blob: a1c9091c95b487020ae8aa02df4e4792eb4165fe [file] [log] [blame]
//===-- RISCVAsmParser.cpp - Parse RISC-V assembly to MCInst instructions -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVAsmBackend.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVInstPrinter.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/TargetParser/RISCVISAInfo.h"
#include <limits>
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "riscv-asm-parser"
STATISTIC(RISCVNumInstrsCompressed,
"Number of RISC-V Compressed instructions emitted");
static cl::opt<bool> AddBuildAttributes("riscv-add-build-attributes",
cl::init(false));
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
} // namespace llvm
namespace {
struct RISCVOperand;
struct ParserOptionsSet {
bool IsPicEnabled;
};
class RISCVAsmParser : public MCTargetAsmParser {
// This tracks the parsing of the 4 operands that make up the vtype portion
// of vset(i)vli instructions which are separated by commas. The state names
// represent the next expected operand with Done meaning no other operands are
// expected.
enum VTypeState {
VTypeState_SEW,
VTypeState_LMUL,
VTypeState_TailPolicy,
VTypeState_MaskPolicy,
VTypeState_Done,
};
SmallVector<FeatureBitset, 4> FeatureBitStack;
SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
ParserOptionsSet ParserOptions;
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
bool isRVE() const { return getSTI().hasFeature(RISCV::FeatureStdExtE); }
bool enableExperimentalExtension() const {
return getSTI().hasFeature(RISCV::Experimental);
}
RISCVTargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper,
const Twine &Msg);
bool generateImmOutOfRangeError(SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
const Twine &Msg);
bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
MCRegister matchRegisterNameHelper(StringRef Name) const;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool parseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
ParseStatus parseDirective(AsmToken DirectiveID) override;
bool parseVTypeToken(const AsmToken &Tok, VTypeState &State, unsigned &Sew,
unsigned &Lmul, bool &Fractional, bool &TailAgnostic,
bool &MaskAgnostic);
bool generateVTypeError(SMLoc ErrorLoc);
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immediate value into the destination register.
void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
// Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
// helpers such as emitLoadLocalAddress and emitLoadAddress.
void emitAuipcInstPair(MCRegister DestReg, MCRegister TmpReg,
const MCExpr *Symbol, RISCVMCExpr::Specifier VKHi,
unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lla" used in PC-rel addressing.
void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lga" used in GOT-rel addressing.
void emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
// addressing.
void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
// addressing.
void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo load/store instruction with a symbol.
void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out, bool HasTmpReg);
// Helper to emit pseudo sign/zero extend instruction.
void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo vmsge{u}.vx instruction.
void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
// Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
// Enforcing this using a restricted register class for the second input
// operand of PseudoAddTPRel results in a poor diagnostic due to the fact
// 'add' is an overloaded mnemonic.
bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
// Checks that a PseudoTLSDESCCall is using x5/t0 in its output operand.
// Enforcing this using a restricted register class for the output
// operand of PseudoTLSDESCCall results in a poor diagnostic due to the fact
// 'jalr' is an overloaded mnemonic.
bool checkPseudoTLSDESCCall(MCInst &Inst, OperandVector &Operands);
// Check instruction constraints.
bool validateInstruction(MCInst &Inst, OperandVector &Operands);
/// Helper for processing MC instructions that have been successfully matched
/// by matchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
ParseStatus parseCSRSystemRegister(OperandVector &Operands);
ParseStatus parseFPImm(OperandVector &Operands);
ParseStatus parseImmediate(OperandVector &Operands);
ParseStatus parseRegister(OperandVector &Operands, bool AllowParens = false);
ParseStatus parseMemOpBaseReg(OperandVector &Operands);
ParseStatus parseZeroOffsetMemOp(OperandVector &Operands);
ParseStatus parseOperandWithSpecifier(OperandVector &Operands);
ParseStatus parseBareSymbol(OperandVector &Operands);
ParseStatus parseCallSymbol(OperandVector &Operands);
ParseStatus parsePseudoJumpSymbol(OperandVector &Operands);
ParseStatus parseJALOffset(OperandVector &Operands);
ParseStatus parseVTypeI(OperandVector &Operands);
ParseStatus parseMaskReg(OperandVector &Operands);
ParseStatus parseInsnDirectiveOpcode(OperandVector &Operands);
ParseStatus parseInsnCDirectiveOpcode(OperandVector &Operands);
ParseStatus parseGPRAsFPR(OperandVector &Operands);
ParseStatus parseGPRAsFPR64(OperandVector &Operands);
ParseStatus parseGPRPairAsFPR64(OperandVector &Operands);
template <bool IsRV64Inst> ParseStatus parseGPRPair(OperandVector &Operands);
ParseStatus parseGPRPair(OperandVector &Operands, bool IsRV64Inst);
ParseStatus parseFRMArg(OperandVector &Operands);
ParseStatus parseFenceArg(OperandVector &Operands);
ParseStatus parseRegList(OperandVector &Operands, bool MustIncludeS0 = false);
ParseStatus parseRegListS0(OperandVector &Operands) {
return parseRegList(Operands, /*MustIncludeS0=*/true);
}
ParseStatus parseRegReg(OperandVector &Operands);
ParseStatus parseRetval(OperandVector &Operands);
ParseStatus parseZcmpStackAdj(OperandVector &Operands,
bool ExpectNegative = false);
ParseStatus parseZcmpNegStackAdj(OperandVector &Operands) {
return parseZcmpStackAdj(Operands, /*ExpectNegative*/ true);
}
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
bool parseExprWithSpecifier(const MCExpr *&Res, SMLoc &E);
bool parseDataExpr(const MCExpr *&Res) override;
bool parseDirectiveOption();
bool parseDirectiveAttribute();
bool parseDirectiveInsn(SMLoc L);
bool parseDirectiveVariantCC();
/// Helper to reset target features for a new arch string. It
/// also records the new arch string that is expanded by RISCVISAInfo
/// and reports error for invalid arch string.
bool resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
bool FromOptionDirective);
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().hasFeature(Feature))) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().hasFeature(Feature)) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void pushFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
FeatureBitStack.push_back(getSTI().getFeatureBits());
ParserOptionsStack.push_back(ParserOptions);
}
bool popFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
if (FeatureBitStack.empty())
return true;
FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
copySTI().setFeatureBits(FeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
ParserOptions = ParserOptionsStack.pop_back_val();
return false;
}
std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
std::unique_ptr<RISCVOperand> defaultFRMArgOp() const;
std::unique_ptr<RISCVOperand> defaultFRMArgLegacyOp() const;
public:
enum RISCVMatchResultTy : unsigned {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::Specifier &Kind);
static bool isSymbolDiff(const MCExpr *Expr);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
MCAsmParserExtension::Initialize(Parser);
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
auto ABIName = StringRef(Options.ABIName);
if (ABIName.ends_with("f") && !getSTI().hasFeature(RISCV::FeatureStdExtF)) {
errs() << "Hard-float 'f' ABI can't be used for a target that "
"doesn't support the F instruction set extension (ignoring "
"target-abi)\n";
} else if (ABIName.ends_with("d") &&
!getSTI().hasFeature(RISCV::FeatureStdExtD)) {
errs() << "Hard-float 'd' ABI can't be used for a target that "
"doesn't support the D instruction set extension (ignoring "
"target-abi)\n";
}
// Use computeTargetABI to check if ABIName is valid. If invalid, output
// error message.
RISCVABI::computeTargetABI(STI.getTargetTriple(), STI.getFeatureBits(),
ABIName);
const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
if (AddBuildAttributes)
getTargetStreamer().emitTargetAttributes(STI, /*EmitStackAlign*/ false);
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand final : public MCParsedAsmOperand {
enum class KindTy {
Token,
Register,
Immediate,
FPImmediate,
SystemRegister,
VType,
FRM,
Fence,
RegList,
StackAdj,
RegReg,
} Kind;
struct RegOp {
MCRegister RegNum;
bool IsGPRAsFPR;
};
struct ImmOp {
const MCExpr *Val;
bool IsRV64;
};
struct FPImmOp {
uint64_t Val;
};
struct SysRegOp {
const char *Data;
unsigned Length;
unsigned Encoding;
// FIXME: Add the Encoding parsed fields as needed for checks,
// e.g.: read/write or user/supervisor/machine privileges.
};
struct VTypeOp {
unsigned Val;
};
struct FRMOp {
RISCVFPRndMode::RoundingMode FRM;
};
struct FenceOp {
unsigned Val;
};
struct RegListOp {
unsigned Encoding;
};
struct StackAdjOp {
unsigned Val;
};
struct RegRegOp {
MCRegister BaseReg;
MCRegister OffsetReg;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
FPImmOp FPImm;
SysRegOp SysReg;
VTypeOp VType;
FRMOp FRM;
FenceOp Fence;
RegListOp RegList;
StackAdjOp StackAdj;
RegRegOp RegReg;
};
RISCVOperand(KindTy K) : Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case KindTy::Register:
Reg = o.Reg;
break;
case KindTy::Immediate:
Imm = o.Imm;
break;
case KindTy::FPImmediate:
FPImm = o.FPImm;
break;
case KindTy::Token:
Tok = o.Tok;
break;
case KindTy::SystemRegister:
SysReg = o.SysReg;
break;
case KindTy::VType:
VType = o.VType;
break;
case KindTy::FRM:
FRM = o.FRM;
break;
case KindTy::Fence:
Fence = o.Fence;
break;
case KindTy::RegList:
RegList = o.RegList;
break;
case KindTy::StackAdj:
StackAdj = o.StackAdj;
break;
case KindTy::RegReg:
RegReg = o.RegReg;
break;
}
}
bool isToken() const override { return Kind == KindTy::Token; }
bool isReg() const override { return Kind == KindTy::Register; }
bool isV0Reg() const {
return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
}
bool isAnyReg() const {
return Kind == KindTy::Register &&
(RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg.RegNum));
}
bool isAnyRegC() const {
return Kind == KindTy::Register &&
(RISCVMCRegisterClasses[RISCV::GPRCRegClassID].contains(
Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(
Reg.RegNum));
}
bool isImm() const override { return Kind == KindTy::Immediate; }
bool isMem() const override { return false; }
bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
bool isRegReg() const { return Kind == KindTy::RegReg; }
bool isRegList() const { return Kind == KindTy::RegList; }
bool isRegListS0() const {
return Kind == KindTy::RegList && RegList.Encoding != RISCVZC::RA;
}
bool isStackAdj() const { return Kind == KindTy::StackAdj; }
bool isGPR() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
}
bool isGPRPair() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(
Reg.RegNum);
}
bool isGPRPairC() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRPairCRegClassID].contains(
Reg.RegNum);
}
bool isGPRPairNoX0() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRPairNoX0RegClassID].contains(
Reg.RegNum);
}
bool isGPRF16() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRF16RegClassID].contains(Reg.RegNum);
}
bool isGPRF32() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRF32RegClassID].contains(Reg.RegNum);
}
bool isGPRAsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
bool isGPRAsFPR16() const { return isGPRF16() && Reg.IsGPRAsFPR; }
bool isGPRAsFPR32() const { return isGPRF32() && Reg.IsGPRAsFPR; }
bool isGPRPairAsFPR64() const { return isGPRPair() && Reg.IsGPRAsFPR; }
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm) {
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
Imm = CE->getValue();
return true;
}
return false;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isShiftedInt<N - 1, 1>(fixImmediateForRV32(Imm, isRV64Imm()));
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_None;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isInt<N>(Op).
