blob: 7486618782e6cce471fd57c6d9b4a50f7ef24536 [file] [log] [blame]
//===-- RISCVMCCodeEmitter.cpp - Convert RISC-V code to machine code ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the RISCVMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVFixupKinds.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/EndianStream.h"
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
STATISTIC(MCNumFixups, "Number of MC fixups created");
namespace {
class RISCVMCCodeEmitter : public MCCodeEmitter {
RISCVMCCodeEmitter(const RISCVMCCodeEmitter &) = delete;
void operator=(const RISCVMCCodeEmitter &) = delete;
MCContext &Ctx;
MCInstrInfo const &MCII;
public:
RISCVMCCodeEmitter(MCContext &ctx, MCInstrInfo const &MCII)
: Ctx(ctx), MCII(MCII) {}
~RISCVMCCodeEmitter() override = default;
void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
void expandFunctionCall(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void expandTLSDESCCall(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void expandAddTPRel(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void expandLongCondBr(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
void expandQCLongCondBrImm(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI, unsigned Size) const;
/// TableGen'erated function for getting the binary encoding for an
/// instruction.
uint64_t getBinaryCodeForInstr(const MCInst &MI,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
/// Return binary encoding of operand. If the machine operand requires
/// relocation, record the relocation and return zero.
uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint64_t getImmOpValueMinus1(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint64_t getImmOpValueSlist(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
template <unsigned N>
unsigned getImmOpValueAsrN(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
uint64_t getImmOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getVMaskReg(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getRlistOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
unsigned getRlistS0OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const;
};
} // end anonymous namespace
MCCodeEmitter *llvm::createRISCVMCCodeEmitter(const MCInstrInfo &MCII,
MCContext &Ctx) {
return new RISCVMCCodeEmitter(Ctx, MCII);
}
// Expand PseudoCALL(Reg), PseudoTAIL and PseudoJump to AUIPC and JALR with
// relocation types. We expand those pseudo-instructions while encoding them,
// meaning AUIPC and JALR won't go through RISC-V MC to MC compressed
// instruction transformation. This is acceptable because AUIPC has no 16-bit
// form and C_JALR has no immediate operand field. We let linker relaxation
// deal with it. When linker relaxation is enabled, AUIPC and JALR have a
// chance to relax to JAL.
// If the C extension is enabled, JAL has a chance relax to C_JAL.
void RISCVMCCodeEmitter::expandFunctionCall(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCInst TmpInst;
MCOperand Func;
MCRegister Ra;
if (MI.getOpcode() == RISCV::PseudoTAIL) {
Func = MI.getOperand(0);
Ra = RISCVII::getTailExpandUseRegNo(STI.getFeatureBits());
} else if (MI.getOpcode() == RISCV::PseudoCALLReg) {
Func = MI.getOperand(1);
Ra = MI.getOperand(0).getReg();
} else if (MI.getOpcode() == RISCV::PseudoCALL) {
Func = MI.getOperand(0);
Ra = RISCV::X1;
} else if (MI.getOpcode() == RISCV::PseudoJump) {
Func = MI.getOperand(1);
Ra = MI.getOperand(0).getReg();
}
uint32_t Binary;
assert(Func.isExpr() && "Expected expression");
const MCExpr *CallExpr = Func.getExpr();
// Emit AUIPC Ra, Func with R_RISCV_CALL relocation type.
