLVMContext(), |
| llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); |
| llvm::Value *ValidVtable = Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); |
| CGF.EmitCheck(std::make_pair(CheckResult, SanitizerKind::SO_CFIMFCall), |
| SanitizerHandler::CFICheckFail, StaticData, |
| {VTable, ValidVtable}); |
| } |
| |
| FnVirtual = Builder.GetInsertBlock(); |
| } |
| } // End of sanitizer scope |
| |
| CGF.EmitBranch(FnEnd); |
| |
| // In the non-virtual path, the function pointer is actually a |
| // function pointer. |
| CGF.EmitBlock(FnNonVirtual); |
| llvm::Value *NonVirtualFn = |
| Builder.CreateIntToPtr(FnAsInt, CGF.UnqualPtrTy, "memptr.nonvirtualfn"); |
| |
| // Check the function pointer if CFI on member function pointers is enabled. |
| if (ShouldEmitCFICheck) { |
| CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
| if (RD->hasDefinition()) { |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| |
| llvm::Constant *StaticData[] = { |
| llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_NVMFCall), |
| CheckSourceLocation, |
| CheckTypeDesc, |
| }; |
| |
| llvm::Value *Bit = Builder.getFalse(); |
| for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) { |
| llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType( |
| getContext().getMemberPointerType(MPT->getPointeeType(), |
| /*Qualifier=*/nullptr, |
| Base->getCanonicalDecl())); |
| llvm::Value *TypeId = |
| llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); |
| |
| llvm::Value *TypeTest = |
| Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), |
| {NonVirtualFn, TypeId}); |
| Bit = Builder.CreateOr(Bit, TypeTest); |
| } |
| |
| CGF.EmitCheck(std::make_pair(Bit, SanitizerKind::SO_CFIMFCall), |
| SanitizerHandler::CFICheckFail, StaticData, |
| {NonVirtualFn, llvm::UndefValue::get(CGF.IntPtrTy)}); |
| |
| FnNonVirtual = Builder.GetInsertBlock(); |
| } |
| } |
| |
| // We're done. |
| CGF.EmitBlock(FnEnd); |
| llvm::PHINode *CalleePtr = Builder.CreatePHI(CGF.UnqualPtrTy, 2); |
| CalleePtr->addIncoming(VirtualFn, FnVirtual); |
| CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual); |
| |
| CGPointerAuthInfo PointerAuth; |
| |
| if (const auto &Schema = |
| CGM.getCodeGenOpts().PointerAuth.CXXMemberFunctionPointers) { |
| llvm::PHINode *DiscriminatorPHI = Builder.CreatePHI(CGF.IntPtrTy, 2); |
| DiscriminatorPHI->addIncoming(llvm::ConstantInt::get(CGF.IntPtrTy, 0), |
| FnVirtual); |
| const auto &AuthInfo = |
| CGM.getMemberFunctionPointerAuthInfo(QualType(MPT, 0)); |
| assert(Schema.getKey() == AuthInfo.getKey() && |
| "Keys for virtual and non-virtual member functions must match"); |
| auto *NonVirtualDiscriminator = AuthInfo.getDiscriminator(); |
| DiscriminatorPHI->addIncoming(NonVirtualDiscriminator, FnNonVirtual); |
| PointerAuth = CGPointerAuthInfo( |
| Schema.getKey(), Schema.getAuthenticationMode(), Schema.isIsaPointer(), |
| Schema.authenticatesNullValues(), DiscriminatorPHI); |
| } |
| |
| CGCallee Callee(FPT, CalleePtr, PointerAuth); |
| return Callee; |
| } |
| |
| /// Compute an l-value by applying the given pointer-to-member to a |
| /// base object. |
| llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( |
| CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
| const MemberPointerType *MPT) { |
| assert(MemPtr->getType() == CGM.PtrDiffTy); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| // Apply the offset, which we assume is non-null. |
| return Builder.CreateInBoundsGEP(CGF.Int8Ty, Base.emitRawPointer(CGF), MemPtr, |
| "memptr.offset"); |
| } |
| |
| // See if it's possible to return a constant signed pointer. |
| static llvm::Constant *pointerAuthResignConstant( |
| llvm::Value *Ptr, const CGPointerAuthInfo &CurAuthInfo, |
| const CGPointerAuthInfo &NewAuthInfo, CodeGenModule &CGM) { |
| const auto *CPA = dyn_cast<llvm::ConstantPtrAuth>(Ptr); |
| |
| if (!CPA) |
| return nullptr; |
| |
| assert(CPA->getKey()->getZExtValue() == CurAuthInfo.getKey() && |
| CPA->getAddrDiscriminator()->isZeroValue() && |
| CPA->getDiscriminator() == CurAuthInfo.getDiscriminator() && |
| "unexpected key or discriminators"); |
| |
| return CGM.getConstantSignedPointer( |
| CPA->getPointer(), NewAuthInfo.getKey(), nullptr, |
| cast<llvm::ConstantInt>(NewAuthInfo.getDiscriminator())); |
| } |
| |
| /// Perform a bitcast, derived-to-base, or base-to-derived member pointer |
| /// conversion. |
| /// |
| /// Bitcast conversions are always a no-op under Itanium. |
| /// |
| /// Obligatory offset/adjustment diagram: |
| /// <-- offset --> <-- adjustment --> |
| /// |--------------------------|----------------------|--------------------| |
| /// ^Derived address point ^Base address point ^Member address point |
| /// |
| /// So when converting a base member pointer to a derived member pointer, |
| /// we add the offset to the adjustment because the address point has |
| /// decreased; and conversely, when converting a derived MP to a base MP |
| /// we subtract the offset from the adjustment because the address point |
| /// has increased. |
| /// |
| /// The standard forbids (at compile time) conversion to and from |
| /// virtual bases, which is why we don't have to consider them here. |
| /// |
| /// The standard forbids (at run time) casting a derived MP to a base |
| /// MP when the derived MP does not point to a member of the base. |
| /// This is why -1 is a reasonable choice for null data member |
| /// pointers. |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
| const CastExpr *E, |
| llvm::Value *src) { |
| // Use constant emission if we can. |
| if (isa<llvm::Constant>(src)) |
| return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); |
| |
| assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| E->getCastKind() == CK_ReinterpretMemberPointer); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| QualType DstType = E->getType(); |
| |
| if (DstType->isMemberFunctionPointerType()) { |
| if (const auto &NewAuthInfo = |
| CGM.getMemberFunctionPointerAuthInfo(DstType)) { |
| QualType SrcType = E->getSubExpr()->getType(); |
| assert(SrcType->isMemberFunctionPointerType()); |
| const auto &CurAuthInfo = CGM.getMemberFunctionPointerAuthInfo(SrcType); |
| llvm::Value *MemFnPtr = Builder.CreateExtractValue(src, 0, "memptr.ptr"); |
| llvm::Type *OrigTy = MemFnPtr->getType(); |
| |
| llvm::BasicBlock *StartBB = Builder.GetInsertBlock(); |
| llvm::BasicBlock *ResignBB = CGF.createBasicBlock("resign"); |
| llvm::BasicBlock *MergeBB = CGF.createBasicBlock("merge"); |
| |
| // Check whether we have a virtual offset or a pointer to a function. |
| assert(UseARMMethodPtrABI && "ARM ABI expected"); |
| llvm::Value *Adj = Builder.CreateExtractValue(src, 1, "memptr.adj"); |
| llvm::Constant *Ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); |
| llvm::Value *AndVal = Builder.CreateAnd(Adj, Ptrdiff_1); |
| llvm::Value *IsVirtualOffset = |
| Builder.CreateIsNotNull(AndVal, "is.virtual.offset"); |
| Builder.CreateCondBr(IsVirtualOffset, MergeBB, ResignBB); |
| |
| CGF.EmitBlock(ResignBB); |
| llvm::Type *PtrTy = llvm::PointerType::getUnqual(CGM.getLLVMContext()); |
| MemFnPtr = Builder.CreateIntToPtr(MemFnPtr, PtrTy); |
| MemFnPtr = |
| CGF.emitPointerAuthResign(MemFnPtr, SrcType, CurAuthInfo, NewAuthInfo, |
| isa<llvm::Constant>(src)); |
| MemFnPtr = Builder.CreatePtrToInt(MemFnPtr, OrigTy); |
| llvm::Value *ResignedVal = Builder.CreateInsertValue(src, MemFnPtr, 0); |
| ResignBB = Builder.GetInsertBlock(); |
| |
| CGF.EmitBlock(MergeBB); |
| llvm::PHINode *NewSrc = Builder.CreatePHI(src->getType(), 2); |
| NewSrc->addIncoming(src, StartBB); |
| NewSrc->addIncoming(ResignedVal, ResignBB); |
| src = NewSrc; |
| } |
| } |
| |
| // Under Itanium, reinterprets don't require any additional processing. |
| if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| |
| llvm::Constant *adj = getMemberPointerAdjustment(E); |
| if (!adj) return src; |
| |
| bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| |
| const MemberPointerType *destTy = |
| E->getType()->castAs<MemberPointerType>(); |
| |
| // For member data pointers, this is just a matter of adding the |
| // offset if the source is non-null. |
| if (destTy->isMemberDataPointer()) { |
| llvm::Value *dst; |
| if (isDerivedToBase) |
| dst = Builder.CreateNSWSub(src, adj, "adj"); |
| else |
| dst = Builder.CreateNSWAdd(src, adj, "adj"); |
| |
| // Null check. |
| llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); |
| llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); |
| return Builder.CreateSelect(isNull, src, dst); |
| } |
| |
| // The this-adjustment is left-shifted by 1 on ARM. |
| if (UseARMMethodPtrABI) { |
| uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
| offset <<= 1; |
| adj = llvm::ConstantInt::get(adj->getType(), offset); |
| } |
| |
| llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); |
| llvm::Value *dstAdj; |
| if (isDerivedToBase) |
| dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); |
| else |
| dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); |
| |
| return Builder.CreateInsertValue(src, dstAdj, 1); |
| } |
| |
| static llvm::Constant * |
| pointerAuthResignMemberFunctionPointer(llvm::Constant *Src, QualType DestType, |
| QualType SrcType, CodeGenModule &CGM) { |
| assert(DestType->isMemberFunctionPointerType() && |
| SrcType->isMemberFunctionPointerType() && |
| "member function pointers expected"); |
| if (DestType == SrcType) |
| return Src; |
| |
| const auto &NewAuthInfo = CGM.getMemberFunctionPointerAuthInfo(DestType); |
| const auto &CurAuthInfo = CGM.getMemberFunctionPointerAuthInfo(SrcType); |
| |
| if (!NewAuthInfo && !CurAuthInfo) |
| return Src; |
| |
| llvm::Constant *MemFnPtr = Src->getAggregateElement(0u); |
| if (MemFnPtr->getNumOperands() == 0) { |
| // src must be a pair of null pointers. |
| assert(isa<llvm::ConstantInt>(MemFnPtr) && "constant int expected"); |
| return Src; |
| } |
| |
| llvm::Constant *ConstPtr = pointerAuthResignConstant( |
| cast<llvm::User>(MemFnPtr)->getOperand(0), CurAuthInfo, NewAuthInfo, CGM); |
| ConstPtr = llvm::ConstantExpr::getPtrToInt(ConstPtr, MemFnPtr->getType()); |
| return ConstantFoldInsertValueInstruction(Src, ConstPtr, 0); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
| llvm::Constant *src) { |
| assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
| E->getCastKind() == CK_BaseToDerivedMemberPointer || |
| E->getCastKind() == CK_ReinterpretMemberPointer); |
| |
| QualType DstType = E->getType(); |
| |
| if (DstType->isMemberFunctionPointerType()) |
| src = pointerAuthResignMemberFunctionPointer( |
| src, DstType, E->getSubExpr()->getType(), CGM); |
| |
| // Under Itanium, reinterprets don't require any additional processing. |
| if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
| |
| // If the adjustment is trivial, we don't need to do anything. |
| llvm::Constant *adj = getMemberPointerAdjustment(E); |
| if (!adj) return src; |
| |
| bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
| |
| const MemberPointerType *destTy = |
| E->getType()->castAs<MemberPointerType>(); |
| |
| // For member data pointers, this is just a matter of adding the |
| // offset if the source is non-null. |
| if (destTy->isMemberDataPointer()) { |
| // null maps to null. |
| if (src->isAllOnesValue()) return src; |
| |
| if (isDerivedToBase) |
| return llvm::ConstantExpr::getNSWSub(src, adj); |
| else |
| return llvm::ConstantExpr::getNSWAdd(src, adj); |
| } |
| |
| // The this-adjustment is left-shifted by 1 on ARM. |
| if (UseARMMethodPtrABI) { |
| uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
| offset <<= 1; |
| adj = llvm::ConstantInt::get(adj->getType(), offset); |
| } |
| |
| llvm::Constant *srcAdj = src->getAggregateElement(1); |
| llvm::Constant *dstAdj; |
| if (isDerivedToBase) |
| dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); |
| else |
| dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); |
| |
| llvm::Constant *res = ConstantFoldInsertValueInstruction(src, dstAdj, 1); |
| assert(res != nullptr && "Folding must succeed"); |
| return res; |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
| // Itanium C++ ABI 2.3: |
| // A NULL pointer is represented as -1. |
| if (MPT->isMemberDataPointer()) |
| return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); |
| |
| llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); |
| llvm::Constant *Values[2] = { Zero, Zero }; |
| return llvm::ConstantStruct::getAnon(Values); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
| CharUnits offset) { |
| // Itanium C++ ABI 2.3: |
| // A pointer to data member is an offset from the base address of |
| // the class object containing it, represented as a ptrdiff_t |
| return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
| return BuildMemberPointer(MD, CharUnits::Zero()); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, |
| CharUnits ThisAdjustment) { |
| assert(MD->isInstance() && "Member function must not be static!"); |
| |
| CodeGenTypes &Types = CGM.getTypes(); |
| |
| // Get the function pointer (or index if this is a virtual function). |
| llvm::Constant *MemPtr[2]; |
| if (MD->isVirtual()) { |
| uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); |
| uint64_t VTableOffset; |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| // Multiply by 4-byte relative offsets. |
| VTableOffset = Index * 4; |
| } else { |
| const ASTContext &Context = getContext(); |
| CharUnits PointerWidth = Context.toCharUnitsFromBits( |
| Context.getTargetInfo().getPointerWidth(LangAS::Default)); |
| VTableOffset = Index * PointerWidth.getQuantity(); |
| } |
| |
| if (UseARMMethodPtrABI) { |
| // ARM C++ ABI 3.2.1: |
| // This ABI specifies that adj contains twice the this |
| // adjustment, plus 1 if the member function is virtual. The |
| // least significant bit of adj then makes exactly the same |
| // discrimination as the least significant bit of ptr does for |
| // Itanium. |
| |
| // We cannot use the Itanium ABI's representation for virtual member |
| // function pointers under pointer authentication because it would |
| // require us to store both the virtual offset and the constant |
| // discriminator in the pointer, which would be immediately vulnerable |
| // to attack. Instead we introduce a thunk that does the virtual dispatch |
| // and store it as if it were a non-virtual member function. This means |
| // that virtual function pointers may not compare equal anymore, but |
| // fortunately they aren't required to by the standard, and we do make |
| // a best-effort attempt to re-use the thunk. |
| // |
| // To support interoperation with code in which pointer authentication |
| // is disabled, derefencing a member function pointer must still handle |
| // the virtual case, but it can use a discriminator which should never |
| // be valid. |
| const auto &Schema = |
| CGM.getCodeGenOpts().PointerAuth.CXXMemberFunctionPointers; |
| if (Schema) |
| MemPtr[0] = llvm::ConstantExpr::getPtrToInt( |
| getSignedVirtualMemberFunctionPointer(MD), CGM.PtrDiffTy); |
| else |
| MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); |
| // Don't set the LSB of adj to 1 if pointer authentication for member |
| // function pointers is enabled. |
| MemPtr[1] = llvm::ConstantInt::get( |
| CGM.PtrDiffTy, 2 * ThisAdjustment.getQuantity() + !Schema); |
| } else { |
| // Itanium C++ ABI 2.3: |
| // For a virtual function, [the pointer field] is 1 plus the |
| // virtual table offset (in bytes) of the function, |
| // represented as a ptrdiff_t. |
| MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); |
| MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
| ThisAdjustment.getQuantity()); |
| } |
| } else { |
| const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| llvm::Type *Ty; |
| // Check whether the function has a computable LLVM signature. |
| if (Types.isFuncTypeConvertible(FPT)) { |
| // The function has a computable LLVM signature; use the correct type. |
| Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); |
| } else { |
| // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
| // function type is incomplete. |
| Ty = CGM.PtrDiffTy; |
| } |
| llvm::Constant *addr = CGM.getMemberFunctionPointer(MD, Ty); |
| |
| MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); |
| MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
| (UseARMMethodPtrABI ? 2 : 1) * |
| ThisAdjustment.getQuantity()); |
| } |
| |
| return llvm::ConstantStruct::getAnon(MemPtr); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, |
| QualType MPType) { |
| const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); |
| const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| if (!MPD) |
| return EmitNullMemberPointer(MPT); |
| |
| CharUnits ThisAdjustment = getContext().getMemberPointerPathAdjustment(MP); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { |
| llvm::Constant *Src = BuildMemberPointer(MD, ThisAdjustment); |
| QualType SrcType = getContext().getMemberPointerType( |
| MD->getType(), /*Qualifier=*/nullptr, MD->getParent()); |
| return pointerAuthResignMemberFunctionPointer(Src, MPType, SrcType, CGM); |
| } |
| |
| CharUnits FieldOffset = |
| getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); |
| return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); |
| } |
| |
| /// The comparison algorithm is pretty easy: the member pointers are |
| /// the same if they're either bitwise identical *or* both null. |
| /// |
| /// ARM is different here only because null-ness is more complicated. |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
| llvm::Value *L, |
| llvm::Value *R, |
| const MemberPointerType *MPT, |
| bool Inequality) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::ICmpInst::Predicate Eq; |
| llvm::Instruction::BinaryOps And, Or; |
| if (Inequality) { |
| Eq = llvm::ICmpInst::ICMP_NE; |
| And = llvm::Instruction::Or; |
| Or = llvm::Instruction::And; |
| } else { |
| Eq = llvm::ICmpInst::ICMP_EQ; |
| And = llvm::Instruction::And; |
| Or = llvm::Instruction::Or; |
| } |
| |
| // Member data pointers are easy because there's a unique null |
| // value, so it just comes down to bitwise equality. |
| if (MPT->isMemberDataPointer()) |
| return Builder.CreateICmp(Eq, L, R); |
| |
| // For member function pointers, the tautologies are more complex. |
| // The Itanium tautology is: |
| // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) |
| // The ARM tautology is: |
| // (L == R) <==> (L.ptr == R.ptr && |
| // (L.adj == R.adj || |
| // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) |
| // The inequality tautologies have exactly the same structure, except |
| // applying De Morgan's laws. |
| |
| llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); |
| llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); |
| |
| // This condition tests whether L.ptr == R.ptr. This must always be |
| // true for equality to hold. |
| llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); |
| |
| // This condition, together with the assumption that L.ptr == R.ptr, |
| // tests whether the pointers are both null. ARM imposes an extra |
| // condition. |
| llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); |
| llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); |
| |
| // This condition tests whether L.adj == R.adj. If this isn't |
| // true, the pointers are unequal unless they're both null. |
| llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); |
| llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); |
| llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); |
| |
| // Null member function pointers on ARM clear the low bit of Adj, |
| // so the zero condition has to check that neither low bit is set. |
| if (UseARMMethodPtrABI) { |
| llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); |
| |
| // Compute (l.adj | r.adj) & 1 and test it against zero. |
| llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); |
| llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); |
| llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, |
| "cmp.or.adj"); |
| EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); |
| } |
| |
| // Tie together all our conditions. |
| llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); |
| Result = Builder.CreateBinOp(And, PtrEq, Result, |
| Inequality ? "memptr.ne" : "memptr.eq"); |
| return Result; |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
| llvm::Value *MemPtr, |
| const MemberPointerType *MPT) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| /// For member data pointers, this is just a check against -1. |
| if (MPT->isMemberDataPointer()) { |
| assert(MemPtr->getType() == CGM.PtrDiffTy); |
| llvm::Value *NegativeOne = |
| llvm::Constant::getAllOnesValue(MemPtr->getType()); |
| return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); |
| } |
| |
| // In Itanium, a member function pointer is not null if 'ptr' is not null. |
| llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); |
| |
| llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); |
| llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); |
| |
| // On ARM, a member function pointer is also non-null if the low bit of 'adj' |
| // (the virtual bit) is set. |
| if (UseARMMethodPtrABI) { |
| llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); |
| llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); |
| llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); |
| llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, |
| "memptr.isvirtual"); |
| Result = Builder.CreateOr(Result, IsVirtual); |
| } |
| |
| return Result; |
| } |
| |
| bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
| const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
| if (!RD) |
| return false; |
| |
| // If C++ prohibits us from making a copy, return by address. |
| if (!RD->canPassInRegisters()) { |
| auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); |
| FI.getReturnInfo() = ABIArgInfo::getIndirect( |
| Align, /*AddrSpace=*/CGM.getDataLayout().getAllocaAddrSpace(), |
| /*ByVal=*/false); |
| return true; |
| } |
| return false; |
| } |
| |
| /// The Itanium ABI requires non-zero initialization only for data |
| /// member pointers, for which '0' is a valid offset. |
| bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
| return MPT->isMemberFunctionPointer(); |
| } |
| |
| /// The Itanium ABI always places an offset to the complete object |
| /// at entry -2 in the vtable. |
| void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
| const CXXDeleteExpr *DE, |
| Address Ptr, |
| QualType ElementType, |
| const CXXDestructorDecl *Dtor) { |
| bool UseGlobalDelete = DE->isGlobalDelete(); |
| if (UseGlobalDelete) { |
| // Derive the complete-object pointer, which is what we need |
| // to pass to the deallocation function. |
| |
| // Grab the vtable pointer as an intptr_t*. |
| auto *ClassDecl = |
| cast<CXXRecordDecl>(ElementType->castAs<RecordType>()->getDecl()); |
| llvm::Value *VTable = CGF.GetVTablePtr(Ptr, CGF.UnqualPtrTy, ClassDecl); |
| |
| // Track back to entry -2 and pull out the offset there. |
| llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| CGF.IntPtrTy, VTable, -2, "complete-offset.ptr"); |
| llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(CGF.IntPtrTy, OffsetPtr, |
| CGF.getPointerAlign()); |
| |
| // Apply the offset. |
| llvm::Value *CompletePtr = Ptr.emitRawPointer(CGF); |
| CompletePtr = |
| CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, CompletePtr, Offset); |
| |
| // If we're supposed to call the global delete, make sure we do so |
| // even if the destructor throws. |
| CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr, |
| ElementType); |
| } |
| |
| // FIXME: Provide a source location here even though there's no |
| // CXXMemberCallExpr for dtor call. |
| CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
| EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE, |
| /*CallOrInvoke=*/nullptr); |
| |
| if (UseGlobalDelete) |
| CGF.PopCleanupBlock(); |
| } |
| |
| void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
| // void __cxa_rethrow(); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
| |
| llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); |
| |
| if (isNoReturn) |
| CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, {}); |
| else |
| CGF.EmitRuntimeCallOrInvoke(Fn); |
| } |
| |
| static llvm::FunctionCallee getAllocateExceptionFn(CodeGenModule &CGM) { |
| // void *__cxa_allocate_exception(size_t thrown_size); |
| |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*isVarArg=*/false); |
| |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); |
| } |
| |
| static llvm::FunctionCallee getThrowFn(CodeGenModule &CGM) { |
| // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, |
| // void (*dest) (void *)); |
| |
| llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.GlobalsInt8PtrTy, CGM.Int8PtrTy }; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); |
| |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); |
| } |
| |
| void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
| QualType ThrowType = E->getSubExpr()->getType(); |
| // Now allocate the exception object. |
| llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType()); |
| uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); |
| |
| llvm::FunctionCallee AllocExceptionFn = getAllocateExceptionFn(CGM); |
| llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( |
| AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); |
| |
| CharUnits ExnAlign = CGF.getContext().getExnObjectAlignment(); |
| CGF.EmitAnyExprToExn( |
| E->getSubExpr(), Address(ExceptionPtr, CGM.Int8Ty, ExnAlign)); |
| |
| // Now throw the exception. |
| llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, |
| /*ForEH=*/true); |
| |
| // The address of the destructor. If the exception type has a |
| // trivial destructor (or isn't a record), we just pass null. |
| llvm::Constant *Dtor = nullptr; |
| if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (!Record->hasTrivialDestructor()) { |
| // __cxa_throw is declared to take its destructor as void (*)(void *). We |
| // must match that if function pointers can be authenticated with a |
| // discriminator based on their type. |
| const ASTContext &Ctx = getContext(); |
| QualType DtorTy = Ctx.getFunctionType(Ctx.VoidTy, {Ctx.VoidPtrTy}, |
| FunctionProtoType::ExtProtoInfo()); |
| |
| CXXDestructorDecl *DtorD = Record->getDestructor(); |
| Dtor = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); |
| Dtor = CGM.getFunctionPointer(Dtor, DtorTy); |
| } |
| } |
| if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); |
| |
| llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; |
| CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); |
| } |
| |
| static llvm::FunctionCallee getItaniumDynamicCastFn(CodeGenFunction &CGF) { |
| // void *__dynamic_cast(const void *sub, |
| // global_as const abi::__class_type_info *src, |
| // global_as const abi::__class_type_info *dst, |
| // std::ptrdiff_t src2dst_offset); |
| |
| llvm::Type *Int8PtrTy = CGF.Int8PtrTy; |
| llvm::Type *GlobInt8PtrTy = CGF.GlobalsInt8PtrTy; |
| llvm::Type *PtrDiffTy = |
| CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
| |
| llvm::Type *Args[4] = { Int8PtrTy, GlobInt8PtrTy, GlobInt8PtrTy, PtrDiffTy }; |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); |
| |
| // Mark the function as nounwind willreturn readonly. |
| llvm::AttrBuilder FuncAttrs(CGF.getLLVMContext()); |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| FuncAttrs.addAttribute(llvm::Attribute::WillReturn); |
| FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); |
| llvm::AttributeList Attrs = llvm::AttributeList::get( |
| CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); |
| } |
| |
| static llvm::FunctionCallee getBadCastFn(CodeGenFunction &CGF) { |
| // void __cxa_bad_cast(); |
| llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); |
| } |
| |
| /// Compute the src2dst_offset hint as described in the |
| /// Itanium C++ ABI [2.9.7] |
| static CharUnits computeOffsetHint(ASTContext &Context, |
| const CXXRecordDecl *Src, |
| const CXXRecordDecl *Dst) { |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| |
| // If Dst is not derived from Src we can skip the whole computation below and |
| // return that Src is not a public base of Dst. Record all inheritance paths. |
| if (!Dst->isDerivedFrom(Src, Paths)) |
| return CharUnits::fromQuantity(-2ULL); |
| |
| unsigned NumPublicPaths = 0; |
| CharUnits Offset; |
| |
| // Now walk all possible inheritance paths. |
| for (const CXXBasePath &Path : Paths) { |
| if (Path.Access != AS_public) // Ignore non-public inheritance. |
| continue; |
| |
| ++NumPublicPaths; |
| |
| for (const CXXBasePathElement &PathElement : Path) { |
| // If the path contains a virtual base class we can't give any hint. |
| // -1: no hint. |
| if (PathElement.Base->isVirtual()) |
| return CharUnits::fromQuantity(-1ULL); |
| |
| if (NumPublicPaths > 1) // Won't use offsets, skip computation. |
| continue; |
| |
| // Accumulate the base class offsets. |
| const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class); |
| Offset += L.getBaseClassOffset( |
| PathElement.Base->getType()->getAsCXXRecordDecl()); |
| } |
| } |
| |
| // -2: Src is not a public base of Dst. |
| if (NumPublicPaths == 0) |
| return CharUnits::fromQuantity(-2ULL); |
| |
| // -3: Src is a multiple public base type but never a virtual base type. |
| if (NumPublicPaths > 1) |
| return CharUnits::fromQuantity(-3ULL); |
| |
| // Otherwise, the Src type is a unique public nonvirtual base type of Dst. |
| // Return the offset of Src from the origin of Dst. |
| return Offset; |
| } |
| |
| static llvm::FunctionCallee getBadTypeidFn(CodeGenFunction &CGF) { |
| // void __cxa_bad_typeid(); |
| llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); |
| |
| return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); |
| } |
| |
| bool ItaniumCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) { |
| return true; |
| } |
| |
| void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
| llvm::FunctionCallee Fn = getBadTypeidFn(CGF); |
| llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); |
| Call->setDoesNotReturn(); |
| CGF.Builder.CreateUnreachable(); |
| } |
| |
| llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, |
| QualType SrcRecordTy, |
| Address ThisPtr, |
| llvm::Type *StdTypeInfoPtrTy) { |
| auto *ClassDecl = |
| cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl()); |
| llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, CGM.GlobalsInt8PtrTy, |
| ClassDecl); |
| |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| // Load the type info. |
| Value = CGF.Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::load_relative, {CGM.Int32Ty}), |
| {Value, llvm::ConstantInt::get(CGM.Int32Ty, -4)}); |
| } else { |
| // Load the type info. |
| Value = |
| CGF.Builder.CreateConstInBoundsGEP1_64(StdTypeInfoPtrTy, Value, -1ULL); |
| } |
| return CGF.Builder.CreateAlignedLoad(StdTypeInfoPtrTy, Value, |
| CGF.getPointerAlign()); |
| } |
| |
| bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
| QualType SrcRecordTy) { |
| return SrcIsPtr; |
| } |
| |
| llvm::Value *ItaniumCXXABI::emitDynamicCastCall( |
| CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
| QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
| llvm::Type *PtrDiffLTy = |
| CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
| |
| llvm::Value *SrcRTTI = |
| CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); |
| llvm::Value *DestRTTI = |
| CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); |
| |
| // Compute the offset hint. |
| const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
| llvm::Value *OffsetHint = llvm::ConstantInt::get( |
| PtrDiffLTy, |
| computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); |
| |
| // Emit the call to __dynamic_cast. |
| llvm::Value *Value = ThisAddr.emitRawPointer(CGF); |
| if (CGM.getCodeGenOpts().PointerAuth.CXXVTablePointers) { |
| // We perform a no-op load of the vtable pointer here to force an |
| // authentication. In environments that do not support pointer |
| // authentication this is a an actual no-op that will be elided. When |
| // pointer authentication is supported and enforced on vtable pointers this |
| // load can trap. |
| llvm::Value *Vtable = |
| CGF.GetVTablePtr(ThisAddr, CGM.Int8PtrTy, SrcDecl, |
| CodeGenFunction::VTableAuthMode::MustTrap); |
| assert(Vtable); |
| (void)Vtable; |
| } |
| |
| llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint}; |
| Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args); |
| |
| /// C++ [expr.dynamic.cast]p9: |
| /// A failed cast to reference type throws std::bad_cast |
| if (DestTy->isReferenceType()) { |
| llvm::BasicBlock *BadCastBlock = |
| CGF.createBasicBlock("dynamic_cast.bad_cast"); |
| |
| llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); |
| CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); |
| |
| CGF.EmitBlock(BadCastBlock); |
| EmitBadCastCall(CGF); |
| } |
| |
| return Value; |
| } |
| |
| llvm::Value *ItaniumCXXABI::emitExactDynamicCast( |
| CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
| QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastSuccess, |
| llvm::BasicBlock *CastFail) { |
| ASTContext &Context = getContext(); |
| |
| // Find all the inheritance paths. |
| const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
| const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/false); |
| (void)DestDecl->isDerivedFrom(SrcDecl, Paths); |
| |
| // Find an offset within `DestDecl` where a `SrcDecl` instance and its vptr |
| // might appear. |
| std::optional<CharUnits> Offset; |
| for (const CXXBasePath &Path : Paths) { |
| // dynamic_cast only finds public inheritance paths. |
| if (Path.Access != AS_public) |
| continue; |
| |
| CharUnits PathOffset; |
| for (const CXXBasePathElement &PathElement : Path) { |
| // Find the offset along this inheritance step. |
| const CXXRecordDecl *Base = |
| PathElement.Base->getType()->getAsCXXRecordDecl(); |
| if (PathElement.Base->isVirtual()) { |
| // For a virtual base class, we know that the derived class is exactly |
| // DestDecl, so we can use the vbase offset from its layout. |
| const ASTRecordLayout &L = Context.getASTRecordLayout(DestDecl); |
| PathOffset = L.getVBaseClassOffset(Base); |
| } else { |
| const ASTRecordLayout &L = |
| Context.getASTRecordLayout(PathElement.Class); |
| PathOffset += L.getBaseClassOffset(Base); |
| } |
| } |
| |
| if (!Offset) |
| Offset = PathOffset; |
| else if (Offset != PathOffset) { |
| // Base appears in at least two different places. Find the most-derived |
| // object and see if it's a DestDecl. Note that the most-derived object |
| // must be at least as aligned as this base class subobject, and must |
| // have a vptr at offset 0. |
| ThisAddr = Address(emitDynamicCastToVoid(CGF, ThisAddr, SrcRecordTy), |
| CGF.VoidPtrTy, ThisAddr.getAlignment()); |
| SrcDecl = DestDecl; |
| Offset = CharUnits::Zero(); |
| break; |
| } |
| } |
| |
| if (!Offset) { |
| // If there are no public inheritance paths, the cast always fails. |
| CGF.EmitBranch(CastFail); |
| return llvm::PoisonValue::get(CGF.VoidPtrTy); |
| } |
| |
| // Compare the vptr against the expected vptr for the destination type at |
| // this offset. Note that we do not know what type ThisAddr points to in |
| // the case where the derived class multiply inherits from the base class |
| // so we can't use GetVTablePtr, so we load the vptr directly instead. |
| llvm::Instruction *VPtr = CGF.Builder.CreateLoad( |
| ThisAddr.withElementType(CGF.VoidPtrPtrTy), "vtable"); |
| CGM.DecorateInstructionWithTBAA( |
| VPtr, CGM.getTBAAVTablePtrAccessInfo(CGF.VoidPtrPtrTy)); |
| llvm::Value *Success = CGF.Builder.CreateICmpEQ( |
| VPtr, getVTableAddressPoint(BaseSubobject(SrcDecl, *Offset), DestDecl)); |
| llvm::Value *Result = ThisAddr.emitRawPointer(CGF); |
| if (!Offset->isZero()) |
| Result = CGF.Builder.CreateInBoundsGEP( |
| CGF.CharTy, Result, |
| {llvm::ConstantInt::get(CGF.PtrDiffTy, -Offset->getQuantity())}); |
| CGF.Builder.CreateCondBr(Success, CastSuccess, CastFail); |
| return Result; |
| } |
| |
| llvm::Value *ItaniumCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
| Address ThisAddr, |
| QualType SrcRecordTy) { |
| auto *ClassDecl = |
| cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl()); |
| llvm::Value *OffsetToTop; |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| // Get the vtable pointer. |
| llvm::Value *VTable = |
| CGF.GetVTablePtr(ThisAddr, CGF.UnqualPtrTy, ClassDecl); |
| |
| // Get the offset-to-top from the vtable. |
| OffsetToTop = |
| CGF.Builder.CreateConstInBoundsGEP1_32(CGM.Int32Ty, VTable, -2U); |
| OffsetToTop = CGF.Builder.CreateAlignedLoad( |
| CGM.Int32Ty, OffsetToTop, CharUnits::fromQuantity(4), "offset.to.top"); |
| } else { |
| llvm::Type *PtrDiffLTy = |
| CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
| |
| // Get the vtable pointer. |
| llvm::Value *VTable = |
| CGF.GetVTablePtr(ThisAddr, CGF.UnqualPtrTy, ClassDecl); |
| |
| // Get the offset-to-top from the vtable. |
| OffsetToTop = |
| CGF.Builder.CreateConstInBoundsGEP1_64(PtrDiffLTy, VTable, -2ULL); |
| OffsetToTop = CGF.Builder.CreateAlignedLoad( |
| PtrDiffLTy, OffsetToTop, CGF.getPointerAlign(), "offset.to.top"); |
| } |
| // Finally, add the offset to the pointer. |
| return CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisAddr.emitRawPointer(CGF), |
| OffsetToTop); |
| } |
| |
| bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
| llvm::FunctionCallee Fn = getBadCastFn(CGF); |
| llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); |
| Call->setDoesNotReturn(); |
| CGF.Builder.CreateUnreachable(); |
| return true; |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, |
| Address This, |
| const CXXRecordDecl *ClassDecl, |
| const CXXRecordDecl *BaseClassDecl) { |
| llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl); |
| CharUnits VBaseOffsetOffset = |
| CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, |
| BaseClassDecl); |
| llvm::Value *VBaseOffsetPtr = |
| CGF.Builder.CreateConstGEP1_64( |
| CGF.Int8Ty, VTablePtr, VBaseOffsetOffset.getQuantity(), |
| "vbase.offset.ptr"); |
| |
| llvm::Value *VBaseOffset; |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| VBaseOffset = CGF.Builder.CreateAlignedLoad( |
| CGF.Int32Ty, VBaseOffsetPtr, CharUnits::fromQuantity(4), |
| "vbase.offset"); |
| } else { |
| VBaseOffset = CGF.Builder.CreateAlignedLoad( |
| CGM.PtrDiffTy, VBaseOffsetPtr, CGF.getPointerAlign(), "vbase.offset"); |
| } |
| return VBaseOffset; |
| } |
| |
| void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
| // Just make sure we're in sync with TargetCXXABI. |
| assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); |
| |
| // The constructor used for constructing this as a base class; |
| // ignores virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); |
| |
| // The constructor used for constructing this as a complete class; |
| // constructs the virtual bases, then calls the base constructor. |
| if (!D->getParent()->isAbstract()) { |
| // We don't need to emit the complete ctor if the class is abstract. |
| CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); |
| } |
| } |
| |
| CGCXXABI::AddedStructorArgCounts |
| ItaniumCXXABI::buildStructorSignature(GlobalDecl GD, |
| SmallVectorImpl<CanQualType> &ArgTys) { |
| ASTContext &Context = getContext(); |
| |
| // All parameters are already in place except VTT, which goes after 'this'. |
| // These are Clang types, so we don't need to worry about sret yet. |
| |
| // Check if we need to add a VTT parameter (which has type global void **). |
| if ((isa<CXXConstructorDecl>(GD.getDecl()) ? GD.getCtorType() == Ctor_Base |
| : GD.getDtorType() == Dtor_Base) && |
| cast<CXXMethodDecl>(GD.getDecl())->getParent()->getNumVBases() != 0) { |
| LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
| QualType Q = Context.getAddrSpaceQualType(Context.VoidPtrTy, AS); |
| ArgTys.insert(ArgTys.begin() + 1, |
| Context.getPointerType(CanQualType::CreateUnsafe(Q))); |
| return AddedStructorArgCounts::prefix(1); |
| } |
| return AddedStructorArgCounts{}; |
| } |
| |
| void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
| // The destructor used for destructing this as a base class; ignores |
| // virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); |
| |
| // The destructor used for destructing this as a most-derived class; |
| // call the base destructor and then destructs any virtual bases. |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); |
| |
| // The destructor in a virtual table is always a 'deleting' |
| // destructor, which calls the complete destructor and then uses the |
| // appropriate operator delete. |
| if (D->isVirtual()) |
| CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); |
| } |
| |
| void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
| QualType &ResTy, |
| FunctionArgList &Params) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); |
| assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
| |
| // Check if we need a VTT parameter as well. |
| if (NeedsVTTParameter(CGF.CurGD)) { |
| ASTContext &Context = getContext(); |
| |
| // FIXME: avoid the fake decl |
| LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
| QualType Q = Context.getAddrSpaceQualType(Context.VoidPtrTy, AS); |
| QualType T = Context.getPointerType(Q); |
| auto *VTTDecl = ImplicitParamDecl::Create( |
| Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"), |
| T, ImplicitParamKind::CXXVTT); |
| Params.insert(Params.begin() + 1, VTTDecl); |
| getStructorImplicitParamDecl(CGF) = VTTDecl; |
| } |
| } |
| |
| void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