template <int N> bool isBareSimmN() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isInt<N>(fixImmediateForRV32(Imm, isRV64Imm()));
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm))
return false;
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_None;
}
bool isCallSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm))
return false;
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_CALL || VK == RISCVMCExpr::VK_CALL_PLT);
}
bool isPseudoJumpSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm))
return false;
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_CALL;
}
bool isTPRelAddSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm))
return false;
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_TPREL_ADD;
}
bool isTLSDESCCallSymbol() const {
int64_t Imm;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm))
return false;
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_TLSDESC_CALL;
}
bool isCSRSystemRegister() const { return isSystemRegister(); }
// If the last operand of the vsetvli/vsetvli instruction is a constant
// expression, KindTy is Immediate.
bool isVTypeI10() const {
if (Kind == KindTy::VType)
return true;
return isUImm<10>();
}
bool isVTypeI11() const {
if (Kind == KindTy::VType)
return true;
return isUImm<11>();
}
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const { return Kind == KindTy::Fence; }
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const { return Kind == KindTy::FRM; }
bool isFRMArgLegacy() const { return Kind == KindTy::FRM; }
bool isRTZArg() const { return isFRMArg() && FRM.FRM == RISCVFPRndMode::RTZ; }
/// Return true if the operand is a valid fli.s floating-point immediate.
bool isLoadFPImm() const {
if (isImm())
return isUImm5();
if (Kind != KindTy::FPImmediate)
return false;
int Idx = RISCVLoadFPImm::getLoadFPImm(
APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
// Don't allow decimal version of the minimum value. It is a different value
// for each supported data type.
return Idx >= 0 && Idx != 1;
}
bool isImmXLenLI() const {
int64_t Imm;
if (!isImm())
return false;
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
if (evaluateConstantImm(getImm(), Imm))
return isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm));
return RISCVAsmParser::isSymbolDiff(getImm());
}
bool isImmXLenLI_Restricted() const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
// 'la imm' supports constant immediates only.
return IsConstantImm &&
(isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
}
template <unsigned N> bool isUImm() const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isUInt<N>(Imm);
}
template <unsigned N, unsigned S> bool isUImmShifted() const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isShiftedUInt<N, S>(Imm);
}
template <class Pred> bool isUImmPred(Pred p) const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && p(Imm);
}
bool isUImmLog2XLen() const {
if (isImm() && isRV64Imm())
return isUImm<6>();
return isUImm<5>();
}
bool isUImmLog2XLenNonZero() const {
if (isImm() && isRV64Imm())
return isUImmPred([](int64_t Imm) { return Imm != 0 && isUInt<6>(Imm); });
return isUImmPred([](int64_t Imm) { return Imm != 0 && isUInt<5>(Imm); });
}
bool isUImmLog2XLenHalf() const {
if (isImm() && isRV64Imm())
return isUImm<5>();
return isUImm<4>();
}
bool isUImm1() const { return isUImm<1>(); }
bool isUImm2() const { return isUImm<2>(); }
bool isUImm3() const { return isUImm<3>(); }
bool isUImm4() const { return isUImm<4>(); }
bool isUImm5() const { return isUImm<5>(); }
bool isUImm6() const { return isUImm<6>(); }
bool isUImm7() const { return isUImm<7>(); }
bool isUImm8() const { return isUImm<8>(); }
bool isUImm10() const { return isUImm<10>(); }
bool isUImm11() const { return isUImm<11>(); }
bool isUImm16() const { return isUImm<16>(); }
bool isUImm20() const { return isUImm<20>(); }
bool isUImm32() const { return isUImm<32>(); }
bool isUImm48() const { return isUImm<48>(); }
bool isUImm64() const { return isUImm<64>(); }
bool isUImm5NonZero() const {
return isUImmPred([](int64_t Imm) { return Imm != 0 && isUInt<5>(Imm); });
}
bool isUImm5GT3() const {
return isUImmPred([](int64_t Imm) { return isUInt<5>(Imm) && Imm > 3; });
}
bool isUImm5Plus1() const {
return isUImmPred(
[](int64_t Imm) { return Imm > 0 && isUInt<5>(Imm - 1); });
}
bool isUImm5GE6Plus1() const {
return isUImmPred(
[](int64_t Imm) { return Imm >= 6 && isUInt<5>(Imm - 1); });
}
bool isUImm5Slist() const {
return isUImmPred([](int64_t Imm) {
return (Imm == 0) || (Imm == 1) || (Imm == 2) || (Imm == 4) ||
(Imm == 8) || (Imm == 16) || (Imm == 15) || (Imm == 31);
});
}
bool isUImm8GE32() const {
return isUImmPred([](int64_t Imm) { return isUInt<8>(Imm) && Imm >= 32; });
}
bool isRnumArg() const {
return isUImmPred(
[](int64_t Imm) { return Imm >= INT64_C(0) && Imm <= INT64_C(10); });
}
bool isRnumArg_0_7() const {
return isUImmPred(
[](int64_t Imm) { return Imm >= INT64_C(0) && Imm <= INT64_C(7); });
}
bool isRnumArg_1_10() const {
return isUImmPred(
[](int64_t Imm) { return Imm >= INT64_C(1) && Imm <= INT64_C(10); });
}
bool isRnumArg_2_14() const {
return isUImmPred(
[](int64_t Imm) { return Imm >= INT64_C(2) && Imm <= INT64_C(14); });
}
template <unsigned N> bool isSImm() const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && isInt<N>(fixImmediateForRV32(Imm, isRV64Imm()));
}
template <class Pred> bool isSImmPred(Pred p) const {
int64_t Imm;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
return IsConstantImm && p(fixImmediateForRV32(Imm, isRV64Imm()));
}
bool isSImm5() const { return isSImm<5>(); }
bool isSImm6() const { return isSImm<6>(); }
bool isSImm11() const { return isSImm<11>(); }
bool isSImm16() const { return isSImm<16>(); }
bool isSImm26() const { return isSImm<26>(); }
bool isSImm5NonZero() const {
return isSImmPred([](int64_t Imm) { return Imm != 0 && isInt<5>(Imm); });
}
bool isSImm6NonZero() const {
return isSImmPred([](int64_t Imm) { return Imm != 0 && isInt<6>(Imm); });
}
bool isCLUIImm() const {
return isUImmPred([](int64_t Imm) {
return (isUInt<5>(Imm) && Imm != 0) || (Imm >= 0xfffe0 && Imm <= 0xfffff);
});
}
bool isUImm2Lsb0() const { return isUImmShifted<1, 1>(); }
bool isUImm5Lsb0() const { return isUImmShifted<4, 1>(); }
bool isUImm6Lsb0() const { return isUImmShifted<5, 1>(); }
bool isUImm7Lsb00() const { return isUImmShifted<5, 2>(); }
bool isUImm7Lsb000() const { return isUImmShifted<4, 3>(); }
bool isUImm8Lsb00() const { return isUImmShifted<6, 2>(); }
bool isUImm8Lsb000() const { return isUImmShifted<5, 3>(); }
bool isUImm9Lsb000() const { return isUImmShifted<6, 3>(); }
bool isUImm14Lsb00() const { return isUImmShifted<12, 2>(); }
bool isUImm10Lsb00NonZero() const {
return isUImmPred(
[](int64_t Imm) { return isShiftedUInt<8, 2>(Imm) && (Imm != 0); });
}
// If this a RV32 and the immediate is a uimm32, sign extend it to 32 bits.
// This allows writing 'addi a0, a0, 0xffffffff'.
