blob: 1898d53a5032832a7d179ea5983995ca0685b4dc [file] [log] [blame]
//===- ASTMatchers.h - Structural query framework ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements matchers to be used together with the MatchFinder to
// match AST nodes.
//
// Matchers are created by generator functions, which can be combined in
// a functional in-language DSL to express queries over the C++ AST.
//
// For example, to match a class with a certain name, one would call:
// cxxRecordDecl(hasName("MyClass"))
// which returns a matcher that can be used to find all AST nodes that declare
// a class named 'MyClass'.
//
// For more complicated match expressions we're often interested in accessing
// multiple parts of the matched AST nodes once a match is found. In that case,
// call `.bind("name")` on match expressions that match the nodes you want to
// access.
//
// For example, when we're interested in child classes of a certain class, we
// would write:
// cxxRecordDecl(hasName("MyClass"), has(recordDecl().bind("child")))
// When the match is found via the MatchFinder, a user provided callback will
// be called with a BoundNodes instance that contains a mapping from the
// strings that we provided for the `.bind()` calls to the nodes that were
// matched.
// In the given example, each time our matcher finds a match we get a callback
// where "child" is bound to the RecordDecl node of the matching child
// class declaration.
//
// See ASTMatchersInternal.h for a more in-depth explanation of the
// implementation details of the matcher framework.
//
// See ASTMatchFinder.h for how to use the generated matchers to run over
// an AST.
//
// The doxygen comments on matchers are used to:
// - create the doxygen documentation
// - get information in the editor via signature help and goto definition
// - generate the AST matcher reference html file
// - test the documentation using a special syntax
//
// Test Annotations:
//
// The automatic testing uses doxygen commands (aliases) to extract the
// relevant information about an example of using a matcher from the
// documentation.
//
// \header{a.h}
// \endheader <- zero or more header
//
// \code
// int a = 42;
// \endcode
// \compile_args{-std=c++,c23-or-later} <- optional, the std flag supports
// std ranges and
// whole languages
//
// \matcher{expr()} <- one or more matchers in succession
// \matcher{integerLiteral()} <- one or more matchers in succession
// both matcher will have to match the
// following matches
// \match{42} <- one or more matches in succession
//
// \matcher{varDecl()} <- new matcher resets the context, the above
// \match will not count for this new
// matcher(-group)
// \match{int a = 42} <- only applies to the previous matcher (not to the
// previous case)
//
//
// The above block can be repeated inside a doxygen command for multiple code
// examples for a single matcher. The test generation script will only look for
// these annotations and ignore anything else like `\c` or the sentences where
// these annotations are embedded into: `The matcher \matcher{expr()} matches
// the number \match{42}.`.
//
// Language Grammar:
//
// [] denotes an optional, and <> denotes user-input
//
// compile_args j:= \compile_args{[<compile_arg>;]<compile_arg>}
// matcher_tag_key ::= type
// match_tag_key ::= type || std || count || sub
// matcher_tags ::= [matcher_tag_key=<value>;]matcher_tag_key=<value>
// match_tags ::= [match_tag_key=<value>;]match_tag_key=<value>
// matcher ::= \matcher{[matcher_tags$]<matcher>}
// matchers ::= [matcher] matcher
// match ::= \match{[match_tags$]<match>}
// matches ::= [match] match
// case ::= matchers matches
// cases ::= [case] case
// header-block ::= \header{<name>} <code> \endheader
// code-block ::= \code <code> \endcode
// testcase ::= code-block [compile_args] cases
//
// Language Standard Versions:
//
// The 'std' tag and '\compile_args' support specifying a specific language
// version, a whole language and all of its versions, and thresholds (implies
// ranges). Multiple arguments are passed with a ',' separator. For a language
// and version to execute a tested matcher, it has to match the specified
// '\compile_args' for the code, and the 'std' tag for the matcher. Predicates
// for the 'std' compiler flag are used with disjunction between languages
// (e.g. 'c || c++') and conjunction for all predicates specific to each
// language (e.g. 'c++11-or-later && c++23-or-earlier').
//
// Examples:
// - `c` all available versions of C
// - `c++11` only C++11
// - `c++11-or-later` C++11 or later
// - `c++11-or-earlier` C++11 or earlier
// - `c++11-or-later,c++23-or-earlier,c` all of C and C++ between 11 and
// 23 (inclusive)
// - `c++11-23,c` same as above
//
// Tags
//
// `type`:
// **Match types** are used to select where the string that is used to check if
// a node matches comes from. Available: `code`, `name`, `typestr`,
// `typeofstr`. The default is `code`.
//
// - `code`: Forwards to `tooling::fixit::getText(...)` and should be the
// preferred way to show what matches.
// - `name`: Casts the match to a `NamedDecl` and returns the result of
// `getNameAsString`. Useful when the matched AST node is not easy to spell
// out (`code` type), e.g., namespaces or classes with many members.
// - `typestr`: Returns the result of `QualType::getAsString` for the type
// derived from `Type` (otherwise, if it is derived from `Decl`, recurses with
// `Node->getTypeForDecl()`)
//
// **Matcher types** are used to mark matchers as sub-matcher with 'sub' or as
// deactivated using 'none'. Testing sub-matcher is not implemented.
//
// `count`:
// Specifying a 'count=n' on a match will result in a test that requires that
// the specified match will be matched n times. Default is 1.
//
// `std`:
// A match allows specifying if it matches only in specific language versions.
// This may be needed when the AST differs between language versions.
//
// `sub`:
// The `sub` tag on a `\match` will indicate that the match is for a node of a
// bound sub-matcher. E.g., `\matcher{expr(expr().bind("inner"))}` has a
// sub-matcher that binds to `inner`, which is the value for the `sub` tag of
// the expected match for the sub-matcher `\match{sub=inner$...}`. Currently,
// sub-matchers are not tested in any way.
//
//
// What if ...?
//
// ... I want to add a matcher?
//
// Add a doxygen comment to the matcher with a code example, corresponding
// matchers and matches, that shows what the matcher is supposed to do. Specify
// the compile arguments/supported languages if required, and run `ninja
// check-clang-unit` to test the documentation.
//
// ... the example I wrote is wrong?
//
// The test-failure output of the generated test file will provide information
// about
// - where the generated test file is located
// - which line in `ASTMatcher.h` the example is from
// - which matches were: found, not-(yet)-found, expected
// - in case of an unexpected match: what the node looks like using the
// different `type`s
// - the language version and if the test ran with a windows `-target` flag
// (also in failure summary)
//
// ... I don't adhere to the required order of the syntax?
//
// The script will diagnose any found issues, such as `matcher is missing an
// example` with a `file:line:` prefix, which should provide enough information
// about the issue.
//
// ... the script diagnoses a false-positive issue with a doxygen comment?
//
// It hopefully shouldn't, but if you, e.g., added some non-matcher code and
// documented it with doxygen, then the script will consider that as a matcher
// documentation. As a result, the script will print that it detected a
// mismatch between the actual and the expected number of failures. If the
// diagnostic truly is a false-positive, change the
// `expected_failure_statistics` at the top of the
// `generate_ast_matcher_doc_tests.py` file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "clang/ASTMatchers/ASTMatchersMacros.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Regex.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <limits>
#include <optional>
#include <string>
#include <utility>
#include <vector>
namespace clang {
namespace ast_matchers {
/// Maps string IDs to AST nodes matched by parts of a matcher.
///
/// The bound nodes are generated by calling \c bind("id") on the node matchers
/// of the nodes we want to access later.
///
/// The instances of BoundNodes are created by \c MatchFinder when the user's
/// callbacks are executed every time a match is found.
class BoundNodes {
public:
/// Returns the AST node bound to \c ID.
///
/// Returns NULL if there was no node bound to \c ID or if there is a node but
/// it cannot be converted to the specified type.
template <typename T>
const T *getNodeAs(StringRef ID) const {
return MyBoundNodes.getNodeAs<T>(ID);
}
/// Type of mapping from binding identifiers to bound nodes. This type
/// is an associative container with a key type of \c std::string and a value
/// type of \c clang::DynTypedNode
using IDToNodeMap = internal::BoundNodesMap::IDToNodeMap;
/// Retrieve mapping from binding identifiers to bound nodes.
const IDToNodeMap &getMap() const {
return MyBoundNodes.getMap();
}
private:
friend class internal::BoundNodesTreeBuilder;
/// Create BoundNodes from a pre-filled map of bindings.
BoundNodes(internal::BoundNodesMap &MyBoundNodes)
: MyBoundNodes(MyBoundNodes) {}
internal::BoundNodesMap MyBoundNodes;
};
/// Types of matchers for the top-level classes in the AST class
/// hierarchy.
/// @{
using DeclarationMatcher = internal::Matcher<Decl>;
using StatementMatcher = internal::Matcher<Stmt>;
using TypeMatcher = internal::Matcher<QualType>;
using TypeLocMatcher = internal::Matcher<TypeLoc>;
using NestedNameSpecifierMatcher = internal::Matcher<NestedNameSpecifier>;
using NestedNameSpecifierLocMatcher = internal::Matcher<NestedNameSpecifierLoc>;
using CXXBaseSpecifierMatcher = internal::Matcher<CXXBaseSpecifier>;
using CXXCtorInitializerMatcher = internal::Matcher<CXXCtorInitializer>;
using TemplateArgumentMatcher = internal::Matcher<TemplateArgument>;
using TemplateArgumentLocMatcher = internal::Matcher<TemplateArgumentLoc>;
using LambdaCaptureMatcher = internal::Matcher<LambdaCapture>;
using AttrMatcher = internal::Matcher<Attr>;
/// @}
/// Matches any node.
///
/// Useful when another matcher requires a child matcher, but there's no
/// additional constraint. This will often be used with an explicit conversion
/// to an \c internal::Matcher<> type such as \c TypeMatcher.
///
/// Given
/// \code
/// int* p;
/// void f();
/// \endcode
/// The matcher \matcher{decl(anything())}
/// matches \match{int* p} and \match{void f()}.
/// Usable as: Any Matcher
inline internal::TrueMatcher anything() { return internal::TrueMatcher(); }
/// Matches the top declaration context.
///
/// Given
/// \code
/// int X;
/// namespace NS { int Y; }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{namedDecl(hasDeclContext(translationUnitDecl()))}
/// matches \match{int X} and \match{namespace NS { int Y; }},
/// but does not match \nomatch{int Y} because its decl-context is the
/// namespace \c NS .
extern const internal::VariadicDynCastAllOfMatcher<Decl, TranslationUnitDecl>
translationUnitDecl;
/// Matches typedef declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{typedefDecl()}
/// matches \match{typedef int X},
/// but does not match \nomatch{using Y = int}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefDecl>
typedefDecl;
/// Matches typedef name declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{typedefNameDecl()}
/// matches \match{typedef int X} and \match{using Y = int}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypedefNameDecl>
typedefNameDecl;
/// Matches type alias declarations.
///
/// Given
/// \code
/// typedef int X;
/// using Y = int;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{typeAliasDecl()}
/// matches \match{using Y = int},
/// but does not match \nomatch{typedef int X}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasDecl>
typeAliasDecl;
/// Matches type alias template declarations.
///
/// Given
/// \code
/// template <typename T> struct X {};
/// template <typename T> using Y = X<T>;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{typeAliasTemplateDecl()}
/// matches \match{template <typename T> using Y = X<T>}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TypeAliasTemplateDecl>
typeAliasTemplateDecl;
/// Matches AST nodes that were expanded within the main-file.
///
/// Given the header \c Y.h
/// \header{Y.h}
/// #pragma once
/// typedef int my_header_int;
/// \endheader
/// and the source file
/// \code
/// #include "Y.h"
/// typedef int my_main_file_int;
/// my_main_file_int a = 0;
/// my_header_int b = 1;
/// \endcode
///
/// The matcher \matcher{typedefDecl(isExpansionInMainFile())}
/// matches \match{typedef int my_main_file_int},
/// but does not match \nomatch{typedef int my_header_int}.
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInMainFile,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
return SourceManager.isInMainFile(
SourceManager.getExpansionLoc(Node.getBeginLoc()));
}
/// Matches AST nodes that were expanded within system-header-files.
///
/// Given the header \c SystemHeader.h
/// \header{system_include/SystemHeader.h}
/// #pragma once
/// int header();
/// \endheader
/// and the source code
/// \code
/// #include <SystemHeader.h>
/// static int main_file();
/// \endcode
/// \compile_args{-isystemsystem_include/}
///
/// The matcher \matcher{type=none$functionDecl(isExpansionInSystemHeader())}
/// matches \match{int header()},
/// but does not match \nomatch{static int main_file()}.
