| //===-- Shared memory RPC client / server interface -------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a remote procedure call mechanism to communicate between |
| // heterogeneous devices that can share an address space atomically. We provide |
| // a client and a server to facilitate the remote call. The client makes request |
| // to the server using a shared communication channel. We use separate atomic |
| // signals to indicate which side, the client or the server is in ownership of |
| // the buffer. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SHARED_RPC_H |
| #define LLVM_LIBC_SHARED_RPC_H |
| |
| #include "rpc_util.h" |
| |
| namespace rpc { |
| |
| /// Use scoped atomic variants if they are available for the target. |
| #if !__has_builtin(__scoped_atomic_load_n) |
| #define __scoped_atomic_load_n(src, ord, scp) __atomic_load_n(src, ord) |
| #define __scoped_atomic_store_n(dst, src, ord, scp) \ |
| __atomic_store_n(dst, src, ord) |
| #define __scoped_atomic_fetch_or(src, val, ord, scp) \ |
| __atomic_fetch_or(src, val, ord) |
| #define __scoped_atomic_fetch_and(src, val, ord, scp) \ |
| __atomic_fetch_and(src, val, ord) |
| #endif |
| #if !__has_builtin(__scoped_atomic_thread_fence) |
| #define __scoped_atomic_thread_fence(ord, scp) __atomic_thread_fence(ord) |
| #endif |
| |
| /// Generic codes that can be used whem implementing the server. |
| enum Status { |
| RPC_SUCCESS = 0x0, |
| RPC_ERROR = 0x1000, |
| RPC_UNHANDLED_OPCODE = 0x1001, |
| }; |
| |
| /// A fixed size channel used to communicate between the RPC client and server. |
| struct Buffer { |
| uint64_t data[8]; |
| }; |
| static_assert(sizeof(Buffer) == 64, "Buffer size mismatch"); |
| |
| /// The information associated with a packet. This indicates which operations to |
| /// perform and which threads are active in the slots. |
| struct Header { |
| uint64_t mask; |
| uint32_t opcode; |
| }; |
| |
| /// The maximum number of parallel ports that the RPC interface can support. |
| constexpr static uint64_t MAX_PORT_COUNT = 4096; |
| |
| /// A common process used to synchronize communication between a client and a |
| /// server. The process contains a read-only inbox and a write-only outbox used |
| /// for signaling ownership of the shared buffer between both sides. We assign |
| /// ownership of the buffer to the client if the inbox and outbox bits match, |
| /// otherwise it is owned by the server. |
| /// |
| /// This process is designed to allow the client and the server to exchange data |
| /// using a fixed size packet in a mostly arbitrary order using the 'send' and |
| /// 'recv' operations. The following restrictions to this scheme apply: |
| /// - The client will always start with a 'send' operation. |
| /// - The server will always start with a 'recv' operation. |
| /// - Every 'send' or 'recv' call is mirrored by the other process. |
| template <bool Invert> struct Process { |
| RPC_ATTRS Process() = default; |
| RPC_ATTRS Process(const Process &) = delete; |
| RPC_ATTRS Process &operator=(const Process &) = delete; |
| RPC_ATTRS Process(Process &&) = default; |
| RPC_ATTRS Process &operator=(Process &&) = default; |
| RPC_ATTRS ~Process() = default; |
| |
| const uint32_t port_count = 0; |
| const uint32_t *const inbox = nullptr; |
| uint32_t *const outbox = nullptr; |
| Header *const header = nullptr; |
| Buffer *const packet = nullptr; |
| |
| static constexpr uint64_t NUM_BITS_IN_WORD = sizeof(uint32_t) * 8; |
| uint32_t lock[MAX_PORT_COUNT / NUM_BITS_IN_WORD] = {0}; |
| |
| RPC_ATTRS Process(uint32_t port_count, void *buffer) |
| : port_count(port_count), inbox(reinterpret_cast<uint32_t *>( |
| advance(buffer, inbox_offset(port_count)))), |
| outbox(reinterpret_cast<uint32_t *>( |
| advance(buffer, outbox_offset(port_count)))), |
| header(reinterpret_cast<Header *>( |
| advance(buffer, header_offset(port_count)))), |
| packet(reinterpret_cast<Buffer *>( |
| advance(buffer, buffer_offset(port_count)))) {} |
| |