static int64_t fixImmediateForRV32(int64_t Imm, bool IsRV64Imm) {
if (IsRV64Imm || !isUInt<32>(Imm))
return Imm;
return SignExtend64<32>(Imm);
}
bool isSImm11Lsb0() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<10, 1>(Imm); });
}
bool isSImm12() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isInt<12>(fixImmediateForRV32(Imm, isRV64Imm()));
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_LO || VK == RISCVMCExpr::VK_PCREL_LO ||
VK == RISCVMCExpr::VK_TPREL_LO ||
VK == RISCVMCExpr::VK_TLSDESC_LOAD_LO ||
VK == RISCVMCExpr::VK_TLSDESC_ADD_LO);
}
bool isSImm12Lsb00000() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<7, 5>(Imm); });
}
bool isSImm10Lsb0000NonZero() const {
return isSImmPred(
[](int64_t Imm) { return Imm != 0 && isShiftedInt<6, 4>(Imm); });
}
bool isSImm16NonZero() const {
return isSImmPred([](int64_t Imm) { return Imm != 0 && isInt<16>(Imm); });
}
bool isUImm16NonZero() const {
return isUImmPred([](int64_t Imm) { return isUInt<16>(Imm) && Imm != 0; });
}
bool isSImm20LI() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isInt<20>(fixImmediateForRV32(Imm, isRV64Imm()));
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_QC_ABS20;
}
bool isUImm20LUI() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isUInt<20>(Imm);
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_HI || VK == RISCVMCExpr::VK_TPREL_HI);
}
bool isUImm20AUIPC() const {
if (!isImm())
return false;
int64_t Imm;
if (evaluateConstantImm(getImm(), Imm))
return isUInt<20>(Imm);
RISCVMCExpr::Specifier VK = RISCVMCExpr::VK_None;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_PCREL_HI || VK == RISCVMCExpr::VK_GOT_HI ||
VK == RISCVMCExpr::VK_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_TLS_GD_HI ||
VK == RISCVMCExpr::VK_TLSDESC_HI);
}
bool isImmZero() const {
return isUImmPred([](int64_t Imm) { return 0 == Imm; });
}
bool isImmThree() const {
return isUImmPred([](int64_t Imm) { return 3 == Imm; });
}
bool isImmFour() const {
return isUImmPred([](int64_t Imm) { return 4 == Imm; });
}
bool isSImm5Plus1() const {
return isSImmPred(
[](int64_t Imm) { return Imm != INT64_MIN && isInt<5>(Imm - 1); });
}
bool isSImm18() const {
return isSImmPred([](int64_t Imm) { return isInt<18>(Imm); });
}
bool isSImm18Lsb0() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<17, 1>(Imm); });
}
bool isSImm19Lsb00() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<17, 2>(Imm); });
}
bool isSImm20Lsb000() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<17, 3>(Imm); });
}
bool isSImm32Lsb0() const {
return isSImmPred([](int64_t Imm) { return isShiftedInt<31, 1>(Imm); });
}
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64Imm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.IsRV64;
}
MCRegister getReg() const override {
assert(Kind == KindTy::Register && "Invalid type access!");
return Reg.RegNum;
}
StringRef getSysReg() const {
assert(Kind == KindTy::SystemRegister && "Invalid type access!");
return StringRef(SysReg.Data, SysReg.Length);
}
const MCExpr *getImm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.Val;
}
uint64_t getFPConst() const {
assert(Kind == KindTy::FPImmediate && "Invalid type access!");
return FPImm.Val;
}
StringRef getToken() const {
assert(Kind == KindTy::Token && "Invalid type access!");
return Tok;
}
unsigned getVType() const {
assert(Kind == KindTy::VType && "Invalid type access!");
return VType.Val;
}
RISCVFPRndMode::RoundingMode getFRM() const {
assert(Kind == KindTy::FRM && "Invalid type access!");
return FRM.FRM;
}
unsigned getFence() const {
assert(Kind == KindTy::Fence && "Invalid type access!");
return Fence.Val;
}
void print(raw_ostream &OS) const override {
auto RegName = [](MCRegister Reg) {
if (Reg)
return RISCVInstPrinter::getRegisterName(Reg);
else
return "noreg";
};
switch (Kind) {
case KindTy::Immediate:
OS << "<imm: " << *Imm.Val << " " << (Imm.IsRV64 ? "rv64" : "rv32")
<< ">";
break;
case KindTy::FPImmediate:
OS << "<fpimm: " << FPImm.Val << ">";
break;
case KindTy::Register:
OS << "<reg: " << RegName(Reg.RegNum) << " (" << Reg.RegNum
<< (Reg.IsGPRAsFPR ? ") GPRasFPR>" : ")>");
break;
case KindTy::Token:
OS << "'" << getToken() << "'";
break;
case KindTy::SystemRegister:
OS << "<sysreg: " << getSysReg() << " (" << SysReg.Encoding << ")>";
break;
case KindTy::VType:
OS << "<vtype: ";
RISCVVType::printVType(getVType(), OS);
OS << '>';
break;
case KindTy::FRM:
OS << "<frm: ";
roundingModeToString(getFRM());
OS << '>';
break;
case KindTy::Fence:
OS << "<fence: ";
OS << getFence();
OS << '>';
break;
case KindTy::RegList:
OS << "<reglist: ";
RISCVZC::printRegList(RegList.Encoding, OS);
OS << '>';
break;
case KindTy::StackAdj:
OS << "<stackadj: ";
OS << StackAdj.Val;
OS << '>';
break;
case KindTy::RegReg:
OS << "<RegReg: BaseReg " << RegName(RegReg.BaseReg) << " OffsetReg "
<< RegName(RegReg.OffsetReg);
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand>
createReg(MCRegister Reg, SMLoc S, SMLoc E, bool IsGPRAsFPR = false) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
Op->Reg.RegNum = Reg;
Op->Reg.IsGPRAsFPR = IsGPRAsFPR;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
Op->Imm.Val = Val;
Op->Imm.IsRV64 = IsRV64;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<RISCVOperand> createFPImm(uint64_t Val, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::FPImmediate);
Op->FPImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createSysReg(StringRef Str, SMLoc S,
unsigned Encoding) {
auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.Encoding = Encoding;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand>
createFRMArg(RISCVFPRndMode::RoundingMode FRM, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::FRM);
Op->FRM.FRM = FRM;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createFenceArg(unsigned Val, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Fence);
Op->Fence.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
Op->VType.Val = VTypeI;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createRegList(unsigned RlistEncode,
SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::RegList);
Op->RegList.Encoding = RlistEncode;
Op->StartLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand>
createRegReg(MCRegister BaseReg, MCRegister OffsetReg, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::RegReg);
Op->RegReg.BaseReg = BaseReg;
Op->RegReg.OffsetReg = OffsetReg;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createStackAdj(unsigned StackAdj, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::StackAdj);
Op->StackAdj.Val = StackAdj;
Op->StartLoc = S;
return Op;
}
static void addExpr(MCInst &Inst, const MCExpr *Expr, bool IsRV64Imm) {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
bool IsConstant = evaluateConstantImm(Expr, Imm);
if (IsConstant)
Inst.addOperand(
MCOperand::createImm(fixImmediateForRV32(Imm, IsRV64Imm)));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm(), isRV64Imm());
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (isImm()) {
addExpr(Inst, getImm(), isRV64Imm());
return;
}
int Imm = RISCVLoadFPImm::getLoadFPImm(
APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
Inst.addOperand(MCOperand::createImm(Imm));
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(Fence.Val));
}
void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
}
// Support non-canonical syntax:
// "vsetivli rd, uimm, 0xabc" or "vsetvli rd, rs1, 0xabc"
// "vsetivli rd, uimm, (0xc << N)" or "vsetvli rd, rs1, (0xc << N)"
void addVTypeIOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
int64_t Imm = 0;
if (Kind == KindTy::Immediate) {
[[maybe_unused]] bool IsConstantImm = evaluateConstantImm(getImm(), Imm);
assert(IsConstantImm && "Invalid VTypeI Operand!");
} else {
Imm = getVType();
}
Inst.addOperand(MCOperand::createImm(Imm));
}
void addRegListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(RegList.Encoding));
}
void addRegRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(RegReg.BaseReg));
Inst.addOperand(MCOperand::createReg(RegReg.OffsetReg));
}
void addStackAdjOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(StackAdj.Val));
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getFRM()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "RISCVGenAsmMatcher.inc"
static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_H;
}
static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_F;
}
static MCRegister convertFPR64ToFPR128(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_Q;
}
static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
unsigned Kind) {
unsigned RegClassID;
if (Kind == MCK_VRM2)
RegClassID = RISCV::VRM2RegClassID;
else if (Kind == MCK_VRM4)
RegClassID = RISCV::VRM4RegClassID;
else if (Kind == MCK_VRM8)
RegClassID = RISCV::VRM8RegClassID;
else
return MCRegister();
return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
&RISCVMCRegisterClasses[RegClassID]);
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
MCRegister Reg = Op.getReg();
bool IsRegFPR64 =
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
bool IsRegFPR64C =
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
if (IsRegFPR64 && Kind == MCK_FPR128) {
Op.Reg.RegNum = convertFPR64ToFPR128(Reg);
return Match_Success;
}
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
if ((IsRegFPR64 && Kind == MCK_FPR32) ||
(IsRegFPR64C && Kind == MCK_FPR32C)) {
Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
return Match_Success;
}
// As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
// register from FPR64 to FPR16 if necessary.
if (IsRegFPR64 && Kind == MCK_FPR16) {
Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
return Match_Success;
}
if (Kind == MCK_GPRAsFPR16 && Op.isGPRAsFPR()) {
Op.Reg.RegNum = Reg - RISCV::X0 + RISCV::X0_H;
return Match_Success;
}
if (Kind == MCK_GPRAsFPR32 && Op.isGPRAsFPR()) {
Op.Reg.RegNum = Reg - RISCV::X0 + RISCV::X0_W;
return Match_Success;
}
// There are some GPRF64AsFPR instructions that have no RV32 equivalent. We
// reject them at parsing thinking we should match as GPRPairAsFPR for RV32.
// So we explicitly accept them here for RV32 to allow the generic code to
// report that the instruction requires RV64.
if (RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg) &&
Kind == MCK_GPRF64AsFPR && STI->hasFeature(RISCV::FeatureStdExtZdinx) &&
!isRV64())
return Match_Success;
// As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
// the register from VR to VRM2/VRM4/VRM8 if necessary.
if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
if (!Op.Reg.RegNum)
return Match_InvalidOperand;
return Match_Success;
}
return Match_InvalidOperand;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
const Twine &Msg = "immediate must be an integer in the range") {
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
const Twine &Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return generateImmOutOfRangeError(ErrorLoc, Lower, Upper, Msg);
}
bool RISCVAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
if (validateInstruction(Inst, Operands))
return true;
return processInstruction(Inst, IDLoc, Operands, Out);
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
bool FirstFeature = true;
std::string Msg = "instruction requires the following:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += FirstFeature ? " " : ", ";
Msg += getSubtargetFeatureName(i);
FirstFeature = false;
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = RISCVMnemonicSpellCheck(
((RISCVOperand &)*Operands[0]).getToken(), FBS, 0);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch (Result) {
default:
break;
case Match_InvalidImmXLenLI:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidImmXLenLI_Restricted:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand either must be a constant 64-bit integer "
"or a bare symbol name");
}
return generateImmOutOfRangeError(
Operands, ErrorInfo, std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max(),
"operand either must be a bare symbol name or an immediate integer in "
"the range");
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImm1:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 1) - 1);
case Match_InvalidUImm2:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
case Match_InvalidUImm2Lsb0:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 2,
"immediate must be one of");
case Match_InvalidUImm3:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
case Match_InvalidUImm4:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImm5NonZero:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImm5GT3:
return generateImmOutOfRangeError(Operands, ErrorInfo, 4, (1 << 5) - 1);
case Match_InvalidUImm5Plus1:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5));
case Match_InvalidUImm5GE6Plus1:
return generateImmOutOfRangeError(Operands, ErrorInfo, 6, (1 << 5));
case Match_InvalidUImm5Slist: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc,
"immediate must be one of: 0, 1, 2, 4, 8, 15, 16, 31");
}
case Match_InvalidUImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
case Match_InvalidUImm7:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
case Match_InvalidUImm8:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 8) - 1);
case Match_InvalidUImm8GE32:
return generateImmOutOfRangeError(Operands, ErrorInfo, 32, (1 << 8) - 1);
case Match_InvalidSImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
(1 << 4) - 1);
case Match_InvalidSImm5NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 4), (1 << 4) - 1,
"immediate must be non-zero in the range");
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm5Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 5) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm6Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 6) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidBareSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm11:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 10),
(1 << 10) - 1);
case Match_InvalidSImm11Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 10), (1 << 10) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm10:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 10) - 1);
case Match_InvalidUImm11:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 11) - 1);
case Match_InvalidUImm14Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 14) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm16NonZero:
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 16) - 1);
case Match_InvalidSImm12:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
"operand must be a symbol with %lo/%pcrel_lo/%tprel_lo specifier or an "
"integer in the range");
case Match_InvalidBareSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm12Lsb00000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 32,
"immediate must be a multiple of 32 bytes in the range");
case Match_InvalidBareSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm16:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 15),
(1 << 15) - 1);
case Match_InvalidSImm16NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 15), (1 << 15) - 1,
"immediate must be non-zero in the range");
case Match_InvalidSImm20LI:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 19), (1 << 19) - 1,
"operand must be a symbol with a %qc.abs20 specifier or an integer "
" in the range");
case Match_InvalidUImm20LUI:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with "
"%hi/%tprel_hi specifier or an integer in "
"the range");
case Match_InvalidUImm20:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
case Match_InvalidUImm20AUIPC:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with a "
"%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi specifier "
"or "
"an integer in the range");
case Match_InvalidBareSImm21Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidCSRSystemRegister: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case Match_InvalidVTypeI: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return generateVTypeError(ErrorLoc);
}
case Match_InvalidSImm5Plus1: {
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
(1 << 4),
"immediate must be in the range");
}
case Match_InvalidSImm18:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 17),
(1 << 17) - 1);
case Match_InvalidSImm18Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 17), (1 << 17) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm19Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 18), (1 << 18) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm20Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 19), (1 << 19) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm26:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 25),
(1 << 25) - 1);
case Match_InvalidBareSImm32:
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidBareSImm32Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max() - 1,
"operand must be a multiple of 2 bytes in the range");
case Match_InvalidRnumArg: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 10);
}
case Match_InvalidStackAdj: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"stack adjustment is invalid for this instruction and register list");
}
}
if (const char *MatchDiag = getMatchKindDiag((RISCVMatchResultTy)Result)) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, MatchDiag);
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), returning the matching register. Upon failure,
// returns a non-valid MCRegister. If IsRVE, then registers x16-x31 will be
// rejected.