TmpInst = MCInstBuilder(RISCV::AUIPC).addReg(Ra).addExpr(CallExpr);
Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
if (MI.getOpcode() == RISCV::PseudoTAIL ||
MI.getOpcode() == RISCV::PseudoJump)
// Emit JALR X0, Ra, 0
TmpInst = MCInstBuilder(RISCV::JALR).addReg(RISCV::X0).addReg(Ra).addImm(0);
else
// Emit JALR Ra, Ra, 0
TmpInst = MCInstBuilder(RISCV::JALR).addReg(Ra).addReg(Ra).addImm(0);
Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
}
void RISCVMCCodeEmitter::expandTLSDESCCall(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCOperand SrcSymbol = MI.getOperand(3);
assert(SrcSymbol.isExpr() &&
"Expected expression as first input to TLSDESCCALL");
const RISCVMCExpr *Expr = dyn_cast<RISCVMCExpr>(SrcSymbol.getExpr());
MCRegister Link = MI.getOperand(0).getReg();
MCRegister Dest = MI.getOperand(1).getReg();
int64_t Imm = MI.getOperand(2).getImm();
Fixups.push_back(
MCFixup::create(0, Expr, ELF::R_RISCV_TLSDESC_CALL, MI.getLoc()));
MCInst Call =
MCInstBuilder(RISCV::JALR).addReg(Link).addReg(Dest).addImm(Imm);
uint32_t Binary = getBinaryCodeForInstr(Call, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
}
// Expand PseudoAddTPRel to a simple ADD with the correct relocation.
void RISCVMCCodeEmitter::expandAddTPRel(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCOperand DestReg = MI.getOperand(0);
MCOperand SrcReg = MI.getOperand(1);
MCOperand TPReg = MI.getOperand(2);
assert(TPReg.isReg() && TPReg.getReg() == RISCV::X4 &&
"Expected thread pointer as second input to TP-relative add");
MCOperand SrcSymbol = MI.getOperand(3);
assert(SrcSymbol.isExpr() &&
"Expected expression as third input to TP-relative add");
const RISCVMCExpr *Expr = dyn_cast<RISCVMCExpr>(SrcSymbol.getExpr());
assert(Expr && Expr->getSpecifier() == RISCVMCExpr::VK_TPREL_ADD &&
"Expected tprel_add relocation on TP-relative symbol");
// Emit the correct tprel_add relocation for the symbol.
Fixups.push_back(
MCFixup::create(0, Expr, ELF::R_RISCV_TPREL_ADD, MI.getLoc()));
// Emit R_RISCV_RELAX for tprel_add where the relax feature is enabled.
if (STI.hasFeature(RISCV::FeatureRelax)) {
const MCConstantExpr *Dummy = MCConstantExpr::create(0, Ctx);
Fixups.push_back(
MCFixup::create(0, Dummy, ELF::R_RISCV_RELAX, MI.getLoc()));
}
// Emit a normal ADD instruction with the given operands.
MCInst TmpInst = MCInstBuilder(RISCV::ADD)
.addOperand(DestReg)
.addOperand(SrcReg)
.addOperand(TPReg);
uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
}
static unsigned getInvertedBranchOp(unsigned BrOp) {
switch (BrOp) {
default:
llvm_unreachable("Unexpected branch opcode!");
case RISCV::PseudoLongBEQ:
return RISCV::BNE;
case RISCV::PseudoLongBNE:
return RISCV::BEQ;
case RISCV::PseudoLongBLT:
return RISCV::BGE;
case RISCV::PseudoLongBGE:
return RISCV::BLT;
case RISCV::PseudoLongBLTU:
return RISCV::BGEU;
case RISCV::PseudoLongBGEU:
return RISCV::BLTU;
case RISCV::PseudoLongQC_BEQI:
return RISCV::QC_BNEI;
case RISCV::PseudoLongQC_BNEI:
return RISCV::QC_BEQI;
case RISCV::PseudoLongQC_BLTI:
return RISCV::QC_BGEI;
case RISCV::PseudoLongQC_BGEI:
return RISCV::QC_BLTI;
case RISCV::PseudoLongQC_BLTUI:
return RISCV::QC_BGEUI;
case RISCV::PseudoLongQC_BGEUI:
return RISCV::QC_BLTUI;
case RISCV::PseudoLongQC_E_BEQI:
return RISCV::QC_E_BNEI;
case RISCV::PseudoLongQC_E_BNEI:
return RISCV::QC_E_BEQI;
case RISCV::PseudoLongQC_E_BLTI:
return RISCV::QC_E_BGEI;
case RISCV::PseudoLongQC_E_BGEI:
return RISCV::QC_E_BLTI;
case RISCV::PseudoLongQC_E_BLTUI:
return RISCV::QC_E_BGEUI;
case RISCV::PseudoLongQC_E_BGEUI:
return RISCV::QC_E_BLTUI;
}
}
// Expand PseudoLongBxx to an inverted conditional branch and an unconditional
// jump.