| // Naked functions have no prolog. |
| if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
| return; |
| |
| /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue |
| /// adjustments are required, because they are all handled by thunks. |
| setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); |
| |
| /// Initialize the 'vtt' slot if needed. |
| if (getStructorImplicitParamDecl(CGF)) { |
| getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( |
| CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt"); |
| } |
| |
| /// If this is a function that the ABI specifies returns 'this', initialize |
| /// the return slot to 'this' at the start of the function. |
| /// |
| /// Unlike the setting of return types, this is done within the ABI |
| /// implementation instead of by clients of CGCXXABI because: |
| /// 1) getThisValue is currently protected |
| /// 2) in theory, an ABI could implement 'this' returns some other way; |
| /// HasThisReturn only specifies a contract, not the implementation |
| if (HasThisReturn(CGF.CurGD)) |
| CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); |
| } |
| |
| CGCXXABI::AddedStructorArgs ItaniumCXXABI::getImplicitConstructorArgs( |
| CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
| bool ForVirtualBase, bool Delegating) { |
| if (!NeedsVTTParameter(GlobalDecl(D, Type))) |
| return AddedStructorArgs{}; |
| |
| // Insert the implicit 'vtt' argument as the second argument. Make sure to |
| // correctly reflect its address space, which can differ from generic on |
| // some targets. |
| llvm::Value *VTT = |
| CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); |
| LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
| QualType Q = getContext().getAddrSpaceQualType(getContext().VoidPtrTy, AS); |
| QualType VTTTy = getContext().getPointerType(Q); |
| return AddedStructorArgs::prefix({{VTT, VTTTy}}); |
| } |
| |
| llvm::Value *ItaniumCXXABI::getCXXDestructorImplicitParam( |
| CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
| bool ForVirtualBase, bool Delegating) { |
| GlobalDecl GD(DD, Type); |
| return CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); |
| } |
| |
| void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
| const CXXDestructorDecl *DD, |
| CXXDtorType Type, bool ForVirtualBase, |
| bool Delegating, Address This, |
| QualType ThisTy) { |
| GlobalDecl GD(DD, Type); |
| llvm::Value *VTT = |
| getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, Delegating); |
| QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); |
| |
| CGCallee Callee; |
| if (getContext().getLangOpts().AppleKext && |
| Type != Dtor_Base && DD->isVirtual()) |
| Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent()); |
| else |
| Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); |
| |
| CGF.EmitCXXDestructorCall(GD, Callee, CGF.getAsNaturalPointerTo(This, ThisTy), |
| ThisTy, VTT, VTTTy, nullptr); |
| } |
| |
| // Check if any non-inline method has the specified attribute. |
| template <typename T> |
| static bool CXXRecordNonInlineHasAttr(const CXXRecordDecl *RD) { |
| for (const auto *D : RD->noload_decls()) { |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isInlined() || FD->doesThisDeclarationHaveABody() || |
| FD->isPureVirtual()) |
| continue; |
| if (D->hasAttr<T>()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void setVTableSelectiveDLLImportExport(CodeGenModule &CGM, |
| llvm::GlobalVariable *VTable, |
| const CXXRecordDecl *RD) { |
| if (VTable->getDLLStorageClass() != |
| llvm::GlobalVariable::DefaultStorageClass || |
| RD->hasAttr<DLLImportAttr>() || RD->hasAttr<DLLExportAttr>()) |
| return; |
| |
| if (CGM.getVTables().isVTableExternal(RD)) { |
| if (CXXRecordNonInlineHasAttr<DLLImportAttr>(RD)) |
| VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
| } else if (CXXRecordNonInlineHasAttr<DLLExportAttr>(RD)) |
| VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
| } |
| |
| void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
| const CXXRecordDecl *RD) { |
| llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); |
| if (VTable->hasInitializer()) |
| return; |
| |
| ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); |
| const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); |
| llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
| llvm::Constant *RTTI = |
| CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD)); |
| |
| // Create and set the initializer. |
| ConstantInitBuilder builder(CGM); |
| auto components = builder.beginStruct(); |
| CGVT.createVTableInitializer(components, VTLayout, RTTI, |
| llvm::GlobalValue::isLocalLinkage(Linkage)); |
| components.finishAndSetAsInitializer(VTable); |
| |
| // Set the correct linkage. |
| VTable->setLinkage(Linkage); |
| |
| if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) |
| VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName())); |
| |
| if (CGM.getTarget().hasPS4DLLImportExport()) |
| setVTableSelectiveDLLImportExport(CGM, VTable, RD); |
| |
| // Set the right visibility. |
| CGM.setGVProperties(VTable, RD); |
| |
| // If this is the magic class __cxxabiv1::__fundamental_type_info, |
| // we will emit the typeinfo for the fundamental types. This is the |
| // same behaviour as GCC. |
| const DeclContext *DC = RD->getDeclContext(); |
| if (RD->getIdentifier() && |
| RD->getIdentifier()->isStr("__fundamental_type_info") && |
| isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() && |
| cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && |
| DC->getParent()->isTranslationUnit()) |
| EmitFundamentalRTTIDescriptors(RD); |
| |
| // Always emit type metadata on non-available_externally definitions, and on |
| // available_externally definitions if we are performing whole program |
| // devirtualization. For WPD we need the type metadata on all vtable |
| // definitions to ensure we associate derived classes with base classes |
| // defined in headers but with a strong definition only in a shared library. |
| if (!VTable->isDeclarationForLinker() || |
| CGM.getCodeGenOpts().WholeProgramVTables) { |
| CGM.EmitVTableTypeMetadata(RD, VTable, VTLayout); |
| // For available_externally definitions, add the vtable to |
| // @llvm.compiler.used so that it isn't deleted before whole program |
| // analysis. |
| if (VTable->isDeclarationForLinker()) { |
| assert(CGM.getCodeGenOpts().WholeProgramVTables); |
| CGM.addCompilerUsedGlobal(VTable); |
| } |
| } |
| |
| if (VTContext.isRelativeLayout()) { |
| CGVT.RemoveHwasanMetadata(VTable); |
| if (!VTable->isDSOLocal()) |
| CGVT.GenerateRelativeVTableAlias(VTable, VTable->getName()); |
| } |
| } |
| |
| bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( |
| CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
| if (Vptr.NearestVBase == nullptr) |
| return false; |
| return NeedsVTTParameter(CGF.CurGD); |
| } |
| |
| llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( |
| CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
| const CXXRecordDecl *NearestVBase) { |
| |
| if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
| NeedsVTTParameter(CGF.CurGD)) { |
| return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, |
| NearestVBase); |
| } |
| return getVTableAddressPoint(Base, VTableClass); |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, |
| const CXXRecordDecl *VTableClass) { |
| llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits()); |
| |
| // Find the appropriate vtable within the vtable group, and the address point |
| // within that vtable. |
| const VTableLayout &Layout = |
| CGM.getItaniumVTableContext().getVTableLayout(VTableClass); |
| VTableLayout::AddressPointLocation AddressPoint = |
| Layout.getAddressPoint(Base); |
| llvm::Value *Indices[] = { |
| llvm::ConstantInt::get(CGM.Int32Ty, 0), |
| llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex), |
| llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex), |
| }; |
| |
| // Add inrange attribute to indicate that only the VTableIndex can be |
| // accessed. |
| unsigned ComponentSize = |
| CGM.getDataLayout().getTypeAllocSize(CGM.getVTableComponentType()); |
| unsigned VTableSize = |
| ComponentSize * Layout.getVTableSize(AddressPoint.VTableIndex); |
| unsigned Offset = ComponentSize * AddressPoint.AddressPointIndex; |
| llvm::ConstantRange InRange( |
| llvm::APInt(32, (int)-Offset, true), |
| llvm::APInt(32, (int)(VTableSize - Offset), true)); |
| return llvm::ConstantExpr::getGetElementPtr( |
| VTable->getValueType(), VTable, Indices, /*InBounds=*/true, InRange); |
| } |
| |
| llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( |
| CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
| const CXXRecordDecl *NearestVBase) { |
| assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
| NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT"); |
| |
| // Get the secondary vpointer index. |
| uint64_t VirtualPointerIndex = |
| CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); |
| |
| /// Load the VTT. |
| llvm::Value *VTT = CGF.LoadCXXVTT(); |
| if (VirtualPointerIndex) |
| VTT = CGF.Builder.CreateConstInBoundsGEP1_64(CGF.GlobalsVoidPtrTy, VTT, |
| VirtualPointerIndex); |
| |
| // And load the address point from the VTT. |
| llvm::Value *AP = |
| CGF.Builder.CreateAlignedLoad(CGF.GlobalsVoidPtrTy, VTT, |
| CGF.getPointerAlign()); |
| |
| if (auto &Schema = CGF.CGM.getCodeGenOpts().PointerAuth.CXXVTTVTablePointers) { |
| CGPointerAuthInfo PointerAuth = CGF.EmitPointerAuthInfo(Schema, VTT, |
| GlobalDecl(), |
| QualType()); |
| AP = CGF.EmitPointerAuthAuth(PointerAuth, AP); |
| } |
| |
| return AP; |
| } |
| |
| llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
| CharUnits VPtrOffset) { |
| assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); |
| |
| llvm::GlobalVariable *&VTable = VTables[RD]; |
| if (VTable) |
| return VTable; |
| |
| // Queue up this vtable for possible deferred emission. |
| CGM.addDeferredVTable(RD); |
| |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| getMangleContext().mangleCXXVTable(RD, Out); |
| |
| const VTableLayout &VTLayout = |
| CGM.getItaniumVTableContext().getVTableLayout(RD); |
| llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); |
| |
| // Use pointer to global alignment for the vtable. Otherwise we would align |
| // them based on the size of the initializer which doesn't make sense as only |
| // single values are read. |
| LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
| unsigned PAlign = CGM.getItaniumVTableContext().isRelativeLayout() |
| ? 32 |
| : CGM.getTarget().getPointerAlign(AS); |
| |
| VTable = CGM.CreateOrReplaceCXXRuntimeVariable( |
| Name, VTableType, llvm::GlobalValue::ExternalLinkage, |
| getContext().toCharUnitsFromBits(PAlign).getAsAlign()); |
| VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| |
| if (CGM.getTarget().hasPS4DLLImportExport()) |
| setVTableSelectiveDLLImportExport(CGM, VTable, RD); |
| |
| CGM.setGVProperties(VTable, RD); |
| return VTable; |
| } |
| |
| CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
| GlobalDecl GD, |
| Address This, |
| llvm::Type *Ty, |
| SourceLocation Loc) { |
| llvm::Type *PtrTy = CGM.GlobalsInt8PtrTy; |
| auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); |
| llvm::Value *VTable = CGF.GetVTablePtr(This, PtrTy, MethodDecl->getParent()); |
| |
| uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); |
| llvm::Value *VFunc, *VTableSlotPtr = nullptr; |
| auto &Schema = CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers; |
| |
| llvm::Type *ComponentTy = CGM.getVTables().getVTableComponentType(); |
| uint64_t ByteOffset = |
| VTableIndex * CGM.getDataLayout().getTypeSizeInBits(ComponentTy) / 8; |
| |
| if (!Schema && CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { |
| VFunc = CGF.EmitVTableTypeCheckedLoad(MethodDecl->getParent(), VTable, |
| PtrTy, ByteOffset); |
| } else { |
| CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc); |
| |
| llvm::Value *VFuncLoad; |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| VFuncLoad = CGF.Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::load_relative, {CGM.Int32Ty}), |
| {VTable, llvm::ConstantInt::get(CGM.Int32Ty, ByteOffset)}); |
| } else { |
| VTableSlotPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| PtrTy, VTable, VTableIndex, "vfn"); |
| VFuncLoad = CGF.Builder.CreateAlignedLoad(PtrTy, VTableSlotPtr, |
| CGF.getPointerAlign()); |
| } |
| |
| // Add !invariant.load md to virtual function load to indicate that |
| // function didn't change inside vtable. |
| // It's safe to add it without -fstrict-vtable-pointers, but it would not |
| // help in devirtualization because it will only matter if we will have 2 |
| // the same virtual function loads from the same vtable load, which won't |
| // happen without enabled devirtualization with -fstrict-vtable-pointers. |
| if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
| CGM.getCodeGenOpts().StrictVTablePointers) { |
| if (auto *VFuncLoadInstr = dyn_cast<llvm::Instruction>(VFuncLoad)) { |
| VFuncLoadInstr->setMetadata( |
| llvm::LLVMContext::MD_invariant_load, |
| llvm::MDNode::get(CGM.getLLVMContext(), |
| llvm::ArrayRef<llvm::Metadata *>())); |
| } |
| } |
| VFunc = VFuncLoad; |
| } |
| |
| CGPointerAuthInfo PointerAuth; |
| if (Schema) { |
| assert(VTableSlotPtr && "virtual function pointer not set"); |
| GD = CGM.getItaniumVTableContext().findOriginalMethod(GD.getCanonicalDecl()); |
| PointerAuth = CGF.EmitPointerAuthInfo(Schema, VTableSlotPtr, GD, QualType()); |
| } |
| CGCallee Callee(GD, VFunc, PointerAuth); |
| return Callee; |
| } |
| |
| llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( |
| CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
| Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) { |
| auto *CE = dyn_cast<const CXXMemberCallExpr *>(E); |
| auto *D = dyn_cast<const CXXDeleteExpr *>(E); |
| assert((CE != nullptr) ^ (D != nullptr)); |
| assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
| assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
| |
| GlobalDecl GD(Dtor, DtorType); |
| const CGFunctionInfo *FInfo = |
| &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
| llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); |
| CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); |
| |
| QualType ThisTy; |
| if (CE) { |
| ThisTy = CE->getObjectType(); |
| } else { |
| ThisTy = D->getDestroyedType(); |
| } |
| |
| CGF.EmitCXXDestructorCall(GD, Callee, This.emitRawPointer(CGF), ThisTy, |
| nullptr, QualType(), nullptr, CallOrInvoke); |
| return nullptr; |
| } |
| |
| void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
| CodeGenVTables &VTables = CGM.getVTables(); |
| llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); |
| VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); |
| } |
| |
| bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass( |
| const CXXRecordDecl *RD) const { |
| // We don't emit available_externally vtables if we are in -fapple-kext mode |
| // because kext mode does not permit devirtualization. |
| if (CGM.getLangOpts().AppleKext) |
| return false; |
| |
| // If the vtable is hidden then it is not safe to emit an available_externally |
| // copy of vtable. |
| if (isVTableHidden(RD)) |
| return false; |
| |
| if (CGM.getCodeGenOpts().ForceEmitVTables) |
| return true; |
| |
| // A speculative vtable can only be generated if all virtual inline functions |
| // defined by this class are emitted. The vtable in the final program contains |
| // for each virtual inline function not used in the current TU a function that |
| // is equivalent to the unused function. The function in the actual vtable |
| // does not have to be declared under the same symbol (e.g., a virtual |
| // destructor that can be substituted with its base class's destructor). Since |
| // inline functions are emitted lazily and this emissions does not account for |
| // speculative emission of a vtable, we might generate a speculative vtable |
| // with references to inline functions that are not emitted under that name. |
| // This can lead to problems when devirtualizing a call to such a function, |
| // that result in linking errors. Hence, if there are any unused virtual |
| // inline function, we cannot emit the speculative vtable. |
| // FIXME we can still emit a copy of the vtable if we |
| // can emit definition of the inline functions. |
| if (hasAnyUnusedVirtualInlineFunction(RD)) |
| return false; |
| |
| // For a class with virtual bases, we must also be able to speculatively |
| // emit the VTT, because CodeGen doesn't have separate notions of "can emit |
| // the vtable" and "can emit the VTT". For a base subobject, this means we |
| // need to be able to emit non-virtual base vtables. |
| if (RD->getNumVBases()) { |
| for (const auto &B : RD->bases()) { |
| auto *BRD = B.getType()->getAsCXXRecordDecl(); |
| assert(BRD && "no class for base specifier"); |
| if (B.isVirtual() || !BRD->isDynamicClass()) |
| continue; |
| if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { |
| if (!canSpeculativelyEmitVTableAsBaseClass(RD)) |
| return false; |
| |
| if (RD->shouldEmitInExternalSource()) |
| return false; |
| |
| // For a complete-object vtable (or more specifically, for the VTT), we need |
| // to be able to speculatively emit the vtables of all dynamic virtual bases. |
| for (const auto &B : RD->vbases()) { |
| auto *BRD = B.getType()->getAsCXXRecordDecl(); |
| assert(BRD && "no class for base specifier"); |
| if (!BRD->isDynamicClass()) |
| continue; |
| if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) |
| return false; |
| } |
| |
| return true; |
| } |
| static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, |
| Address InitialPtr, |
| const CXXRecordDecl *UnadjustedClass, |
| int64_t NonVirtualAdjustment, |
| int64_t VirtualAdjustment, |
| bool IsReturnAdjustment) { |
| if (!NonVirtualAdjustment && !VirtualAdjustment) |
| return InitialPtr.emitRawPointer(CGF); |
| |
| Address V = InitialPtr.withElementType(CGF.Int8Ty); |
| |
| // In a base-to-derived cast, the non-virtual adjustment is applied first. |
| if (NonVirtualAdjustment && !IsReturnAdjustment) { |
| V = CGF.Builder.CreateConstInBoundsByteGEP(V, |
| CharUnits::fromQuantity(NonVirtualAdjustment)); |
| } |
| |
| // Perform the virtual adjustment if we have one. |
| llvm::Value *ResultPtr; |
| if (VirtualAdjustment) { |
| llvm::Value *VTablePtr = |
| CGF.GetVTablePtr(V, CGF.Int8PtrTy, UnadjustedClass); |
| |
| llvm::Value *Offset; |
| llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
| CGF.Int8Ty, VTablePtr, VirtualAdjustment); |
| if (CGF.CGM.getItaniumVTableContext().isRelativeLayout()) { |
| // Load the adjustment offset from the vtable as a 32-bit int. |
| Offset = |
| CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, OffsetPtr, |
| CharUnits::fromQuantity(4)); |
| } else { |
| llvm::Type *PtrDiffTy = |
| CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
| |
| // Load the adjustment offset from the vtable. |
| Offset = CGF.Builder.CreateAlignedLoad(PtrDiffTy, OffsetPtr, |
| CGF.getPointerAlign()); |
| } |
| // Adjust our pointer. |
| ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getElementType(), |
| V.emitRawPointer(CGF), Offset); |
| } else { |
| ResultPtr = V.emitRawPointer(CGF); |
| } |
| |
| // In a derived-to-base conversion, the non-virtual adjustment is |
| // applied second. |
| if (NonVirtualAdjustment && IsReturnAdjustment) { |
| ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(CGF.Int8Ty, ResultPtr, |
| NonVirtualAdjustment); |
| } |
| |
| return ResultPtr; |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, Address This, |
| const CXXRecordDecl *UnadjustedClass, |
| const ThunkInfo &TI) { |
| return performTypeAdjustment(CGF, This, UnadjustedClass, TI.This.NonVirtual, |
| TI.This.Virtual.Itanium.VCallOffsetOffset, |
| /*IsReturnAdjustment=*/false); |
| } |
| |
| llvm::Value * |
| ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
| const CXXRecordDecl *UnadjustedClass, |
| const ReturnAdjustment &RA) { |
| return performTypeAdjustment(CGF, Ret, UnadjustedClass, RA.NonVirtual, |
| RA.Virtual.Itanium.VBaseOffsetOffset, |
| /*IsReturnAdjustment=*/true); |
| } |
| |
| void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, |
| RValue RV, QualType ResultType) { |
| if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) |
| return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); |
| |
| // Destructor thunks in the ARM ABI have indeterminate results. |
| llvm::Type *T = CGF.ReturnValue.getElementType(); |
| RValue Undef = RValue::get(llvm::UndefValue::get(T)); |
| return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); |
| } |
| |
| /************************** Array allocation cookies **************************/ |
| |
| CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| // The array cookie is a size_t; pad that up to the element alignment. |