MCRegister RISCVAsmParser::matchRegisterNameHelper(StringRef Name) const {
MCRegister Reg = MatchRegisterName(Name);
// The 16-/32-/128- and 64-bit FPRs have the same asm name. Check
// that the initial match always matches the 64-bit variant, and
// not the 16/32/128-bit one.
assert(!(Reg >= RISCV::F0_H && Reg <= RISCV::F31_H));
assert(!(Reg >= RISCV::F0_F && Reg <= RISCV::F31_F));
assert(!(Reg >= RISCV::F0_Q && Reg <= RISCV::F31_Q));
// The default FPR register class is based on the tablegen enum ordering.
static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
static_assert(RISCV::F0_D < RISCV::F0_Q, "FPR matching must be updated");
if (!Reg)
Reg = MatchRegisterAltName(Name);
if (isRVE() && Reg >= RISCV::X16 && Reg <= RISCV::X31)
Reg = MCRegister();
return Reg;
}
bool RISCVAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess())
return Error(StartLoc, "invalid register name");
return false;
}
ParseStatus RISCVAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
getParser().Lex(); // Eat identifier token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken LParen;
// If this is an LParen and a parenthesised register name is allowed, parse it
// atomically.
if (AllowParens && getLexer().is(AsmToken::LParen)) {
AsmToken Buf[2];
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
LParen = getParser().getTok();
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
if (HadParens)
getLexer().UnLex(LParen);
return ParseStatus::NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(Name);
if (!Reg) {
if (HadParens)
getLexer().UnLex(LParen);
return ParseStatus::NoMatch;
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS));
SMLoc S = getLoc();
SMLoc E = getTok().getEndLoc();
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(Reg, S, E));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc()));
}
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseInsnDirectiveOpcode(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (isUInt<7>(Imm)) {
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
}
break;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
auto Opcode = RISCVInsnOpcode::lookupRISCVOpcodeByName(Identifier);
if (Opcode) {
assert(isUInt<7>(Opcode->Value) && (Opcode->Value & 0x3) == 3 &&
"Unexpected opcode");
Res = MCConstantExpr::create(Opcode->Value, getContext());
E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
break;
}
case AsmToken::Percent:
break;
}
return generateImmOutOfRangeError(
S, 0, 127,
"opcode must be a valid opcode name or an immediate in the range");
}
ParseStatus RISCVAsmParser::parseInsnCDirectiveOpcode(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (Imm >= 0 && Imm <= 2) {
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
}
break;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
unsigned Opcode;
if (Identifier == "C0")
Opcode = 0;
else if (Identifier == "C1")
Opcode = 1;
else if (Identifier == "C2")
Opcode = 2;
else
break;
Res = MCConstantExpr::create(Opcode, getContext());
E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
case AsmToken::Percent: {
// Discard operand with modifier.
break;
}
}
return generateImmOutOfRangeError(
S, 0, 2,
"opcode must be a valid opcode name or an immediate in the range");
}
ParseStatus RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
auto SysRegFromConstantInt = [this](const MCExpr *E, SMLoc S) {
if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
int64_t Imm = CE->getValue();
if (isUInt<12>(Imm)) {
auto Range = RISCVSysReg::lookupSysRegByEncoding(Imm);
// Accept an immediate representing a named Sys Reg if it satisfies the
// the required features.
for (auto &Reg : Range) {
if (Reg.IsAltName || Reg.IsDeprecatedName)
continue;
if (Reg.haveRequiredFeatures(STI->getFeatureBits()))
return RISCVOperand::createSysReg(Reg.Name, S, Imm);
}
// Accept an immediate representing an un-named Sys Reg if the range is
// valid, regardless of the required features.
return RISCVOperand::createSysReg("", S, Imm);
}
}
return std::unique_ptr<RISCVOperand>();
};
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res))
return ParseStatus::Failure;
if (auto SysOpnd = SysRegFromConstantInt(Res, S)) {
Operands.push_back(std::move(SysOpnd));
return ParseStatus::Success;
}
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
const auto *SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
if (SysReg) {
if (SysReg->IsDeprecatedName) {
// Lookup the undeprecated name.
auto Range = RISCVSysReg::lookupSysRegByEncoding(SysReg->Encoding);
for (auto &Reg : Range) {
if (Reg.IsAltName || Reg.IsDeprecatedName)
continue;
Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
Reg.Name + "'");
}
}
// Accept a named Sys Reg if the required features are present.
const auto &FeatureBits = getSTI().getFeatureBits();
if (!SysReg->haveRequiredFeatures(FeatureBits)) {
const auto *Feature = llvm::find_if(RISCVFeatureKV, [&](auto Feature) {
return SysReg->FeaturesRequired[Feature.Value];
});
auto ErrorMsg = std::string("system register '") + SysReg->Name + "' ";
if (SysReg->IsRV32Only && FeatureBits[RISCV::Feature64Bit]) {
ErrorMsg += "is RV32 only";
if (Feature != std::end(RISCVFeatureKV))
ErrorMsg += " and ";
}
if (Feature != std::end(RISCVFeatureKV)) {
ErrorMsg +=
"requires '" + std::string(Feature->Key) + "' to be enabled";
}
return Error(S, ErrorMsg);
}
Operands.push_back(
RISCVOperand::createSysReg(Identifier, S, SysReg->Encoding));
return ParseStatus::Success;
}
// Accept a symbol name that evaluates to an absolute value.
MCSymbol *Sym = getContext().lookupSymbol(Identifier);
if (Sym && Sym->isVariable()) {
// Pass false for SetUsed, since redefining the value later does not
// affect this instruction.
if (auto SysOpnd = SysRegFromConstantInt(
Sym->getVariableValue(/*SetUsed=*/false), S)) {
Operands.push_back(std::move(SysOpnd));
return ParseStatus::Success;
}
}
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case AsmToken::Percent: {
// Discard operand with modifier.
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
}
}
return ParseStatus::NoMatch;
}
ParseStatus RISCVAsmParser::parseFPImm(OperandVector &Operands) {
SMLoc S = getLoc();
// Parse special floats (inf/nan/min) representation.
if (getTok().is(AsmToken::Identifier)) {
StringRef Identifier = getTok().getIdentifier();
if (Identifier.compare_insensitive("inf") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(30, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else if (Identifier.compare_insensitive("nan") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(31, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else if (Identifier.compare_insensitive("min") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(1, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else {
return TokError("invalid floating point literal");
}
Lex(); // Eat the token.
return ParseStatus::Success;
}
// Handle negation, as that still comes through as a separate token.
bool IsNegative = parseOptionalToken(AsmToken::Minus);
const AsmToken &Tok = getTok();
if (!Tok.is(AsmToken::Real))
return TokError("invalid floating point immediate");
// Parse FP representation.
APFloat RealVal(APFloat::IEEEdouble());
auto StatusOrErr =
RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
if (errorToBool(StatusOrErr.takeError()))
return TokError("invalid floating point representation");
if (IsNegative)
RealVal.changeSign();
Operands.push_back(RISCVOperand::createFPImm(
RealVal.bitcastToAPInt().getZExtValue(), S));
Lex(); // Eat the token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Dot:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String:
case AsmToken::Identifier:
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
break;
case AsmToken::Percent:
return parseOperandWithSpecifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseOperandWithSpecifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
if (parseToken(AsmToken::Percent, "expected '%' relocation specifier"))
return ParseStatus::Failure;
const MCExpr *Expr = nullptr;
bool Failed = parseExprWithSpecifier(Expr, E);
if (!Failed)
Operands.push_back(RISCVOperand::createImm(Expr, S, E, isRV64()));
return Failed;
}
bool RISCVAsmParser::parseExprWithSpecifier(const MCExpr *&Res, SMLoc &E) {
if (getLexer().getKind() != AsmToken::Identifier)
return Error(getLoc(), "expected '%' relocation specifier");
StringRef Identifier = getParser().getTok().getIdentifier();
auto Spec = RISCVMCExpr::getSpecifierForName(Identifier);
if (!Spec)
return Error(getLoc(), "invalid relocation specifier");
getParser().Lex(); // Eat the identifier
if (parseToken(AsmToken::LParen, "expected '('"))
return true;
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E))
return true;
Res = RISCVMCExpr::create(SubExpr, *Spec, getContext());
return false;
}
bool RISCVAsmParser::parseDataExpr(const MCExpr *&Res) {
SMLoc E;
if (parseOptionalToken(AsmToken::Percent))
return parseExprWithSpecifier(Res, E);
return getParser().parseExpression(Res);
}
ParseStatus RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
StringRef Identifier;
AsmToken Tok = getLexer().getTok();
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return ParseStatus::NoMatch;
}
Res = V;
} else
Res = MCSymbolRefExpr::create(Sym, getContext());
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
getLexer().Lex();
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
getLexer().Lex();
break;
}
const MCExpr *Expr;
if (getParser().parseExpression(Expr, E))
return ParseStatus::Failure;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
std::string Identifier(getTok().getIdentifier());
if (getLexer().peekTok().is(AsmToken::At)) {
Lex();
Lex();
StringRef PLT;
SMLoc Loc = getLoc();
if (getParser().parseIdentifier(PLT) || PLT != "plt")
return Error(Loc, "@ (except the deprecated/ignored @plt) is disallowed");
} else if (!getLexer().peekTok().is(AsmToken::EndOfStatement)) {
// Avoid parsing the register in `call rd, foo` as a call symbol.
return ParseStatus::NoMatch;
} else {
Lex();
}
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
RISCVMCExpr::Specifier Kind = RISCVMCExpr::VK_CALL_PLT;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, getContext());
Res = RISCVMCExpr::create(Res, Kind, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
if (Res->getKind() != MCExpr::ExprKind::SymbolRef)
return Error(S, "operand must be a valid jump target");
Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_CALL, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
// Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
// both being acceptable forms. When parsing `jal ra, foo` this function
// will be called for the `ra` register operand in an attempt to match the
// single-operand alias. parseJALOffset must fail for this case. It would
// seem logical to try parse the operand using parseImmediate and return
// NoMatch if the next token is a comma (meaning we must be parsing a jal in
// the second form rather than the first). We can't do this as there's no
// way of rewinding the lexer state. Instead, return NoMatch if this operand
// is an identifier and is followed by a comma.