void RISCVMCCodeEmitter::expandLongCondBr(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCRegister SrcReg1 = MI.getOperand(0).getReg();
MCRegister SrcReg2 = MI.getOperand(1).getReg();
MCOperand SrcSymbol = MI.getOperand(2);
unsigned Opcode = MI.getOpcode();
bool IsEqTest =
Opcode == RISCV::PseudoLongBNE || Opcode == RISCV::PseudoLongBEQ;
bool UseCompressedBr = false;
if (IsEqTest && (STI.hasFeature(RISCV::FeatureStdExtC) ||
STI.hasFeature(RISCV::FeatureStdExtZca))) {
if (RISCV::X8 <= SrcReg1.id() && SrcReg1.id() <= RISCV::X15 &&
SrcReg2.id() == RISCV::X0) {
UseCompressedBr = true;
} else if (RISCV::X8 <= SrcReg2.id() && SrcReg2.id() <= RISCV::X15 &&
SrcReg1.id() == RISCV::X0) {
std::swap(SrcReg1, SrcReg2);
UseCompressedBr = true;
}
}
uint32_t Offset;
if (UseCompressedBr) {
unsigned InvOpc =
Opcode == RISCV::PseudoLongBNE ? RISCV::C_BEQZ : RISCV::C_BNEZ;
MCInst TmpInst = MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(6);
uint16_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write<uint16_t>(CB, Binary, llvm::endianness::little);
Offset = 2;
} else {
unsigned InvOpc = getInvertedBranchOp(Opcode);
MCInst TmpInst =
MCInstBuilder(InvOpc).addReg(SrcReg1).addReg(SrcReg2).addImm(8);
uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
Offset = 4;
}
// Save the number fixups.
size_t FixupStartIndex = Fixups.size();
// Emit an unconditional jump to the destination.
MCInst TmpInst =
MCInstBuilder(RISCV::JAL).addReg(RISCV::X0).addOperand(SrcSymbol);
uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI);
support::endian::write(CB, Binary, llvm::endianness::little);
// Drop any fixup added so we can add the correct one.
Fixups.resize(FixupStartIndex);
if (SrcSymbol.isExpr()) {
Fixups.push_back(MCFixup::create(Offset, SrcSymbol.getExpr(),
MCFixupKind(RISCV::fixup_riscv_jal),
MI.getLoc()));
}
}
// Expand PseudoLongQC_(E_)Bxxx to an inverted conditional branch and an
// unconditional jump.
void RISCVMCCodeEmitter::expandQCLongCondBrImm(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI,
unsigned Size) const {
MCRegister SrcReg1 = MI.getOperand(0).getReg();
auto BrImm = MI.getOperand(1).getImm();
MCOperand SrcSymbol = MI.getOperand(2);
unsigned Opcode = MI.getOpcode();
uint32_t Offset;
unsigned InvOpc = getInvertedBranchOp(Opcode);
// Emit inverted conditional branch with offset:
// 8 (QC.BXXX(4) + JAL(4))
// or
// 10 (QC.E.BXXX(6) + JAL(4)).
if (Size == 4) {
MCInst TmpBr =
MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(BrImm).addImm(8);
uint32_t BrBinary = getBinaryCodeForInstr(TmpBr, Fixups, STI);
support::endian::write(CB, BrBinary, llvm::endianness::little);
} else {
MCInst TmpBr =
MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(BrImm).addImm(10);
uint64_t BrBinary =
getBinaryCodeForInstr(TmpBr, Fixups, STI) & 0xffff'ffff'ffffu;
SmallVector<char, 8> Encoding;
support::endian::write(Encoding, BrBinary, llvm::endianness::little);
assert(Encoding[6] == 0 && Encoding[7] == 0 &&
"Unexpected encoding for 48-bit instruction");
Encoding.truncate(6);
CB.append(Encoding);
}
Offset = Size;
// Save the number fixups.
size_t FixupStartIndex = Fixups.size();
// Emit an unconditional jump to the destination.