| // The cookie is actually right-justified in that space. |
| return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), |
| CGM.getContext().getPreferredTypeAlignInChars(elementType)); |
| } |
| |
| Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| Address NewPtr, |
| llvm::Value *NumElements, |
| const CXXNewExpr *expr, |
| QualType ElementType) { |
| assert(requiresArrayCookie(expr)); |
| |
| unsigned AS = NewPtr.getAddressSpace(); |
| |
| ASTContext &Ctx = getContext(); |
| CharUnits SizeSize = CGF.getSizeSize(); |
| |
| // The size of the cookie. |
| CharUnits CookieSize = |
| std::max(SizeSize, Ctx.getPreferredTypeAlignInChars(ElementType)); |
| assert(CookieSize == getArrayCookieSizeImpl(ElementType)); |
| |
| // Compute an offset to the cookie. |
| Address CookiePtr = NewPtr; |
| CharUnits CookieOffset = CookieSize - SizeSize; |
| if (!CookieOffset.isZero()) |
| CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset); |
| |
| // Write the number of elements into the appropriate slot. |
| Address NumElementsPtr = CookiePtr.withElementType(CGF.SizeTy); |
| llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr); |
| |
| // Handle the array cookie specially in ASan. |
| if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 && |
| (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() || |
| CGM.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie)) { |
| // The store to the CookiePtr does not need to be instrumented. |
| SI->setNoSanitizeMetadata(); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false); |
| llvm::FunctionCallee F = |
| CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie"); |
| CGF.Builder.CreateCall(F, NumElementsPtr.emitRawPointer(CGF)); |
| } |
| |
| // Finally, compute a pointer to the actual data buffer by skipping |
| // over the cookie completely. |
| return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize); |
| } |
| |
| llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| Address allocPtr, |
| CharUnits cookieSize) { |
| // The element size is right-justified in the cookie. |
| Address numElementsPtr = allocPtr; |
| CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); |
| if (!numElementsOffset.isZero()) |
| numElementsPtr = |
| CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset); |
| |
| unsigned AS = allocPtr.getAddressSpace(); |
| numElementsPtr = numElementsPtr.withElementType(CGF.SizeTy); |
| if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0) |
| return CGF.Builder.CreateLoad(numElementsPtr); |
| // In asan mode emit a function call instead of a regular load and let the |
| // run-time deal with it: if the shadow is properly poisoned return the |
| // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. |
| // We can't simply ignore this load using nosanitize metadata because |
| // the metadata may be lost. |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.SizeTy, CGF.UnqualPtrTy, false); |
| llvm::FunctionCallee F = |
| CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie"); |
| return CGF.Builder.CreateCall(F, numElementsPtr.emitRawPointer(CGF)); |
| } |
| |
| CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
| // ARM says that the cookie is always: |
| // struct array_cookie { |
| // std::size_t element_size; // element_size != 0 |
| // std::size_t element_count; |
| // }; |
| // But the base ABI doesn't give anything an alignment greater than |
| // 8, so we can dismiss this as typical ABI-author blindness to |
| // actual language complexity and round up to the element alignment. |
| return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), |
| CGM.getContext().getTypeAlignInChars(elementType)); |
| } |
| |
| Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
| Address newPtr, |
| llvm::Value *numElements, |
| const CXXNewExpr *expr, |
| QualType elementType) { |
| assert(requiresArrayCookie(expr)); |
| |
| // The cookie is always at the start of the buffer. |
| Address cookie = newPtr; |
| |
| // The first element is the element size. |
| cookie = cookie.withElementType(CGF.SizeTy); |
| llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, |
| getContext().getTypeSizeInChars(elementType).getQuantity()); |
| CGF.Builder.CreateStore(elementSize, cookie); |
| |
| // The second element is the element count. |
| cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1); |
| CGF.Builder.CreateStore(numElements, cookie); |
| |
| // Finally, compute a pointer to the actual data buffer by skipping |
| // over the cookie completely. |
| CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); |
| return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); |
| } |
| |
| llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
| Address allocPtr, |
| CharUnits cookieSize) { |
| // The number of elements is at offset sizeof(size_t) relative to |
| // the allocated pointer. |
| Address numElementsPtr |
| = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize()); |
| |
| numElementsPtr = numElementsPtr.withElementType(CGF.SizeTy); |
| return CGF.Builder.CreateLoad(numElementsPtr); |
| } |
| |
| /*********************** Static local initialization **************************/ |
| |
| static llvm::FunctionCallee getGuardAcquireFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // int __cxa_guard_acquire(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), |
| GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction( |
| FTy, "__cxa_guard_acquire", |
| llvm::AttributeList::get(CGM.getLLVMContext(), |
| llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| static llvm::FunctionCallee getGuardReleaseFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // void __cxa_guard_release(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction( |
| FTy, "__cxa_guard_release", |
| llvm::AttributeList::get(CGM.getLLVMContext(), |
| llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| static llvm::FunctionCallee getGuardAbortFn(CodeGenModule &CGM, |
| llvm::PointerType *GuardPtrTy) { |
| // void __cxa_guard_abort(__guard *guard_object); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
| return CGM.CreateRuntimeFunction( |
| FTy, "__cxa_guard_abort", |
| llvm::AttributeList::get(CGM.getLLVMContext(), |
| llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoUnwind)); |
| } |
| |
| namespace { |
| struct CallGuardAbort final : EHScopeStack::Cleanup { |
| llvm::GlobalVariable *Guard; |
| CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), |
| Guard); |
| } |
| }; |
| } |
| |
| /// The ARM code here follows the Itanium code closely enough that we |
| /// just special-case it at particular places. |
| void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, |
| const VarDecl &D, |
| llvm::GlobalVariable *var, |
| bool shouldPerformInit) { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| // Inline variables that weren't instantiated from variable templates have |
| // partially-ordered initialization within their translation unit. |
| bool NonTemplateInline = |
| D.isInline() && |
| !isTemplateInstantiation(D.getTemplateSpecializationKind()); |
| |
| // We only need to use thread-safe statics for local non-TLS variables and |
| // inline variables; other global initialization is always single-threaded |
| // or (through lazy dynamic loading in multiple threads) unsequenced. |
| bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && |
| (D.isLocalVarDecl() || NonTemplateInline) && |
| !D.getTLSKind(); |
| |
| // If we have a global variable with internal linkage and thread-safe statics |
| // are disabled, we can just let the guard variable be of type i8. |
| bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); |
| |
| llvm::IntegerType *guardTy; |
| CharUnits guardAlignment; |
| if (useInt8GuardVariable) { |
| guardTy = CGF.Int8Ty; |
| guardAlignment = CharUnits::One(); |
| } else { |
| // Guard variables are 64 bits in the generic ABI and size width on ARM |
| // (i.e. 32-bit on AArch32, 64-bit on AArch64). |
| if (UseARMGuardVarABI) { |
| guardTy = CGF.SizeTy; |
| guardAlignment = CGF.getSizeAlign(); |
| } else { |
| guardTy = CGF.Int64Ty; |
| guardAlignment = |
| CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlign(guardTy)); |
| } |
| } |
| llvm::PointerType *guardPtrTy = llvm::PointerType::get( |
| CGF.CGM.getLLVMContext(), |
| CGF.CGM.getDataLayout().getDefaultGlobalsAddressSpace()); |
| |
| // Create the guard variable if we don't already have it (as we |
| // might if we're double-emitting this function body). |
| llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); |
| if (!guard) { |
| // Mangle the name for the guard. |
| SmallString<256> guardName; |
| { |
| llvm::raw_svector_ostream out(guardName); |
| getMangleContext().mangleStaticGuardVariable(&D, out); |
| } |
| |
| // Create the guard variable with a zero-initializer. |
| // Just absorb linkage, visibility and dll storage class from the guarded |
| // variable. |
| guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, |
| false, var->getLinkage(), |
| llvm::ConstantInt::get(guardTy, 0), |
| guardName.str()); |
| guard->setDSOLocal(var->isDSOLocal()); |
| guard->setVisibility(var->getVisibility()); |
| guard->setDLLStorageClass(var->getDLLStorageClass()); |
| // If the variable is thread-local, so is its guard variable. |
| guard->setThreadLocalMode(var->getThreadLocalMode()); |
| guard->setAlignment(guardAlignment.getAsAlign()); |
| |
| // The ABI says: "It is suggested that it be emitted in the same COMDAT |
| // group as the associated data object." In practice, this doesn't work for |
| // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. |
| llvm::Comdat *C = var->getComdat(); |
| if (!D.isLocalVarDecl() && C && |
| (CGM.getTarget().getTriple().isOSBinFormatELF() || |
| CGM.getTarget().getTriple().isOSBinFormatWasm())) { |
| guard->setComdat(C); |
| } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { |
| guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName())); |
| } |
| |
| CGM.setStaticLocalDeclGuardAddress(&D, guard); |
| } |
| |
| Address guardAddr = Address(guard, guard->getValueType(), guardAlignment); |
| |
| // Test whether the variable has completed initialization. |
| // |
| // Itanium C++ ABI 3.3.2: |
| // The following is pseudo-code showing how these functions can be used: |
| // if (obj_guard.first_byte == 0) { |
| // if ( __cxa_guard_acquire (&obj_guard) ) { |
| // try { |
| // ... initialize the object ...; |
| // } catch (...) { |
| // __cxa_guard_abort (&obj_guard); |
| // throw; |
| // } |
| // ... queue object destructor with __cxa_atexit() ...; |
| // __cxa_guard_release (&obj_guard); |
| // } |
| // } |
| // |
| // If threadsafe statics are enabled, but we don't have inline atomics, just |
| // call __cxa_guard_acquire unconditionally. The "inline" check isn't |
| // actually inline, and the user might not expect calls to __atomic libcalls. |
| |
| unsigned MaxInlineWidthInBits = CGF.getTarget().getMaxAtomicInlineWidth(); |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); |
| if (!threadsafe || MaxInlineWidthInBits) { |
| // Load the first byte of the guard variable. |
| llvm::LoadInst *LI = |
| Builder.CreateLoad(guardAddr.withElementType(CGM.Int8Ty)); |
| |
| // Itanium ABI: |
| // An implementation supporting thread-safety on multiprocessor |
| // systems must also guarantee that references to the initialized |
| // object do not occur before the load of the initialization flag. |
| // |
| // In LLVM, we do this by marking the load Acquire. |
| if (threadsafe) |
| LI->setAtomic(llvm::AtomicOrdering::Acquire); |
| |
| // For ARM, we should only check the first bit, rather than the entire byte: |
| // |
| // ARM C++ ABI 3.2.3.1: |
| // To support the potential use of initialization guard variables |
| // as semaphores that are the target of ARM SWP and LDREX/STREX |
| // synchronizing instructions we define a static initialization |
| // guard variable to be a 4-byte aligned, 4-byte word with the |
| // following inline access protocol. |
| // #define INITIALIZED 1 |
| // if ((obj_guard & INITIALIZED) != INITIALIZED) { |
| // if (__cxa_guard_acquire(&obj_guard)) |
| // ... |
| // } |
| // |
| // and similarly for ARM64: |
| // |
| // ARM64 C++ ABI 3.2.2: |
| // This ABI instead only specifies the value bit 0 of the static guard |
| // variable; all other bits are platform defined. Bit 0 shall be 0 when the |
| // variable is not initialized and 1 when it is. |
| llvm::Value *V = |
| (UseARMGuardVarABI && !useInt8GuardVariable) |
| ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1)) |
| : LI; |
| llvm::Value *NeedsInit = Builder.CreateIsNull(V, "guard.uninitialized"); |
| |
| llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); |
| |
| // Check if the first byte of the guard variable is zero. |
| CGF.EmitCXXGuardedInitBranch(NeedsInit, InitCheckBlock, EndBlock, |
| CodeGenFunction::GuardKind::VariableGuard, &D); |
| |
| CGF.EmitBlock(InitCheckBlock); |
| } |
| |
| // The semantics of dynamic initialization of variables with static or thread |
| // storage duration depends on whether they are declared at block-scope. The |
| // initialization of such variables at block-scope can be aborted with an |
| // exception and later retried (per C++20 [stmt.dcl]p4), and recursive entry |
| // to their initialization has undefined behavior (also per C++20 |
| // [stmt.dcl]p4). For such variables declared at non-block scope, exceptions |
| // lead to termination (per C++20 [except.terminate]p1), and recursive |
| // references to the variables are governed only by the lifetime rules (per |
| // C++20 [class.cdtor]p2), which means such references are perfectly fine as |
| // long as they avoid touching memory. As a result, block-scope variables must |
| // not be marked as initialized until after initialization completes (unless |
| // the mark is reverted following an exception), but non-block-scope variables |
| // must be marked prior to initialization so that recursive accesses during |
| // initialization do not restart initialization. |
| |
| // Variables used when coping with thread-safe statics and exceptions. |
| if (threadsafe) { |
| // Call __cxa_guard_acquire. |
| llvm::Value *V |
| = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); |
| |
| llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); |
| |
| Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), |
| InitBlock, EndBlock); |
| |
| // Call __cxa_guard_abort along the exceptional edge. |
| CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); |
| |
| CGF.EmitBlock(InitBlock); |
| } else if (!D.isLocalVarDecl()) { |
| // For non-local variables, store 1 into the first byte of the guard |
| // variable before the object initialization begins so that references |
| // to the variable during initialization don't restart initialization. |
| Builder.CreateStore(llvm::ConstantInt::get(CGM.Int8Ty, 1), |
| guardAddr.withElementType(CGM.Int8Ty)); |
| } |
| |
| // Emit the initializer and add a global destructor if appropriate. |
| CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); |
| |
| if (threadsafe) { |
| // Pop the guard-abort cleanup if we pushed one. |
| CGF.PopCleanupBlock(); |
| |
| // Call __cxa_guard_release. This cannot throw. |
| CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), |
| guardAddr.emitRawPointer(CGF)); |
| } else if (D.isLocalVarDecl()) { |
| // For local variables, store 1 into the first byte of the guard variable |
| // after the object initialization completes so that initialization is |
| // retried if initialization is interrupted by an exception. |
| Builder.CreateStore(llvm::ConstantInt::get(CGM.Int8Ty, 1), |
| guardAddr.withElementType(CGM.Int8Ty)); |
| } |
| |
| CGF.EmitBlock(EndBlock); |
| } |
| |
| /// Register a global destructor using __cxa_atexit. |
| static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, |
| llvm::FunctionCallee dtor, |
| llvm::Constant *addr, bool TLS) { |
| assert(!CGF.getTarget().getTriple().isOSAIX() && |
| "unexpected call to emitGlobalDtorWithCXAAtExit"); |
| assert((TLS || CGF.getTypes().getCodeGenOpts().CXAAtExit) && |
| "__cxa_atexit is disabled"); |
| const char *Name = "__cxa_atexit"; |
| if (TLS) { |
| const llvm::Triple &T = CGF.getTarget().getTriple(); |
| Name = T.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit"; |
| } |
| |
| // We're assuming that the destructor function is something we can |
| // reasonably call with the default CC. |
| llvm::Type *dtorTy = CGF.UnqualPtrTy; |
| |
| // Preserve address space of addr. |
| auto AddrAS = addr ? addr->getType()->getPointerAddressSpace() : 0; |
| auto AddrPtrTy = AddrAS ? llvm::PointerType::get(CGF.getLLVMContext(), AddrAS) |
| : CGF.Int8PtrTy; |
| |
| // Create a variable that binds the atexit to this shared object. |
| llvm::Constant *handle = |
| CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); |
| auto *GV = cast<llvm::GlobalValue>(handle->stripPointerCasts()); |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| |
| // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); |
| llvm::Type *paramTys[] = {dtorTy, AddrPtrTy, handle->getType()}; |
| llvm::FunctionType *atexitTy = |
| llvm::FunctionType::get(CGF.IntTy, paramTys, false); |
| |
| // Fetch the actual function. |
| llvm::FunctionCallee atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); |
| if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit.getCallee())) |
| fn->setDoesNotThrow(); |
| |
| const auto &Context = CGF.CGM.getContext(); |
| FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( |
| /*IsVariadic=*/false, /*IsCXXMethod=*/false)); |
| QualType fnType = |
| Context.getFunctionType(Context.VoidTy, {Context.VoidPtrTy}, EPI); |
| llvm::Constant *dtorCallee = cast<llvm::Constant>(dtor.getCallee()); |
| dtorCallee = CGF.CGM.getFunctionPointer(dtorCallee, fnType); |
| |
| if (!addr) |
| // addr is null when we are trying to register a dtor annotated with |
| // __attribute__((destructor)) in a constructor function. Using null here is |
| // okay because this argument is just passed back to the destructor |
| // function. |
| addr = llvm::Constant::getNullValue(CGF.Int8PtrTy); |
| |
| llvm::Value *args[] = {dtorCallee, addr, handle}; |
| CGF.EmitNounwindRuntimeCall(atexit, args); |
| } |
| |
| static llvm::Function *createGlobalInitOrCleanupFn(CodeGen::CodeGenModule &CGM, |
| StringRef FnName) { |
| // Create a function that registers/unregisters destructors that have the same |
| // priority. |
| llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); |
| llvm::Function *GlobalInitOrCleanupFn = CGM.CreateGlobalInitOrCleanUpFunction( |
| FTy, FnName, CGM.getTypes().arrangeNullaryFunction(), SourceLocation()); |
| |
| return GlobalInitOrCleanupFn; |
| } |
| |
| void CodeGenModule::unregisterGlobalDtorsWithUnAtExit() { |
| for (const auto &I : DtorsUsingAtExit) { |
| int Priority = I.first; |
| std::string GlobalCleanupFnName = |
| std::string("__GLOBAL_cleanup_") + llvm::to_string(Priority); |
| |
| llvm::Function *GlobalCleanupFn = |
| createGlobalInitOrCleanupFn(*this, GlobalCleanupFnName); |
| |
| CodeGenFunction CGF(*this); |
| CGF.StartFunction(GlobalDecl(), getContext().VoidTy, GlobalCleanupFn, |
| getTypes().arrangeNullaryFunction(), FunctionArgList(), |
| SourceLocation(), SourceLocation()); |
| auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
| |
| // Get the destructor function type, void(*)(void). |
| llvm::FunctionType *dtorFuncTy = llvm::FunctionType::get(CGF.VoidTy, false); |
| |
| // Destructor functions are run/unregistered in non-ascending |
| // order of their priorities. |
| const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
| auto itv = Dtors.rbegin(); |
| while (itv != Dtors.rend()) { |
| llvm::Function *Dtor = *itv; |
| |
| // We're assuming that the destructor function is something we can |
| // reasonably call with the correct CC. |
| llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(Dtor); |
| llvm::Value *NeedsDestruct = |
| CGF.Builder.CreateIsNull(V, "needs_destruct"); |
| |
| llvm::BasicBlock *DestructCallBlock = |
| CGF.createBasicBlock("destruct.call"); |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock( |
| (itv + 1) != Dtors.rend() ? "unatexit.call" : "destruct.end"); |
| // Check if unatexit returns a value of 0. If it does, jump to |
| // DestructCallBlock, otherwise jump to EndBlock directly. |
| CGF.Builder.CreateCondBr(NeedsDestruct, DestructCallBlock, EndBlock); |
| |
| CGF.EmitBlock(DestructCallBlock); |
| |
| // Emit the call to casted Dtor. |
| llvm::CallInst *CI = CGF.Builder.CreateCall(dtorFuncTy, Dtor); |
| // Make sure the call and the callee agree on calling convention. |
| CI->setCallingConv(Dtor->getCallingConv()); |
| |
| CGF.EmitBlock(EndBlock); |
| |
| itv++; |
| } |
| |
| CGF.FinishFunction(); |
| AddGlobalDtor(GlobalCleanupFn, Priority); |
| } |
| } |
| |
| void CodeGenModule::registerGlobalDtorsWithAtExit() { |