if (getLexer().is(AsmToken::Identifier) &&
getLexer().peekTok().is(AsmToken::Comma))
return ParseStatus::NoMatch;
return parseImmediate(Operands);
}
bool RISCVAsmParser::parseVTypeToken(const AsmToken &Tok, VTypeState &State,
unsigned &Sew, unsigned &Lmul,
bool &Fractional, bool &TailAgnostic,
bool &MaskAgnostic) {
if (Tok.isNot(AsmToken::Identifier))
return true;
StringRef Identifier = Tok.getIdentifier();
switch (State) {
case VTypeState_SEW:
if (!Identifier.consume_front("e"))
break;
if (Identifier.getAsInteger(10, Sew))
break;
if (!RISCVVType::isValidSEW(Sew))
break;
State = VTypeState_LMUL;
return false;
case VTypeState_LMUL: {
if (!Identifier.consume_front("m"))
break;
Fractional = Identifier.consume_front("f");
if (Identifier.getAsInteger(10, Lmul))
break;
if (!RISCVVType::isValidLMUL(Lmul, Fractional))
break;
if (Fractional) {
unsigned ELEN = STI->hasFeature(RISCV::FeatureStdExtZve64x) ? 64 : 32;
unsigned MinLMUL = ELEN / 8;
if (Lmul > MinLMUL)
Warning(Tok.getLoc(),
"use of vtype encodings with LMUL < SEWMIN/ELEN == mf" +
Twine(MinLMUL) + " is reserved");
}
State = VTypeState_TailPolicy;
return false;
}
case VTypeState_TailPolicy:
if (Identifier == "ta")
TailAgnostic = true;
else if (Identifier == "tu")
TailAgnostic = false;
else
break;
State = VTypeState_MaskPolicy;
return false;
case VTypeState_MaskPolicy:
if (Identifier == "ma")
MaskAgnostic = true;
else if (Identifier == "mu")
MaskAgnostic = false;
else
break;
State = VTypeState_Done;
return false;
case VTypeState_Done:
// Extra token?
break;
}
return true;
}
ParseStatus RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
SMLoc S = getLoc();
unsigned Sew = 0;
unsigned Lmul = 0;
bool Fractional = false;
bool TailAgnostic = false;
bool MaskAgnostic = false;
VTypeState State = VTypeState_SEW;
SMLoc SEWLoc = S;
if (parseVTypeToken(getTok(), State, Sew, Lmul, Fractional, TailAgnostic,
MaskAgnostic))
return ParseStatus::NoMatch;
getLexer().Lex();
while (parseOptionalToken(AsmToken::Comma)) {
if (parseVTypeToken(getTok(), State, Sew, Lmul, Fractional, TailAgnostic,
MaskAgnostic))
break;
getLexer().Lex();
}
if (getLexer().is(AsmToken::EndOfStatement) && State == VTypeState_Done) {
RISCVVType::VLMUL VLMUL = RISCVVType::encodeLMUL(Lmul, Fractional);
if (Fractional) {
unsigned ELEN = STI->hasFeature(RISCV::FeatureStdExtZve64x) ? 64 : 32;
unsigned MaxSEW = ELEN / Lmul;
// If MaxSEW < 8, we should have printed warning about reserved LMUL.
if (MaxSEW >= 8 && Sew > MaxSEW)
Warning(SEWLoc,
"use of vtype encodings with SEW > " + Twine(MaxSEW) +
" and LMUL == mf" + Twine(Lmul) +
" may not be compatible with all RVV implementations");
}
unsigned VTypeI =
RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
Operands.push_back(RISCVOperand::createVType(VTypeI, S));
return ParseStatus::Success;
}
return generateVTypeError(S);
}
bool RISCVAsmParser::generateVTypeError(SMLoc ErrorLoc) {
return Error(
ErrorLoc,
"operand must be "
"e[8|16|32|64],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
}
ParseStatus RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
if (!Name.consume_back(".t"))
return Error(getLoc(), "expected '.t' suffix");
MCRegister Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
if (Reg != RISCV::V0)
return ParseStatus::NoMatch;
SMLoc S = getLoc();
SMLoc E = getTok().getEndLoc();
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(Reg, S, E));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseGPRAsFPR64(OperandVector &Operands) {
if (!isRV64() || getSTI().hasFeature(RISCV::FeatureStdExtF))
return ParseStatus::NoMatch;
return parseGPRAsFPR(Operands);
}
ParseStatus RISCVAsmParser::parseGPRAsFPR(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
SMLoc S = getLoc();
SMLoc E = getTok().getEndLoc();
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(
Reg, S, E, !getSTI().hasFeature(RISCV::FeatureStdExtF)));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseGPRPairAsFPR64(OperandVector &Operands) {
if (isRV64() || getSTI().hasFeature(RISCV::FeatureStdExtF))
return ParseStatus::NoMatch;
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
if (!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg))
return ParseStatus::NoMatch;
if ((Reg - RISCV::X0) & 1) {
// Only report the even register error if we have at least Zfinx so we know
// some FP is enabled. We already checked F earlier.
if (getSTI().hasFeature(RISCV::FeatureStdExtZfinx))
return TokError("double precision floating point operands must use even "
"numbered X register");
return ParseStatus::NoMatch;
}
SMLoc S = getLoc();
SMLoc E = getTok().getEndLoc();
getLexer().Lex();
const MCRegisterInfo *RI = getContext().getRegisterInfo();
MCRegister Pair = RI->getMatchingSuperReg(
Reg, RISCV::sub_gpr_even,
&RISCVMCRegisterClasses[RISCV::GPRPairRegClassID]);
Operands.push_back(RISCVOperand::createReg(Pair, S, E, /*isGPRAsFPR=*/true));
return ParseStatus::Success;
}
template <bool IsRV64>
ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands) {
return parseGPRPair(Operands, IsRV64);
}
ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands,
bool IsRV64Inst) {
// If this is not an RV64 GPRPair instruction, don't parse as a GPRPair on
// RV64 as it will prevent matching the RV64 version of the same instruction
// that doesn't use a GPRPair.
// If this is an RV64 GPRPair instruction, there is no RV32 version so we can
// still parse as a pair.
if (!IsRV64Inst && isRV64())
return ParseStatus::NoMatch;
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
if (!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg))
return ParseStatus::NoMatch;
if ((Reg - RISCV::X0) & 1)
return TokError("register must be even");
SMLoc S = getLoc();
SMLoc E = getTok().getEndLoc();
getLexer().Lex();
const MCRegisterInfo *RI = getContext().getRegisterInfo();
MCRegister Pair = RI->getMatchingSuperReg(
Reg, RISCV::sub_gpr_even,
&RISCVMCRegisterClasses[RISCV::GPRPairRegClassID]);
Operands.push_back(RISCVOperand::createReg(Pair, S, E));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseFRMArg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return TokError(
"operand must be a valid floating point rounding mode mnemonic");
StringRef Str = getLexer().getTok().getIdentifier();
RISCVFPRndMode::RoundingMode FRM = RISCVFPRndMode::stringToRoundingMode(Str);
if (FRM == RISCVFPRndMode::Invalid)
return TokError(
"operand must be a valid floating point rounding mode mnemonic");
Operands.push_back(RISCVOperand::createFRMArg(FRM, getLoc()));
Lex(); // Eat identifier token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseFenceArg(OperandVector &Operands) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Integer)) {
if (Tok.getIntVal() != 0)
goto ParseFail;
Operands.push_back(RISCVOperand::createFenceArg(0, getLoc()));
Lex();
return ParseStatus::Success;
}
if (Tok.is(AsmToken::Identifier)) {
StringRef Str = Tok.getIdentifier();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
unsigned Imm = 0;
bool Valid = true;
char Prev = '\0';
for (char c : Str) {
switch (c) {
default:
Valid = false;
break;
case 'i':
Imm |= RISCVFenceField::I;
break;
case 'o':
Imm |= RISCVFenceField::O;
break;
case 'r':
Imm |= RISCVFenceField::R;
break;
case 'w':
Imm |= RISCVFenceField::W;
break;
}
if (c <= Prev) {
Valid = false;
break;
}
Prev = c;
}
if (!Valid)
goto ParseFail;
Operands.push_back(RISCVOperand::createFenceArg(Imm, getLoc()));
Lex();
return ParseStatus::Success;
}
ParseFail:
return TokError("operand must be formed of letters selected in-order from "
"'iorw' or be 0");
}
ParseStatus RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (parseToken(AsmToken::LParen, "expected '('"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createToken("(", getLoc()));
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "expected register");
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createToken(")", getLoc()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseZeroOffsetMemOp(OperandVector &Operands) {
// Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
// as one of their register operands, such as `(a0)`. This just denotes that
// the register (in this case `a0`) contains a memory address.
//
// Normally, we would be able to parse these by putting the parens into the
// instruction string. However, GNU as also accepts a zero-offset memory
// operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
// with parseImmediate followed by parseMemOpBaseReg, but these instructions
// do not accept an immediate operand, and we do not want to add a "dummy"
// operand that is silently dropped.
//
// Instead, we use this custom parser. This will: allow (and discard) an
// offset if it is zero; require (and discard) parentheses; and add only the
// parsed register operand to `Operands`.
//
// These operands are printed with RISCVInstPrinter::printZeroOffsetMemOp,
// which will only print the register surrounded by parentheses (which GNU as
// also uses as its canonical representation for these operands).
std::unique_ptr<RISCVOperand> OptionalImmOp;
if (getLexer().isNot(AsmToken::LParen)) {
// Parse an Integer token. We do not accept arbitrary constant expressions
// in the offset field (because they may include parens, which complicates
// parsing a lot).
int64_t ImmVal;
SMLoc ImmStart = getLoc();
if (getParser().parseIntToken(ImmVal,
"expected '(' or optional integer offset"))
return ParseStatus::Failure;
// Create a RISCVOperand for checking later (so the error messages are
// nicer), but we don't add it to Operands.