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER(isExpansionInSystemHeader,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc)) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
if (ExpansionLoc.isInvalid()) {
return false;
}
return SourceManager.isInSystemHeader(ExpansionLoc);
}
/// Matches AST nodes that were expanded within files whose name is
/// partially matching a given regex.
///
/// Given the headers \c Y.h
/// \header{Y.h}
/// #pragma once
/// typedef int my_y_int;
/// \endheader
/// and \c X.h
/// \header{X.h}
/// #pragma once
/// typedef int my_x_int;
/// \endheader
/// and the source code
/// \code
/// #include "X.h"
/// #include "Y.h"
/// typedef int my_main_file_int;
/// my_main_file_int a = 0;
/// my_x_int b = 1;
/// my_y_int c = 2;
/// \endcode
///
/// The matcher
/// \matcher{type=none$typedefDecl(isExpansionInFileMatching("Y.h"))}
/// matches \match{typedef int my_y_int},
/// but does not match \nomatch{typedef int my_main_file_int} or
/// \nomatch{typedef int my_x_int}.
///
/// Usable as: Matcher<Decl>, Matcher<Stmt>, Matcher<TypeLoc>
AST_POLYMORPHIC_MATCHER_REGEX(isExpansionInFileMatching,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt,
TypeLoc),
RegExp) {
auto &SourceManager = Finder->getASTContext().getSourceManager();
auto ExpansionLoc = SourceManager.getExpansionLoc(Node.getBeginLoc());
if (ExpansionLoc.isInvalid()) {
return false;
}
auto FileEntry =
SourceManager.getFileEntryRefForID(SourceManager.getFileID(ExpansionLoc));
if (!FileEntry) {
return false;
}
auto Filename = FileEntry->getName();
return RegExp->match(Filename);
}
/// Matches statements that are (transitively) expanded from the named macro.
/// Does not match if only part of the statement is expanded from that macro or
/// if different parts of the statement are expanded from different
/// appearances of the macro.
///
/// Given
/// \code
/// #define A 0
/// #define B A
/// int c = B;
/// \endcode
///
/// The matcher \matcher{integerLiteral(isExpandedFromMacro("A"))}
/// matches the literal expanded at the initializer \match{B} of the variable
/// \c c .
AST_POLYMORPHIC_MATCHER_P(isExpandedFromMacro,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Stmt, TypeLoc),
std::string, MacroName) {
// Verifies that the statement' beginning and ending are both expanded from
// the same instance of the given macro.
auto& Context = Finder->getASTContext();
std::optional<SourceLocation> B =
internal::getExpansionLocOfMacro(MacroName, Node.getBeginLoc(), Context);
if (!B) return false;
std::optional<SourceLocation> E =
internal::getExpansionLocOfMacro(MacroName, Node.getEndLoc(), Context);
if (!E) return false;
return *B == *E;
}
/// Matches declarations.
///
/// Given
/// \code
/// void X();
/// class C {
/// friend void X();
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{decl()}
/// matches \match{void X()} once, \match{type=name;count=2$C}
/// twice, once for the definition and once for the implicit class declaration,
/// and \match{count=2$friend void X()} twice, once for the declaration of the
/// friend, and once for the redeclaration of the function itself.
extern const internal::VariadicAllOfMatcher<Decl> decl;
/// Matches decomposition-declarations.
///
/// Given
/// \code
/// struct pair { int x; int y; };
/// pair make(int, int);
/// int number = 42;
/// auto [foo, bar] = make(42, 42);
/// \endcode
/// \compile_args{-std=c++17-or-later}
/// The matcher \matcher{decompositionDecl()}
/// matches \match{auto [foo, bar] = make(42, 42)},
/// but does not match \nomatch{type=name$number}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, DecompositionDecl>
decompositionDecl;
/// Matches binding declarations
///
/// Given
/// \code
/// struct pair { int x; int y; };
/// pair make(int, int);
/// void f() {
/// auto [foo, bar] = make(42, 42);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
/// The matcher \matcher{bindingDecl()}
/// matches \match{type=name$foo} and \match{type=name$bar}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, BindingDecl>
bindingDecl;
/// Matches a declaration of a linkage specification.
///
/// Given
/// \code
/// extern "C" {}
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{linkageSpecDecl()}
/// matches \match{extern "C" {}}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, LinkageSpecDecl>
linkageSpecDecl;
/// Matches a declaration of anything that could have a name.
///
/// Example matches \c X, \c S, the anonymous union type, \c i, and \c U;
/// Given
/// \code
/// typedef int X;
/// struct S { union { int i; } U; };
/// \endcode
/// The matcher \matcher{namedDecl()}
/// matches \match{typedef int X},
/// \match{std=c$struct S { union { int i; } U; }}, \match{int i},
/// the unnamed union\match{type=name$} and the variable
/// \match{union { int i; } U},
/// with \match{type=name;count=2;std=c++$S} matching twice in C++.
/// Once for the implicit class declaration and once for the declaration itself.
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamedDecl> namedDecl;
/// Matches a declaration of label.
///
/// Given
/// \code
/// void bar();
/// void foo() {
/// goto FOO;
/// FOO: bar();
/// }
/// \endcode
/// The matcher \matcher{type=none$labelDecl()}
/// matches \match{FOO: bar()}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, LabelDecl> labelDecl;
/// Matches a declaration of a namespace.
///
/// Given
/// \code
/// namespace {}
/// namespace test {}
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{namespaceDecl()}
/// matches \match{namespace {}} and \match{namespace test {}}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceDecl>
namespaceDecl;
/// Matches a declaration of a namespace alias.
///
/// Given
/// \code
/// namespace test {}
/// namespace alias = ::test;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{namespaceAliasDecl()}
/// matches \match{namespace alias = ::test},
/// but does not match \nomatch{namespace test {}}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, NamespaceAliasDecl>
namespaceAliasDecl;
/// Matches class, struct, and union declarations.
///
/// Given
/// \code
/// class X;
/// template<class T> class Z {};
/// struct S {};
/// union U {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{recordDecl()}
/// matches \match{class X} once, and the rest of the declared records twice,
/// once for their written definition and once for their implicit declaration:
/// \match{type=name;count=2$Z}, \match{type=name;count=2$S} and
/// \match{type=name;count=2$U}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, RecordDecl> recordDecl;
/// Matches C++ class declarations.
///
/// Given
/// \code
/// class X;
/// template<class T> class Z {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxRecordDecl()}
/// matches \match{class X} once, and \match{type=name;count=2$Z} twice,
/// once for the written definition and once for the implicit declaration.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl>
cxxRecordDecl;
/// Matches C++ class template declarations.
///
/// Given
/// \code
/// template<class T> class Z {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplateDecl()}
/// matches \match{template<class T> class Z {}}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, ClassTemplateDecl>
classTemplateDecl;
/// Matches C++ class template specializations.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplateSpecializationDecl()}
/// matches \match{type=typestr$class A<int>}
/// and \match{type=typestr$class A<double>}.
extern const internal::VariadicDynCastAllOfMatcher<
Decl, ClassTemplateSpecializationDecl>
classTemplateSpecializationDecl;
/// Matches C++ class template partial specializations.
///
/// Given
/// \code
/// template<class T1, class T2, int I>
/// class A {};
///
/// template<class T, int I> class A<T, T*, I> {};
///
/// template<>
/// class A<int, int, 1> {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplatePartialSpecializationDecl()}
/// matches \match{template<class T, int I> class A<T, T*, I> {}},
/// but does not match \nomatch{A<int, int, 1>}.
extern const internal::VariadicDynCastAllOfMatcher<
Decl, ClassTemplatePartialSpecializationDecl>
classTemplatePartialSpecializationDecl;
/// Matches declarator declarations (field, variable, function
/// and non-type template parameter declarations).
///
/// Given
/// \code
/// class X { int y; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{declaratorDecl()}
/// matches \match{int y}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, DeclaratorDecl>
declaratorDecl;
/// Matches parameter variable declarations.
///
/// Given
/// \code
/// void f(int x);
/// \endcode
/// The matcher \matcher{parmVarDecl()}
/// matches \match{int x}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, ParmVarDecl>
parmVarDecl;
/// Matches C++ access specifier declarations.
///
/// Given
/// \code
/// class C {
/// public:
/// int a;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{accessSpecDecl()}
/// matches \match{public:}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, AccessSpecDecl>
accessSpecDecl;
/// Matches class bases.
///
/// Given
/// \code
/// class B {};
/// class C : public B {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasDirectBase(cxxBaseSpecifier()))}
/// matches \match{class C : public B {}}.
extern const internal::VariadicAllOfMatcher<CXXBaseSpecifier> cxxBaseSpecifier;
/// Matches constructor initializers.
///
/// Given
/// \code
/// class C {
/// C() : i(42) {}
/// int i;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxCtorInitializer()}
/// matches \match{i(42)}.
extern const internal::VariadicAllOfMatcher<CXXCtorInitializer>
cxxCtorInitializer;
/// Matches template arguments.
///
/// Given
/// \code
/// template <typename T> struct C {};
/// C<int> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{templateSpecializationType(hasAnyTemplateArgument(templateArgument()))}
/// matches \match{type=typestr$C<int>}.
extern const internal::VariadicAllOfMatcher<TemplateArgument> templateArgument;
/// Matches template arguments (with location info).
///
/// Given
/// \code
/// template <typename T> struct C {};
/// C<int> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{templateArgumentLoc()}
/// matches \match{int} in C<int>.
extern const internal::VariadicAllOfMatcher<TemplateArgumentLoc>
templateArgumentLoc;
/// Matches template name.
///
/// Given
/// \code
/// template<template <typename> class S> class X {};
/// template<typename T> class Y {};
/// X<Y> xi;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToTemplate(templateName())))}
/// matches the specialization \match{type=typestr$class X<Y>}
extern const internal::VariadicAllOfMatcher<TemplateName> templateName;
/// Matches non-type template parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{nonTypeTemplateParmDecl()}
/// matches \match{int N},
/// but does not match \nomatch{typename T}.
extern const internal::VariadicDynCastAllOfMatcher<Decl,
NonTypeTemplateParmDecl>
nonTypeTemplateParmDecl;
/// Matches template type parameter declarations.
///
/// Given
/// \code
/// template <typename T, int N> struct C {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{templateTypeParmDecl()}
/// matches \match{typename T},
/// but does not \nomatch{int N}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TemplateTypeParmDecl>
templateTypeParmDecl;
/// Matches template template parameter declarations.
///
/// Given
/// \code
/// template <template <typename> class Z, int N> struct C {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{templateTemplateParmDecl()}
/// matches \match{template <typename> class Z},
/// but does not match \nomatch{int N}.
extern const internal::VariadicDynCastAllOfMatcher<Decl,
TemplateTemplateParmDecl>
templateTemplateParmDecl;
/// Matches public C++ declarations and C++ base specifers that specify public
/// inheritance.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl(isPublic())}
/// matches \match{int a}.
///
/// Given
/// \code
/// class Base {};
/// class Derived1 : public Base {};
/// struct Derived2 : Base {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasAnyBase(cxxBaseSpecifier(isPublic()).bind("base")))}
/// matches \match{class Derived1 : public Base {}} and
/// \match{struct Derived2 : Base {}},
/// with \matcher{type=sub$cxxBaseSpecifier(isPublic())} matching
/// \match{sub=base$public Base} and \match{sub=base$Base}.
AST_POLYMORPHIC_MATCHER(isPublic,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_public;
}
/// Matches protected C++ declarations and C++ base specifers that specify
/// protected inheritance.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl(isProtected())}
/// matches \match{int b}.
///
/// \code
/// class Base {};
/// class Derived : protected Base {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasAnyBase(cxxBaseSpecifier(isProtected()).bind("base")))}
/// matches \match{class Derived : protected Base {}}, with
/// \matcher{type=sub$cxxBaseSpecifier(isProtected())} matching
/// \match{sub=base$Base}.
AST_POLYMORPHIC_MATCHER(isProtected,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_protected;
}
/// Matches private C++ declarations and C++ base specifers that specify private
/// inheritance.
///
/// Given
/// \code
/// class C {
/// public: int a;
/// protected: int b;
/// private: int c;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl(isPrivate())}
/// matches \match{int c}.
///
/// \code
/// struct Base {};
/// struct Derived1 : private Base {}; // \match{Base}
/// class Derived2 : Base {}; // \match{Base}
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasAnyBase(cxxBaseSpecifier(isPrivate()).bind("base")))}
/// matches \match{struct Derived1 : private Base {}} and
/// \match{class Derived2 : Base {}}, with
/// \matcher{type=sub$cxxBaseSpecifier(isPrivate())} matching
/// \match{sub=base;count=2$Base} each time.