MCInst TmpJ =
MCInstBuilder(RISCV::JAL).addReg(RISCV::X0).addOperand(SrcSymbol);
uint32_t JBinary = getBinaryCodeForInstr(TmpJ, Fixups, STI);
support::endian::write(CB, JBinary, llvm::endianness::little);
// Drop any fixup added so we can add the correct one.
Fixups.resize(FixupStartIndex);
if (SrcSymbol.isExpr()) {
Fixups.push_back(MCFixup::create(Offset, SrcSymbol.getExpr(),
MCFixupKind(RISCV::fixup_riscv_jal),
MI.getLoc()));
}
}
void RISCVMCCodeEmitter::encodeInstruction(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
// Get byte count of instruction.
unsigned Size = Desc.getSize();
// RISCVInstrInfo::getInstSizeInBytes expects that the total size of the
// expanded instructions for each pseudo is correct in the Size field of the
// tablegen definition for the pseudo.
switch (MI.getOpcode()) {
default:
break;
case RISCV::PseudoCALLReg:
case RISCV::PseudoCALL:
case RISCV::PseudoTAIL:
case RISCV::PseudoJump:
expandFunctionCall(MI, CB, Fixups, STI);
MCNumEmitted += 2;
return;
case RISCV::PseudoAddTPRel:
expandAddTPRel(MI, CB, Fixups, STI);
MCNumEmitted += 1;
return;
case RISCV::PseudoLongBEQ:
case RISCV::PseudoLongBNE:
case RISCV::PseudoLongBLT:
case RISCV::PseudoLongBGE:
case RISCV::PseudoLongBLTU:
case RISCV::PseudoLongBGEU:
expandLongCondBr(MI, CB, Fixups, STI);
MCNumEmitted += 2;
return;
case RISCV::PseudoLongQC_BEQI:
case RISCV::PseudoLongQC_BNEI:
case RISCV::PseudoLongQC_BLTI:
case RISCV::PseudoLongQC_BGEI:
case RISCV::PseudoLongQC_BLTUI:
case RISCV::PseudoLongQC_BGEUI:
expandQCLongCondBrImm(MI, CB, Fixups, STI, 4);
MCNumEmitted += 2;
return;
case RISCV::PseudoLongQC_E_BEQI:
case RISCV::PseudoLongQC_E_BNEI:
case RISCV::PseudoLongQC_E_BLTI:
case RISCV::PseudoLongQC_E_BGEI:
case RISCV::PseudoLongQC_E_BLTUI:
case RISCV::PseudoLongQC_E_BGEUI:
expandQCLongCondBrImm(MI, CB, Fixups, STI, 6);
MCNumEmitted += 2;
return;
case RISCV::PseudoTLSDESCCall:
expandTLSDESCCall(MI, CB, Fixups, STI);
MCNumEmitted += 1;
return;
}
switch (Size) {
default:
llvm_unreachable("Unhandled encodeInstruction length!");
case 2: {
uint16_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
support::endian::write<uint16_t>(CB, Bits, llvm::endianness::little);
break;
}
case 4: {
uint32_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
support::endian::write(CB, Bits, llvm::endianness::little);
break;
}
case 6: {
uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI) & 0xffff'ffff'ffffu;
SmallVector<char, 8> Encoding;
support::endian::write(Encoding, Bits, llvm::endianness::little);
assert(Encoding[6] == 0 && Encoding[7] == 0 &&
"Unexpected encoding for 48-bit instruction");
Encoding.truncate(6);
CB.append(Encoding);
break;
}
case 8: {
uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
support::endian::write(CB, Bits, llvm::endianness::little);
break;
}
}
++MCNumEmitted; // Keep track of the # of mi's emitted.