SMLoc ImmEnd = getLoc();
OptionalImmOp =
RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
ImmStart, ImmEnd, isRV64());
}
if (parseToken(AsmToken::LParen,
OptionalImmOp ? "expected '(' after optional integer offset"
: "expected '(' or optional integer offset"))
return ParseStatus::Failure;
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "expected register");
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
// Deferred Handling of non-zero offsets. This makes the error messages nicer.
if (OptionalImmOp && !OptionalImmOp->isImmZero())
return Error(
OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseRegReg(OperandVector &Operands) {
// RR : a2(a1)
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
SMLoc S = getLoc();
StringRef OffsetRegName = getLexer().getTok().getIdentifier();
MCRegister OffsetReg = matchRegisterNameHelper(OffsetRegName);
if (!OffsetReg ||
!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(OffsetReg))
return Error(getLoc(), "expected GPR register");
getLexer().Lex();
if (parseToken(AsmToken::LParen, "expected '(' or invalid operand"))
return ParseStatus::Failure;
if (getLexer().getKind() != AsmToken::Identifier)
return Error(getLoc(), "expected GPR register");
StringRef BaseRegName = getLexer().getTok().getIdentifier();
MCRegister BaseReg = matchRegisterNameHelper(BaseRegName);
if (!BaseReg ||
!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(BaseReg))
return Error(getLoc(), "expected GPR register");
getLexer().Lex();
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createRegReg(BaseReg, OffsetReg, S));
return ParseStatus::Success;
}
// RegList: {ra [, s0[-sN]]}
// XRegList: {x1 [, x8[-x9][, x18[-xN]]]}
// When MustIncludeS0 = true (not the default) (used for `qc.cm.pushfp`) which
// must include `fp`/`s0` in the list:
// RegList: {ra, s0[-sN]}
// XRegList: {x1, x8[-x9][, x18[-xN]]}
ParseStatus RISCVAsmParser::parseRegList(OperandVector &Operands,
bool MustIncludeS0) {
if (getTok().isNot(AsmToken::LCurly))
return ParseStatus::NoMatch;
SMLoc S = getLoc();
Lex();
bool UsesXRegs;
MCRegister RegEnd;
do {
if (getTok().isNot(AsmToken::Identifier))
return Error(getLoc(), "invalid register");
StringRef RegName = getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(RegName);
if (!Reg)
return Error(getLoc(), "invalid register");
if (!RegEnd) {
UsesXRegs = RegName[0] == 'x';
if (Reg != RISCV::X1)
return Error(getLoc(), "register list must start from 'ra' or 'x1'");
} else if (RegEnd == RISCV::X1) {
if (Reg != RISCV::X8 || (UsesXRegs != (RegName[0] == 'x')))
return Error(getLoc(), Twine("register must be '") +
(UsesXRegs ? "x8" : "s0") + "'");
} else if (RegEnd == RISCV::X9 && UsesXRegs) {
if (Reg != RISCV::X18 || (RegName[0] != 'x'))
return Error(getLoc(), "register must be 'x18'");
} else {
return Error(getLoc(), "too many register ranges");
}
RegEnd = Reg;
Lex();
SMLoc MinusLoc = getLoc();
if (parseOptionalToken(AsmToken::Minus)) {
if (RegEnd == RISCV::X1)
return Error(MinusLoc, Twine("register '") + (UsesXRegs ? "x1" : "ra") +
"' cannot start a multiple register range");
if (getTok().isNot(AsmToken::Identifier))
return Error(getLoc(), "invalid register");
StringRef RegName = getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(RegName);
if (!Reg)
return Error(getLoc(), "invalid register");
if (RegEnd == RISCV::X8) {
if ((Reg != RISCV::X9 &&
(UsesXRegs || Reg < RISCV::X18 || Reg > RISCV::X27)) ||
(UsesXRegs != (RegName[0] == 'x'))) {
if (UsesXRegs)
return Error(getLoc(), "register must be 'x9'");
return Error(getLoc(), "register must be in the range 's1' to 's11'");
}
} else if (RegEnd == RISCV::X18) {
if (Reg < RISCV::X19 || Reg > RISCV::X27 || (RegName[0] != 'x'))
return Error(getLoc(),
"register must be in the range 'x19' to 'x27'");
} else
llvm_unreachable("unexpected register");
RegEnd = Reg;
Lex();
}
} while (parseOptionalToken(AsmToken::Comma));
if (parseToken(AsmToken::RCurly, "expected ',' or '}'"))
return ParseStatus::Failure;
if (RegEnd == RISCV::X26)
return Error(S, "invalid register list, '{ra, s0-s10}' or '{x1, x8-x9, "
"x18-x26}' is not supported");
auto Encode = RISCVZC::encodeRegList(RegEnd, isRVE());
assert(Encode != RISCVZC::INVALID_RLIST);
if (MustIncludeS0 && Encode == RISCVZC::RA)
return Error(S, "register list must include 's0' or 'x8'");
Operands.push_back(RISCVOperand::createRegList(Encode, S));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseZcmpStackAdj(OperandVector &Operands,
bool ExpectNegative) {
SMLoc S = getLoc();
bool Negative = parseOptionalToken(AsmToken::Minus);
if (getTok().isNot(AsmToken::Integer))
return ParseStatus::NoMatch;
int64_t StackAdjustment = getTok().getIntVal();
auto *RegListOp = static_cast<RISCVOperand *>(Operands.back().get());
if (!RegListOp->isRegList())
return ParseStatus::NoMatch;
unsigned RlistEncode = RegListOp->RegList.Encoding;
assert(RlistEncode != RISCVZC::INVALID_RLIST);
unsigned StackAdjBase = RISCVZC::getStackAdjBase(RlistEncode, isRV64());
if (Negative != ExpectNegative || StackAdjustment % 16 != 0 ||
StackAdjustment < StackAdjBase || (StackAdjustment - StackAdjBase) > 48) {
int64_t Lower = StackAdjBase;
int64_t Upper = StackAdjBase + 48;
if (ExpectNegative) {
Lower = -Lower;
Upper = -Upper;
std::swap(Lower, Upper);
}
return generateImmOutOfRangeError(S, Lower, Upper,
"stack adjustment for register list must "
"be a multiple of 16 bytes in the range");
}
unsigned StackAdj = (StackAdjustment - StackAdjBase);
Operands.push_back(RISCVOperand::createStackAdj(StackAdj, S));
Lex();
return ParseStatus::Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
ParseStatus Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result.isSuccess())
return false;
if (Result.isFailure())
return true;
// Attempt to parse token as a register.
if (parseRegister(Operands, true).isSuccess())
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands).isSuccess()) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return !parseMemOpBaseReg(Operands).isSuccess();
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::parseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Ensure that if the instruction occurs when relaxation is enabled,
// relocations are forced for the file. Ideally this would be done when there
// is enough information to reliably determine if the instruction itself may
// cause relaxations. Unfortunately instruction processing stage occurs in the
// same pass as relocation emission, so it's too late to set a 'sticky bit'
// for the entire file.
if (getSTI().hasFeature(RISCV::FeatureRelax)) {
auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
if (Assembler != nullptr) {
RISCVAsmBackend &MAB =
static_cast<RISCVAsmBackend &>(Assembler->getBackend());
MAB.setForceRelocs();
}
}
// Apply mnemonic aliases because the destination mnemonic may have require
// custom operand parsing. The generic tblgen'erated code does this later, at
// the start of MatchInstructionImpl(), but that's too late for custom
// operand parsing.
const FeatureBitset &AvailableFeatures = getAvailableFeatures();
applyMnemonicAliases(Name, AvailableFeatures, 0);
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement)) {
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
// Parse first operand
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands
while (parseOptionalToken(AsmToken::Comma)) {
// Parse next operand
if (parseOperand(Operands, Name))
return true;
}
if (getParser().parseEOL("unexpected token")) {
getParser().eatToEndOfStatement();
return true;
}
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::Specifier &Kind) {
Kind = RISCVMCExpr::VK_None;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getSpecifier();
Expr = RE->getSubExpr();
}
MCValue Res;
if (Expr->evaluateAsRelocatable(Res, nullptr))
return Res.getSpecifier() == RISCVMCExpr::VK_None;
return false;
}
bool RISCVAsmParser::isSymbolDiff(const MCExpr *Expr) {
MCValue Res;
if (Expr->evaluateAsRelocatable(Res, nullptr)) {
return Res.getSpecifier() == RISCVMCExpr::VK_None && Res.getAddSym() &&
Res.getSubSym();
}
return false;
}
ParseStatus RISCVAsmParser::parseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
if (IDVal == ".attribute")
return parseDirectiveAttribute();
if (IDVal == ".insn")
return parseDirectiveInsn(DirectiveID.getLoc());
if (IDVal == ".variant_cc")
return parseDirectiveVariantCC();
return ParseStatus::NoMatch;
}
bool RISCVAsmParser::resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
bool FromOptionDirective) {
for (auto &Feature : RISCVFeatureKV)
if (llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
clearFeatureBits(Feature.Value, Feature.Key);
auto ParseResult = llvm::RISCVISAInfo::parseArchString(
Arch, /*EnableExperimentalExtension=*/true,
/*ExperimentalExtensionVersionCheck=*/true);
if (!ParseResult) {
std::string Buffer;
raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << "invalid arch name '" << Arch << "', "
<< ErrMsg.getMessage();
});
return Error(Loc, OutputErrMsg.str());
}
auto &ISAInfo = *ParseResult;
for (auto &Feature : RISCVFeatureKV)
if (ISAInfo->hasExtension(Feature.Key))
setFeatureBits(Feature.Value, Feature.Key);
if (FromOptionDirective) {
if (ISAInfo->getXLen() == 32 && isRV64())
return Error(Loc, "bad arch string switching from rv64 to rv32");
else if (ISAInfo->getXLen() == 64 && !isRV64())
return Error(Loc, "bad arch string switching from rv32 to rv64");
}
if (ISAInfo->getXLen() == 32)
clearFeatureBits(RISCV::Feature64Bit, "64bit");
else if (ISAInfo->getXLen() == 64)
setFeatureBits(RISCV::Feature64Bit, "64bit");
else
return Error(Loc, "bad arch string " + Arch);
Result = ISAInfo->toString();
return false;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (parseToken(AsmToken::Identifier, "expected identifier"))
return true;
StringRef Option = Tok.getIdentifier();
if (Option == "push") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPush();
pushFeatureBits();
return false;
}
if (Option == "pop") {
SMLoc StartLoc = Parser.getTok().getLoc();
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPop();
if (popFeatureBits())
return Error(StartLoc, ".option pop with no .option push");
return false;
}
if (Option == "arch") {
SmallVector<RISCVOptionArchArg> Args;
do {
if (Parser.parseComma())
return true;
RISCVOptionArchArgType Type;
if (parseOptionalToken(AsmToken::Plus))
Type = RISCVOptionArchArgType::Plus;
else if (parseOptionalToken(AsmToken::Minus))
Type = RISCVOptionArchArgType::Minus;
else if (!Args.empty())
return Error(Parser.getTok().getLoc(),
"unexpected token, expected + or -");
else
Type = RISCVOptionArchArgType::Full;
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Arch = Parser.getTok().getString();
SMLoc Loc = Parser.getTok().getLoc();
Parser.Lex();
if (Type == RISCVOptionArchArgType::Full) {
std::string Result;
if (resetToArch(Arch, Loc, Result, true))
return true;
Args.emplace_back(Type, Result);
break;
}
if (isDigit(Arch.back()))
return Error(
Loc, "extension version number parsing not currently implemented");
std::string Feature = RISCVISAInfo::getTargetFeatureForExtension(Arch);
if (!enableExperimentalExtension() &&
StringRef(Feature).starts_with("experimental-"))
return Error(Loc, "unexpected experimental extensions");
auto Ext = llvm::lower_bound(RISCVFeatureKV, Feature);
if (Ext == std::end(RISCVFeatureKV) || StringRef(Ext->Key) != Feature)
return Error(Loc, "unknown extension feature");
Args.emplace_back(Type, Arch.str());
if (Type == RISCVOptionArchArgType::Plus) {
FeatureBitset OldFeatureBits = STI->getFeatureBits();
setFeatureBits(Ext->Value, Ext->Key);
auto ParseResult = RISCVFeatures::parseFeatureBits(isRV64(), STI->getFeatureBits());
if (!ParseResult) {
copySTI().setFeatureBits(OldFeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(OldFeatureBits));
std::string Buffer;
raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
return Error(Loc, OutputErrMsg.str());
}
} else {
assert(Type == RISCVOptionArchArgType::Minus);
// It is invalid to disable an extension that there are other enabled
// extensions depend on it.