AST_POLYMORPHIC_MATCHER(isPrivate,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl,
CXXBaseSpecifier)) {
return getAccessSpecifier(Node) == AS_private;
}
/// Matches non-static data members that are bit-fields.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl(isBitField())}
/// matches \match{int a : 2},
/// but does not match \nomatch{int b}.
AST_MATCHER(FieldDecl, isBitField) { return Node.isBitField(); }
/// Matches non-static data members that are bit-fields of the specified
/// bit width.
///
/// Given
/// \code
/// class C {
/// int a : 2;
/// int b : 4;
/// int c : 2;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl(hasBitWidth(2))}
/// matches \match{int a : 2} and \match{int c : 2},
/// but not \nomatch{int b : 4}.
AST_MATCHER_P(FieldDecl, hasBitWidth, unsigned, Width) {
return Node.isBitField() &&
Node.getBitWidthValue(Finder->getASTContext()) == Width;
}
/// Matches non-static data members that have an in-class initializer.
///
/// Given
/// \code
/// class C {
/// int a = 2;
/// int b = 3;
/// int c;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{fieldDecl(hasInClassInitializer(integerLiteral(equals(2))))}
/// matches \match{int a = 2},
/// but does not match \nomatch{int b = 3}.
/// The matcher \matcher{fieldDecl(hasInClassInitializer(anything()))}
/// matches \match{int a = 2} and \match{int b = 3},
/// but does not match \nomatch{int c}.
AST_MATCHER_P(FieldDecl, hasInClassInitializer, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *Initializer = Node.getInClassInitializer();
return (Initializer != nullptr &&
InnerMatcher.matches(*Initializer, Finder, Builder));
}
/// Determines whether the function is "main", which is the entry point
/// into an executable program.
///
/// Given
/// \code
/// void f();
/// int main() {}
/// \endcode
///
/// The matcher \matcher{functionDecl(isMain())} matches \match{int main() {}}.
AST_MATCHER(FunctionDecl, isMain) { return Node.isMain(); }
/// Matches the specialized template of a specialization declaration.
///
/// Given
/// \code
/// template<typename T> class A {}; // #1
/// template<> class A<int> {}; // #2
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasSpecializedTemplate(classTemplateDecl().bind("ctd")))}
/// matches \match{template<> class A<int> {}},
/// with \matcher{type=sub$classTemplateDecl()} matching the class template
/// declaration \match{sub=ctd$template <typename T> class A {}}.
AST_MATCHER_P(ClassTemplateSpecializationDecl, hasSpecializedTemplate,
internal::Matcher<ClassTemplateDecl>, InnerMatcher) {
const ClassTemplateDecl* Decl = Node.getSpecializedTemplate();
return (Decl != nullptr &&
InnerMatcher.matches(*Decl, Finder, Builder));
}
/// Matches an entity that has been implicitly added by the compiler (e.g.
/// implicit default/copy constructors).
///
/// Given
/// \code
/// struct S {};
/// void f(S obj) {
/// S copy = obj;
/// [&](){ return copy; };
/// }
/// \endcode
/// \compile_args{-std=c++11}
///
/// The matcher \matcher{cxxConstructorDecl(isImplicit(), isCopyConstructor())}
/// matches the implicit copy constructor of \match{S}.
/// The matcher \matcher{lambdaExpr(forEachLambdaCapture(
/// lambdaCapture(isImplicit())))} matches \match{[&](){ return copy; }},
/// because it implicitly captures \c copy .
AST_POLYMORPHIC_MATCHER(isImplicit,
AST_POLYMORPHIC_SUPPORTED_TYPES(Decl, Attr,
LambdaCapture)) {
return Node.isImplicit();
}
/// Matches templateSpecializationTypes, class template specializations,
/// variable template specializations, and function template specializations
/// that have at least one TemplateArgument matching the given InnerMatcher.
///
/// Given
/// \code
/// template<typename T> class A {};
/// template<> class A<double> {};
/// A<int> a;
///
/// template<typename T> void f() {};
/// void func() { f<int>(); };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(
/// refersToType(asString("int"))))}
/// matches \match{type=typestr$class A<int>}.
///
/// The matcher
/// \matcher{functionDecl(hasAnyTemplateArgument(
/// refersToType(asString("int"))))}
/// matches the instantiation of
/// \match{void f() {}}.
AST_POLYMORPHIC_MATCHER_P(
hasAnyTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
VarTemplateSpecializationDecl, FunctionDecl,
TemplateSpecializationType),
internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
return matchesFirstInRange(InnerMatcher, List.begin(), List.end(), Finder,
Builder) != List.end();
}
/// Causes all nested matchers to be matched with the specified traversal kind.
///
/// Given
/// \code
/// void foo()
/// {
/// int i = 3.0;
/// }
/// \endcode
/// The matcher
/// \matcher{traverse(TK_IgnoreUnlessSpelledInSource,
/// varDecl(hasInitializer(floatLiteral().bind("init")))
/// )}
/// matches \match{int i = 3.0} with "init" bound to \match{sub=init$3.0}.
template <typename T>
internal::Matcher<T> traverse(TraversalKind TK,
const internal::Matcher<T> &InnerMatcher) {
return internal::DynTypedMatcher::constructRestrictedWrapper(
new internal::TraversalMatcher<T>(TK, InnerMatcher),
InnerMatcher.getID().first)
.template unconditionalConvertTo<T>();
}
template <typename T>
internal::BindableMatcher<T>
traverse(TraversalKind TK, const internal::BindableMatcher<T> &InnerMatcher) {
return internal::BindableMatcher<T>(
internal::DynTypedMatcher::constructRestrictedWrapper(
new internal::TraversalMatcher<T>(TK, InnerMatcher),
InnerMatcher.getID().first)
.template unconditionalConvertTo<T>());
}
template <typename... T>
internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>
traverse(TraversalKind TK,
const internal::VariadicOperatorMatcher<T...> &InnerMatcher) {
return internal::TraversalWrapper<internal::VariadicOperatorMatcher<T...>>(
TK, InnerMatcher);
}
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
typename T, typename ToTypes>
internal::TraversalWrapper<
internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>>
traverse(TraversalKind TK, const internal::ArgumentAdaptingMatcherFuncAdaptor<
ArgumentAdapterT, T, ToTypes> &InnerMatcher) {
return internal::TraversalWrapper<
internal::ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T,
ToTypes>>(TK, InnerMatcher);
}
template <template <typename T, typename... P> class MatcherT, typename... P,
typename ReturnTypesF>
internal::TraversalWrapper<
internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>
traverse(TraversalKind TK,
const internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>
&InnerMatcher) {
return internal::TraversalWrapper<
internal::PolymorphicMatcher<MatcherT, ReturnTypesF, P...>>(TK,
InnerMatcher);
}
template <typename... T>
internal::Matcher<typename internal::GetClade<T...>::Type>
traverse(TraversalKind TK, const internal::MapAnyOfHelper<T...> &InnerMatcher) {
return traverse(TK, InnerMatcher.with());
}
/// Matches expressions that match InnerMatcher after any implicit AST
/// nodes are stripped off.
///
/// Parentheses and explicit casts are not discarded.
///
/// Given
/// \code
/// void f(int param) {
/// int a = 0;
/// int b = param;
/// const int c = 0;
/// const int d = param;
/// int e = (0U);
/// int f = (int)0.0;
/// const int g = ((int)(((0))));
/// }
/// \endcode
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringImplicit(integerLiteral())))}
/// matches \match{int a = 0} and \match{const int c = 0},
/// but not \nomatch{int e = (0U)} and \nomatch{((int)(((0)))}.
/// The matcher
/// \matcher{varDecl(hasInitializer(integerLiteral()))}
/// matches \match{int a = 0} and \match{const int c = 0},
/// but not \nomatch{int e = (0U)} and \nomatch{((int)(((0)))}.
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringImplicit(declRefExpr())))}
/// matches \match{int b = param} and \match{const int d = param}.
/// The matcher
/// \matcher{varDecl(hasInitializer(declRefExpr()))}
/// matches neither \nomatch{int b = param} nor \nomatch{const int d = param},
/// because an l-to-r-value cast happens.
AST_MATCHER_P(Expr, ignoringImplicit, internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImplicit(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after any implicit casts
/// are stripped off.
///
/// Parentheses and explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// const int a = 0;
/// char b = 0;
/// const int c = a;
/// int *d = arr;
/// long e = (long) 0l;
/// \endcode
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringImpCasts(integerLiteral())))}
/// matches \match{const int a = 0} and \match{char b = 0},
/// but does not match \nomatch{long e = (long) 0l} because of the c-style
/// case.
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringImpCasts(declRefExpr())))}
/// matches \match{const int c = a} and \match{int *d = arr}.
///
/// The matcher
/// \matcher{varDecl(hasInitializer(integerLiteral()))}
/// matches \match{const int a = 0},
/// but does not match \nomatch{char b = 0} because of the implicit cast to
/// \c char or \nomatch{long e = (long) 0l} because of the c-style cast.
///
/// The matcher \matcher{varDecl(hasInitializer(declRefExpr()))}
/// does not match \nomatch{const int c = a} because \c a is cast from an
/// l- to an r-value or \nomatch{int *d = arr} because the array-to-pointer
/// decay.
AST_MATCHER_P(Expr, ignoringImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreImpCasts(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after parentheses and
/// casts are stripped off.
///
/// Implicit and non-C Style casts are also discarded.
/// Given
/// \code
/// int a = 0;
/// char b = (0);
/// void* c = reinterpret_cast<char*>(0);
/// char d = char(0);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringParenCasts(integerLiteral())))}
/// matches \match{int a = 0}, \match{char b = (0)},
/// \match{void* c = reinterpret_cast<char*>(0)} and \match{type=name$d}.
///
/// The matcher
/// \matcher{varDecl(hasInitializer(integerLiteral()))}
/// matches \match{int a = 0}.
AST_MATCHER_P(Expr, ignoringParenCasts, internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenCasts(), Finder, Builder);
}
/// Matches expressions that match InnerMatcher after implicit casts and
/// parentheses are stripped off.
///
/// Explicit casts are not discarded.
/// Given
/// \code
/// int arr[5];
/// int a = 0;
/// char b = (0);
/// const int c = a;
/// int *d = (arr);
/// long e = ((long) 0l);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral())))}
/// matches \match{int a = 0} and \match{char b = (0)},
/// but does not match \nomatch{long e = ((long) 0l)} because of the c-style
/// cast.
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringParenImpCasts(declRefExpr())))}
/// matches \match{const int c = a} and \match{int *d = (arr)}.
///
/// The matcher \matcher{varDecl(hasInitializer(integerLiteral()))} matches
/// \match{int a = 0}, but does not match \nomatch{char b = (0)} or
/// \nomatch{long e = ((long) 0l)} because of the casts.
///
/// The matcher \matcher{varDecl(hasInitializer(declRefExpr()))}
/// does not match \nomatch{const int c = a} because of the l- to r-value cast,
/// or \nomatch{int *d = (arr)} because of the array-to-pointer decay.
AST_MATCHER_P(Expr, ignoringParenImpCasts,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.IgnoreParenImpCasts(), Finder, Builder);
}
/// Matches types that match InnerMatcher after any parens are stripped.
///
/// Given
/// \code
/// void (*fp)(void);
/// \endcode
/// The matcher
/// \matcher{varDecl(hasType(pointerType(pointee(ignoringParens(functionType())))))}
/// matches \match{void (*fp)(void)}.
AST_MATCHER_P_OVERLOAD(QualType, ignoringParens, internal::Matcher<QualType>,
InnerMatcher, 0) {
return InnerMatcher.matches(Node.IgnoreParens(), Finder, Builder);
}
/// Overload \c ignoringParens for \c Expr.
///
/// Given
/// \code
/// const char* str = ("my-string");
/// \endcode
/// The matcher
/// \matcher{implicitCastExpr(hasSourceExpression(ignoringParens(stringLiteral())))}
/// would match the implicit cast resulting from the assignment
/// \match{("my-string")}.
AST_MATCHER_P_OVERLOAD(Expr, ignoringParens, internal::Matcher<Expr>,
InnerMatcher, 1) {
const Expr *E = Node.IgnoreParens();
return InnerMatcher.matches(*E, Finder, Builder);
}
/// Matches expressions that are instantiation-dependent even if it is
/// neither type- nor value-dependent.
///
/// In the following example, the expression sizeof(sizeof(T() + T()))
/// is instantiation-dependent (since it involves a template parameter T),
/// but is neither type- nor value-dependent, since the type of the inner
/// sizeof is known (std::size_t) and therefore the size of the outer
/// sizeof is known.