}
uint64_t
RISCVMCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg())
return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
if (MO.isImm())
return MO.getImm();
llvm_unreachable("Unhandled expression!");
return 0;
}
uint64_t
RISCVMCCodeEmitter::getImmOpValueMinus1(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
uint64_t Res = MO.getImm();
return (Res - 1);
}
llvm_unreachable("Unhandled expression!");
return 0;
}
uint64_t
RISCVMCCodeEmitter::getImmOpValueSlist(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "Slist operand must be immediate");
uint64_t Res = MO.getImm();
switch (Res) {
case 0:
return 0;
case 1:
return 1;
case 2:
return 2;
case 4:
return 3;
case 8:
return 4;
case 16:
return 5;
case 15:
return 6;
case 31:
return 7;
default:
llvm_unreachable("Unhandled Slist value!");
}
}
template <unsigned N>
unsigned
RISCVMCCodeEmitter::getImmOpValueAsrN(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
uint64_t Res = MO.getImm();
assert((Res & ((1 << N) - 1)) == 0 && "LSB is non-zero");
return Res >> N;
}
return getImmOpValue(MI, OpNo, Fixups, STI);
}
uint64_t RISCVMCCodeEmitter::getImmOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
bool EnableRelax = STI.hasFeature(RISCV::FeatureRelax);
const MCOperand &MO = MI.getOperand(OpNo);
MCInstrDesc const &Desc = MCII.get(MI.getOpcode());
unsigned MIFrm = RISCVII::getFormat(Desc.TSFlags);
// If the destination is an immediate, there is nothing to do.
if (MO.isImm())
return MO.getImm();
assert(MO.isExpr() &&
"getImmOpValue expects only expressions or immediates");
const MCExpr *Expr = MO.getExpr();
MCExpr::ExprKind Kind = Expr->getKind();
unsigned FixupKind = RISCV::fixup_riscv_invalid;
bool RelaxCandidate = false;
if (Kind == MCExpr::Target) {
const RISCVMCExpr *RVExpr = cast<RISCVMCExpr>(Expr);
switch (RVExpr->getSpecifier()) {
case RISCVMCExpr::VK_None:
case RISCVMCExpr::VK_32_PCREL:
case RISCVMCExpr::VK_GOTPCREL:
case RISCVMCExpr::VK_PLTPCREL:
llvm_unreachable("unhandled specifier");
case RISCVMCExpr::VK_TPREL_ADD:
// tprel_add is only used to indicate that a relocation should be emitted
// for an add instruction used in TP-relative addressing. It should not be
// expanded as if representing an actual instruction operand and so to
// encounter it here is an error.
llvm_unreachable(
"VK_TPREL_ADD should not represent an instruction operand");
case RISCVMCExpr::VK_LO:
if (MIFrm == RISCVII::InstFormatI)
FixupKind = RISCV::fixup_riscv_lo12_i;
else if (MIFrm == RISCVII::InstFormatS)
FixupKind = RISCV::fixup_riscv_lo12_s;
else
llvm_unreachable("VK_LO used with unexpected instruction format");
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_HI:
FixupKind = RISCV::fixup_riscv_hi20;
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_PCREL_LO:
if (MIFrm == RISCVII::InstFormatI)
FixupKind = RISCV::fixup_riscv_pcrel_lo12_i;
else if (MIFrm == RISCVII::InstFormatS)
FixupKind = RISCV::fixup_riscv_pcrel_lo12_s;
else
llvm_unreachable("VK_PCREL_LO used with unexpected instruction format");
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_PCREL_HI:
FixupKind = RISCV::fixup_riscv_pcrel_hi20;
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_GOT_HI:
FixupKind = ELF::R_RISCV_GOT_HI20;
break;
case RISCVMCExpr::VK_TPREL_LO:
if (MIFrm == RISCVII::InstFormatI)
FixupKind = ELF::R_RISCV_TPREL_LO12_I;