// TODO: Make use of RISCVISAInfo to handle this
for (auto &Feature : RISCVFeatureKV) {
if (getSTI().hasFeature(Feature.Value) &&
Feature.Implies.test(Ext->Value))
return Error(Loc, Twine("can't disable ") + Ext->Key +
" extension; " + Feature.Key +
" extension requires " + Ext->Key +
" extension");
}
clearFeatureBits(Ext->Value, Ext->Key);
}
} while (Parser.getTok().isNot(AsmToken::EndOfStatement));
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionArch(Args);
return false;
}
if (Option == "exact") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionExact();
setFeatureBits(RISCV::FeatureExactAssembly, "exact-asm");
clearFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "noexact") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoExact();
clearFeatureBits(RISCV::FeatureExactAssembly, "exact-asm");
setFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "rvc") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionRVC();
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoRVC();
clearFeatureBits(RISCV::FeatureStdExtC, "c");
clearFeatureBits(RISCV::FeatureStdExtZca, "zca");
return false;
}
if (Option == "pic") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPIC();
ParserOptions.IsPicEnabled = true;
return false;
}
if (Option == "nopic") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoPIC();
ParserOptions.IsPicEnabled = false;
return false;
}
if (Option == "relax") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionRelax();
setFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "norelax") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoRelax();
clearFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'push', 'pop', "
"'rvc', 'norvc', 'arch', 'relax', 'norelax', "
"'exact', or 'noexact'");
Parser.eatToEndOfStatement();
return false;
}
/// parseDirectiveAttribute
/// ::= .attribute expression ',' ( expression | "string" )
/// ::= .attribute identifier ',' ( expression | "string" )
bool RISCVAsmParser::parseDirectiveAttribute() {
MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
if (Parser.getTok().is(AsmToken::Identifier)) {
StringRef Name = Parser.getTok().getIdentifier();
std::optional<unsigned> Ret =
ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
if (!Ret)
return Error(TagLoc, "attribute name not recognised: " + Name);
Tag = *Ret;
Parser.Lex();
} else {
const MCExpr *AttrExpr;
TagLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(AttrExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
if (check(!CE, TagLoc, "expected numeric constant"))
return true;
Tag = CE->getValue();
}
if (Parser.parseComma())
return true;
StringRef StringValue;
int64_t IntegerValue = 0;
bool IsIntegerValue = true;
// RISC-V attributes have a string value if the tag number is odd
// and an integer value if the tag number is even.
if (Tag % 2)
IsIntegerValue = false;
SMLoc ValueExprLoc = Parser.getTok().getLoc();
if (IsIntegerValue) {
const MCExpr *ValueExpr;
if (Parser.parseExpression(ValueExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
if (!CE)
return Error(ValueExprLoc, "expected numeric constant");
IntegerValue = CE->getValue();
} else {
if (Parser.getTok().isNot(AsmToken::String))
return Error(Parser.getTok().getLoc(), "expected string constant");
StringValue = Parser.getTok().getStringContents();
Parser.Lex();
}
if (Parser.parseEOL())
return true;
if (IsIntegerValue)
getTargetStreamer().emitAttribute(Tag, IntegerValue);
else if (Tag != RISCVAttrs::ARCH)
getTargetStreamer().emitTextAttribute(Tag, StringValue);
else {
std::string Result;
if (resetToArch(StringValue, ValueExprLoc, Result, false))
return true;
// Then emit the arch string.
getTargetStreamer().emitTextAttribute(Tag, Result);
}
return false;
}
bool isValidInsnFormat(StringRef Format, const MCSubtargetInfo &STI) {
return StringSwitch<bool>(Format)
.Cases("r", "r4", "i", "b", "sb", "u", "j", "uj", "s", true)
.Cases("cr", "ci", "ciw", "css", "cl", "cs", "ca", "cb", "cj",
STI.hasFeature(RISCV::FeatureStdExtZca))
.Cases("qc.eai", "qc.ei", "qc.eb", "qc.ej", "qc.es",
!STI.hasFeature(RISCV::Feature64Bit))
.Default(false);
}
/// parseDirectiveInsn
/// ::= .insn [ format encoding, (operands (, operands)*) ]
/// ::= .insn [ length, value ]
/// ::= .insn [ value ]
bool RISCVAsmParser::parseDirectiveInsn(SMLoc L) {
MCAsmParser &Parser = getParser();
bool AllowC = getSTI().hasFeature(RISCV::FeatureStdExtC) ||
getSTI().hasFeature(RISCV::FeatureStdExtZca);
// Expect instruction format as identifier.
StringRef Format;
SMLoc ErrorLoc = Parser.getTok().getLoc();
if (Parser.parseIdentifier(Format)) {
// Try parsing .insn [ length , ] value
std::optional<int64_t> Length;
int64_t Value = 0;
if (Parser.parseAbsoluteExpression(Value))
return true;
if (Parser.parseOptionalToken(AsmToken::Comma)) {
Length = Value;
if (Parser.parseAbsoluteExpression(Value))
return true;
if (*Length == 0 || (*Length % 2) != 0)
return Error(ErrorLoc,
"instruction lengths must be a non-zero multiple of two");
// TODO: Support Instructions > 64 bits.
if (*Length > 8)
return Error(ErrorLoc,
"instruction lengths over 64 bits are not supported");
}
// We only derive a length from the encoding for 16- and 32-bit
// instructions, as the encodings for longer instructions are not frozen in
// the spec.
int64_t EncodingDerivedLength = ((Value & 0b11) == 0b11) ? 4 : 2;
if (Length) {
// Only check the length against the encoding if the length is present and
// could match
if ((*Length <= 4) && (*Length != EncodingDerivedLength))
return Error(ErrorLoc,
"instruction length does not match the encoding");
if (!isUIntN(*Length * 8, Value))
return Error(ErrorLoc, "encoding value does not fit into instruction");
} else {
if (!isUIntN(EncodingDerivedLength * 8, Value))
return Error(ErrorLoc, "encoding value does not fit into instruction");
}
if (!AllowC && (EncodingDerivedLength == 2))
return Error(ErrorLoc, "compressed instructions are not allowed");
if (getParser().parseEOL("invalid operand for instruction")) {
getParser().eatToEndOfStatement();
return true;
}
unsigned Opcode;
if (Length) {
switch (*Length) {
case 2:
Opcode = RISCV::Insn16;
break;
case 4:
Opcode = RISCV::Insn32;
break;
case 6:
Opcode = RISCV::Insn48;
break;
case 8:
Opcode = RISCV::Insn64;
break;
default:
llvm_unreachable("Error should have already been emitted");
}
} else
Opcode = (EncodingDerivedLength == 2) ? RISCV::Insn16 : RISCV::Insn32;
emitToStreamer(getStreamer(), MCInstBuilder(Opcode).addImm(Value));
return false;
}
if (!isValidInsnFormat(Format, getSTI()))
return Error(ErrorLoc, "invalid instruction format");
std::string FormatName = (".insn_" + Format).str();
ParseInstructionInfo Info;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
if (parseInstruction(Info, FormatName, L, Operands))
return true;
unsigned Opcode;
uint64_t ErrorInfo;
return matchAndEmitInstruction(L, Opcode, Operands, Parser.getStreamer(),
ErrorInfo,
/*MatchingInlineAsm=*/false);
}
/// parseDirectiveVariantCC
/// ::= .variant_cc symbol
bool RISCVAsmParser::parseDirectiveVariantCC() {
StringRef Name;
if (getParser().parseIdentifier(Name))
return TokError("expected symbol name");
if (parseEOL())
return true;
getTargetStreamer().emitDirectiveVariantCC(
*getContext().getOrCreateSymbol(Name));
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = false;
const MCSubtargetInfo &STI = getSTI();
if (!STI.hasFeature(RISCV::FeatureExactAssembly))
Res = RISCVRVC::compress(CInst, Inst, STI);
if (Res)
++RISCVNumInstrsCompressed;
S.emitInstruction((Res ? CInst : Inst), STI);
}
void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
MCStreamer &Out) {
SmallVector<MCInst, 8> Seq;
RISCVMatInt::generateMCInstSeq(Value, getSTI(), DestReg, Seq);
for (MCInst &Inst : Seq) {
emitToStreamer(Out, Inst);
}
}
void RISCVAsmParser::emitAuipcInstPair(MCRegister DestReg, MCRegister TmpReg,
const MCExpr *Symbol,
RISCVMCExpr::Specifier VKHi,
unsigned SecondOpcode, SMLoc IDLoc,
MCStreamer &Out) {
// A pair of instructions for PC-relative addressing; expands to
// TmpLabel: AUIPC TmpReg, VKHi(symbol)
// OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
MCContext &Ctx = getContext();
MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
Out.emitLabel(TmpLabel);
const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
emitToStreamer(Out,
MCInstBuilder(RISCV::AUIPC).addReg(TmpReg).addExpr(SymbolHi));
const MCExpr *RefToLinkTmpLabel = RISCVMCExpr::create(
MCSymbolRefExpr::create(TmpLabel, Ctx), RISCVMCExpr::VK_PCREL_LO, Ctx);
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addReg(DestReg)
.addReg(TmpReg)
.addExpr(RefToLinkTmpLabel));
}
void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load local address pseudo-instruction "lla" is used in PC-relative
// addressing of local symbols:
// lla rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCRegister DestReg = Inst.getOperand(0).getReg();
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_PCREL_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load global address pseudo-instruction "lga" is used in GOT-indirect
// addressing of global symbols:
// lga rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCRegister DestReg = Inst.getOperand(0).getReg();
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load address pseudo-instruction "la" is used in PC-relative and
// GOT-indirect addressing of global symbols:
// la rdest, symbol
// is an alias for either (for non-PIC)
// lla rdest, symbol
// or (for PIC)
// lga rdest, symbol
if (ParserOptions.IsPicEnabled)
emitLoadGlobalAddress(Inst, IDLoc, Out);
else
emitLoadLocalAddress(Inst, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS IE address pseudo-instruction "la.tls.ie" is used in
// initial-exec TLS model addressing of global symbols:
// la.tls.ie rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCRegister DestReg = Inst.getOperand(0).getReg();
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_TLS_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS GD address pseudo-instruction "la.tls.gd" is used in
// global-dynamic TLS model addressing of global symbols:
// la.tls.gd rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCRegister DestReg = Inst.getOperand(0).getReg();
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_TLS_GD_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
SMLoc IDLoc, MCStreamer &Out,
bool HasTmpReg) {
// The load/store pseudo-instruction does a pc-relative load with
// a symbol.