| /// Allocate a memory buffer sufficient to store the following equivalent |
| /// representation in memory. |
| /// |
| /// struct Equivalent { |
| /// Atomic<uint32_t> primary[port_count]; |
| /// Atomic<uint32_t> secondary[port_count]; |
| /// Header header[port_count]; |
| /// Buffer packet[port_count][lane_size]; |
| /// }; |
| RPC_ATTRS static constexpr uint64_t allocation_size(uint32_t port_count, |
| uint32_t lane_size) { |
| return buffer_offset(port_count) + buffer_bytes(port_count, lane_size); |
| } |
| |
| /// Retrieve the inbox state from memory shared between processes. |
| RPC_ATTRS uint32_t load_inbox(uint64_t lane_mask, uint32_t index) const { |
| return rpc::broadcast_value( |
| lane_mask, __scoped_atomic_load_n(&inbox[index], __ATOMIC_RELAXED, |
| __MEMORY_SCOPE_SYSTEM)); |
| } |
| |
| /// Retrieve the outbox state from memory shared between processes. |
| RPC_ATTRS uint32_t load_outbox(uint64_t lane_mask, uint32_t index) const { |
| return rpc::broadcast_value( |
| lane_mask, __scoped_atomic_load_n(&outbox[index], __ATOMIC_RELAXED, |
| __MEMORY_SCOPE_SYSTEM)); |
| } |
| |
| /// Signal to the other process that this one is finished with the buffer. |
| /// Equivalent to loading outbox followed by store of the inverted value |
| /// The outbox is write only by this warp and tracking the value locally is |
| /// cheaper than calling load_outbox to get the value to store. |
| RPC_ATTRS uint32_t invert_outbox(uint32_t index, uint32_t current_outbox) { |
| uint32_t inverted_outbox = !current_outbox; |
| __scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_SYSTEM); |
| __scoped_atomic_store_n(&outbox[index], inverted_outbox, __ATOMIC_RELAXED, |
| __MEMORY_SCOPE_SYSTEM); |
| return inverted_outbox; |
| } |
| |
| // Given the current outbox and inbox values, wait until the inbox changes |
| // to indicate that this thread owns the buffer element. |
| RPC_ATTRS void wait_for_ownership(uint64_t lane_mask, uint32_t index, |
| uint32_t outbox, uint32_t in) { |
| while (buffer_unavailable(in, outbox)) { |
| sleep_briefly(); |
| in = load_inbox(lane_mask, index); |
| } |
| __scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_SYSTEM); |
| } |
| |
| /// The packet is a linearly allocated array of buffers used to communicate |
| /// with the other process. This function returns the appropriate slot in this |
| /// array such that the process can operate on an entire warp or wavefront. |
| RPC_ATTRS Buffer *get_packet(uint32_t index, uint32_t lane_size) { |
| return &packet[index * lane_size]; |
| } |
| |
| /// Determines if this process needs to wait for ownership of the buffer. We |
| /// invert the condition on one of the processes to indicate that if one |
| /// process owns the buffer then the other does not. |
| RPC_ATTRS static bool buffer_unavailable(uint32_t in, uint32_t out) { |
| bool cond = in != out; |
| return Invert ? !cond : cond; |
| } |
| |
| /// Attempt to claim the lock at index. Return true on lock taken. |
| /// lane_mask is a bitmap of the threads in the warp that would hold the |
| /// single lock on success, e.g. the result of rpc::get_lane_mask() |
| /// The lock is held when the n-th bit of the lock bitfield is set. |
| RPC_ATTRS bool try_lock(uint64_t lane_mask, uint32_t index) { |
| // On amdgpu, test and set to the nth lock bit and a sync_lane would suffice |
| // On volta, need to handle differences between the threads running and |
| // the threads that were detected in the previous call to get_lane_mask() |
| // |
| // All threads in lane_mask try to claim the lock. At most one can succeed. |
| // There may be threads active which are not in lane mask which must not |
| // succeed in taking the lock, as otherwise it will leak. This is handled |
| // by making threads which are not in lane_mask or with 0, a no-op. |
| uint32_t id = rpc::get_lane_id(); |
| bool id_in_lane_mask = lane_mask & (1ul << id); |
| |
| // All threads in the warp call fetch_or. Possibly at the same time. |