else if (MIFrm == RISCVII::InstFormatS)
FixupKind = ELF::R_RISCV_TPREL_LO12_S;
else
llvm_unreachable("VK_TPREL_LO used with unexpected instruction format");
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_TPREL_HI:
FixupKind = ELF::R_RISCV_TPREL_HI20;
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_TLS_GOT_HI:
FixupKind = ELF::R_RISCV_TLS_GOT_HI20;
break;
case RISCVMCExpr::VK_TLS_GD_HI:
FixupKind = ELF::R_RISCV_TLS_GD_HI20;
break;
case RISCVMCExpr::VK_CALL:
FixupKind = RISCV::fixup_riscv_call;
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_CALL_PLT:
FixupKind = RISCV::fixup_riscv_call_plt;
RelaxCandidate = true;
break;
case RISCVMCExpr::VK_TLSDESC_HI:
FixupKind = ELF::R_RISCV_TLSDESC_HI20;
break;
case RISCVMCExpr::VK_TLSDESC_LOAD_LO:
FixupKind = ELF::R_RISCV_TLSDESC_LOAD_LO12;
break;
case RISCVMCExpr::VK_TLSDESC_ADD_LO:
FixupKind = ELF::R_RISCV_TLSDESC_ADD_LO12;
break;
case RISCVMCExpr::VK_TLSDESC_CALL:
FixupKind = ELF::R_RISCV_TLSDESC_CALL;
break;
case RISCVMCExpr::VK_QC_ABS20:
FixupKind = RISCV::fixup_riscv_qc_abs20_u;
break;
}
} else if (Kind == MCExpr::SymbolRef || Kind == MCExpr::Binary) {
// FIXME: Sub kind binary exprs have chance of underflow.
if (MIFrm == RISCVII::InstFormatJ) {
FixupKind = RISCV::fixup_riscv_jal;
} else if (MIFrm == RISCVII::InstFormatB) {
FixupKind = RISCV::fixup_riscv_branch;
} else if (MIFrm == RISCVII::InstFormatCJ) {
FixupKind = RISCV::fixup_riscv_rvc_jump;
} else if (MIFrm == RISCVII::InstFormatCB) {
FixupKind = RISCV::fixup_riscv_rvc_branch;
} else if (MIFrm == RISCVII::InstFormatI) {
FixupKind = RISCV::fixup_riscv_12_i;
} else if (MIFrm == RISCVII::InstFormatQC_EB) {
FixupKind = RISCV::fixup_riscv_qc_e_branch;
} else if (MIFrm == RISCVII::InstFormatQC_EAI) {
FixupKind = RISCV::fixup_riscv_qc_e_32;
} else if (MIFrm == RISCVII::InstFormatQC_EJ) {
FixupKind = RISCV::fixup_riscv_qc_e_jump_plt;
}
}
assert(FixupKind != RISCV::fixup_riscv_invalid && "Unhandled expression!");
Fixups.push_back(
MCFixup::create(0, Expr, MCFixupKind(FixupKind), MI.getLoc()));
++MCNumFixups;
// Ensure an R_RISCV_RELAX relocation will be emitted if linker relaxation is
// enabled and the current fixup will result in a relocation that may be
// relaxed.
if (EnableRelax && RelaxCandidate) {
const MCConstantExpr *Dummy = MCConstantExpr::create(0, Ctx);
Fixups.push_back(
MCFixup::create(0, Dummy, ELF::R_RISCV_RELAX, MI.getLoc()));
++MCNumFixups;
}
return 0;
}
unsigned RISCVMCCodeEmitter::getVMaskReg(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCOperand MO = MI.getOperand(OpNo);
assert(MO.isReg() && "Expected a register.");
switch (MO.getReg()) {
default:
llvm_unreachable("Invalid mask register.");
case RISCV::V0:
return 0;
case RISCV::NoRegister:
return 1;
}
}
unsigned RISCVMCCodeEmitter::getRlistOpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "Rlist operand must be immediate");
auto Imm = MO.getImm();
assert(Imm >= 4 && "EABI is currently not implemented");
return Imm;
}
unsigned
RISCVMCCodeEmitter::getRlistS0OpValue(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "Rlist operand must be immediate");
auto Imm = MO.getImm();
assert(Imm >= 4 && "EABI is currently not implemented");
assert(Imm != RISCVZC::RA && "Rlist operand must include s0");
return Imm;
}
#include "RISCVGenMCCodeEmitter.inc"