//
// The expansion looks like this
//
// TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
// [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
unsigned DestRegOpIdx = HasTmpReg ? 1 : 0;
MCRegister DestReg = Inst.getOperand(DestRegOpIdx).getReg();
unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
MCRegister TmpReg = Inst.getOperand(0).getReg();
// If TmpReg is a GPR pair, get the even register.
if (RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(TmpReg)) {
const MCRegisterInfo *RI = getContext().getRegisterInfo();
TmpReg = RI->getSubReg(TmpReg, RISCV::sub_gpr_even);
}
const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_PCREL_HI, Opcode,
IDLoc, Out);
}
void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
int64_t Width, SMLoc IDLoc,
MCStreamer &Out) {
// The sign/zero extend pseudo-instruction does two shifts, with the shift
// amounts dependent on the XLEN.
//
// The expansion looks like this
//
// SLLI rd, rs, XLEN - Width
// SR[A|R]I rd, rd, XLEN - Width
const MCOperand &DestReg = Inst.getOperand(0);
const MCOperand &SourceReg = Inst.getOperand(1);
unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
assert(ShAmt > 0 && "Shift amount must be non-zero.");
emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
.addOperand(DestReg)
.addOperand(SourceReg)
.addImm(ShAmt));
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(DestReg)
.addImm(ShAmt));
}
void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out) {
if (Inst.getNumOperands() == 3) {
// unmasked va >= x
//
// pseudoinstruction: vmsge{u}.vx vd, va, x
// expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addReg(MCRegister())
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 4) {
// masked va >= x, vd != v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
// expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
"The destination register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addReg(RISCV::V0)
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 5 &&
Inst.getOperand(0).getReg() == RISCV::V0) {
// masked va >= x, vd == v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
// expansion: vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt
assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
"The destination register should be V0.");
assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
"The temporary vector register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.addReg(MCRegister())
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 5) {
// masked va >= x, any vd
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
// expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, v0, vt;
// vmandn.mm vd, vd, v0; vmor.mm vd, vt, vd
assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
"The temporary vector register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.addReg(MCRegister())
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(1))
.addReg(RISCV::V0)
.addOperand(Inst.getOperand(1))
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addReg(RISCV::V0)
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(0))
.setLoc(IDLoc));
}
}
bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
if (Inst.getOperand(2).getReg() != RISCV::X4) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
"%tprel_add specifier");
}
return false;
}
bool RISCVAsmParser::checkPseudoTLSDESCCall(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoTLSDESCCall && "Invalid instruction");
assert(Inst.getOperand(0).isReg() && "Unexpected operand kind");
if (Inst.getOperand(0).getReg() != RISCV::X5) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the output operand must be t0/x5 when using "
"%tlsdesc_call specifier");
}
return false;
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
return RISCVOperand::createReg(MCRegister(), llvm::SMLoc(), llvm::SMLoc());
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgOp() const {
return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::DYN,
llvm::SMLoc());
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgLegacyOp() const {
return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::RNE,
llvm::SMLoc());
}
bool RISCVAsmParser::validateInstruction(MCInst &Inst,
OperandVector &Operands) {
unsigned Opcode = Inst.getOpcode();
if (Opcode == RISCV::PseudoVMSGEU_VX_M_T ||
Opcode == RISCV::PseudoVMSGE_VX_M_T) {
MCRegister DestReg = Inst.getOperand(0).getReg();
MCRegister TempReg = Inst.getOperand(1).getReg();
if (DestReg == TempReg) {
SMLoc Loc = Operands.back()->getStartLoc();
return Error(Loc, "the temporary vector register cannot be the same as "
"the destination register");
}
}
if (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_LWUD ||
Opcode == RISCV::TH_LWD) {
MCRegister Rd1 = Inst.getOperand(0).getReg();
MCRegister Rd2 = Inst.getOperand(1).getReg();
MCRegister Rs1 = Inst.getOperand(2).getReg();
// The encoding with rd1 == rd2 == rs1 is reserved for XTHead load pair.
if (Rs1 == Rd1 || Rs1 == Rd2 || Rd1 == Rd2) {
SMLoc Loc = Operands[1]->getStartLoc();
return Error(Loc, "rs1, rd1, and rd2 cannot overlap");
}
}
if (Opcode == RISCV::CM_MVSA01 || Opcode == RISCV::QC_CM_MVSA01) {
MCRegister Rd1 = Inst.getOperand(0).getReg();
MCRegister Rd2 = Inst.getOperand(1).getReg();
if (Rd1 == Rd2) {
SMLoc Loc = Operands[1]->getStartLoc();
return Error(Loc, "rs1 and rs2 must be different");
}
}
const MCInstrDesc &MCID = MII.get(Opcode);
if (!(MCID.TSFlags & RISCVII::ConstraintMask))
return false;
if (Opcode == RISCV::VC_V_XVW || Opcode == RISCV::VC_V_IVW ||
Opcode == RISCV::VC_V_FVW || Opcode == RISCV::VC_V_VVW) {
// Operands Opcode, Dst, uimm, Dst, Rs2, Rs1 for VC_V_XVW.
MCRegister VCIXDst = Inst.getOperand(0).getReg();
SMLoc VCIXDstLoc = Operands[2]->getStartLoc();
if (MCID.TSFlags & RISCVII::VS1Constraint) {
MCRegister VCIXRs1 = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
if (VCIXDst == VCIXRs1)
return Error(VCIXDstLoc, "the destination vector register group cannot"
" overlap the source vector register group");
}
if (MCID.TSFlags & RISCVII::VS2Constraint) {
MCRegister VCIXRs2 = Inst.getOperand(Inst.getNumOperands() - 2).getReg();
if (VCIXDst == VCIXRs2)
return Error(VCIXDstLoc, "the destination vector register group cannot"
" overlap the source vector register group");
}
return false;
}
MCRegister DestReg = Inst.getOperand(0).getReg();
unsigned Offset = 0;
int TiedOp = MCID.getOperandConstraint(1, MCOI::TIED_TO);
if (TiedOp == 0)
Offset = 1;
// Operands[1] will be the first operand, DestReg.
SMLoc Loc = Operands[1]->getStartLoc();
if (MCID.TSFlags & RISCVII::VS2Constraint) {
MCRegister CheckReg = Inst.getOperand(Offset + 1).getReg();
if (DestReg == CheckReg)
return Error(Loc, "the destination vector register group cannot overlap"
" the source vector register group");
}
if ((MCID.TSFlags & RISCVII::VS1Constraint) && Inst.getOperand(Offset + 2).isReg()) {
MCRegister CheckReg = Inst.getOperand(Offset + 2).getReg();
if (DestReg == CheckReg)
return Error(Loc, "the destination vector register group cannot overlap"
" the source vector register group");
}
if ((MCID.TSFlags & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
// vadc, vsbc are special cases. These instructions have no mask register.
// The destination register could not be V0.
if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
Opcode == RISCV::VMERGE_VXM)
return Error(Loc, "the destination vector register group cannot be V0");
// Regardless masked or unmasked version, the number of operands is the
// same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
// actually. We need to check the last operand to ensure whether it is
// masked or not.
MCRegister CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
assert((CheckReg == RISCV::V0 || !CheckReg) &&
"Unexpected register for mask operand");
if (DestReg == CheckReg)
return Error(Loc, "the destination vector register group cannot overlap"
" the mask register");
}
return false;
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
OperandVector &Operands,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
switch (Inst.getOpcode()) {
default:
break;
case RISCV::PseudoC_ADDI_NOP:
emitToStreamer(Out, MCInstBuilder(RISCV::C_NOP));
return false;
case RISCV::PseudoLLAImm:
case RISCV::PseudoLAImm:
case RISCV::PseudoLI: {
MCRegister Reg = Inst.getOperand(0).getReg();
const MCOperand &Op1 = Inst.getOperand(1);
if (Op1.isExpr()) {
// We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
// Just convert to an addi. This allows compatibility with gas.
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(Reg)
.addReg(RISCV::X0)
.addExpr(Op1.getExpr()));
return false;
}
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
case RISCV::PseudoLLA:
emitLoadLocalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLGA:
emitLoadGlobalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA:
emitLoadAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_IE:
emitLoadTLSIEAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_GD:
emitLoadTLSGDAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLB:
case RISCV::PseudoQC_E_LB:
emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLBU:
case RISCV::PseudoQC_E_LBU:
emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLH:
case RISCV::PseudoQC_E_LH:
emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLHU:
case RISCV::PseudoQC_E_LHU:
emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLW:
case RISCV::PseudoQC_E_LW:
emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLWU:
emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLD:
emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLD_RV32:
emitLoadStoreSymbol(Inst, RISCV::LD_RV32, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoFLH:
emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLW:
emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLD:
emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLQ:
emitLoadStoreSymbol(Inst, RISCV::FLQ, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSB:
case RISCV::PseudoQC_E_SB:
emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSH:
case RISCV::PseudoQC_E_SH:
emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSW:
case RISCV::PseudoQC_E_SW:
emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSD:
emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSD_RV32:
emitLoadStoreSymbol(Inst, RISCV::SD_RV32, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSH:
emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSW:
emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSD:
emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSQ:
emitLoadStoreSymbol(Inst, RISCV::FSQ, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoAddTPRel:
if (checkPseudoAddTPRel(Inst, Operands))
return true;
break;
case RISCV::PseudoTLSDESCCall:
if (checkPseudoTLSDESCCall(Inst, Operands))
return true;
break;
case RISCV::PseudoSEXT_B:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
return false;
case RISCV::PseudoSEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_W:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
return false;
case RISCV::PseudoVMSGEU_VX:
case RISCV::PseudoVMSGEU_VX_M:
case RISCV::PseudoVMSGEU_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VX:
case RISCV::PseudoVMSGE_VX_M:
case RISCV::PseudoVMSGE_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VI:
case RISCV::PseudoVMSLT_VI: {
// These instructions are signed and so is immediate so we can subtract one
// and change the opcode.
int64_t Imm = Inst.getOperand(2).getImm();
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
: RISCV::VMSLE_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
return false;
}
case RISCV::PseudoVMSGEU_VI:
case RISCV::PseudoVMSLTU_VI: {
int64_t Imm = Inst.getOperand(2).getImm();
// Unsigned comparisons are tricky because the immediate is signed. If the
// immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
// false, but vmsle.vi v0, v1, -1 is always true. Instead we use
// vmsne v0, v1, v1 which is always false.
if (Imm == 0) {
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSEQ_VV
: RISCV::VMSNE_VV;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
} else {
// Other immediate values can subtract one like signed.
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSGTU_VI
: RISCV::VMSLEU_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
}
return false;
}
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}