| bool before = set_nth(lock, index, id_in_lane_mask); |
| uint64_t packed = rpc::ballot(lane_mask, before); |
| |
| // If every bit set in lane_mask is also set in packed, every single thread |
| // in the warp failed to get the lock. Ballot returns unset for threads not |
| // in the lane mask. |
| // |
| // Cases, per thread: |
| // mask==0 -> unspecified before, discarded by ballot -> 0 |
| // mask==1 and before==0 (success), set zero by ballot -> 0 |
| // mask==1 and before==1 (failure), set one by ballot -> 1 |
| // |
| // mask != packed implies at least one of the threads got the lock |
| // atomic semantics of fetch_or mean at most one of the threads for the lock |
| |
| // If holding the lock then the caller can load values knowing said loads |
| // won't move past the lock. No such guarantee is needed if the lock acquire |
| // failed. This conditional branch is expected to fold in the caller after |
| // inlining the current function. |
| bool holding_lock = lane_mask != packed; |
| if (holding_lock) |
| __scoped_atomic_thread_fence(__ATOMIC_ACQUIRE, __MEMORY_SCOPE_DEVICE); |
| return holding_lock; |
| } |
| |
| /// Unlock the lock at index. We need a lane sync to keep this function |
| /// convergent, otherwise the compiler will sink the store and deadlock. |
| RPC_ATTRS void unlock(uint64_t lane_mask, uint32_t index) { |
| // Do not move any writes past the unlock. |
| __scoped_atomic_thread_fence(__ATOMIC_RELEASE, __MEMORY_SCOPE_DEVICE); |
| |
| // Use exactly one thread to clear the nth bit in the lock array Must |
| // restrict to a single thread to avoid one thread dropping the lock, then |
| // an unrelated warp claiming the lock, then a second thread in this warp |
| // dropping the lock again. |
| clear_nth(lock, index, rpc::is_first_lane(lane_mask)); |
| rpc::sync_lane(lane_mask); |
| } |
| |
| /// Number of bytes to allocate for an inbox or outbox. |
| RPC_ATTRS static constexpr uint64_t mailbox_bytes(uint32_t port_count) { |
| return port_count * sizeof(uint32_t); |
| } |
| |
| /// Number of bytes to allocate for the buffer containing the packets. |
| RPC_ATTRS static constexpr uint64_t buffer_bytes(uint32_t port_count, |
| uint32_t lane_size) { |
| return port_count * lane_size * sizeof(Buffer); |
| } |
| |
| /// Offset of the inbox in memory. This is the same as the outbox if inverted. |
| RPC_ATTRS static constexpr uint64_t inbox_offset(uint32_t port_count) { |
| return Invert ? mailbox_bytes(port_count) : 0; |
| } |
| |
| /// Offset of the outbox in memory. This is the same as the inbox if inverted. |
| RPC_ATTRS static constexpr uint64_t outbox_offset(uint32_t port_count) { |
| return Invert ? 0 : mailbox_bytes(port_count); |
| } |
| |
| /// Offset of the buffer containing the packets after the inbox and outbox. |
| RPC_ATTRS static constexpr uint64_t header_offset(uint32_t port_count) { |
| return align_up(2 * mailbox_bytes(port_count), alignof(Header)); |
| } |
| |
| /// Offset of the buffer containing the packets after the inbox and outbox. |
| RPC_ATTRS static constexpr uint64_t buffer_offset(uint32_t port_count) { |
| return align_up(header_offset(port_count) + port_count * sizeof(Header), |
| alignof(Buffer)); |
| } |
| |
| /// Conditionally set the n-th bit in the atomic bitfield. |
| RPC_ATTRS static constexpr uint32_t set_nth(uint32_t *bits, uint32_t index, |
| bool cond) { |
| uint32_t slot = index / NUM_BITS_IN_WORD; |
| uint32_t bit = index % NUM_BITS_IN_WORD; |
| return __scoped_atomic_fetch_or(&bits[slot], |
| static_cast<uint32_t>(cond) << bit, |
| __ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) & |
| (1u << bit); |
| } |
| |
| /// Conditionally clear the n-th bit in the atomic bitfield. |
| RPC_ATTRS static constexpr uint32_t clear_nth(uint32_t *bits, uint32_t index, |
| bool cond) { |
| uint32_t slot = index / NUM_BITS_IN_WORD; |
| uint32_t bit = index % NUM_BITS_IN_WORD; |
| return __scoped_atomic_fetch_and(&bits[slot], |
| ~0u ^ (static_cast<uint32_t>(cond) << bit), |