/// \code
/// template<typename T>
/// void f(T x, T y) { sizeof(T() + T()); }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{expr(isInstantiationDependent())}
/// matches \match{sizeof(T() + T())},
/// \match{(T() + T())},
/// \match{T() + T()} and two time \match{count=2$T()}.
AST_MATCHER(Expr, isInstantiationDependent) {
return Node.isInstantiationDependent();
}
/// Matches expressions that are type-dependent because the template type
/// is not yet instantiated.
///
/// For example, the expressions "x" and "x + y" are type-dependent in
/// the following code, but "y" is not type-dependent:
/// \code
/// template<typename T>
/// void add(T x, int y) {
/// x + y;
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{expr(isTypeDependent())}
/// matches \match{x + y} and \match{x}.
AST_MATCHER(Expr, isTypeDependent) { return Node.isTypeDependent(); }
/// Matches expression that are value-dependent because they contain a
/// non-type template parameter.
///
/// For example, the array bound of "Chars" in the following example is
/// value-dependent.
/// \code
/// template<int Size> int f() { return Size; }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{expr(isValueDependent())}
/// matches the return value \match{Size}.
AST_MATCHER(Expr, isValueDependent) { return Node.isValueDependent(); }
/// Matches templateSpecializationType, class template specializations,
/// variable template specializations, and function template specializations
/// where the n'th TemplateArgument matches the given InnerMatcher.
///
/// Given
/// \code
/// template<typename T, typename U> class A {};
/// A<double, int> b;
/// A<int, double> c;
///
/// template<typename T> void f() {}
/// void func() { f<int>(); };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasTemplateArgument(
/// 1, refersToType(asString("int"))))}
/// matches the specialization \match{type=typestr$class A<double, int>}.
///
/// The matcher \matcher{functionDecl(hasTemplateArgument(0,
/// refersToType(asString("int"))))}
/// matches the specialization of \match{void f() {}}.
AST_POLYMORPHIC_MATCHER_P2(
hasTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
VarTemplateSpecializationDecl, FunctionDecl,
TemplateSpecializationType),
unsigned, N, internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> List =
internal::getTemplateSpecializationArgs(Node);
if (List.size() <= N)
return false;
return InnerMatcher.matches(List[N], Finder, Builder);
}
/// Matches if the number of template arguments equals \p N.
///
/// Given
/// \code
/// template<typename T> struct C {};
/// C<int> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(templateArgumentCountIs(1))}
/// matches \match{type=typestr$struct C<int>}.
AST_POLYMORPHIC_MATCHER_P(
templateArgumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
TemplateSpecializationType),
unsigned, N) {
return internal::getTemplateSpecializationArgs(Node).size() == N;
}
/// Matches a TemplateArgument that refers to a certain type.
///
/// Given
/// \code
/// struct X {};
/// template<typename T> struct A {};
/// A<X> a;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType(
/// recordType(hasDeclaration(recordDecl(hasName("X")))))))}
/// matches the specialization \match{type=typestr$struct A<struct X>}.
AST_MATCHER_P(TemplateArgument, refersToType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Type)
return false;
return InnerMatcher.matches(Node.getAsType(), Finder, Builder);
}
/// Matches a TemplateArgument that refers to a certain template.
///
/// Given
/// \code
/// template<template <typename> class S> class X {};
/// template<typename T> class Y {};
/// X<Y> xi;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToTemplate(templateName())))}
/// matches the specialization \match{type=typestr$class X<Y>}
AST_MATCHER_P(TemplateArgument, refersToTemplate,
internal::Matcher<TemplateName>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Template)
return false;
return InnerMatcher.matches(Node.getAsTemplate(), Finder, Builder);
}
/// Matches a canonical TemplateArgument that refers to a certain
/// declaration.
///
/// Given
/// \code
/// struct B { int next; };
/// template<int(B::*next_ptr)> struct A {};
/// A<&B::next> a;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{classTemplateSpecializationDecl(hasAnyTemplateArgument(
/// refersToDeclaration(fieldDecl(hasName("next")).bind("next"))))}
/// matches the specialization \match{type=typestr$struct A<&B::next>}
/// with \matcher{type=sub$fieldDecl(hasName("next"))} matching
/// \match{sub=next$int next}.
AST_MATCHER_P(TemplateArgument, refersToDeclaration,
internal::Matcher<Decl>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Declaration)
return InnerMatcher.matches(*Node.getAsDecl(), Finder, Builder);
return false;
}
/// Matches a sugar TemplateArgument that refers to a certain expression.
///
/// Given
/// \code
/// struct B { int next; };
/// template<int(B::*next_ptr)> struct A {};
/// A<&B::next> a;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{templateSpecializationType(hasAnyTemplateArgument(
/// isExpr(hasDescendant(declRefExpr(to(fieldDecl(hasName("next")).bind("next")))))))}
/// matches the specialization \match{type=typestr$A<&struct B::next>}
/// with \matcher{type=sub$fieldDecl(hasName("next"))} matching
/// \match{sub=next$int next}.
AST_MATCHER_P(TemplateArgument, isExpr, internal::Matcher<Expr>, InnerMatcher) {
if (Node.getKind() == TemplateArgument::Expression)
return InnerMatcher.matches(*Node.getAsExpr(), Finder, Builder);
return false;
}
/// Matches a TemplateArgument that is an integral value.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(isIntegral()))}
/// matches the implicitly declared specialization
/// \match{type=typestr$struct C<42>} from the instantiation for the type of the
/// variable \c c .
AST_MATCHER(TemplateArgument, isIntegral) {
return Node.getKind() == TemplateArgument::Integral;
}
/// Matches a TemplateArgument that refers to an integral type.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(refersToIntegralType(asString("int"))))}
/// matches the implicitly declared specialization
/// \match{type=typestr$struct C<42>} from the instantiation for the type of the
/// variable \c c .
AST_MATCHER_P(TemplateArgument, refersToIntegralType,
internal::Matcher<QualType>, InnerMatcher) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return InnerMatcher.matches(Node.getIntegralType(), Finder, Builder);
}
/// Matches a TemplateArgument of integral type with a given value.
///
/// Note that 'Value' is a string as the template argument's value is
/// an arbitrary precision integer. 'Value' must be euqal to the canonical
/// representation of that integral value in base 10.
///
/// Given
/// \code
/// template<int T> struct C {};
/// C<42> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{classTemplateSpecializationDecl(
/// hasAnyTemplateArgument(equalsIntegralValue("42")))}
/// matches the implicitly declared specialization
/// \match{type=typestr$struct C<42>} from the instantiation for the type of the
/// variable \c c .
AST_MATCHER_P(TemplateArgument, equalsIntegralValue,
std::string, Value) {
if (Node.getKind() != TemplateArgument::Integral)
return false;
return toString(Node.getAsIntegral(), 10) == Value;
}
/// Matches an Objective-C autorelease pool statement.
///
/// Given
/// \code
/// @autoreleasepool {
/// int x = 0;
/// }
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{autoreleasePoolStmt(stmt())} matches the declaration of
/// \match{int x = 0} inside the autorelease pool.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
ObjCAutoreleasePoolStmt> autoreleasePoolStmt;
/// Matches any value declaration.
///
/// Given
/// \code
/// enum X { A, B, C };
/// void F();
/// int V = 0;
/// \endcode
/// The matcher \matcher{valueDecl()}
/// matches \match{A}, \match{B}, \match{C}, \match{void F()}
/// and \match{int V = 0}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, ValueDecl> valueDecl;
/// Matches C++ constructor declarations.
///
/// Given
/// \code
/// class Foo {
/// public:
/// Foo();
/// Foo(int);
/// int DoSomething();
/// };
///
/// struct Bar {};
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxConstructorDecl()}
/// matches \match{Foo()} and \match{Foo(int)}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConstructorDecl>
cxxConstructorDecl;
/// Matches explicit C++ destructor declarations.
///
/// Given
/// \code
/// class Foo {
/// public:
/// virtual ~Foo();
/// };
///
/// struct Bar {};
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxDestructorDecl()}
/// matches \match{virtual ~Foo()}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDestructorDecl>
cxxDestructorDecl;
/// Matches enum declarations.
///
/// Given
/// \code
/// enum X { A, B, C };
/// \endcode
///
/// The matcher \matcher{enumDecl()}
/// matches the enum \match{enum X { A, B, C }}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumDecl> enumDecl;
/// Matches enum constants.
///
/// Given
/// \code
/// enum X {
/// A, B, C
/// };
/// \endcode
/// The matcher \matcher{enumConstantDecl()}
/// matches \match{A}, \match{B} and \match{C}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, EnumConstantDecl>
enumConstantDecl;
/// Matches tag declarations.
///
/// Given
/// \code
/// class X;
/// template<class T> class Z {};
/// struct S {};
/// union U {};
/// enum E { A, B, C };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{tagDecl()}
/// matches \match{class X}, \match{class Z {}}, the implicit class
/// declaration \match{class Z}, \match{struct S {}},
/// the implicit class declaration \match{struct S}, \match{union U {}},
/// the implicit class declaration \match{union U}
/// and \match{enum E { A, B, C }}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, TagDecl> tagDecl;
/// Matches method declarations.
///
/// Given
/// \code
/// class X { void y(); };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxMethodDecl()}
/// matches \match{void y()}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXMethodDecl>
cxxMethodDecl;
/// Matches conversion operator declarations.
///
/// Given
/// \code
/// class X { operator int() const; };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxConversionDecl()}
/// matches \match{operator int() const}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXConversionDecl>
cxxConversionDecl;
/// Matches user-defined and implicitly generated deduction guide.
///
/// Given
/// \code
/// template<typename T>
/// class X { X(int); };
/// X(int) -> X<int>;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++17-or-later}
///
/// The matcher \matcher{cxxDeductionGuideDecl()}
/// matches the written deduction guide
/// \match{type=typestr$auto (int) -> X<int>},
/// the implicit copy deduction guide \match{type=typestr$auto (int) -> X<T>}
/// and the implicitly declared deduction guide
/// \match{type=typestr$auto (X<T>) -> X<T>}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, CXXDeductionGuideDecl>
cxxDeductionGuideDecl;
/// Matches concept declarations.
///
/// Given
/// \code
/// template<typename T> concept my_concept = true;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++20-or-later}
///
/// The matcher \matcher{conceptDecl()}
/// matches \match{template<typename T>
/// concept my_concept = true}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, ConceptDecl>
conceptDecl;
/// Matches variable declarations.
///
/// Note: this does not match declarations of member variables, which are
/// "field" declarations in Clang parlance.
///
/// Example matches a
/// \code
/// int a;
/// struct Foo {
/// int x;
/// };
/// void bar(int val);
/// \endcode
///
/// The matcher \matcher{varDecl()}
/// matches \match{int a} and \match{int val}, but not \nomatch{int x}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, VarDecl> varDecl;
/// Matches field declarations.
///
/// Given
/// \code
/// int a;
/// struct Foo {
/// int x;
/// };
/// void bar(int val);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{fieldDecl()}
/// matches \match{int x}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FieldDecl> fieldDecl;
/// Matches indirect field declarations.
///
/// Given
/// \code
/// struct X { struct { int a; }; };
/// \endcode
/// The matcher \matcher{indirectFieldDecl()}
/// matches \match{a}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, IndirectFieldDecl>
indirectFieldDecl;
/// Matches function declarations.
///
/// Given
/// \code
/// void f();
/// \endcode
///
/// The matcher \matcher{functionDecl()}
/// matches \match{void f()}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionDecl>
functionDecl;
/// Matches C++ function template declarations.
///
/// Example matches f
/// \code
/// template<class T> void f(T t) {}
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{functionTemplateDecl()}
/// matches \match{template<class T> void f(T t) {}}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FunctionTemplateDecl>
functionTemplateDecl;
/// Matches friend declarations.
///
/// Given
/// \code
/// class X { friend void foo(); };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{friendDecl()}
/// matches \match{friend void foo()}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, FriendDecl> friendDecl;
/// Matches statements.
///
/// Given
/// \code
/// void foo(int a) { { ++a; } }
/// \endcode
/// The matcher \matcher{stmt()}
/// matches the function body itself \match{{ { ++a; } }}, the compound
/// statement \match{{ ++a; }}, the expression \match{++a} and \match{a}.
extern const internal::VariadicAllOfMatcher<Stmt> stmt;
/// Matches declaration statements.
///
/// Given
/// \code
/// void foo() {
/// int a;
/// }
/// \endcode
/// The matcher \matcher{declStmt()}
/// matches \match{int a;}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclStmt> declStmt;
/// Matches member expressions.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// int a; static int b;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{memberExpr()}
/// matches \match{this->x}, \match{x}, \match{y.x}, \match{a}, \match{this->b}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, MemberExpr> memberExpr;
/// Matches unresolved member expressions.