| for (const auto &I : DtorsUsingAtExit) { |
| int Priority = I.first; |
| std::string GlobalInitFnName = |
| std::string("__GLOBAL_init_") + llvm::to_string(Priority); |
| llvm::Function *GlobalInitFn = |
| createGlobalInitOrCleanupFn(*this, GlobalInitFnName); |
| |
| CodeGenFunction CGF(*this); |
| CGF.StartFunction(GlobalDecl(), getContext().VoidTy, GlobalInitFn, |
| getTypes().arrangeNullaryFunction(), FunctionArgList(), |
| SourceLocation(), SourceLocation()); |
| auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
| |
| // Since constructor functions are run in non-descending order of their |
| // priorities, destructors are registered in non-descending order of their |
| // priorities, and since destructor functions are run in the reverse order |
| // of their registration, destructor functions are run in non-ascending |
| // order of their priorities. |
| const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
| for (auto *Dtor : Dtors) { |
| // Register the destructor function calling __cxa_atexit if it is |
| // available. Otherwise fall back on calling atexit. |
| if (getCodeGenOpts().CXAAtExit) { |
| emitGlobalDtorWithCXAAtExit(CGF, Dtor, nullptr, false); |
| } else { |
| // We're assuming that the destructor function is something we can |
| // reasonably call with the correct CC. |
| CGF.registerGlobalDtorWithAtExit(Dtor); |
| } |
| } |
| |
| CGF.FinishFunction(); |
| AddGlobalCtor(GlobalInitFn, Priority); |
| } |
| |
| if (getCXXABI().useSinitAndSterm()) |
| unregisterGlobalDtorsWithUnAtExit(); |
| } |
| |
| /// Register a global destructor as best as we know how. |
| void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::FunctionCallee dtor, |
| llvm::Constant *addr) { |
| if (D.isNoDestroy(CGM.getContext())) |
| return; |
| |
| // HLSL doesn't support atexit. |
| if (CGM.getLangOpts().HLSL) |
| return CGM.AddCXXDtorEntry(dtor, addr); |
| |
| // OpenMP offloading supports C++ constructors and destructors but we do not |
| // always have 'atexit' available. Instead lower these to use the LLVM global |
| // destructors which we can handle directly in the runtime. Note that this is |
| // not strictly 1-to-1 with using `atexit` because we no longer tear down |
| // globals in reverse order of when they were constructed. |
| if (!CGM.getLangOpts().hasAtExit() && !D.isStaticLocal()) |
| return CGF.registerGlobalDtorWithLLVM(D, dtor, addr); |
| |
| // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit |
| // or __cxa_atexit depending on whether this VarDecl is a thread-local storage |
| // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled. |
| // We can always use __cxa_thread_atexit. |
| if (CGM.getCodeGenOpts().CXAAtExit || D.getTLSKind()) |
| return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); |
| |
| // In Apple kexts, we want to add a global destructor entry. |
| // FIXME: shouldn't this be guarded by some variable? |
| if (CGM.getLangOpts().AppleKext) { |
| // Generate a global destructor entry. |
| return CGM.AddCXXDtorEntry(dtor, addr); |
| } |
| |
| CGF.registerGlobalDtorWithAtExit(D, dtor, addr); |
| } |
| |
| static bool isThreadWrapperReplaceable(const VarDecl *VD, |
| CodeGen::CodeGenModule &CGM) { |
| assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!"); |
| // Darwin prefers to have references to thread local variables to go through |
| // the thread wrapper instead of directly referencing the backing variable. |
| return VD->getTLSKind() == VarDecl::TLS_Dynamic && |
| CGM.getTarget().getTriple().isOSDarwin(); |
| } |
| |
| /// Get the appropriate linkage for the wrapper function. This is essentially |
| /// the weak form of the variable's linkage; every translation unit which needs |
| /// the wrapper emits a copy, and we want the linker to merge them. |
| static llvm::GlobalValue::LinkageTypes |
| getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { |
| llvm::GlobalValue::LinkageTypes VarLinkage = |
| CGM.getLLVMLinkageVarDefinition(VD); |
| |
| // For internal linkage variables, we don't need an external or weak wrapper. |
| if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) |
| return VarLinkage; |
| |
| // If the thread wrapper is replaceable, give it appropriate linkage. |
| if (isThreadWrapperReplaceable(VD, CGM)) |
| if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) && |
| !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage)) |
| return VarLinkage; |
| return llvm::GlobalValue::WeakODRLinkage; |
| } |
| |
| llvm::Function * |
| ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, |
| llvm::Value *Val) { |
| // Mangle the name for the thread_local wrapper function. |
| SmallString<256> WrapperName; |
| { |
| llvm::raw_svector_ostream Out(WrapperName); |
| getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); |
| } |
| |
| // FIXME: If VD is a definition, we should regenerate the function attributes |
| // before returning. |
| if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName)) |
| return cast<llvm::Function>(V); |
| |
| QualType RetQT = VD->getType(); |
| if (RetQT->isReferenceType()) |
| RetQT = RetQT.getNonReferenceType(); |
| |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| getContext().getPointerType(RetQT), FunctionArgList()); |
| |
| llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Wrapper = |
| llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM), |
| WrapperName.str(), &CGM.getModule()); |
| |
| if (CGM.supportsCOMDAT() && Wrapper->isWeakForLinker()) |
| Wrapper->setComdat(CGM.getModule().getOrInsertComdat(Wrapper->getName())); |
| |
| CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Wrapper, /*IsThunk=*/false); |
| |
| // Always resolve references to the wrapper at link time. |
| if (!Wrapper->hasLocalLinkage()) |
| if (!isThreadWrapperReplaceable(VD, CGM) || |
| llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) || |
| llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()) || |
| VD->getVisibility() == HiddenVisibility) |
| Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| |
| if (isThreadWrapperReplaceable(VD, CGM)) { |
| Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| Wrapper->addFnAttr(llvm::Attribute::NoUnwind); |
| } |
| |
| ThreadWrappers.push_back({VD, Wrapper}); |
| return Wrapper; |
| } |
| |
| void ItaniumCXXABI::EmitThreadLocalInitFuncs( |
| CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
| ArrayRef<llvm::Function *> CXXThreadLocalInits, |
| ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
| llvm::Function *InitFunc = nullptr; |
| |
| // Separate initializers into those with ordered (or partially-ordered) |
| // initialization and those with unordered initialization. |
| llvm::SmallVector<llvm::Function *, 8> OrderedInits; |
| llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits; |
| for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { |
| if (isTemplateInstantiation( |
| CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) |
| UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = |
| CXXThreadLocalInits[I]; |
| else |
| OrderedInits.push_back(CXXThreadLocalInits[I]); |
| } |
| |
| if (!OrderedInits.empty()) { |
| // Generate a guarded initialization function. |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(FTy, "__tls_init", FI, |
| SourceLocation(), |
| /*TLS=*/true); |
| llvm::GlobalVariable *Guard = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, |
| llvm::GlobalVariable::InternalLinkage, |
| llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard"); |
| Guard->setThreadLocal(true); |
| Guard->setThreadLocalMode(CGM.GetDefaultLLVMTLSModel()); |
| |
| CharUnits GuardAlign = CharUnits::One(); |
| Guard->setAlignment(GuardAlign.getAsAlign()); |
| |
| CodeGenFunction(CGM).GenerateCXXGlobalInitFunc( |
| InitFunc, OrderedInits, ConstantAddress(Guard, CGM.Int8Ty, GuardAlign)); |
| // On Darwin platforms, use CXX_FAST_TLS calling convention. |
| if (CGM.getTarget().getTriple().isOSDarwin()) { |
| InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| InitFunc->addFnAttr(llvm::Attribute::NoUnwind); |
| } |
| } |
| |
| // Create declarations for thread wrappers for all thread-local variables |
| // with non-discardable definitions in this translation unit. |
| for (const VarDecl *VD : CXXThreadLocals) { |
| if (VD->hasDefinition() && |
| !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD))) { |
| llvm::GlobalValue *GV = CGM.GetGlobalValue(CGM.getMangledName(VD)); |
| getOrCreateThreadLocalWrapper(VD, GV); |
| } |
| } |
| |
| // Emit all referenced thread wrappers. |
| for (auto VDAndWrapper : ThreadWrappers) { |
| const VarDecl *VD = VDAndWrapper.first; |
| llvm::GlobalVariable *Var = |
| cast<llvm::GlobalVariable>(CGM.GetGlobalValue(CGM.getMangledName(VD))); |
| llvm::Function *Wrapper = VDAndWrapper.second; |
| |
| // Some targets require that all access to thread local variables go through |
| // the thread wrapper. This means that we cannot attempt to create a thread |
| // wrapper or a thread helper. |
| if (!VD->hasDefinition()) { |
| if (isThreadWrapperReplaceable(VD, CGM)) { |
| Wrapper->setLinkage(llvm::Function::ExternalLinkage); |
| continue; |
| } |
| |
| // If this isn't a TU in which this variable is defined, the thread |
| // wrapper is discardable. |
| if (Wrapper->getLinkage() == llvm::Function::WeakODRLinkage) |
| Wrapper->setLinkage(llvm::Function::LinkOnceODRLinkage); |
| } |
| |
| CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper); |
| |
| // Mangle the name for the thread_local initialization function. |
| SmallString<256> InitFnName; |
| { |
| llvm::raw_svector_ostream Out(InitFnName); |
| getMangleContext().mangleItaniumThreadLocalInit(VD, Out); |
| } |
| |
| llvm::FunctionType *InitFnTy = llvm::FunctionType::get(CGM.VoidTy, false); |
| |
| // If we have a definition for the variable, emit the initialization |
| // function as an alias to the global Init function (if any). Otherwise, |
| // produce a declaration of the initialization function. |
| llvm::GlobalValue *Init = nullptr; |
| bool InitIsInitFunc = false; |
| bool HasConstantInitialization = false; |
| if (!usesThreadWrapperFunction(VD)) { |
| HasConstantInitialization = true; |
| } else if (VD->hasDefinition()) { |
| InitIsInitFunc = true; |
| llvm::Function *InitFuncToUse = InitFunc; |
| if (isTemplateInstantiation(VD->getTemplateSpecializationKind())) |
| InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl()); |
| if (InitFuncToUse) |
| Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(), |
| InitFuncToUse); |
| } else { |
| // Emit a weak global function referring to the initialization function. |
| // This function will not exist if the TU defining the thread_local |
| // variable in question does not need any dynamic initialization for |
| // its thread_local variables. |
| Init = llvm::Function::Create(InitFnTy, |
| llvm::GlobalVariable::ExternalWeakLinkage, |
| InitFnName.str(), &CGM.getModule()); |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| CGM.SetLLVMFunctionAttributes( |
| GlobalDecl(), FI, cast<llvm::Function>(Init), /*IsThunk=*/false); |
| } |
| |
| if (Init) { |
| Init->setVisibility(Var->getVisibility()); |
| // Don't mark an extern_weak function DSO local on windows. |
| if (!CGM.getTriple().isOSWindows() || !Init->hasExternalWeakLinkage()) |
| Init->setDSOLocal(Var->isDSOLocal()); |
| } |
| |
| llvm::LLVMContext &Context = CGM.getModule().getContext(); |
| |
| // The linker on AIX is not happy with missing weak symbols. However, |
| // other TUs will not know whether the initialization routine exists |
| // so create an empty, init function to satisfy the linker. |
| // This is needed whenever a thread wrapper function is not used, and |
| // also when the symbol is weak. |
| if (CGM.getTriple().isOSAIX() && VD->hasDefinition() && |
| isEmittedWithConstantInitializer(VD, true) && |
| !mayNeedDestruction(VD)) { |
| // Init should be null. If it were non-null, then the logic above would |
| // either be defining the function to be an alias or declaring the |
| // function with the expectation that the definition of the variable |
| // is elsewhere. |
| assert(Init == nullptr && "Expected Init to be null."); |
| |
| llvm::Function *Func = llvm::Function::Create( |
| InitFnTy, Var->getLinkage(), InitFnName.str(), &CGM.getModule()); |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, |
| cast<llvm::Function>(Func), |
| /*IsThunk=*/false); |
| // Create a function body that just returns |
| llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Func); |
| CGBuilderTy Builder(CGM, Entry); |
| Builder.CreateRetVoid(); |
| } |
| |
| llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); |
| CGBuilderTy Builder(CGM, Entry); |
| if (HasConstantInitialization) { |
| // No dynamic initialization to invoke. |
| } else if (InitIsInitFunc) { |
| if (Init) { |
| llvm::CallInst *CallVal = Builder.CreateCall(InitFnTy, Init); |
| if (isThreadWrapperReplaceable(VD, CGM)) { |
| CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| llvm::Function *Fn = |
| cast<llvm::Function>(cast<llvm::GlobalAlias>(Init)->getAliasee()); |
| Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
| } |
| } |
| } else if (CGM.getTriple().isOSAIX()) { |
| // On AIX, except if constinit and also neither of class type or of |
| // (possibly multi-dimensional) array of class type, thread_local vars |
| // will have init routines regardless of whether they are |
| // const-initialized. Since the routine is guaranteed to exist, we can |
| // unconditionally call it without testing for its existance. This |
| // avoids potentially unresolved weak symbols which the AIX linker |
| // isn't happy with. |
| Builder.CreateCall(InitFnTy, Init); |
| } else { |
| // Don't know whether we have an init function. Call it if it exists. |
| llvm::Value *Have = Builder.CreateIsNotNull(Init); |
| llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
| llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
| Builder.CreateCondBr(Have, InitBB, ExitBB); |
| |
| Builder.SetInsertPoint(InitBB); |
| Builder.CreateCall(InitFnTy, Init); |
| Builder.CreateBr(ExitBB); |
| |
| Builder.SetInsertPoint(ExitBB); |
| } |
| |
| // For a reference, the result of the wrapper function is a pointer to |
| // the referenced object. |
| llvm::Value *Val = Builder.CreateThreadLocalAddress(Var); |
| |
| if (VD->getType()->isReferenceType()) { |
| CharUnits Align = CGM.getContext().getDeclAlign(VD); |
| Val = Builder.CreateAlignedLoad(Var->getValueType(), Val, Align); |
| } |
| Val = Builder.CreateAddrSpaceCast(Val, Wrapper->getReturnType()); |
| |
| Builder.CreateRet(Val); |
| } |
| } |
| |
| LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
| const VarDecl *VD, |
| QualType LValType) { |
| llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD); |
| llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); |
| |
| llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper); |
| CallVal->setCallingConv(Wrapper->getCallingConv()); |
| |
| LValue LV; |
| if (VD->getType()->isReferenceType()) |
| LV = CGF.MakeNaturalAlignRawAddrLValue(CallVal, LValType); |
| else |
| LV = CGF.MakeRawAddrLValue(CallVal, LValType, |
| CGF.getContext().getDeclAlign(VD)); |
| // FIXME: need setObjCGCLValueClass? |
| return LV; |
| } |
| |
| /// Return whether the given global decl needs a VTT parameter, which it does |
| /// if it's a base constructor or destructor with virtual bases. |
| bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| |
| // We don't have any virtual bases, just return early. |
| if (!MD->getParent()->getNumVBases()) |
| return false; |
| |
| // Check if we have a base constructor. |
| if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) |
| return true; |
| |
| // Check if we have a base destructor. |
| if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) |
| return true; |
| |
| return false; |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::getOrCreateVirtualFunctionPointerThunk(const CXXMethodDecl *MD) { |
| SmallString<256> MethodName; |
| llvm::raw_svector_ostream Out(MethodName); |
| getMangleContext().mangleCXXName(MD, Out); |
| MethodName += "_vfpthunk_"; |
| StringRef ThunkName = MethodName.str(); |
| llvm::Function *ThunkFn; |
| if ((ThunkFn = cast_or_null<llvm::Function>( |
| CGM.getModule().getNamedValue(ThunkName)))) |
| return ThunkFn; |
| |
| const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeCXXMethodDeclaration(MD); |
| llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); |
| llvm::GlobalValue::LinkageTypes Linkage = |
| MD->isExternallyVisible() ? llvm::GlobalValue::LinkOnceODRLinkage |
| : llvm::GlobalValue::InternalLinkage; |
| ThunkFn = |
| llvm::Function::Create(ThunkTy, Linkage, ThunkName, &CGM.getModule()); |
| if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) |
| ThunkFn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); |
| |
| CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/true); |
| CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); |
| |
| // Stack protection sometimes gets inserted after the musttail call. |
| ThunkFn->removeFnAttr(llvm::Attribute::StackProtect); |
| ThunkFn->removeFnAttr(llvm::Attribute::StackProtectStrong); |
| ThunkFn->removeFnAttr(llvm::Attribute::StackProtectReq); |
| |
| // Start codegen. |
| CodeGenFunction CGF(CGM); |
| CGF.CurGD = GlobalDecl(MD); |
| CGF.CurFuncIsThunk = true; |
| |
| // Build FunctionArgs. |
| FunctionArgList FunctionArgs; |
| CGF.BuildFunctionArgList(CGF.CurGD, FunctionArgs); |
| |
| CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, |
| FunctionArgs, MD->getLocation(), SourceLocation()); |
| llvm::Value *ThisVal = loadIncomingCXXThis(CGF); |
| setCXXABIThisValue(CGF, ThisVal); |
| |
| CallArgList CallArgs; |
| for (const VarDecl *VD : FunctionArgs) |
| CGF.EmitDelegateCallArg(CallArgs, VD, SourceLocation()); |
| |
| const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); |
| RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, /*this*/ 1); |
| const CGFunctionInfo &CallInfo = |
| CGM.getTypes().arrangeCXXMethodCall(CallArgs, FPT, Required, 0); |
| CGCallee Callee = CGCallee::forVirtual(nullptr, GlobalDecl(MD), |
| getThisAddress(CGF), ThunkTy); |
| llvm::CallBase *CallOrInvoke; |
| CGF.EmitCall(CallInfo, Callee, ReturnValueSlot(), CallArgs, &CallOrInvoke, |
| /*IsMustTail=*/true, SourceLocation(), true); |
| auto *Call = cast<llvm::CallInst>(CallOrInvoke); |
| Call->setTailCallKind(llvm::CallInst::TCK_MustTail); |
| if (Call->getType()->isVoidTy()) |
| CGF.Builder.CreateRetVoid(); |
| else |
| CGF.Builder.CreateRet(Call); |
| |
| // Finish the function to maintain CodeGenFunction invariants. |
| // FIXME: Don't emit unreachable code. |
| CGF.EmitBlock(CGF.createBasicBlock()); |
| CGF.FinishFunction(); |
| return ThunkFn; |
| } |
| |
| namespace { |
| class ItaniumRTTIBuilder { |
| CodeGenModule &CGM; // Per-module state. |
| llvm::LLVMContext &VMContext; |
| const ItaniumCXXABI &CXXABI; // Per-module state. |
| |
| /// Fields - The fields of the RTTI descriptor currently being built. |
| SmallVector<llvm::Constant *, 16> Fields; |
| |
| /// GetAddrOfTypeName - Returns the mangled type name of the given type. |
| llvm::GlobalVariable * |
| GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); |
| |
| /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI |
| /// descriptor of the given type. |
| llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); |
| |
| /// BuildVTablePointer - Build the vtable pointer for the given type. |
| void BuildVTablePointer(const Type *Ty, llvm::Constant *StorageAddress); |
| |
| /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
| /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. |
| void BuildSIClassTypeInfo(const CXXRecordDecl *RD); |
| |
| /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
| /// classes with bases that do not satisfy the abi::__si_class_type_info |
| /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
| void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); |
| |
| /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used |
| /// for pointer types. |
| void BuildPointerTypeInfo(QualType PointeeTy); |
| |
| /// BuildObjCObjectTypeInfo - Build the appropriate kind of |
| /// type_info for an object type. |
| void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); |
| |
| /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
| /// struct, used for member pointer types. |
| void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); |
| |
| public: |
| ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) |
| : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} |
| |
| // Pointer type info flags. |
| enum { |
| /// PTI_Const - Type has const qualifier. |
| PTI_Const = 0x1, |
| |
| /// PTI_Volatile - Type has volatile qualifier. |
| PTI_Volatile = 0x2, |
| |
| /// PTI_Restrict - Type has restrict qualifier. |
| PTI_Restrict = 0x4, |
| |