| __ATOMIC_RELAXED, __MEMORY_SCOPE_DEVICE) & |
| (1u << bit); |
| } |
| }; |
| |
| /// Invokes a function accross every active buffer across the total lane size. |
| template <typename F> |
| RPC_ATTRS static void invoke_rpc(F &&fn, uint32_t lane_size, uint64_t lane_mask, |
| Buffer *slot) { |
| if constexpr (is_process_gpu()) { |
| fn(&slot[rpc::get_lane_id()], rpc::get_lane_id()); |
| } else { |
| for (uint32_t i = 0; i < lane_size; i += rpc::get_num_lanes()) |
| if (lane_mask & (1ul << i)) |
| fn(&slot[i], i); |
| } |
| } |
| |
| /// The port provides the interface to communicate between the multiple |
| /// processes. A port is conceptually an index into the memory provided by the |
| /// underlying process that is guarded by a lock bit. |
| template <bool T> struct Port { |
| RPC_ATTRS Port(Process<T> &process, uint64_t lane_mask, uint32_t lane_size, |
| uint32_t index, uint32_t out) |
| : process(process), lane_mask(lane_mask), lane_size(lane_size), |
| index(index), out(out), receive(false), owns_buffer(true) {} |
| RPC_ATTRS ~Port() = default; |
| |
| private: |
| RPC_ATTRS Port(const Port &) = delete; |
| RPC_ATTRS Port &operator=(const Port &) = delete; |
| RPC_ATTRS Port(Port &&) = default; |
| RPC_ATTRS Port &operator=(Port &&) = default; |
| |
| friend struct Client; |
| friend struct Server; |
| friend class rpc::optional<Port<T>>; |
| |
| public: |
| template <typename U> RPC_ATTRS void recv(U use); |
| template <typename F> RPC_ATTRS void send(F fill); |
| template <typename F, typename U> RPC_ATTRS void send_and_recv(F fill, U use); |
| template <typename W> RPC_ATTRS void recv_and_send(W work); |
| RPC_ATTRS void send_n(const void *const *src, uint64_t *size); |
| RPC_ATTRS void send_n(const void *src, uint64_t size); |
| template <typename A> |
| RPC_ATTRS void recv_n(void **dst, uint64_t *size, A &&alloc); |
| |
| RPC_ATTRS uint32_t get_opcode() const { return process.header[index].opcode; } |
| |
| RPC_ATTRS uint32_t get_index() const { return index; } |
| |
| RPC_ATTRS void close() { |
| // Wait for all lanes to finish using the port. |
| rpc::sync_lane(lane_mask); |
| |
| // The server is passive, if it own the buffer when it closes we need to |
| // give ownership back to the client. |
| if (owns_buffer && T) |
| out = process.invert_outbox(index, out); |
| process.unlock(lane_mask, index); |
| } |
| |
| private: |
| Process<T> &process; |
| uint64_t lane_mask; |
| uint32_t lane_size; |
| uint32_t index; |
| uint32_t out; |
| bool receive; |
| bool owns_buffer; |
| }; |
| |
| /// The RPC client used to make requests to the server. |
| struct Client { |
| RPC_ATTRS Client() = default; |
| RPC_ATTRS Client(const Client &) = delete; |
| RPC_ATTRS Client &operator=(const Client &) = delete; |
| RPC_ATTRS ~Client() = default; |
| |
| RPC_ATTRS Client(uint32_t port_count, void *buffer) |
| : process(port_count, buffer) {} |
| |
| using Port = rpc::Port<false>; |
| template <uint32_t opcode> RPC_ATTRS Port open(); |
| |
| private: |
| Process<false> process; |
| }; |
| |
| /// The RPC server used to respond to the client. |
| struct Server { |
| RPC_ATTRS Server() = default; |
| RPC_ATTRS Server(const Server &) = delete; |
| RPC_ATTRS Server &operator=(const Server &) = delete; |
| RPC_ATTRS ~Server() = default; |
| |
| RPC_ATTRS Server(uint32_t port_count, void *buffer) |
| : process(port_count, buffer) {} |
| |
| using Port = rpc::Port<true>; |
| RPC_ATTRS rpc::optional<Port> try_open(uint32_t lane_size, |
| uint32_t start = 0); |
| RPC_ATTRS Port open(uint32_t lane_size); |
| |
| RPC_ATTRS static uint64_t allocation_size(uint32_t lane_size, |
| uint32_t port_count) { |
| return Process<true>::allocation_size(port_count, lane_size); |
| } |
| |
| private: |
| Process<true> process; |
| }; |
| |
| /// Applies \p fill to the shared buffer and initiates a send operation. |
| template <bool T> template <typename F> RPC_ATTRS void Port<T>::send(F fill) { |
| uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index); |
| |