///
/// Given
/// \code
/// struct X {
/// template <class T> void f();
/// void g();
/// };
/// template <class T> void h() { X x; x.f<T>(); x.g(); }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unresolvedMemberExpr()}
/// matches \match{x.f<T>}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedMemberExpr>
unresolvedMemberExpr;
/// Matches member expressions where the actual member referenced could not be
/// resolved because the base expression or the member name was dependent.
///
/// Given
/// \code
/// template <class T> void f() { T t; t.g(); }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxDependentScopeMemberExpr()}
/// matches \match{t.g}
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXDependentScopeMemberExpr>
cxxDependentScopeMemberExpr;
/// Matches call expressions.
///
/// Example matches x.y() and y()
/// \code
/// struct X { void foo(); };
/// void bar();
/// void foobar() {
/// X x;
/// x.foo();
/// bar();
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{callExpr()}
/// matches \match{x.foo()} and \match{bar()};
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CallExpr> callExpr;
/// Matches call expressions which were resolved using ADL.
///
/// Given
/// \code
/// namespace NS {
/// struct X {};
/// void y(X);
/// }
///
/// void y(...);
///
/// void test() {
/// NS::X x;
/// y(x); // Matches
/// NS::y(x); // Doesn't match
/// y(42); // Doesn't match
/// using NS::y;
/// y(x); // Found by both unqualified lookup and ADL, doesn't match
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{callExpr(usesADL())}
/// matches \match{y(x)}, but not \nomatch{y(42)} or \nomatch{NS::y(x)}.
AST_MATCHER(CallExpr, usesADL) { return Node.usesADL(); }
/// Matches lambda expressions.
///
/// Given
/// \code
/// void f() {
/// []() { return 5; };
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{lambdaExpr()} matches \match{[]() { return 5; }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LambdaExpr> lambdaExpr;
/// Matches member call expressions.
///
/// Given
/// \code
/// struct X {
/// void y();
/// void m() { y(); }
/// };
/// void f();
/// void g() {
/// X x;
/// x.y();
/// f();
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxMemberCallExpr()} matches \match{x.y()} and
/// \match{y()}, but not \nomatch{f()}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXMemberCallExpr>
cxxMemberCallExpr;
/// Matches ObjectiveC Message invocation expressions.
///
/// The innermost message send invokes the "alloc" class method on the
/// NSString class, while the outermost message send invokes the
/// "initWithString" instance method on the object returned from
/// NSString's "alloc". This matcher should match both message sends.
/// \code
/// [[NSString alloc] initWithString:@"Hello"]
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{objcMessageExpr()} matches
/// \match{[[NSString alloc] initWithString:@"Hello"]}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCMessageExpr>
objcMessageExpr;
/// Matches ObjectiveC String literal expressions.
///
/// Example matches @"abcd"
/// \code
/// NSString *s = @"abcd";
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCStringLiteral>
objcStringLiteral;
/// Matches Objective-C interface declarations.
///
/// Example matches Foo
/// \code
/// @interface Foo
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCInterfaceDecl>
objcInterfaceDecl;
/// Matches Objective-C implementation declarations.
///
/// Example matches Foo
/// \code
/// @implementation Foo
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCImplementationDecl>
objcImplementationDecl;
/// Matches Objective-C protocol declarations.
///
/// Example matches FooDelegate
/// \code
/// @protocol FooDelegate
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCProtocolDecl>
objcProtocolDecl;
/// Matches Objective-C category declarations.
///
/// Example matches Foo (Additions)
/// \code
/// @interface Foo (Additions)
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryDecl>
objcCategoryDecl;
/// Matches Objective-C category definitions.
///
/// Example matches Foo (Additions)
/// \code
/// @implementation Foo (Additions)
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCCategoryImplDecl>
objcCategoryImplDecl;
/// Matches Objective-C method declarations.
///
/// Example matches both declaration and definition of -[Foo method]
/// \code
/// @interface Foo
/// - (void)method;
/// @end
///
/// @implementation Foo
/// - (void)method {}
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCMethodDecl>
objcMethodDecl;
/// Matches block declarations.
///
/// Example matches the declaration of the nameless block printing an input
/// integer.
///
/// \code
/// myFunc(^(int p) {
/// printf("%d", p);
/// })
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, BlockDecl>
blockDecl;
/// Matches Objective-C instance variable declarations.
///
/// Example matches _enabled
/// \code
/// @implementation Foo {
/// BOOL _enabled;
/// }
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCIvarDecl>
objcIvarDecl;
/// Matches Objective-C property declarations.
///
/// Example matches enabled
/// \code
/// @interface Foo
/// @property BOOL enabled;
/// @end
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Decl, ObjCPropertyDecl>
objcPropertyDecl;
/// Matches Objective-C \@throw statements.
///
/// Example matches \@throw
/// \code
/// @throw obj;
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtThrowStmt>
objcThrowStmt;
/// Matches Objective-C @try statements.
///
/// Example matches @try
/// \code
/// @try {}
/// @catch (...) {}
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtTryStmt>
objcTryStmt;
/// Matches Objective-C @catch statements.
///
/// Example matches @catch
/// \code
/// @try {}
/// @catch (...) {}
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtCatchStmt>
objcCatchStmt;
/// Matches Objective-C @finally statements.
///
/// Example matches @finally
/// \code
/// @try {}
/// @finally {}
/// \endcode
/// \compile_args{-ObjC}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCAtFinallyStmt>
objcFinallyStmt;
/// Matches expressions that introduce cleanups to be run at the end
/// of the sub-expression's evaluation.
///
/// Example matches std::string()
/// \code
/// struct A { ~A(); };
/// void f(A);
/// void g(A&);
/// void h() {
/// A a = A{};
/// f(A{});
/// f(a);
/// g(a);
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{exprWithCleanups()} matches \match{A{}},
/// \match{f(A{})} and \match{f(a)},
/// but does not match passing \nomatch{g(a)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExprWithCleanups>
exprWithCleanups;
/// Matches init list expressions.
///
/// Given
/// \code
/// int a[] = { 1, 2 };
/// struct B { int x, y; };
/// struct B b = { 5, 6 };
/// \endcode
/// The matcher \matcher{initListExpr()}
/// matches \match{{ 1, 2 }} and \match{{ 5, 6 }}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, InitListExpr>
initListExpr;
/// Matches the syntactic form of init list expressions
/// (if expression have it).
///
/// Given
/// \code
/// int a[] = { 1, 2 };
/// struct B { int x, y; };
/// struct B b = { 5, 6 };
/// \endcode
/// \compile_args{-std=c}
///
/// The matcher
/// \matcher{initListExpr(hasSyntacticForm(expr().bind("syntactic")))}
/// matches \match{{ 1, 2 }} and \match{{ 5, 6 }}.
AST_MATCHER_P(InitListExpr, hasSyntacticForm, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *SyntForm = Node.getSyntacticForm();
return (SyntForm != nullptr &&
InnerMatcher.matches(*SyntForm, Finder, Builder));
}
/// Matches C++ initializer list expressions.
///
/// Given
/// \code
/// namespace std {
/// template <typename T>
/// class initializer_list {
/// const T* begin;
/// const T* end;
/// };
/// }
/// template <typename T> class vector {
/// public: vector(std::initializer_list<T>) {}
/// };
///
/// vector<int> a({ 1, 2, 3 });
/// vector<int> b = { 4, 5 };
/// int c[] = { 6, 7 };
/// struct pair { int x; int y; };
/// pair d = { 8, 9 };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++11-or-later,-nostdinc++}
/// The matcher \matcher{cxxStdInitializerListExpr()}
/// matches \match{{ 1, 2, 3 }} and \match{{ 4, 5 }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXStdInitializerListExpr>
cxxStdInitializerListExpr;
/// Matches implicit initializers of init list expressions.
///
/// Given
/// \code
/// struct point { double x; double y; };
/// struct point pt = { .x = 42.0 };
/// \endcode
/// The matcher
/// \matcher{initListExpr(has(implicitValueInitExpr().bind("implicit")))}
/// matches \match{{ .x = 42.0 }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitValueInitExpr>
implicitValueInitExpr;
/// Matches paren list expressions.
/// ParenListExprs don't have a predefined type and are used for late parsing.
/// In the final AST, they can be met in template declarations.
///
/// Given
/// \code
/// template<typename T> class X {
/// void f() {
/// X x(*this);
/// int a = 0, b = 1; int i = (a, b);
/// }
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{parenListExpr()}
/// matches \match{(*this)},
/// but does not match \nomatch{(a, b)}
/// because (a, b) has a predefined type and is a ParenExpr, not a
/// ParenListExpr.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenListExpr>
parenListExpr;
/// Matches substitutions of non-type template parameters.
///
/// Given
/// \code
/// template <int N>
/// struct A { static const int n = N; };
/// struct B : public A<42> {};
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{substNonTypeTemplateParmExpr()}
/// matches \match{N} in the right-hand side of "static const int n = N;"
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
SubstNonTypeTemplateParmExpr>
substNonTypeTemplateParmExpr;
/// Matches using declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using X::x;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{usingDecl()}
/// matches \match{using X::x}
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDecl> usingDecl;
/// Matches using-enum declarations.
///
/// Given
/// \code
/// namespace X { enum x { val1, val2 }; }
/// using enum X::x;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{usingEnumDecl()}
/// matches \match{using enum X::x}
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingEnumDecl>
usingEnumDecl;
/// Matches using namespace declarations.
///
/// Given
/// \code
/// namespace X { int x; }
/// using namespace X;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{usingDirectiveDecl()}
/// matches \match{using namespace X}
extern const internal::VariadicDynCastAllOfMatcher<Decl, UsingDirectiveDecl>
usingDirectiveDecl;
/// Matches reference to a name that can be looked up during parsing
/// but could not be resolved to a specific declaration.
///
/// Given
/// \code
/// template<typename T>
/// T foo() { T a; return a; }
/// template<typename T>
/// void bar() {
/// foo<T>();
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unresolvedLookupExpr()}
/// matches \match{foo<T>}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnresolvedLookupExpr>
unresolvedLookupExpr;
/// Matches unresolved using value declarations.
///
/// Given
/// \code
/// template<typename X>
/// class C : private X {
/// using X::x;
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unresolvedUsingValueDecl()}
/// matches \match{using X::x}
extern const internal::VariadicDynCastAllOfMatcher<Decl,
UnresolvedUsingValueDecl>
unresolvedUsingValueDecl;
/// Matches unresolved using value declarations that involve the
/// typename.
///
/// Given
/// \code
/// template <typename T>
/// struct Base { typedef T Foo; };
///
/// template<typename T>
/// struct S : private Base<T> {
/// using typename Base<T>::Foo;
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unresolvedUsingTypenameDecl()}
/// matches \match{using typename Base<T>::Foo}
extern const internal::VariadicDynCastAllOfMatcher<Decl,
UnresolvedUsingTypenameDecl>
unresolvedUsingTypenameDecl;
/// Matches a constant expression wrapper.
///
/// Given
/// \code
/// void f(int a) {
/// switch (a) {
/// case 37: break;
/// }
/// }
/// \endcode
///
/// The matcher \matcher{constantExpr()} matches \match{37}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConstantExpr>
constantExpr;
/// Matches parentheses used in expressions.
///
/// Given
/// \code
/// int foo() { return 1; }
/// int bar() {
/// int a = (foo() + 1);
/// }
/// \endcode
///
/// The matcher \matcher{parenExpr()} matches \match{(foo() + 1)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ParenExpr> parenExpr;
/// Matches constructor call expressions (including implicit ones).
///
/// Given
/// \code
/// struct string {
/// string(const char*);
/// string(const char*s, int n);
/// };
/// void f(const string &a, const string &b);
/// void foo(char *ptr, int n) {
/// f(string(ptr, n), ptr);
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxConstructExpr()} matches \match{string(ptr, n)}
/// and \match{ptr} within arguments of \c f .
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstructExpr>
cxxConstructExpr;
/// Matches unresolved constructor call expressions.
///
/// Given
/// \code
/// template <typename T>
/// void f(const T& t) { return T(t); }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{cxxUnresolvedConstructExpr()} matches
/// \match{T(t)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXUnresolvedConstructExpr>
cxxUnresolvedConstructExpr;
/// Matches implicit and explicit this expressions.
///
/// Given
/// \code
/// struct foo {
/// int i;
/// int f() { return i; }
/// int g() { return this->i; }
/// };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxThisExpr()}
/// matches \match{this} of \c this->i and the implicit \c this expression
/// of \match{i}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThisExpr>
cxxThisExpr;
/// Matches nodes where temporaries are created.
///
/// Given
/// \code
/// struct S {
/// S() { } // User defined constructor makes S non-POD.