| /// PTI_Incomplete - Type is incomplete. |
| PTI_Incomplete = 0x8, |
| |
| /// PTI_ContainingClassIncomplete - Containing class is incomplete. |
| /// (in pointer to member). |
| PTI_ContainingClassIncomplete = 0x10, |
| |
| /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). |
| //PTI_TransactionSafe = 0x20, |
| |
| /// PTI_Noexcept - Pointee is noexcept function (C++1z). |
| PTI_Noexcept = 0x40, |
| }; |
| |
| // VMI type info flags. |
| enum { |
| /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. |
| VMI_NonDiamondRepeat = 0x1, |
| |
| /// VMI_DiamondShaped - Class is diamond shaped. |
| VMI_DiamondShaped = 0x2 |
| }; |
| |
| // Base class type info flags. |
| enum { |
| /// BCTI_Virtual - Base class is virtual. |
| BCTI_Virtual = 0x1, |
| |
| /// BCTI_Public - Base class is public. |
| BCTI_Public = 0x2 |
| }; |
| |
| /// BuildTypeInfo - Build the RTTI type info struct for the given type, or |
| /// link to an existing RTTI descriptor if one already exists. |
| llvm::Constant *BuildTypeInfo(QualType Ty); |
| |
| /// BuildTypeInfo - Build the RTTI type info struct for the given type. |
| llvm::Constant *BuildTypeInfo( |
| QualType Ty, |
| llvm::GlobalVariable::LinkageTypes Linkage, |
| llvm::GlobalValue::VisibilityTypes Visibility, |
| llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass); |
| }; |
| } |
| |
| llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( |
| QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); |
| |
| // We know that the mangled name of the type starts at index 4 of the |
| // mangled name of the typename, so we can just index into it in order to |
| // get the mangled name of the type. |
| llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, |
| Name.substr(4)); |
| auto Align = CGM.getContext().getTypeAlignInChars(CGM.getContext().CharTy); |
| |
| llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
| Name, Init->getType(), Linkage, Align.getAsAlign()); |
| |
| GV->setInitializer(Init); |
| |
| return GV; |
| } |
| |
| llvm::Constant * |
| ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { |
| // Mangle the RTTI name. |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
| |
| // Look for an existing global. |
| llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); |
| |
| if (!GV) { |
| // Create a new global variable. |
| // Note for the future: If we would ever like to do deferred emission of |
| // RTTI, check if emitting vtables opportunistically need any adjustment. |
| |
| GV = new llvm::GlobalVariable( |
| CGM.getModule(), CGM.GlobalsInt8PtrTy, |
| /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, Name); |
| const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| CGM.setGVProperties(GV, RD); |
| // Import the typeinfo symbol when all non-inline virtual methods are |
| // imported. |
| if (CGM.getTarget().hasPS4DLLImportExport()) { |
| if (RD && CXXRecordNonInlineHasAttr<DLLImportAttr>(RD)) { |
| GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
| CGM.setDSOLocal(GV); |
| } |
| } |
| } |
| |
| return GV; |
| } |
| |
| /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type |
| /// info for that type is defined in the standard library. |
| static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { |
| // Itanium C++ ABI 2.9.2: |
| // Basic type information (e.g. for "int", "bool", etc.) will be kept in |
| // the run-time support library. Specifically, the run-time support |
| // library should contain type_info objects for the types X, X* and |
| // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, |
| // unsigned char, signed char, short, unsigned short, int, unsigned int, |
| // long, unsigned long, long long, unsigned long long, float, double, |
| // long double, char16_t, char32_t, and the IEEE 754r decimal and |
| // half-precision floating point types. |
| // |
| // GCC also emits RTTI for __int128. |
| // FIXME: We do not emit RTTI information for decimal types here. |
| |
| // Types added here must also be added to EmitFundamentalRTTIDescriptors. |
| switch (Ty->getKind()) { |
| case BuiltinType::Void: |
| case BuiltinType::NullPtr: |
| case BuiltinType::Bool: |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| case BuiltinType::Char_U: |
| case BuiltinType::Char_S: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| case BuiltinType::Half: |
| case BuiltinType::Float: |
| case BuiltinType::Double: |
| case BuiltinType::LongDouble: |
| case BuiltinType::Float16: |
| case BuiltinType::Float128: |
| case BuiltinType::Ibm128: |
| case BuiltinType::Char8: |
| case BuiltinType::Char16: |
| case BuiltinType::Char32: |
| case BuiltinType::Int128: |
| case BuiltinType::UInt128: |
| return true; |
| |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLExtensionTypes.def" |
| case BuiltinType::OCLSampler: |
| case BuiltinType::OCLEvent: |
| case BuiltinType::OCLClkEvent: |
| case BuiltinType::OCLQueue: |
| case BuiltinType::OCLReserveID: |
| #define SVE_TYPE(Name, Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/AArch64SVEACLETypes.def" |
| #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/PPCTypes.def" |
| #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/RISCVVTypes.def" |
| #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
| #include "clang/Basic/AMDGPUTypes.def" |
| #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/HLSLIntangibleTypes.def" |
| case BuiltinType::ShortAccum: |
| case BuiltinType::Accum: |
| case BuiltinType::LongAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::ShortFract: |
| case BuiltinType::Fract: |
| case BuiltinType::LongFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| case BuiltinType::BFloat16: |
| return false; |
| |
| case BuiltinType::Dependent: |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| llvm_unreachable("asking for RRTI for a placeholder type!"); |
| |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| llvm_unreachable("FIXME: Objective-C types are unsupported!"); |
| } |
| |
| llvm_unreachable("Invalid BuiltinType Kind!"); |
| } |
| |
| static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { |
| QualType PointeeTy = PointerTy->getPointeeType(); |
| const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); |
| if (!BuiltinTy) |
| return false; |
| |
| // Check the qualifiers. |
| Qualifiers Quals = PointeeTy.getQualifiers(); |
| Quals.removeConst(); |
| |
| if (!Quals.empty()) |
| return false; |
| |
| return TypeInfoIsInStandardLibrary(BuiltinTy); |
| } |
| |
| /// IsStandardLibraryRTTIDescriptor - Returns whether the type |
| /// information for the given type exists in the standard library. |
| static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { |
| // Type info for builtin types is defined in the standard library. |
| if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) |
| return TypeInfoIsInStandardLibrary(BuiltinTy); |
| |
| // Type info for some pointer types to builtin types is defined in the |
| // standard library. |
| if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) |
| return TypeInfoIsInStandardLibrary(PointerTy); |
| |
| return false; |
| } |
| |
| /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for |
| /// the given type exists somewhere else, and that we should not emit the type |
| /// information in this translation unit. Assumes that it is not a |
| /// standard-library type. |
| static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, |
| QualType Ty) { |
| ASTContext &Context = CGM.getContext(); |
| |
| // If RTTI is disabled, assume it might be disabled in the |
| // translation unit that defines any potential key function, too. |
| if (!Context.getLangOpts().RTTI) return false; |
| |
| if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (!RD->hasDefinition()) |
| return false; |
| |
| if (!RD->isDynamicClass()) |
| return false; |
| |
| // FIXME: this may need to be reconsidered if the key function |
| // changes. |
| // N.B. We must always emit the RTTI data ourselves if there exists a key |
| // function. |
| bool IsDLLImport = RD->hasAttr<DLLImportAttr>(); |
| |
| // Don't import the RTTI but emit it locally. |
| if (CGM.getTriple().isWindowsGNUEnvironment()) |
| return false; |
| |
| if (CGM.getVTables().isVTableExternal(RD)) { |
| if (CGM.getTarget().hasPS4DLLImportExport()) |
| return true; |
| |
| return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() |
| ? false |
| : true; |
| } |
| if (IsDLLImport) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// IsIncompleteClassType - Returns whether the given record type is incomplete. |
| static bool IsIncompleteClassType(const RecordType *RecordTy) { |
| return !RecordTy->getDecl()->isCompleteDefinition(); |
| } |
| |
| /// ContainsIncompleteClassType - Returns whether the given type contains an |
| /// incomplete class type. This is true if |
| /// |
| /// * The given type is an incomplete class type. |
| /// * The given type is a pointer type whose pointee type contains an |
| /// incomplete class type. |
| /// * The given type is a member pointer type whose class is an incomplete |
| /// class type. |
| /// * The given type is a member pointer type whoise pointee type contains an |
| /// incomplete class type. |
| /// is an indirect or direct pointer to an incomplete class type. |
| static bool ContainsIncompleteClassType(QualType Ty) { |
| if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
| if (IsIncompleteClassType(RecordTy)) |
| return true; |
| } |
| |
| if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) |
| return ContainsIncompleteClassType(PointerTy->getPointeeType()); |
| |
| if (const MemberPointerType *MemberPointerTy = |
| dyn_cast<MemberPointerType>(Ty)) { |
| // Check if the class type is incomplete. |
| const auto *ClassType = cast<RecordType>( |
| MemberPointerTy->getMostRecentCXXRecordDecl()->getTypeForDecl()); |
| if (IsIncompleteClassType(ClassType)) |
| return true; |
| |
| return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); |
| } |
| |
| return false; |
| } |
| |
| // CanUseSingleInheritance - Return whether the given record decl has a "single, |
| // public, non-virtual base at offset zero (i.e. the derived class is dynamic |
| // iff the base is)", according to Itanium C++ ABI, 2.95p6b. |
| static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { |
| // Check the number of bases. |
| if (RD->getNumBases() != 1) |
| return false; |
| |
| // Get the base. |
| CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); |
| |
| // Check that the base is not virtual. |
| if (Base->isVirtual()) |
| return false; |
| |
| // Check that the base is public. |
| if (Base->getAccessSpecifier() != AS_public) |
| return false; |
| |
| // Check that the class is dynamic iff the base is. |
| auto *BaseDecl = |
| cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); |
| if (!BaseDecl->isEmpty() && |
| BaseDecl->isDynamicClass() != RD->isDynamicClass()) |
| return false; |
| |
| return true; |
| } |
| |
| void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty, |
| llvm::Constant *StorageAddress) { |
| // abi::__class_type_info. |
| static const char * const ClassTypeInfo = |
| "_ZTVN10__cxxabiv117__class_type_infoE"; |
| // abi::__si_class_type_info. |
| static const char * const SIClassTypeInfo = |
| "_ZTVN10__cxxabiv120__si_class_type_infoE"; |
| // abi::__vmi_class_type_info. |
| static const char * const VMIClassTypeInfo = |
| "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; |
| |
| const char *VTableName = nullptr; |
| |
| switch (Ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.inc" |
| llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| llvm_unreachable("References shouldn't get here"); |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| llvm_unreachable("Undeduced type shouldn't get here"); |
| |
| case Type::Pipe: |
| llvm_unreachable("Pipe types shouldn't get here"); |
| |
| case Type::ArrayParameter: |
| llvm_unreachable("Array Parameter types should not get here."); |
| |
| case Type::Builtin: |
| case Type::BitInt: |
| // GCC treats vector and complex types as fundamental types. |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::ConstantMatrix: |
| case Type::Complex: |
| case Type::Atomic: |
| // FIXME: GCC treats block pointers as fundamental types?! |
| case Type::BlockPointer: |
| // abi::__fundamental_type_info. |
| VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; |
| break; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| // abi::__array_type_info. |
| VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; |
| break; |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| // abi::__function_type_info. |
| VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; |
| break; |
| |
| case Type::Enum: |
| // abi::__enum_type_info. |
| VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; |
| break; |
| |
| case Type::Record: { |
| const CXXRecordDecl *RD = |
| cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); |
| |
| if (!RD->hasDefinition() || !RD->getNumBases()) { |
| VTableName = ClassTypeInfo; |
| } else if (CanUseSingleInheritance(RD)) { |
| VTableName = SIClassTypeInfo; |
| } else { |
| VTableName = VMIClassTypeInfo; |
| } |
| |
| break; |
| } |
| |
| case Type::ObjCObject: |
| // Ignore protocol qualifiers. |
| Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); |
| |
| // Handle id and Class. |
| if (isa<BuiltinType>(Ty)) { |
| VTableName = ClassTypeInfo; |
| break; |
| } |
| |
| assert(isa<ObjCInterfaceType>(Ty)); |
| [[fallthrough]]; |
| |
| case Type::ObjCInterface: |
| if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { |
| VTableName = SIClassTypeInfo; |
| } else { |
| VTableName = ClassTypeInfo; |
| } |
| break; |
| |
| case Type::ObjCObjectPointer: |
| case Type::Pointer: |
| // abi::__pointer_type_info. |
| VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; |
| break; |
| |
| case Type::MemberPointer: |
| // abi::__pointer_to_member_type_info. |
| VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; |
| break; |
| |
| case Type::HLSLAttributedResource: |
| llvm_unreachable("HLSL doesn't support virtual functions"); |
| } |
| |
| llvm::Constant *VTable = nullptr; |
| |
| // Check if the alias exists. If it doesn't, then get or create the global. |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) |
| VTable = CGM.getModule().getNamedAlias(VTableName); |
| if (!VTable) { |
| llvm::Type *Ty = llvm::ArrayType::get(CGM.GlobalsInt8PtrTy, 0); |
| VTable = CGM.getModule().getOrInsertGlobal(VTableName, Ty); |
| } |
| |
| CGM.setDSOLocal(cast<llvm::GlobalValue>(VTable->stripPointerCasts())); |
| |
| llvm::Type *PtrDiffTy = |
| CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); |
| |
| // The vtable address point is 2. |
| if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
| // The vtable address point is 8 bytes after its start: |
| // 4 for the offset to top + 4 for the relative offset to rtti. |
| llvm::Constant *Eight = llvm::ConstantInt::get(CGM.Int32Ty, 8); |
| VTable = |
| llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8Ty, VTable, Eight); |
| } else { |
| llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); |
| VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.GlobalsInt8PtrTy, |
| VTable, Two); |
| } |
| |
| if (const auto &Schema = |
| CGM.getCodeGenOpts().PointerAuth.CXXTypeInfoVTablePointer) |
| VTable = CGM.getConstantSignedPointer( |
| VTable, Schema, |
| Schema.isAddressDiscriminated() ? StorageAddress : nullptr, |
| GlobalDecl(), QualType(Ty, 0)); |
| |
| Fields.push_back(VTable); |
| } |
| |
| /// Return the linkage that the type info and type info name constants |
| /// should have for the given type. |
| static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, |
| QualType Ty) { |
| // Itanium C++ ABI 2.9.5p7: |
| // In addition, it and all of the intermediate abi::__pointer_type_info |
| // structs in the chain down to the abi::__class_type_info for the |
| // incomplete class type must be prevented from resolving to the |
| // corresponding type_info structs for the complete class type, possibly |
| // by making them local static objects. Finally, a dummy class RTTI is |
| // generated for the incomplete type that will not resolve to the final |
| // complete class RTTI (because the latter need not exist), possibly by |
| // making it a local static object. |
| if (ContainsIncompleteClassType(Ty)) |
| return llvm::GlobalValue::InternalLinkage; |
| |
| switch (Ty->getLinkage()) { |
| case Linkage::Invalid: |
| llvm_unreachable("Linkage hasn't been computed!"); |
| |
| case Linkage::None: |
| case Linkage::Internal: |
| case Linkage::UniqueExternal: |
| return llvm::GlobalValue::InternalLinkage; |
| |
| case Linkage::VisibleNone: |
| case Linkage::Module: |
| case Linkage::External: |
| // RTTI is not enabled, which means that this type info struct is going |
| // to be used for exception handling. Give it linkonce_odr linkage. |
| if (!CGM.getLangOpts().RTTI) |
| return llvm::GlobalValue::LinkOnceODRLinkage; |
| |
| if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
| if (RD->hasAttr<WeakAttr>()) |
| return llvm::GlobalValue::WeakODRLinkage; |
| if (CGM.getTriple().isWindowsItaniumEnvironment()) |
| if (RD->hasAttr<DLLImportAttr>() && |
| ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
| return llvm::GlobalValue::ExternalLinkage; |
| // MinGW always uses LinkOnceODRLinkage for type info. |
| if (RD->isDynamicClass() && |
| !CGM.getContext() |
| .getTargetInfo() |
| .getTriple() |
| .isWindowsGNUEnvironment()) |
| return CGM.getVTableLinkage(RD); |
| } |
| |
| return llvm::GlobalValue::LinkOnceODRLinkage; |
| } |
| |
| llvm_unreachable("Invalid linkage!"); |
| } |
| |
| llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) { |
| // We want to operate on the canonical type. |
| Ty = Ty.getCanonicalType(); |
| |
| // Check if we've already emitted an RTTI descriptor for this type. |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
| |
| llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); |
| if (OldGV && !OldGV->isDeclaration()) { |
| assert(!OldGV->hasAvailableExternallyLinkage() && |
| "available_externally typeinfos not yet implemented"); |
| |
| return OldGV; |
| } |
| |
| // Check if there is already an external RTTI descriptor for this type. |
| if (IsStandardLibraryRTTIDescriptor(Ty) || |
| ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
| return GetAddrOfExternalRTTIDescriptor(Ty); |
| |
| // Emit the standard library with external linkage. |
| llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); |
| |
| // Give the type_info object and name the formal visibility of the |
| // type itself. |
| llvm::GlobalValue::VisibilityTypes llvmVisibility; |
| if (llvm::GlobalValue::isLocalLinkage(Linkage)) |
| // If the linkage is local, only default visibility makes sense. |
| llvmVisibility = llvm::GlobalValue::DefaultVisibility; |
| else if (CXXABI.classifyRTTIUniqueness(Ty, Linkage) == |
| ItaniumCXXABI::RUK_NonUniqueHidden) |
| llvmVisibility = llvm::GlobalValue::HiddenVisibility; |
| else |
| llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility()); |
| |
| llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
| llvm::GlobalValue::DefaultStorageClass; |
| if (auto RD = Ty->getAsCXXRecordDecl()) { |
| if ((CGM.getTriple().isWindowsItaniumEnvironment() && |
| RD->hasAttr<DLLExportAttr>()) || |
| (CGM.shouldMapVisibilityToDLLExport(RD) && |
| !llvm::GlobalValue::isLocalLinkage(Linkage) && |
| llvmVisibility == llvm::GlobalValue::DefaultVisibility)) |
| DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass; |
| } |
| return BuildTypeInfo(Ty, Linkage, llvmVisibility, DLLStorageClass); |
| } |
| |
| llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo( |
| QualType Ty, |
| llvm::GlobalVariable::LinkageTypes Linkage, |
| llvm::GlobalValue::VisibilityTypes Visibility, |
| llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) { |
| SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
| llvm::Module &M = CGM.getModule(); |
| llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name); |
| // int8 is an arbitrary type to be replaced later with replaceInitializer. |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(M, CGM.Int8Ty, /*isConstant=*/true, Linkage, |
| /*Initializer=*/nullptr, Name); |
| |
| // Add the vtable pointer. |
| BuildVTablePointer(cast<Type>(Ty), GV); |
| |
| // And the name. |
| llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); |
| llvm::Constant *TypeNameField; |
| |
| // If we're supposed to demote the visibility, be sure to set a flag |
| // to use a string comparison for type_info comparisons. |
| ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = |
| CXXABI.classifyRTTIUniqueness(Ty, Linkage); |
| if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { |
| // The flag is the sign bit, which on ARM64 is defined to be clear |
| // for global pointers. This is very ARM64-specific. |
| TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty); |
| llvm::Constant *flag = |
| llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63); |
| TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag); |
| TypeNameField = |
| llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.GlobalsInt8PtrTy); |
| } else { |
| TypeNameField = TypeName; |
| } |
| Fields.push_back(TypeNameField); |
| |
| switch (Ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.inc" |
| llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
| |
| // GCC treats vector types as fundamental types. |
| case Type::Builtin: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::ConstantMatrix: |
| case Type::Complex: |
| case Type::BlockPointer: |
| // Itanium C++ ABI 2.9.5p4: |
| // abi::__fundamental_type_info adds no data members to std::type_info. |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| llvm_unreachable("References shouldn't get here"); |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| llvm_unreachable("Undeduced type shouldn't get here"); |
| |
| case Type::Pipe: |
| break; |
| |
| case Type::BitInt: |
| break; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::ArrayParameter: |
| // Itanium C++ ABI 2.9.5p5: |
| // abi::__array_type_info adds no data members to std::type_info. |
| break; |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| // Itanium C++ ABI 2.9.5p5: |
| // abi::__function_type_info adds no data members to std::type_info. |
| break; |
| |
| case Type::Enum: |
| // Itanium C++ ABI 2.9.5p5: |
| // abi::__enum_type_info adds no data members to std::type_info. |
| break; |
| |
| case Type::Record: { |
| const CXXRecordDecl *RD = |
| cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); |
| if (!RD->hasDefinition() || !RD->getNumBases()) { |
| // We don't need to emit any fields. |
| break; |
| } |
| |
| if (CanUseSingleInheritance(RD)) |
| BuildSIClassTypeInfo(RD); |
| else |
| BuildVMIClassTypeInfo(RD); |
| |
| break; |
| } |
| |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); |
| break; |
| |
| case Type::ObjCObjectPointer: |
| BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); |
| break; |
| |
| case Type::Pointer: |
| BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); |
| break; |
| |
| case Type::MemberPointer: |
| BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); |
| break; |
| |
| case Type::Atomic: |
| // No fields, at least for the moment. |
| break; |
| |
| case Type::HLSLAttributedResource: |
| llvm_unreachable("HLSL doesn't support RTTI"); |
| } |
| |
| GV->replaceInitializer(llvm::ConstantStruct::getAnon(Fields)); |
| |
| // Export the typeinfo in the same circumstances as the vtable is exported. |
| auto GVDLLStorageClass = DLLStorageClass; |
| if (CGM.getTarget().hasPS4DLLImportExport() && |
| GVDLLStorageClass != llvm::GlobalVariable::DLLExportStorageClass) { |
| if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| if (RD->hasAttr<DLLExportAttr>() || |
| CXXRecordNonInlineHasAttr<DLLExportAttr>(RD)) |
| GVDLLStorageClass = llvm::GlobalVariable::DLLExportStorageClass; |
| } |
| } |
| |
| // If there's already an old global variable, replace it with the new one. |
| if (OldGV) { |
| GV->takeName(OldGV); |
| OldGV->replaceAllUsesWith(GV); |
| OldGV->eraseFromParent(); |
| } |
| |
| if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) |
| GV->setComdat(M.getOrInsertComdat(GV->getName())); |
| |
| CharUnits Align = CGM.getContext().toCharUnitsFromBits( |
| CGM.getTarget().getPointerAlign(CGM.GetGlobalVarAddressSpace(nullptr))); |
| GV->setAlignment(Align.getAsAlign()); |
| |
| // The Itanium ABI specifies that type_info objects must be globally |
| // unique, with one exception: if the type is an incomplete class |
| // type or a (possibly indirect) pointer to one. That exception |
| // affects the general case of comparing type_info objects produced |
| // by the typeid operator, which is why the comparison operators on |
| // std::type_info generally use the type_info name pointers instead |
| // of the object addresses. However, the language's built-in uses |
| // of RTTI generally require class types to be complete, even when |
| // manipulating pointers to those class types. This allows the |
| // implementation of dynamic_cast to rely on address equality tests, |
| // which is much faster. |
| |
| // All of this is to say that it's important that both the type_info |
| // object and the type_info name be uniqued when weakly emitted. |
| |
| TypeName->setVisibility(Visibility); |
| CGM.setDSOLocal(TypeName); |
| |
| GV->setVisibility(Visibility); |
| CGM.setDSOLocal(GV); |
| |
| TypeName->setDLLStorageClass(DLLStorageClass); |
| GV->setDLLStorageClass(GVDLLStorageClass); |
| |
| TypeName->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
| GV->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
| |
| return GV; |
| } |
| |
| /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info |
| /// for the given Objective-C object type. |
| void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { |
| // Drop qualifiers. |
| const Type *T = OT->getBaseType().getTypePtr(); |
| assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); |
| |
| // The builtin types are abi::__class_type_infos and don't require |
| // extra fields. |
| if (isa<BuiltinType>(T)) return; |
| |
| ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); |
| ObjCInterfaceDecl *Super = Class->getSuperClass(); |
| |
| // Root classes are also __class_type_info. |
| if (!Super) return; |
| |
| QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); |
| |
| // Everything else is single inheritance. |
| llvm::Constant *BaseTypeInfo = |
| ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy); |
| Fields.push_back(BaseTypeInfo); |
| } |
| |
| /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
| /// inheritance, according to the Itanium C++ ABI, 2.95p6b. |
| void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { |
| // Itanium C++ ABI 2.9.5p6b: |
| // It adds to abi::__class_type_info a single member pointing to the |
| // type_info structure for the base type, |
| llvm::Constant *BaseTypeInfo = |
| ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType()); |
| Fields.push_back(BaseTypeInfo); |
| } |
| |
| namespace { |
| /// SeenBases - Contains virtual and non-virtual bases seen when traversing |
| /// a class hierarchy. |
| struct SeenBases { |
| llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; |
| llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; |
| }; |
| } |
| |
| /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in |
| /// abi::__vmi_class_type_info. |
| /// |
| static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, |
| SeenBases &Bases) { |
| |
| unsigned Flags = 0; |
| |
| auto *BaseDecl = |
| cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); |
| |
| if (Base->isVirtual()) { |
| // Mark the virtual base as seen. |
| if (!Bases.VirtualBases.insert(BaseDecl).second) { |
| // If this virtual base has been seen before, then the class is diamond |
| // shaped. |
| Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; |
| } else { |
| if (Bases.NonVirtualBases.count(BaseDecl)) |
| Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| } |
| } else { |
| // Mark the non-virtual base as seen. |
| if (!Bases.NonVirtualBases.insert(BaseDecl).second) { |
| // If this non-virtual base has been seen before, then the class has non- |
| // diamond shaped repeated inheritance. |
| Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| } else { |
| if (Bases.VirtualBases.count(BaseDecl)) |
| Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
| } |
| } |
| |
| // Walk all bases. |
| for (const auto &I : BaseDecl->bases()) |
| Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); |
| |
| return Flags; |
| } |
| |
| static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { |
| unsigned Flags = 0; |
| SeenBases Bases; |
| |
| // Walk all bases. |
| for (const auto &I : RD->bases()) |
| Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); |
| |
| return Flags; |
| } |
| |
| /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
| /// classes with bases that do not satisfy the abi::__si_class_type_info |
| /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
| void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { |
| llvm::Type *UnsignedIntLTy = |
| CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
| |
| // Itanium C++ ABI 2.9.5p6c: |
| // __flags is a word with flags describing details about the class |
| // structure, which may be referenced by using the __flags_masks |
| // enumeration. These flags refer to both direct and indirect bases. |
| unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); |
| Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
| |
| // Itanium C++ ABI 2.9.5p6c: |
| // __base_count is a word with the number of direct proper base class |
| // descriptions that follow. |
| Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); |
| |
| if (!RD->getNumBases()) |
| return; |
| |
| // Now add the base class descriptions. |
| |
| // Itanium C++ ABI 2.9.5p6c: |
| // __base_info[] is an array of base class descriptions -- one for every |
| // direct proper base. Each description is of the type: |
| // |
| // struct abi::__base_class_type_info { |
| // public: |
| // const __class_type_info *__base_type; |
| // long __offset_flags; |
| // |
| // enum __offset_flags_masks { |
| // __virtual_mask = 0x1, |
| // __public_mask = 0x2, |
| // __offset_shift = 8 |
| // }; |
| // }; |
| |
| // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long |
| // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on |
| // LLP64 platforms. |
| // FIXME: Consider updating libc++abi to match, and extend this logic to all |
| // LLP64 platforms. |
| QualType OffsetFlagsTy = CGM.getContext().LongTy; |
| const TargetInfo &TI = CGM.getContext().getTargetInfo(); |
| if (TI.getTriple().isOSCygMing() && |
| TI.getPointerWidth(LangAS::Default) > TI.getLongWidth()) |
| OffsetFlagsTy = CGM.getContext().LongLongTy; |
| llvm::Type *OffsetFlagsLTy = |
| CGM.getTypes().ConvertType(OffsetFlagsTy); |
| |
| for (const auto &Base : RD->bases()) { |
| // The __base_type member points to the RTTI for the base type. |
| Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType())); |
| |
| auto *BaseDecl = |
| cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); |
| |
| int64_t OffsetFlags = 0; |
| |
| // All but the lower 8 bits of __offset_flags are a signed offset. |
| // For a non-virtual base, this is the offset in the object of the base |
| // subobject. For a virtual base, this is the offset in the virtual table of |
| // the virtual base offset for the virtual base referenced (negative). |
| CharUnits Offset; |
| if (Base.isVirtual()) |
| Offset = |
| CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); |
| else { |
| const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); |
| Offset = Layout.getBaseClassOffset(BaseDecl); |
| }; |
| |
| OffsetFlags = uint64_t(Offset.getQuantity()) << 8; |
| |
| // The low-order byte of __offset_flags contains flags, as given by the |
| // masks from the enumeration __offset_flags_masks. |
| if (Base.isVirtual()) |
| OffsetFlags |= BCTI_Virtual; |
| if (Base.getAccessSpecifier() == AS_public) |
| OffsetFlags |= BCTI_Public; |
| |
| Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags)); |
| } |
| } |
| |
| /// Compute the flags for a __pbase_type_info, and remove the corresponding |
| /// pieces from \p Type. |
| static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) { |
| unsigned Flags = 0; |
| |
| if (Type.isConstQualified()) |
| Flags |= ItaniumRTTIBuilder::PTI_Const; |
| if (Type.isVolatileQualified()) |
| Flags |= ItaniumRTTIBuilder::PTI_Volatile; |
| if (Type.isRestrictQualified()) |
| Flags |= ItaniumRTTIBuilder::PTI_Restrict; |
| Type = Type.getUnqualifiedType(); |
| |
| // Itanium C++ ABI 2.9.5p7: |
| // When the abi::__pbase_type_info is for a direct or indirect pointer to an |
| // incomplete class type, the incomplete target type flag is set. |
| if (ContainsIncompleteClassType(Type)) |
| Flags |= ItaniumRTTIBuilder::PTI_Incomplete; |
| |
| if (auto *Proto = Type->getAs<FunctionProtoType>()) { |
| if (Proto->isNothrow()) { |
| Flags |= ItaniumRTTIBuilder::PTI_Noexcept; |
| Type = Ctx.getFunctionTypeWithExceptionSpec(Type, EST_None); |
| } |
| } |
| |
| return Flags; |
| } |
| |
| /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, |
| /// used for pointer types. |
| void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { |
| // Itanium C++ ABI 2.9.5p7: |
| // __flags is a flag word describing the cv-qualification and other |
| // attributes of the type pointed to |
| unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); |
| |
| llvm::Type *UnsignedIntLTy = |
| CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
| Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
| |
| // Itanium C++ ABI 2.9.5p7: |
| // __pointee is a pointer to the std::type_info derivation for the |
| // unqualified type being pointed to. |
| llvm::Constant *PointeeTypeInfo = |
| ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); |
| Fields.push_back(PointeeTypeInfo); |
| } |
| |
| /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
| /// struct, used for member pointer types. |
| void |
| ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { |
| QualType PointeeTy = Ty->getPointeeType(); |
| |
| // Itanium C++ ABI 2.9.5p7: |
| // __flags is a flag word describing the cv-qualification and other |
| // attributes of the type pointed to. |
| unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); |
| |
| const auto *ClassType = |
| cast<RecordType>(Ty->getMostRecentCXXRecordDecl()->getTypeForDecl()); |
| if (IsIncompleteClassType(ClassType)) |
| Flags |= PTI_ContainingClassIncomplete; |
| |
| llvm::Type *UnsignedIntLTy = |
| CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
| Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
| |
| // Itanium C++ ABI 2.9.5p7: |
| // __pointee is a pointer to the std::type_info derivation for the |
| // unqualified type being pointed to. |
| llvm::Constant *PointeeTypeInfo = |
| ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); |
| Fields.push_back(PointeeTypeInfo); |
| |
| // Itanium C++ ABI 2.9.5p9: |
| // __context is a pointer to an abi::__class_type_info corresponding to the |
| // class type containing the member pointed to |
| // (e.g., the "A" in "int A::*"). |
| Fields.push_back( |
| ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0))); |
| } |
| |
| llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { |
| return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); |
| } |
| |
| void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) { |
| // Types added here must also be added to TypeInfoIsInStandardLibrary. |
| QualType FundamentalTypes[] = { |
| getContext().VoidTy, getContext().NullPtrTy, |
| getContext().BoolTy, getContext().WCharTy, |
| getContext().CharTy, getContext().UnsignedCharTy, |
| getContext().SignedCharTy, getContext().ShortTy, |
| getContext().UnsignedShortTy, getContext().IntTy, |
| getContext().UnsignedIntTy, getContext().LongTy, |
| getContext().UnsignedLongTy, getContext().LongLongTy, |
| getContext().UnsignedLongLongTy, getContext().Int128Ty, |
| getContext().UnsignedInt128Ty, getContext().HalfTy, |
| getContext().FloatTy, getContext().DoubleTy, |
| getContext().LongDoubleTy, getContext().Float128Ty, |
| getContext().Char8Ty, getContext().Char16Ty, |
| getContext().Char32Ty |
| }; |
| llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
| RD->hasAttr<DLLExportAttr>() || CGM.shouldMapVisibilityToDLLExport(RD) |
| ? llvm::GlobalValue::DLLExportStorageClass |
| : llvm::GlobalValue::DefaultStorageClass; |
| llvm::GlobalValue::VisibilityTypes Visibility = |
| CodeGenModule::GetLLVMVisibility(RD->getVisibility()); |
| for (const QualType &FundamentalType : FundamentalTypes) { |
| QualType PointerType = getContext().getPointerType(FundamentalType); |
| QualType PointerTypeConst = getContext().getPointerType( |
| FundamentalType.withConst()); |
| for (QualType Type : {FundamentalType, PointerType, PointerTypeConst}) |
| ItaniumRTTIBuilder(*this).BuildTypeInfo( |
| Type, llvm::GlobalValue::ExternalLinkage, |
| Visibility, DLLStorageClass); |
| } |
| } |
| |
| /// What sort of uniqueness rules should we use for the RTTI for the |
| /// given type? |
| ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( |
| QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { |
| if (shouldRTTIBeUnique()) |
| return RUK_Unique; |
| |
| // It's only necessary for linkonce_odr or weak_odr linkage. |
| if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && |
| Linkage != llvm::GlobalValue::WeakODRLinkage) |
| return RUK_Unique; |
| |
| // It's only necessary with default visibility. |
| if (CanTy->getVisibility() != DefaultVisibility) |
| return RUK_Unique; |
| |
| // If we're not required to publish this symbol, hide it. |
| if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) |
| return RUK_NonUniqueHidden; |
| |
| // If we're required to publish this symbol, as we might be under an |
| // explicit instantiation, leave it with default visibility but |
| // enable string-comparisons. |
| assert(Linkage == llvm::GlobalValue::WeakODRLinkage); |
| return RUK_NonUniqueVisible; |
| } |
| |
| // Find out how to codegen the complete destructor and constructor |
| namespace { |
| enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; |
| } |
| static StructorCodegen getCodegenToUse(CodeGenModule &CGM, |
| const CXXMethodDecl *MD) { |
| if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) |
| return StructorCodegen::Emit; |
| |
| // The complete and base structors are not equivalent if there are any virtual |
| // bases, so emit separate functions. |
| if (MD->getParent()->getNumVBases()) |
| return StructorCodegen::Emit; |
| |
| GlobalDecl AliasDecl; |
| if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { |
| AliasDecl = GlobalDecl(DD, Dtor_Complete); |
| } else { |
| const auto *CD = cast<CXXConstructorDecl>(MD); |
| AliasDecl = GlobalDecl(CD, Ctor_Complete); |
| } |
| llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); |
| |
| if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) |
| return StructorCodegen::RAUW; |
| |
| // FIXME: Should we allow available_externally aliases? |
| if (!llvm::GlobalAlias::isValidLinkage(Linkage)) |
| return StructorCodegen::RAUW; |
| |
| if (llvm::GlobalValue::isWeakForLinker(Linkage)) { |
| // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). |
| if (CGM.getTarget().getTriple().isOSBinFormatELF() || |
| CGM.getTarget().getTriple().isOSBinFormatWasm()) |
| return StructorCodegen::COMDAT; |
| return StructorCodegen::Emit; |
| } |
| |
| return StructorCodegen::Alias; |
| } |
| |
| static void emitConstructorDestructorAlias(CodeGenModule &CGM, |
| GlobalDecl AliasDecl, |
| GlobalDecl TargetDecl) { |
| llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); |
| |
| StringRef MangledName = CGM.getMangledName(AliasDecl); |
| llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName); |
| if (Entry && !Entry->isDeclaration()) |
| return; |
| |
| auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl)); |
| |
| // Create the alias with no name. |
| auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee); |
| |
| // Constructors and destructors are always unnamed_addr. |
| Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| |
| // Switch any previous uses to the alias. |
| if (Entry) { |
| assert(Entry->getType() == Aliasee->getType() && |
| "declaration exists with different type"); |
| Alias->takeName(Entry); |
| Entry->replaceAllUsesWith(Alias); |
| Entry->eraseFromParent(); |
| } else { |
| Alias->setName(MangledName); |
| } |
| |
| // Finally, set up the alias with its proper name and attributes. |
| CGM.SetCommonAttributes(AliasDecl, Alias); |
| } |
| |
| void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD) { |
| auto *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| auto *CD = dyn_cast<CXXConstructorDecl>(MD); |
| const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD); |
| |
| StructorCodegen CGType = getCodegenToUse(CGM, MD); |
| |
| if (CD ? GD.getCtorType() == Ctor_Complete |
| : GD.getDtorType() == Dtor_Complete) { |
| GlobalDecl BaseDecl; |
| if (CD) |
| BaseDecl = GD.getWithCtorType(Ctor_Base); |
| else |
| BaseDecl = GD.getWithDtorType(Dtor_Base); |
| |
| if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { |
| emitConstructorDestructorAlias(CGM, GD, BaseDecl); |
| return; |
| } |
| |
| if (CGType == StructorCodegen::RAUW) { |
| StringRef MangledName = CGM.getMangledName(GD); |
| auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl); |
| CGM.addReplacement(MangledName, Aliasee); |
| return; |
| } |
| } |
| |
| // The base destructor is equivalent to the base destructor of its |