| // We need to wait until we own the buffer before sending. |
| process.wait_for_ownership(lane_mask, index, out, in); |
| |
| // Apply the \p fill function to initialize the buffer and release the memory. |
| invoke_rpc(fill, lane_size, process.header[index].mask, |
| process.get_packet(index, lane_size)); |
| out = process.invert_outbox(index, out); |
| owns_buffer = false; |
| receive = false; |
| } |
| |
| /// Applies \p use to the shared buffer and acknowledges the send. |
| template <bool T> template <typename U> RPC_ATTRS void Port<T>::recv(U use) { |
| // We only exchange ownership of the buffer during a receive if we are waiting |
| // for a previous receive to finish. |
| if (receive) { |
| out = process.invert_outbox(index, out); |
| owns_buffer = false; |
| } |
| |
| uint32_t in = owns_buffer ? out ^ T : process.load_inbox(lane_mask, index); |
| |
| // We need to wait until we own the buffer before receiving. |
| process.wait_for_ownership(lane_mask, index, out, in); |
| |
| // Apply the \p use function to read the memory out of the buffer. |
| invoke_rpc(use, lane_size, process.header[index].mask, |
| process.get_packet(index, lane_size)); |
| receive = true; |
| owns_buffer = true; |
| } |
| |
| /// Combines a send and receive into a single function. |
| template <bool T> |
| template <typename F, typename U> |
| RPC_ATTRS void Port<T>::send_and_recv(F fill, U use) { |
| send(fill); |
| recv(use); |
| } |
| |
| /// Combines a receive and send operation into a single function. The \p work |
| /// function modifies the buffer in-place and the send is only used to initiate |
| /// the copy back. |
| template <bool T> |
| template <typename W> |
| RPC_ATTRS void Port<T>::recv_and_send(W work) { |
| recv(work); |
| send([](Buffer *, uint32_t) { /* no-op */ }); |
| } |
| |
| /// Helper routine to simplify the interface when sending from the GPU using |
| /// thread private pointers to the underlying value. |
| template <bool T> |
| RPC_ATTRS void Port<T>::send_n(const void *src, uint64_t size) { |
| const void **src_ptr = &src; |
| uint64_t *size_ptr = &size; |
| send_n(src_ptr, size_ptr); |
| } |
| |
| /// Sends an arbitrarily sized data buffer \p src across the shared channel in |
| /// multiples of the packet length. |
| template <bool T> |
| RPC_ATTRS void Port<T>::send_n(const void *const *src, uint64_t *size) { |
| uint64_t num_sends = 0; |
| send([&](Buffer *buffer, uint32_t id) { |
| reinterpret_cast<uint64_t *>(buffer->data)[0] = lane_value(size, id); |
| num_sends = is_process_gpu() ? lane_value(size, id) |
| : rpc::max(lane_value(size, id), num_sends); |
| uint64_t len = |
| lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t) |
| ? sizeof(Buffer::data) - sizeof(uint64_t) |
| : lane_value(size, id); |
| rpc_memcpy(&buffer->data[1], lane_value(src, id), len); |
| }); |
| uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t); |
| uint64_t mask = process.header[index].mask; |
| while (rpc::ballot(mask, idx < num_sends)) { |
| send([=](Buffer *buffer, uint32_t id) { |
| uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data) |
| ? sizeof(Buffer::data) |
| : lane_value(size, id) - idx; |
| if (idx < lane_value(size, id)) |
| rpc_memcpy(buffer->data, advance(lane_value(src, id), idx), len); |
| }); |
| idx += sizeof(Buffer::data); |
| } |
| } |
| |
| /// Receives an arbitrarily sized data buffer across the shared channel in |
| /// multiples of the packet length. The \p alloc function is called with the |
| /// size of the data so that we can initialize the size of the \p dst buffer. |
| template <bool T> |
| template <typename A> |
| RPC_ATTRS void Port<T>::recv_n(void **dst, uint64_t *size, A &&alloc) { |
| uint64_t num_recvs = 0; |
| recv([&](Buffer *buffer, uint32_t id) { |
| lane_value(size, id) = reinterpret_cast<uint64_t *>(buffer->data)[0]; |
| lane_value(dst, id) = |
| reinterpret_cast<uint8_t *>(alloc(lane_value(size, id))); |
| num_recvs = is_process_gpu() ? lane_value(size, id) |