/// ~S() { } // User defined destructor makes it non-trivial.
/// };
/// void test() {
/// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxBindTemporaryExpr()}
/// matches the constructor call \match{S()}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBindTemporaryExpr>
cxxBindTemporaryExpr;
/// Matches nodes where temporaries are materialized.
///
/// Example: Given
/// \code
/// struct T {void func();};
/// T f();
/// void g(T);
/// void foo() {
/// T u(f());
/// g(f());
/// f().func();
/// f(); // does not match
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{materializeTemporaryExpr()} matches
/// \match{std=c++14-or-earlier;count=3$f()} three times before C++17 and it
/// matches \match{std=c++17-or-later$f()} one time with C++17 and later for
/// \c f().func() , but it does not match the \nomatch{f()} in the last line in
/// any version.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
MaterializeTemporaryExpr>
materializeTemporaryExpr;
/// Matches new expressions.
///
/// Given
/// \code
/// void* operator new(decltype(sizeof(void*)));
/// struct X {};
/// void foo() {
/// auto* x = new X;
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{cxxNewExpr()}
/// matches \match{new X}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNewExpr> cxxNewExpr;
/// Matches delete expressions.
///
/// Given
/// \code
/// void* operator new(decltype(sizeof(void*)));
/// void operator delete(void*);
/// struct X {};
/// void foo() {
/// auto* x = new X;
/// delete x;
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{cxxDeleteExpr()}
/// matches \match{delete x}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDeleteExpr>
cxxDeleteExpr;
/// Matches noexcept expressions.
///
/// Given
/// \code
/// bool a() noexcept;
/// bool b() noexcept(true);
/// bool c() noexcept(false);
/// bool d() noexcept(noexcept(a()));
/// bool e = noexcept(b()) || noexcept(c());
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{cxxNoexceptExpr()}
/// matches \match{noexcept(a())}, \match{noexcept(b())} and
/// \match{noexcept(c())}, but does not match the noexcept specifier in the
/// declarations a, b, c or d.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNoexceptExpr>
cxxNoexceptExpr;
/// Matches a loop initializing the elements of an array in a number of
/// contexts:
/// * in the implicit copy/move constructor for a class with an array member
/// * when a lambda-expression captures an array by value
/// * when a decomposition declaration decomposes an array
///
/// Given
/// \code
/// void testLambdaCapture() {
/// int a[10];
/// [a]() {};
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{arrayInitLoopExpr()} matches the implicit loop that
/// initializes each element of the implicit array field inside the lambda
/// object, that represents the array \match{a} captured by value.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ArrayInitLoopExpr>
arrayInitLoopExpr;
/// The arrayInitIndexExpr consists of two subexpressions: a common expression
/// (the source array) that is evaluated once up-front, and a per-element
/// initializer that runs once for each array element. Within the per-element
/// initializer, the current index may be obtained via an ArrayInitIndexExpr.
///
/// Given
/// \code
/// void testStructuredBinding() {
/// int a[2] = {1, 2};
/// auto [x, y] = a;
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{type=none$arrayInitIndexExpr()} matches the array index
/// that implicitly iterates over the array `a` to copy each element to the
/// anonymous array that backs the structured binding.
/// \match{}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ArrayInitIndexExpr>
arrayInitIndexExpr;
/// Matches array subscript expressions.
///
/// Given
/// \code
/// void foo() {
/// int a[2] = {0, 1};
/// int i = a[1];
/// }
/// \endcode
/// The matcher \matcher{arraySubscriptExpr()}
/// matches \match{a[1]}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ArraySubscriptExpr>
arraySubscriptExpr;
/// Matches the value of a default argument at the call site.
///
/// Given
/// \code
/// void f(int x, int y = 0);
/// void g() {
/// f(42);
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{callExpr(has(cxxDefaultArgExpr()))}
/// matches the \c CXXDefaultArgExpr placeholder inserted for the default value
/// of the second parameter in the call expression \match{f(42)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDefaultArgExpr>
cxxDefaultArgExpr;
/// Matches overloaded operator calls.
///
/// Note that if an operator isn't overloaded, it won't match. Instead, use
/// binaryOperator matcher.
/// Currently it does not match operators such as new delete.
/// FIXME: figure out why these do not match?
///
/// Given
/// \code
/// struct ostream;
/// ostream &operator<< (ostream &out, int i) { };
/// void f(ostream& o, int b, int c) {
/// o << b << c;
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxOperatorCallExpr()} matches \match{o << b << c}
/// and \match{o << b}.
/// See also the binaryOperation() matcher for more-general matching of binary
/// uses of this AST node.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXOperatorCallExpr>
cxxOperatorCallExpr;
/// Matches C++17 fold expressions.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr()} matches \match{(0 + ... + args)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXFoldExpr>
cxxFoldExpr;
/// Matches rewritten binary operators
///
/// Example matches use of "<":
/// \code
/// struct HasSpaceshipMem {
/// int a;
/// constexpr bool operator==(const HasSpaceshipMem&) const = default;
/// };
/// void compare() {
/// HasSpaceshipMem hs1, hs2;
/// if (hs1 != hs2)
/// return;
/// }
/// \endcode
/// \compile_args{-std=c++20-or-later}
///
/// The matcher \matcher{cxxRewrittenBinaryOperator()} matches
/// \match{hs1 != hs2}.
///
/// See also the binaryOperation() matcher for more-general matching
/// of this AST node.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
CXXRewrittenBinaryOperator>
cxxRewrittenBinaryOperator;
/// Matches expressions.
///
/// Given
/// \code
/// int f(int x, int y) { return x + y; }
/// \endcode
///
/// The matcher \matcher{expr()} matches \match{x + y} once,
/// \match{count=2$x} twice and \match{count=2$y} twice, matching the
/// \c DeclRefExpr , and the \c ImplicitCastExpr that does an l- to r-value
/// cast.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, Expr> expr;
/// Matches expressions that refer to declarations.
///
/// Given
/// \code
/// void f(bool x) {
/// if (x) {}
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
///
/// The matcher \matcher{declRefExpr()} matches \match{x}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DeclRefExpr>
declRefExpr;
/// Matches a reference to an ObjCIvar.
///
/// Given
/// \code
/// @implementation A {
/// NSString *a;
/// }
/// - (void) init {
/// a = @"hello";
/// }
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{objcIvarRefExpr()} matches \match{a}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ObjCIvarRefExpr>
objcIvarRefExpr;
/// Matches a reference to a block.
///
/// Given
/// \code
/// void f() { ^{}(); }
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{blockExpr()} matches \match{^{}}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BlockExpr> blockExpr;
/// Matches if statements.
///
/// Given
/// \code
/// void foo(int x) {
/// if (x) {}
/// }
/// \endcode
///
/// The matcher \matcher{ifStmt()} matches \match{if (x) {}}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IfStmt> ifStmt;
/// Matches for statements.
///
/// Given
/// \code
/// void foo() {
/// for (;;) {}
/// int i[] = {1, 2, 3}; for (auto a : i);
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{forStmt()} matches \match{for (;;) {}},
/// but not \nomatch{for (auto a : i);}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ForStmt> forStmt;
/// Matches the increment statement of a for loop.
///
/// Given
/// \code
/// void foo(int N) {
/// for (int x = 0; x < N; ++x) { }
/// }
/// \endcode
/// The matcher
/// \matcher{forStmt(hasIncrement(unaryOperator(hasOperatorName("++"))))}
/// matches \match{for (int x = 0; x < N; ++x) { }}
AST_MATCHER_P(ForStmt, hasIncrement, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Increment = Node.getInc();
return (Increment != nullptr &&
InnerMatcher.matches(*Increment, Finder, Builder));
}
/// Matches the initialization statement of a for loop.
///
/// Given
/// \code
/// void foo(int N) {
/// for (int x = 0; x < N; ++x) { }
/// }
/// \endcode
/// The matcher \matcher{forStmt(hasLoopInit(declStmt()))}
/// matches \match{for (int x = 0; x < N; ++x) { }}
AST_MATCHER_P(ForStmt, hasLoopInit, internal::Matcher<Stmt>,
InnerMatcher) {
const Stmt *const Init = Node.getInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// Matches range-based for statements.
///
/// Given
/// \code
/// void foo() {
/// int i[] = {1, 2, 3}; for (auto a : i);
/// for(int j = 0; j < 5; ++j);
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{cxxForRangeStmt()}
/// matches \match{for (auto a : i);}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXForRangeStmt>
cxxForRangeStmt;
/// Matches the initialization statement of a for loop.
///
/// Given
/// \code
/// void foo() {
/// int a[42] = {};
/// for (int x : a) { }
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{cxxForRangeStmt(hasLoopVariable(anything()))}
/// matches \match{for (int x : a) { }}
AST_MATCHER_P(CXXForRangeStmt, hasLoopVariable, internal::Matcher<VarDecl>,
InnerMatcher) {
const VarDecl *const Var = Node.getLoopVariable();
return (Var != nullptr && InnerMatcher.matches(*Var, Finder, Builder));
}
/// Matches the range initialization statement of a for loop.
///
/// Given
/// \code
/// void foo() {
/// int a[42] = {};
/// for (int x : a) { }
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{cxxForRangeStmt(hasRangeInit(anything()))}
/// matches \match{for (int x : a) { }}
AST_MATCHER_P(CXXForRangeStmt, hasRangeInit, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *const Init = Node.getRangeInit();
return (Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder));
}
/// Matches while statements.
///
/// Given
/// \code
/// void foo() {
/// while (true) {}
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{whileStmt()}
/// matches \match{while (true) {}}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, WhileStmt> whileStmt;
/// Matches do statements.
///
/// Given
/// \code
/// void foo() {
/// do {} while (true);
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{doStmt()}
/// matches \match{do {} while (true)}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DoStmt> doStmt;
/// Matches break statements.
///
/// Given
/// \code
/// void foo() {
/// while (true) { break; }
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{breakStmt()}
/// matches \match{break}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BreakStmt> breakStmt;
/// Matches continue statements.
///
/// Given
/// \code
/// void foo() {
/// while (true) { continue; }
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{continueStmt()}
/// matches \match{continue}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ContinueStmt>
continueStmt;
/// Matches co_return statements.
///
/// Given
/// \code
/// namespace std {
/// template <typename T = void>
/// struct coroutine_handle {
/// static constexpr coroutine_handle from_address(void* addr) {
/// return {};
/// }
/// };
///
/// struct always_suspend {
/// bool await_ready() const noexcept;
/// bool await_resume() const noexcept;
/// template <typename T>
/// bool await_suspend(coroutine_handle<T>) const noexcept;
/// };
///
/// template <typename T>
/// struct coroutine_traits {
/// using promise_type = T::promise_type;
/// };
/// } // namespace std
///
/// struct generator {
/// struct promise_type {
/// void return_value(int v);
/// std::always_suspend yield_value(int&&);
/// std::always_suspend initial_suspend() const noexcept;
/// std::always_suspend final_suspend() const noexcept;
/// void unhandled_exception();
/// generator get_return_object();
/// };
/// };
///
/// generator f() {
/// co_return 10;
/// }
///
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher \matcher{coreturnStmt(has(integerLiteral()))}
/// matches \match{co_return 10}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoreturnStmt>
coreturnStmt;
/// Matches return statements.
///
/// Given
/// \code
/// int foo() {
/// return 1;
/// }
/// \endcode
/// The matcher \matcher{returnStmt()}
/// matches \match{return 1}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ReturnStmt> returnStmt;
/// Matches goto statements.
///
/// Given
/// \code
/// void bar();
/// void foo() {
/// goto FOO;
/// FOO: bar();
/// }
/// \endcode
/// The matcher \matcher{gotoStmt()}
/// matches \match{goto FOO}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GotoStmt> gotoStmt;
/// Matches label statements.
///
/// Given
/// \code
/// void bar();
/// void foo() {
/// goto FOO;
/// FOO: bar();
/// }
/// \endcode
/// The matcher \matcher{labelStmt()}
/// matches \match{FOO: bar()}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, LabelStmt> labelStmt;
/// Matches address of label statements (GNU extension).
///
/// Given
/// \code
/// void bar();
/// void foo() {
/// FOO: bar();
/// void *ptr = &&FOO;
/// goto *ptr;
/// }
/// \endcode
/// The matcher \matcher{addrLabelExpr()}
/// matches \match{&&FOO}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AddrLabelExpr>
addrLabelExpr;
/// Matches switch statements.
///
/// Given
/// \code
/// void foo(int a) {
/// switch(a) { case 42: break; default: break; }
/// }
/// \endcode
/// The matcher \matcher{switchStmt()}
/// matches \match{switch(a) { case 42: break; default: break; }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchStmt> switchStmt;
/// Matches case and default statements inside switch statements.