| // base class if there is exactly one non-virtual base class with a |
| // non-trivial destructor, there are no fields with a non-trivial |
| // destructor, and the body of the destructor is trivial. |
| if (DD && GD.getDtorType() == Dtor_Base && |
| CGType != StructorCodegen::COMDAT && |
| !CGM.TryEmitBaseDestructorAsAlias(DD)) |
| return; |
| |
| // FIXME: The deleting destructor is equivalent to the selected operator |
| // delete if: |
| // * either the delete is a destroying operator delete or the destructor |
| // would be trivial if it weren't virtual, |
| // * the conversion from the 'this' parameter to the first parameter of the |
| // destructor is equivalent to a bitcast, |
| // * the destructor does not have an implicit "this" return, and |
| // * the operator delete has the same calling convention and IR function type |
| // as the destructor. |
| // In such cases we should try to emit the deleting dtor as an alias to the |
| // selected 'operator delete'. |
| |
| llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
| |
| if (CGType == StructorCodegen::COMDAT) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| if (DD) |
| getMangleContext().mangleCXXDtorComdat(DD, Out); |
| else |
| getMangleContext().mangleCXXCtorComdat(CD, Out); |
| llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str()); |
| Fn->setComdat(C); |
| } else { |
| CGM.maybeSetTrivialComdat(*MD, *Fn); |
| } |
| } |
| |
| static llvm::FunctionCallee getBeginCatchFn(CodeGenModule &CGM) { |
| // void *__cxa_begin_catch(void*); |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); |
| |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); |
| } |
| |
| static llvm::FunctionCallee getEndCatchFn(CodeGenModule &CGM) { |
| // void __cxa_end_catch(); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
| |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); |
| } |
| |
| static llvm::FunctionCallee getGetExceptionPtrFn(CodeGenModule &CGM) { |
| // void *__cxa_get_exception_ptr(void*); |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); |
| |
| return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); |
| } |
| |
| namespace { |
| /// A cleanup to call __cxa_end_catch. In many cases, the caught |
| /// exception type lets us state definitively that the thrown exception |
| /// type does not have a destructor. In particular: |
| /// - Catch-alls tell us nothing, so we have to conservatively |
| /// assume that the thrown exception might have a destructor. |
| /// - Catches by reference behave according to their base types. |
| /// - Catches of non-record types will only trigger for exceptions |
| /// of non-record types, which never have destructors. |
| /// - Catches of record types can trigger for arbitrary subclasses |
| /// of the caught type, so we have to assume the actual thrown |
| /// exception type might have a throwing destructor, even if the |
| /// caught type's destructor is trivial or nothrow. |
| struct CallEndCatch final : EHScopeStack::Cleanup { |
| CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} |
| bool MightThrow; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| if (!MightThrow) { |
| CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); |
| return; |
| } |
| |
| CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); |
| } |
| }; |
| } |
| |
| /// Emits a call to __cxa_begin_catch and enters a cleanup to call |
| /// __cxa_end_catch. If -fassume-nothrow-exception-dtor is specified, we assume |
| /// that the exception object's dtor is nothrow, therefore the __cxa_end_catch |
| /// call can be marked as nounwind even if EndMightThrow is true. |
| /// |
| /// \param EndMightThrow - true if __cxa_end_catch might throw |
| static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, |
| llvm::Value *Exn, |
| bool EndMightThrow) { |
| llvm::CallInst *call = |
| CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); |
| |
| CGF.EHStack.pushCleanup<CallEndCatch>( |
| NormalAndEHCleanup, |
| EndMightThrow && !CGF.CGM.getLangOpts().AssumeNothrowExceptionDtor); |
| |
| return call; |
| } |
| |
| /// A "special initializer" callback for initializing a catch |
| /// parameter during catch initialization. |
| static void InitCatchParam(CodeGenFunction &CGF, |
| const VarDecl &CatchParam, |
| Address ParamAddr, |
| SourceLocation Loc) { |
| // Load the exception from where the landing pad saved it. |
| llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| |
| CanQualType CatchType = |
| CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); |
| llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); |
| |
| // If we're catching by reference, we can just cast the object |
| // pointer to the appropriate pointer. |
| if (isa<ReferenceType>(CatchType)) { |
| QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); |
| bool EndCatchMightThrow = CaughtType->isRecordType(); |
| |
| // __cxa_begin_catch returns the adjusted object pointer. |
| llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); |
| |
| // We have no way to tell the personality function that we're |
| // catching by reference, so if we're catching a pointer, |
| // __cxa_begin_catch will actually return that pointer by value. |
| if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { |
| QualType PointeeType = PT->getPointeeType(); |
| |
| // When catching by reference, generally we should just ignore |
| // this by-value pointer and use the exception object instead. |
| if (!PointeeType->isRecordType()) { |
| |
| // Exn points to the struct _Unwind_Exception header, which |
| // we have to skip past in order to reach the exception data. |
| unsigned HeaderSize = |
| CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); |
| AdjustedExn = |
| CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, Exn, HeaderSize); |
| |
| // However, if we're catching a pointer-to-record type that won't |
| // work, because the personality function might have adjusted |
| // the pointer. There's actually no way for us to fully satisfy |
| // the language/ABI contract here: we can't use Exn because it |
| // might have the wrong adjustment, but we can't use the by-value |
| // pointer because it's off by a level of abstraction. |
| // |
| // The current solution is to dump the adjusted pointer into an |
| // alloca, which breaks language semantics (because changing the |
| // pointer doesn't change the exception) but at least works. |
| // The better solution would be to filter out non-exact matches |
| // and rethrow them, but this is tricky because the rethrow |
| // really needs to be catchable by other sites at this landing |
| // pad. The best solution is to fix the personality function. |
| } else { |
| // Pull the pointer for the reference type off. |
| llvm::Type *PtrTy = CGF.ConvertTypeForMem(CaughtType); |
| |
| // Create the temporary and write the adjusted pointer into it. |
| Address ExnPtrTmp = |
| CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp"); |
| llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); |
| CGF.Builder.CreateStore(Casted, ExnPtrTmp); |
| |
| // Bind the reference to the temporary. |
| AdjustedExn = ExnPtrTmp.emitRawPointer(CGF); |
| } |
| } |
| |
| llvm::Value *ExnCast = |
| CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); |
| CGF.Builder.CreateStore(ExnCast, ParamAddr); |
| return; |
| } |
| |
| // Scalars and complexes. |
| TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); |
| if (TEK != TEK_Aggregate) { |
| llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); |
| |
| // If the catch type is a pointer type, __cxa_begin_catch returns |
| // the pointer by value. |
| if (CatchType->hasPointerRepresentation()) { |
| llvm::Value *CastExn = |
| CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); |
| |
| switch (CatchType.getQualifiers().getObjCLifetime()) { |
| case Qualifiers::OCL_Strong: |
| CastExn = CGF.EmitARCRetainNonBlock(CastExn); |
| [[fallthrough]]; |
| |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Autoreleasing: |
| CGF.Builder.CreateStore(CastExn, ParamAddr); |
| return; |
| |
| case Qualifiers::OCL_Weak: |
| CGF.EmitARCInitWeak(ParamAddr, CastExn); |
| return; |
| } |
| llvm_unreachable("bad ownership qualifier!"); |
| } |
| |
| // Otherwise, it returns a pointer into the exception object. |
| |
| LValue srcLV = CGF.MakeNaturalAlignAddrLValue(AdjustedExn, CatchType); |
| LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType); |
| switch (TEK) { |
| case TEK_Complex: |
| CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, |
| /*init*/ true); |
| return; |
| case TEK_Scalar: { |
| llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); |
| CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); |
| return; |
| } |
| case TEK_Aggregate: |
| llvm_unreachable("evaluation kind filtered out!"); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| assert(isa<RecordType>(CatchType) && "unexpected catch type!"); |
| auto catchRD = CatchType->getAsCXXRecordDecl(); |
| CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD); |
| |
| llvm::Type *PtrTy = CGF.UnqualPtrTy; // addrspace 0 ok |
| |
| // Check for a copy expression. If we don't have a copy expression, |
| // that means a trivial copy is okay. |
| const Expr *copyExpr = CatchParam.getInit(); |
| if (!copyExpr) { |
| llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); |
| Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), |
| LLVMCatchTy, caughtExnAlignment); |
| LValue Dest = CGF.MakeAddrLValue(ParamAddr, CatchType); |
| LValue Src = CGF.MakeAddrLValue(adjustedExn, CatchType); |
| CGF.EmitAggregateCopy(Dest, Src, CatchType, AggValueSlot::DoesNotOverlap); |
| return; |
| } |
| |
| // We have to call __cxa_get_exception_ptr to get the adjusted |
| // pointer before copying. |
| llvm::CallInst *rawAdjustedExn = |
| CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); |
| |
| // Cast that to the appropriate type. |
| Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), |
| LLVMCatchTy, caughtExnAlignment); |
| |
| // The copy expression is defined in terms of an OpaqueValueExpr. |
| // Find it and map it to the adjusted expression. |
| CodeGenFunction::OpaqueValueMapping |
| opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), |
| CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); |
| |
| // Call the copy ctor in a terminate scope. |
| CGF.EHStack.pushTerminate(); |
| |
| // Perform the copy construction. |
| CGF.EmitAggExpr(copyExpr, |
| AggValueSlot::forAddr(ParamAddr, Qualifiers(), |
| AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap)); |
| |
| // Leave the terminate scope. |
| CGF.EHStack.popTerminate(); |
| |
| // Undo the opaque value mapping. |
| opaque.pop(); |
| |
| // Finally we can call __cxa_begin_catch. |
| CallBeginCatch(CGF, Exn, true); |
| } |
| |
| /// Begins a catch statement by initializing the catch variable and |
| /// calling __cxa_begin_catch. |
| void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
| const CXXCatchStmt *S) { |
| // We have to be very careful with the ordering of cleanups here: |
| // C++ [except.throw]p4: |
| // The destruction [of the exception temporary] occurs |
| // immediately after the destruction of the object declared in |
| // the exception-declaration in the handler. |
| // |
| // So the precise ordering is: |
| // 1. Construct catch variable. |
| // 2. __cxa_begin_catch |
| // 3. Enter __cxa_end_catch cleanup |
| // 4. Enter dtor cleanup |
| // |
| // We do this by using a slightly abnormal initialization process. |
| // Delegation sequence: |
| // - ExitCXXTryStmt opens a RunCleanupsScope |
| // - EmitAutoVarAlloca creates the variable and debug info |
| // - InitCatchParam initializes the variable from the exception |
| // - CallBeginCatch calls __cxa_begin_catch |
| // - CallBeginCatch enters the __cxa_end_catch cleanup |
| // - EmitAutoVarCleanups enters the variable destructor cleanup |
| // - EmitCXXTryStmt emits the code for the catch body |
| // - EmitCXXTryStmt close the RunCleanupsScope |
| |
| VarDecl *CatchParam = S->getExceptionDecl(); |
| if (!CatchParam) { |
| llvm::Value *Exn = CGF.getExceptionFromSlot(); |
| CallBeginCatch(CGF, Exn, true); |
| return; |
| } |
| |
| // Emit the local. |
| CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); |
| InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getBeginLoc()); |
| CGF.EmitAutoVarCleanups(var); |
| } |
| |
| /// Get or define the following function: |
| /// void @__clang_call_terminate(i8* %exn) nounwind noreturn |
| /// This code is used only in C++. |
| static llvm::FunctionCallee getClangCallTerminateFn(CodeGenModule &CGM) { |
| ASTContext &C = CGM.getContext(); |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
| C.VoidTy, {C.getPointerType(C.CharTy)}); |
| llvm::FunctionType *fnTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::FunctionCallee fnRef = CGM.CreateRuntimeFunction( |
| fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true); |
| llvm::Function *fn = |
| cast<llvm::Function>(fnRef.getCallee()->stripPointerCasts()); |
| if (fn->empty()) { |
| CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, fn, /*IsThunk=*/false); |
| CGM.SetLLVMFunctionAttributesForDefinition(nullptr, fn); |
| fn->setDoesNotThrow(); |
| fn->setDoesNotReturn(); |
| |
| // What we really want is to massively penalize inlining without |
| // forbidding it completely. The difference between that and |
| // 'noinline' is negligible. |
| fn->addFnAttr(llvm::Attribute::NoInline); |
| |
| // Allow this function to be shared across translation units, but |
| // we don't want it to turn into an exported symbol. |
| fn->setLinkage(llvm::Function::LinkOnceODRLinkage); |
| fn->setVisibility(llvm::Function::HiddenVisibility); |
| if (CGM.supportsCOMDAT()) |
| fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName())); |
| |
| // Set up the function. |
| llvm::BasicBlock *entry = |
| llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); |
| CGBuilderTy builder(CGM, entry); |
| |
| // Pull the exception pointer out of the parameter list. |
| llvm::Value *exn = &*fn->arg_begin(); |
| |
| // Call __cxa_begin_catch(exn). |
| llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); |
| catchCall->setDoesNotThrow(); |
| catchCall->setCallingConv(CGM.getRuntimeCC()); |
| |
| // Call std::terminate(). |
| llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn()); |
| termCall->setDoesNotThrow(); |
| termCall->setDoesNotReturn(); |
| termCall->setCallingConv(CGM.getRuntimeCC()); |
| |
| // std::terminate cannot return. |
| builder.CreateUnreachable(); |
| } |
| return fnRef; |
| } |
| |
| llvm::CallInst * |
| ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| llvm::Value *Exn) { |
| // In C++, we want to call __cxa_begin_catch() before terminating. |
| if (Exn) { |
| assert(CGF.CGM.getLangOpts().CPlusPlus); |
| return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); |
| } |
| return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn()); |
| } |
| |
| std::pair<llvm::Value *, const CXXRecordDecl *> |
| ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
| const CXXRecordDecl *RD) { |
| return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; |
| } |
| |
| llvm::Constant * |
| ItaniumCXXABI::getSignedVirtualMemberFunctionPointer(const CXXMethodDecl *MD) { |
| const CXXMethodDecl *origMD = |
| cast<CXXMethodDecl>(CGM.getItaniumVTableContext() |
| .findOriginalMethod(MD->getCanonicalDecl()) |
| .getDecl()); |
| llvm::Constant *thunk = getOrCreateVirtualFunctionPointerThunk(origMD); |
| QualType funcType = CGM.getContext().getMemberPointerType( |
| MD->getType(), /*Qualifier=*/nullptr, MD->getParent()); |
| return CGM.getMemberFunctionPointer(thunk, funcType); |
| } |
| |
| void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
| const CXXCatchStmt *C) { |
| if (CGF.getTarget().hasFeature("exception-handling")) |
| CGF.EHStack.pushCleanup<CatchRetScope>( |
| NormalCleanup, cast<llvm::CatchPadInst>(CGF.CurrentFuncletPad)); |
| ItaniumCXXABI::emitBeginCatch(CGF, C); |
| } |
| |
| llvm::CallInst * |
| WebAssemblyCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
| llvm::Value *Exn) { |
| // Itanium ABI calls __clang_call_terminate(), which __cxa_begin_catch() on |
| // the violating exception to mark it handled, but it is currently hard to do |
| // with wasm EH instruction structure with catch/catch_all, we just call |
| // std::terminate and ignore the violating exception as in CGCXXABI in Wasm EH |
| // and call __clang_call_terminate only in Emscripten EH. |
| // TODO Consider code transformation that makes calling __clang_call_terminate |
| // in Wasm EH possible. |
| if (Exn && !EHPersonality::get(CGF).isWasmPersonality()) { |
| assert(CGF.CGM.getLangOpts().CPlusPlus); |
| return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); |
| } |
| return CGCXXABI::emitTerminateForUnexpectedException(CGF, Exn); |
| } |
| |
| /// Register a global destructor as best as we know how. |
| void XLCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
| llvm::FunctionCallee Dtor, |
| llvm::Constant *Addr) { |
| if (D.getTLSKind() != VarDecl::TLS_None) { |
| llvm::PointerType *PtrTy = CGF.UnqualPtrTy; |
| |
| // extern "C" int __pt_atexit_np(int flags, int(*)(int,...), ...); |
| llvm::FunctionType *AtExitTy = |
| llvm::FunctionType::get(CGM.IntTy, {CGM.IntTy, PtrTy}, true); |
| |
| // Fetch the actual function. |
| llvm::FunctionCallee AtExit = |
| CGM.CreateRuntimeFunction(AtExitTy, "__pt_atexit_np"); |
| |
| // Create __dtor function for the var decl. |
| llvm::Function *DtorStub = CGF.createTLSAtExitStub(D, Dtor, Addr, AtExit); |
| |
| // Register above __dtor with atexit(). |
| // First param is flags and must be 0, second param is function ptr |
| llvm::Value *NV = llvm::Constant::getNullValue(CGM.IntTy); |
| CGF.EmitNounwindRuntimeCall(AtExit, {NV, DtorStub}); |
| |
| // Cannot unregister TLS __dtor so done |
| return; |
| } |
| |
| // Create __dtor function for the var decl. |
| llvm::Function *DtorStub = |
| cast<llvm::Function>(CGF.createAtExitStub(D, Dtor, Addr)); |
| |
| // Register above __dtor with atexit(). |
| CGF.registerGlobalDtorWithAtExit(DtorStub); |
| |
| // Emit __finalize function to unregister __dtor and (as appropriate) call |
| // __dtor. |
| emitCXXStermFinalizer(D, DtorStub, Addr); |
| } |
| |
| void XLCXXABI::emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
| llvm::Constant *addr) { |
| llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); |
| SmallString<256> FnName; |
| { |
| llvm::raw_svector_ostream Out(FnName); |
| getMangleContext().mangleDynamicStermFinalizer(&D, Out); |
| } |
| |
| // Create the finalization action associated with a variable. |
| const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
| llvm::Function *StermFinalizer = CGM.CreateGlobalInitOrCleanUpFunction( |
| FTy, FnName.str(), FI, D.getLocation()); |
| |
| CodeGenFunction CGF(CGM); |
| |
| CGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, StermFinalizer, FI, |
| FunctionArgList(), D.getLocation(), |
| D.getInit()->getExprLoc()); |
| |
| // The unatexit subroutine unregisters __dtor functions that were previously |
| // registered by the atexit subroutine. If the referenced function is found, |
| // the unatexit returns a value of 0, meaning that the cleanup is still |
| // pending (and we should call the __dtor function). |
| llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(dtorStub); |
| |
| llvm::Value *NeedsDestruct = CGF.Builder.CreateIsNull(V, "needs_destruct"); |
| |
| llvm::BasicBlock *DestructCallBlock = CGF.createBasicBlock("destruct.call"); |
| llvm::BasicBlock *EndBlock = CGF.createBasicBlock("destruct.end"); |
| |
| // Check if unatexit returns a value of 0. If it does, jump to |
| // DestructCallBlock, otherwise jump to EndBlock directly. |
| CGF.Builder.CreateCondBr(NeedsDestruct, DestructCallBlock, EndBlock); |
| |
| CGF.EmitBlock(DestructCallBlock); |
| |
| // Emit the call to dtorStub. |
| llvm::CallInst *CI = CGF.Builder.CreateCall(dtorStub); |
| |
| // Make sure the call and the callee agree on calling convention. |
| CI->setCallingConv(dtorStub->getCallingConv()); |
| |
| CGF.EmitBlock(EndBlock); |
| |
| CGF.FinishFunction(); |
| |
| if (auto *IPA = D.getAttr<InitPriorityAttr>()) { |
| CGM.AddCXXPrioritizedStermFinalizerEntry(StermFinalizer, |
| IPA->getPriority()); |
| } else if (isTemplateInstantiation(D.getTemplateSpecializationKind()) || |
| getContext().GetGVALinkageForVariable(&D) == GVA_DiscardableODR) { |
| // According to C++ [basic.start.init]p2, class template static data |
| // members (i.e., implicitly or explicitly instantiated specializations) |
| // have unordered initialization. As a consequence, we can put them into |
| // their own llvm.global_dtors entry. |
| CGM.AddCXXStermFinalizerToGlobalDtor(StermFinalizer, 65535); |
| } else { |
| CGM.AddCXXStermFinalizerEntry(StermFinalizer); |
| } |
| } |