| : rpc::max(lane_value(size, id), num_recvs); |
| uint64_t len = |
| lane_value(size, id) > sizeof(Buffer::data) - sizeof(uint64_t) |
| ? sizeof(Buffer::data) - sizeof(uint64_t) |
| : lane_value(size, id); |
| rpc_memcpy(lane_value(dst, id), &buffer->data[1], len); |
| }); |
| uint64_t idx = sizeof(Buffer::data) - sizeof(uint64_t); |
| uint64_t mask = process.header[index].mask; |
| while (rpc::ballot(mask, idx < num_recvs)) { |
| recv([=](Buffer *buffer, uint32_t id) { |
| uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data) |
| ? sizeof(Buffer::data) |
| : lane_value(size, id) - idx; |
| if (idx < lane_value(size, id)) |
| rpc_memcpy(advance(lane_value(dst, id), idx), buffer->data, len); |
| }); |
| idx += sizeof(Buffer::data); |
| } |
| } |
| |
| /// Continually attempts to open a port to use as the client. The client can |
| /// only open a port if we find an index that is in a valid sending state. That |
| /// is, there are send operations pending that haven't been serviced on this |
| /// port. Each port instance uses an associated \p opcode to tell the server |
| /// what to do. The Client interface provides the appropriate lane size to the |
| /// port using the platform's returned value. |
| template <uint32_t opcode> RPC_ATTRS Client::Port Client::open() { |
| // Repeatedly perform a naive linear scan for a port that can be opened to |
| // send data. |
| for (uint32_t index = 0;; ++index) { |
| // Start from the beginning if we run out of ports to check. |
| if (index >= process.port_count) |
| index = 0; |
| |
| // Attempt to acquire the lock on this index. |
| uint64_t lane_mask = rpc::get_lane_mask(); |
| if (!process.try_lock(lane_mask, index)) |
| continue; |
| |
| uint32_t in = process.load_inbox(lane_mask, index); |
| uint32_t out = process.load_outbox(lane_mask, index); |
| |
| // Once we acquire the index we need to check if we are in a valid sending |
| // state. |
| if (process.buffer_unavailable(in, out)) { |
| process.unlock(lane_mask, index); |
| continue; |
| } |
| |
| if (rpc::is_first_lane(lane_mask)) { |
| process.header[index].opcode = opcode; |
| process.header[index].mask = lane_mask; |
| } |
| rpc::sync_lane(lane_mask); |
| return Port(process, lane_mask, rpc::get_num_lanes(), index, out); |
| } |
| } |
| |
| /// Attempts to open a port to use as the server. The server can only open a |
| /// port if it has a pending receive operation |
| RPC_ATTRS rpc::optional<typename Server::Port> |
| Server::try_open(uint32_t lane_size, uint32_t start) { |
| // Perform a naive linear scan for a port that has a pending request. |
| for (uint32_t index = start; index < process.port_count; ++index) { |
| uint64_t lane_mask = rpc::get_lane_mask(); |
| uint32_t in = process.load_inbox(lane_mask, index); |
| uint32_t out = process.load_outbox(lane_mask, index); |
| |
| // The server is passive, if there is no work pending don't bother |
| // opening a port. |
| if (process.buffer_unavailable(in, out)) |
| continue; |
| |
| // Attempt to acquire the lock on this index. |
| if (!process.try_lock(lane_mask, index)) |
| continue; |
| |
| in = process.load_inbox(lane_mask, index); |
| out = process.load_outbox(lane_mask, index); |
| |
| if (process.buffer_unavailable(in, out)) { |
| process.unlock(lane_mask, index); |
| continue; |
| } |
| |
| return Port(process, lane_mask, lane_size, index, out); |
| } |
| return rpc::nullopt; |
| } |
| |
| RPC_ATTRS Server::Port Server::open(uint32_t lane_size) { |
| for (;;) { |
| if (rpc::optional<Server::Port> p = try_open(lane_size)) |
| return rpc::move(p.value()); |
| sleep_briefly(); |
| } |
| } |
| |
| #undef RPC_ATTRS |
| #if !__has_builtin(__scoped_atomic_load_n) |
| #undef __scoped_atomic_load_n |
| #undef __scoped_atomic_store_n |
| #undef __scoped_atomic_fetch_or |
| #undef __scoped_atomic_fetch_and |
| #endif |
| #if !__has_builtin(__scoped_atomic_thread_fence) |
| #undef __scoped_atomic_thread_fence |
| #endif |
| |
| } // namespace rpc |
| |
| #endif // LLVM_LIBC_SHARED_RPC_H |