///
/// Given
/// \code
/// void foo(int a) {
/// switch(a) { case 42: break; default: break; }
/// }
/// \endcode
/// The matcher \matcher{switchCase()}
/// matches \match{case 42: break} and \match{default: break}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, SwitchCase> switchCase;
/// Matches case statements inside switch statements.
///
/// Given
/// \code
/// void foo(int a) {
/// switch(a) { case 42: break; default: break; }
/// }
/// \endcode
/// The matcher \matcher{caseStmt()}
/// matches \match{case 42: break}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CaseStmt> caseStmt;
/// Matches default statements inside switch statements.
///
/// Given
/// \code
/// void foo(int a) {
/// switch(a) { case 42: break; default: break; }
/// }
/// \endcode
/// The matcher \matcher{defaultStmt()}
/// matches \match{default: break}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DefaultStmt>
defaultStmt;
/// Matches compound statements.
///
/// Given
/// \code
/// void foo() { for (;;) {{}} }
/// \endcode
///
/// The matcher \matcher{compoundStmt()} matches
/// \match{{ for (;;) {{}} }}, \match{{{}}} and \match{{}}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundStmt>
compoundStmt;
/// Matches catch statements.
///
/// \code
/// void foo() {
/// try {} catch(int i) {}
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxCatchStmt()}
/// matches \match{catch(int i) {}}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXCatchStmt>
cxxCatchStmt;
/// Matches try statements.
///
/// \code
/// void foo() {
/// try {} catch(int i) {}
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxTryStmt()}
/// matches \match{try {} catch(int i) {}}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTryStmt> cxxTryStmt;
/// Matches throw expressions.
///
/// \code
/// void foo() {
/// try { throw 5; } catch(int i) {}
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxThrowExpr()}
/// matches \match{throw 5}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXThrowExpr>
cxxThrowExpr;
/// Matches null statements.
///
/// \code
/// void foo() {
/// foo();;
/// }
/// \endcode
/// The matcher \matcher{nullStmt()}
/// matches the second \match{;}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, NullStmt> nullStmt;
/// Matches asm statements.
///
/// \code
/// void foo() {
/// int i = 100;
/// __asm("mov %al, 2");
/// }
/// \endcode
/// The matcher \matcher{asmStmt()}
/// matches \match{__asm("mov %al, 2")}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AsmStmt> asmStmt;
/// Matches bool literals.
///
/// Example matches true
/// \code
/// bool Flag = true;
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
///
/// The matcher \matcher{cxxBoolLiteral()} matches \match{true}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXBoolLiteralExpr>
cxxBoolLiteral;
/// Matches string literals (also matches wide string literals).
///
/// Given
/// \code
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{stringLiteral()} matches \match{"abcd"} and
/// \match{L"abcd"}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StringLiteral>
stringLiteral;
/// Matches character literals (also matches wchar_t).
///
/// Not matching Hex-encoded chars (e.g. 0x1234, which is a IntegerLiteral),
/// though.
///
/// Given
/// \code
/// char ch = 'a';
/// wchar_t chw = L'a';
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{characterLiteral()} matches \match{'a'} and
/// \match{L'a'}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CharacterLiteral>
characterLiteral;
/// Matches integer literals of all sizes / encodings, e.g.
/// 1, 1L, 0x1 and 1U.
///
/// Does not match character-encoded integers such as L'a'.
///
/// Given
/// \code
/// int a = 1;
/// int b = 1L;
/// int c = 0x1;
/// int d = 1U;
/// int e = 1.0;
/// \endcode
///
/// The matcher \matcher{integerLiteral()} matches
/// \match{1}, \match{1L}, \match{0x1} and \match{1U}, but does not match
/// \nomatch{1.0}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, IntegerLiteral>
integerLiteral;
/// Matches float literals of all sizes / encodings, e.g.
/// 1.0, 1.0f, 1.0L and 1e10.
///
/// Given
/// \code
/// int a = 1.0;
/// int b = 1.0F;
/// int c = 1.0L;
/// int d = 1e10;
/// int e = 1;
/// \endcode
///
/// The matcher \matcher{floatLiteral()} matches
/// \match{1.0}, \match{1.0F}, \match{1.0L} and \match{1e10}, but does not match
/// \nomatch{1}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FloatingLiteral>
floatLiteral;
/// Matches imaginary literals, which are based on integer and floating
/// point literals e.g.: 1i, 1.0i
///
/// Given
/// \code
/// auto a = 1i;
/// auto b = 1.0i;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{imaginaryLiteral()} matches \match{1i} and
/// \match{1.0i}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImaginaryLiteral>
imaginaryLiteral;
/// Matches fixed point literals
///
/// Given
/// \code
/// void f() {
/// 0.0k;
/// }
/// \endcode
/// \compile_args{-ffixed-point}
///
/// The matcher \matcher{type=none$fixedPointLiteral()} matches \match{0.0k}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, FixedPointLiteral>
fixedPointLiteral;
/// Matches user defined literal operator call.
///
/// Example match: "foo"_suffix
/// Given
/// \code
/// float operator ""_foo(long double);
/// float a = 1234.5_foo;
/// \endcode
/// \compile_args{-std=c++11}
///
/// The matcher \matcher{userDefinedLiteral()} matches \match{1234.5_foo}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UserDefinedLiteral>
userDefinedLiteral;
/// Matches compound (i.e. non-scalar) literals
///
/// Example match: {1}, (1, 2)
/// \code
/// struct vector { int x; int y; };
/// struct vector myvec = (struct vector){ 1, 2 };
/// \endcode
///
/// The matcher \matcher{compoundLiteralExpr()}
/// matches \match{(struct vector){ 1, 2 }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CompoundLiteralExpr>
compoundLiteralExpr;
/// Matches co_await expressions.
///
/// Given
/// \code
/// namespace std {
/// template <typename T = void>
/// struct coroutine_handle {
/// static constexpr coroutine_handle from_address(void* addr) {
/// return {};
/// }
/// };
///
/// struct always_suspend {
/// bool await_ready() const noexcept;
/// bool await_resume() const noexcept;
/// template <typename T>
/// bool await_suspend(coroutine_handle<T>) const noexcept;
/// };
///
/// template <typename T>
/// struct coroutine_traits {
/// using promise_type = T::promise_type;
/// };
/// } // namespace std
///
/// struct generator {
/// struct promise_type {
/// std::always_suspend yield_value(int&&);
/// std::always_suspend initial_suspend() const noexcept;
/// std::always_suspend final_suspend() const noexcept;
/// void return_void();
/// void unhandled_exception();
/// generator get_return_object();
/// };
/// };
///
/// std::always_suspend h();
///
/// generator g() { co_await h(); }
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher
/// \matcher{coawaitExpr(has(callExpr(callee(functionDecl(hasName("h"))))))}
/// matches \match{co_await h()}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoawaitExpr>
coawaitExpr;
/// Matches co_await expressions where the type of the promise is dependent
///
/// Given
/// \code
/// namespace std {
/// template <typename T = void>
/// struct coroutine_handle {
/// static constexpr coroutine_handle from_address(void* addr) {
/// return {};
/// }
/// };
///
/// struct always_suspend {
/// bool await_ready() const noexcept;
/// bool await_resume() const noexcept;
/// template <typename T>
/// bool await_suspend(coroutine_handle<T>) const noexcept;
/// };
///
/// template <typename T>
/// struct coroutine_traits {
/// using promise_type = T::promise_type;
/// };
/// } // namespace std
///
/// template <typename T>
/// struct generator {
/// struct promise_type {
/// std::always_suspend yield_value(int&&);
/// std::always_suspend initial_suspend() const noexcept;
/// std::always_suspend final_suspend() const noexcept;
/// void return_void();
/// void unhandled_exception();
/// generator get_return_object();
/// };
/// };
///
/// template <typename T>
/// std::always_suspend h();
///
/// template <>
/// std::always_suspend h<void>();
///
/// template<typename T>
/// generator<T> g() { co_await h<T>(); }
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher \matcher{dependentCoawaitExpr()}
/// matches \match{co_await h<T>()}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DependentCoawaitExpr>
dependentCoawaitExpr;
/// Matches co_yield expressions.
///
/// Given
/// \code
/// namespace std {
/// template <typename T = void>
/// struct coroutine_handle {
/// static constexpr coroutine_handle from_address(void* addr) {
/// return {};
/// }
/// };
///
/// struct always_suspend {
/// bool await_ready() const noexcept;
/// bool await_resume() const noexcept;
/// template <typename T>
/// bool await_suspend(coroutine_handle<T>) const noexcept;
/// };
///
/// template <typename T>
/// struct coroutine_traits {
/// using promise_type = T::promise_type;
/// };
/// } // namespace std
///
/// struct generator {
/// struct promise_type {
/// std::always_suspend yield_value(int&&);
/// std::always_suspend initial_suspend() const noexcept;
/// std::always_suspend final_suspend() const noexcept;
/// void return_void();
/// void unhandled_exception();
/// generator get_return_object();
/// };
/// };
///
/// generator f() {
/// while (true) {
/// co_yield 10;
/// }
/// }
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher \matcher{coyieldExpr()}
/// matches \match{co_yield 10}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoyieldExpr>
coyieldExpr;
/// Matches coroutine body statements.
///
/// Given
/// \code
/// namespace std {
/// template <typename T = void>
/// struct coroutine_handle {
/// static constexpr coroutine_handle from_address(void* addr) {
/// return {};
/// }
/// };
///
/// struct suspend_always {
/// bool await_ready() const noexcept;
/// bool await_resume() const noexcept;
/// template <typename T>
/// bool await_suspend(coroutine_handle<T>) const noexcept;
/// };
///
/// template <typename...>
/// struct coroutine_traits {
/// struct promise_type {
/// std::suspend_always initial_suspend() const noexcept;
/// std::suspend_always final_suspend() const noexcept;
/// void return_void();
/// void unhandled_exception();
/// coroutine_traits get_return_object();
/// };
/// };
/// } // namespace std
///
/// void f() { while (true) { co_return; } }
///
/// \endcode
/// \compile_args{-std=c++20-or-later}
///
/// The matcher \matcher{coroutineBodyStmt()} matches
/// \match{{ while (true) { co_return; } }}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CoroutineBodyStmt>
coroutineBodyStmt;
/// Matches nullptr literal.
///
/// Given
/// \code
/// int a = 0;
/// int* b = 0;
/// int *c = nullptr;
/// \endcode
/// \compile_args{-std=c++11,c23-or-later}
///
/// The matcher \matcher{cxxNullPtrLiteralExpr()} matches \match{nullptr}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXNullPtrLiteralExpr>
cxxNullPtrLiteralExpr;
/// Matches GNU __builtin_choose_expr.
///
/// Given
/// \code
/// void f() { (void)__builtin_choose_expr(1, 2, 3); }
/// \endcode
///
/// The matcher \matcher{chooseExpr()} matches
/// \match{__builtin_choose_expr(1, 2, 3)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ChooseExpr> chooseExpr;
/// Matches builtin function __builtin_convertvector.
///
/// Given
/// \code
/// typedef double vector4double __attribute__((__vector_size__(32)));
/// typedef float vector4float __attribute__((__vector_size__(16)));
/// vector4float vf;
/// void f() { (void)__builtin_convertvector(vf, vector4double); }
/// \endcode
///
/// The matcher \matcher{convertVectorExpr()} matches
/// \match{__builtin_convertvector(vf, vector4double)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConvertVectorExpr>
convertVectorExpr;
/// Matches GNU __null expression.
///
/// Given
/// \code
/// auto val = __null;
/// \endcode
/// \compile_args{-std=c++11}
///
/// The matcher \matcher{gnuNullExpr()} matches \match{__null}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GNUNullExpr>
gnuNullExpr;
/// Matches C11 _Generic expression.
///
/// Given
/// \code
/// double fdouble(double);
/// float ffloat(float);
/// #define GENERIC_MACRO(X) _Generic((X), double: fdouble, float: ffloat)(X)
///
/// void f() {
/// GENERIC_MACRO(0.0);
/// GENERIC_MACRO(0.0F);
/// }
/// \endcode
/// \compile_args{-std=c}
///
/// The matcher \matcher{type=none$genericSelectionExpr()} matches
/// the generic selection expression that is expanded in
/// \match{GENERIC_MACRO(0.0)} and \match{GENERIC_MACRO(0.0F)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, GenericSelectionExpr>
genericSelectionExpr;
/// Matches atomic builtins.
///
/// Given
/// \code
/// void foo() { int *ptr; __atomic_load_n(ptr, 1); }
/// \endcode
///
/// The matcher \matcher{atomicExpr()} matches \match{__atomic_load_n(ptr, 1)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, AtomicExpr> atomicExpr;
/// Matches statement expression (GNU extension).
///
/// Given
/// \code
/// void f() {
/// int C = ({ int X = 4; X; });
/// }
/// \endcode
///
/// The matcher \matcher{stmtExpr()} matches \match{({ int X = 4; X; })}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, StmtExpr> stmtExpr;
/// Matches binary operator expressions.
///
/// Given
/// \code
/// void foo(bool a, bool b) {
/// !(a || b);
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
///
/// The matcher \matcher{binaryOperator()} matches \match{a || b}.
///
/// See also the binaryOperation() matcher for more-general matching.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, BinaryOperator>
binaryOperator;
/// Matches unary operator expressions.
///
/// Example matches !a
/// \code
/// void foo(bool a, bool b) {
/// !a || b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
///
/// The matcher \matcher{unaryOperator()} matches \match{!a}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, UnaryOperator>
unaryOperator;
/// Matches conditional operator expressions.
///
/// Given
/// \code
/// int f(int a, int b, int c) {
/// return (a ? b : c) + 42;
/// }
/// \endcode
///
/// The matcher \matcher{conditionalOperator()} matches \match{a ? b : c}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ConditionalOperator>
conditionalOperator;
/// Matches binary conditional operator expressions (GNU extension).
///
/// Given
/// \code
/// int f(int a, int b) {
/// return (a ?: b) + 42;
/// }
/// \endcode
///
/// The matcher \matcher{binaryConditionalOperator()} matches \match{a ?: b}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
BinaryConditionalOperator>
binaryConditionalOperator;
/// Matches opaque value expressions. They are used as helpers
/// to reference another expressions and can be met
/// in BinaryConditionalOperators, for example.
///
/// Given
/// \code
/// int f(int a, int b) {
/// return (a ?: b) + 42;
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{opaqueValueExpr()} matches \match{count=2$a} twice,
/// once for the check and once for the expression of the true path.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OpaqueValueExpr>
opaqueValueExpr;
/// Matches a C++ static_assert declaration.
///
/// Given
/// \code
/// struct S {
/// int x;
/// };
/// static_assert(sizeof(S) == sizeof(int));
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{staticAssertDecl()}
/// matches \match{static_assert(sizeof(S) == sizeof(int))}.
extern const internal::VariadicDynCastAllOfMatcher<Decl, StaticAssertDecl>
staticAssertDecl;
/// Matches a reinterpret_cast expression.
///
/// Either the source expression or the destination type can be matched
/// using has(), but hasDestinationType() is more specific and can be
/// more readable.
///
/// Example matches reinterpret_cast<char*>(&p) in
/// \code
/// void* p = reinterpret_cast<char*>(&p);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxReinterpretCastExpr()}
/// matches \match{reinterpret_cast<char*>(&p)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXReinterpretCastExpr>
cxxReinterpretCastExpr;
/// Matches a C++ static_cast expression.
///
/// \see hasDestinationType
/// \see reinterpretCast
///
/// Given
/// \code
/// long eight(static_cast<long>(8));
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxStaticCastExpr()}
/// matches \match{static_cast<long>(8)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXStaticCastExpr>
cxxStaticCastExpr;
/// Matches a dynamic_cast expression.
///
/// Given
/// \code
/// struct B { virtual ~B() {} }; struct D : B {};
/// B b;
/// D* p = dynamic_cast<D*>(&b);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxDynamicCastExpr()}
/// matches \match{dynamic_cast<D*>(&b)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXDynamicCastExpr>
cxxDynamicCastExpr;
/// Matches a const_cast expression.
///
/// Given
/// \code
/// int n = 42;
/// const int &r(n);
/// int* p = const_cast<int*>(&r);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxConstCastExpr()}
/// matches \match{const_cast<int*>(&r)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXConstCastExpr>
cxxConstCastExpr;
/// Matches a C-style cast expression.
///
/// Given
/// \code
/// int i = (int) 2.2f;
/// \endcode
///
/// The matcher \matcher{cStyleCastExpr()}
/// matches \match{(int) 2.2f}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CStyleCastExpr>
cStyleCastExpr;
/// Matches explicit cast expressions.
///
/// Matches any cast expression written in user code, whether it be a
/// C-style cast, a functional-style cast, or a keyword cast.
///
/// Does not match implicit conversions.
///
/// Note: the name "explicitCast" is chosen to match Clang's terminology, as
/// Clang uses the term "cast" to apply to implicit conversions as well as to
/// actual cast expressions.
///
/// \see hasDestinationType.
///
/// \code
/// struct S {};
/// const S* s;
/// S* s2 = const_cast<S*>(s);
///
/// const int val = 0;
/// char val0 = val;
/// char val1 = (char)val;
/// char val2 = static_cast<char>(val);
/// int* val3 = reinterpret_cast<int*>(val);
/// char val4 = char(val);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{explicitCastExpr()}
/// matches \match{(char)val}, \match{static_cast<char>(val)},
/// \match{reinterpret_cast<int*>(val)}, \match{const_cast<S*>(s)}
/// and \match{char(val)}, but not the initialization of \c val0 with
/// \nomatch{val}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ExplicitCastExpr>
explicitCastExpr;
/// Matches the implicit cast nodes of Clang's AST.
///
/// This matches many different places, including function call return value
/// eliding, as well as any type conversions.
///
/// \code
/// void f(int);
/// void g(int val1, int val2) {
/// unsigned int a = val1;
/// f(val2);
/// }
/// \endcode
///
/// The matcher \matcher{implicitCastExpr()}
/// matches \match{count=2$val1} for the implicit cast from an l- to an r-value
/// and for the cast to \c{unsigned int}, \match{f} for the function pointer
/// decay, and \match{val2} for the cast from an l- to an r-value.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, ImplicitCastExpr>
implicitCastExpr;
/// Matches any cast nodes of Clang's AST.
///
/// Given
/// \code
/// struct S {};
/// const S* s;
/// S* s2 = const_cast<S*>(s);
///
/// const int val = 0;
/// char val0 = 1;
/// char val1 = (char)2;
/// char val2 = static_cast<char>(3);
/// int* val3 = reinterpret_cast<int*>(4);
/// char val4 = char(5);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{castExpr()}
/// matches
/// \match{const_cast<S*>(s)} and the implicit l- to r-value cast for \match{s},
/// the implicit cast to \c char for the initializer \match{1},
/// the c-style cast \match{(char)2} and it's implicit cast to \c char
/// (part of the c-style cast) \match{2},
/// \match{static_cast<char>(3)} and it's implicit cast to \c char
/// (part of the \c static_cast) \match{3},
/// \match{reinterpret_cast<int*>(4)},
/// \match{char(5)} and it's implicit cast to \c char
/// (part of the functional cast) \match{5}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CastExpr> castExpr;
/// Matches functional cast expressions
///
/// Given
/// \code
/// struct Foo {
/// Foo(int x);
/// };
///
/// void foo(int bar) {
/// Foo f = bar;
/// Foo g = (Foo) bar;
/// Foo h = Foo(bar);
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxFunctionalCastExpr()}
/// matches \match{Foo(bar)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXFunctionalCastExpr>
cxxFunctionalCastExpr;
/// Matches functional cast expressions having N != 1 arguments
///
/// Given
/// \code
/// struct Foo {
/// Foo(int x, int y);
/// };
///
/// void foo(int bar) {
/// Foo h = Foo(bar, bar);
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxTemporaryObjectExpr()}
/// matches \match{Foo(bar, bar)}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CXXTemporaryObjectExpr>
cxxTemporaryObjectExpr;
/// Matches predefined identifier expressions [C99 6.4.2.2].
///
/// Example: Matches __func__
/// \code
/// void f() {
/// const char* func_name = __func__;
/// }
/// \endcode
///
/// The matcher \matcher{predefinedExpr()}
/// matches \match{__func__}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, PredefinedExpr>
predefinedExpr;
/// Matches C99 designated initializer expressions [C99 6.7.8].
///
/// Example: Given
/// \code
/// struct point2 { double x; double y; };
/// struct point2 ptarray[10] = { [0].x = 1.0 };
/// struct point2 pt = { .x = 2.0 };
/// \endcode
///
/// The matcher \matcher{designatedInitExpr()}
/// matches \match{[0].x = 1.0} and \match{.x = 2.0}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, DesignatedInitExpr>
designatedInitExpr;
/// Matches designated initializer expressions that contain
/// a specific number of designators.
///
/// Example: Given
/// \code
/// struct point2 { double x; double y; };
/// struct point2 ptarray[10] = { [0].x = 1.0 };
/// struct point2 pt = { .x = 2.0 };
/// \endcode
///
/// The matcher \matcher{designatedInitExpr(designatorCountIs(2))}
/// matches \match{[0].x = 1.0}, but not \nomatch{.x = 2.0}.
AST_MATCHER_P(DesignatedInitExpr, designatorCountIs, unsigned, N) {
return Node.size() == N;
}
/// Matches \c QualTypes in the clang AST.
///
/// Given
/// \code
/// int a = 0;
/// const int b = 1;
/// \endcode
///
/// The matcher \matcher{varDecl(hasType(qualType(isConstQualified())))}
/// matches \match{const int b = 1}, but not \nomatch{int a = 0}.
extern const internal::VariadicAllOfMatcher<QualType> qualType;
/// Matches \c Types in the clang AST.
///
/// Given
/// \code
/// const int b = 1;
/// \endcode
///
/// The matcher \matcher{varDecl(hasType(type().bind("type")))}
/// matches \match{const int b = 1}, with \matcher{type=sub$type()}
/// matching \match{sub=type$int}.
extern const internal::VariadicAllOfMatcher<Type> type;
/// Matches \c TypeLocs in the clang AST.
///
/// That is, information about a type and where it was written.
///
/// \code
/// void foo(int val);
/// \endcode
///
/// The matcher \matcher{declaratorDecl(hasTypeLoc(typeLoc().bind("type")))}
/// matches \match{void foo(int val)} and \match{int val}, with
/// \matcher{type=sub$typeLoc()} matching \match{sub=type$void} and
/// \match{sub=type$int} respectively.
extern const internal::VariadicAllOfMatcher<TypeLoc> typeLoc;
/// Matches if any of the given matchers matches.
///
/// Unlike \c anyOf, \c eachOf will generate a match result for each
/// matching submatcher.
///
/// Given
/// \code
/// void f(int a, int b);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{functionDecl(hasAnyParameter(
/// eachOf(parmVarDecl(hasName("a")).bind("v"),
/// parmVarDecl(hasName("b")).bind("v"))))}
/// matches \match{void f(int a, int b)},
/// with \matcher{type=sub$parmVarDecl(hasName("a"))} matching \match{sub=v$a}
/// for one match,
/// and with \matcher{type=sub$parmVarDecl(hasName("b"))} matching
/// \match{sub=v$b} for the other match.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
eachOf;
/// Matches if any of the given matchers matches.
///
/// Usable as: Any Matcher
///
/// \code
/// char v0 = 'a';
/// int v1 = 1;
/// float v2 = 2.0;
/// \endcode
///
/// The matcher \matcher{varDecl(anyOf(hasName("v0"), hasType(isInteger())))}
/// matches \match{char v0 = 'a'} and \match{int v1 = 1}.
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
anyOf;
/// Matches if all given matchers match.
///
/// Usable as: Any Matcher
///
/// \code
/// int v0 = 0;
/// int v1 = 1;
/// \endcode
///
/// The matcher \matcher{varDecl(allOf(hasName("v0"), hasType(isInteger())))}
/// matches \match{int v0 = 0}.
extern const internal::VariadicOperatorMatcherFunc<
2, std::numeric_limits<unsigned>::max()>
allOf;
/// Matches any node regardless of the submatcher.
///
/// However, \c optionally will retain any bindings generated by the submatcher.
/// Useful when additional information which may or may not present about a main
/// matching node is desired.
///
/// Given
/// \code
/// int a = 0;
/// int b;
/// \endcode
///
/// The matcher \matcher{varDecl(optionally(hasInitializer(expr())))}
/// matches \match{int a = 0} and \match{int b}.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<1, 1> optionally;
/// Matches sizeof (C99), alignof (C++11) and vec_step (OpenCL)
///
/// Given
/// \code
/// int x = 42;
/// int y = sizeof(x) + alignof(x);
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
/// The matcher \matcher{unaryExprOrTypeTraitExpr()}
/// matches \match{sizeof(x)} and \match{alignof(x)}
extern const internal::VariadicDynCastAllOfMatcher<Stmt,
UnaryExprOrTypeTraitExpr>
unaryExprOrTypeTraitExpr;
/// Matches any of the \p NodeMatchers with InnerMatchers nested within
///
/// Given
/// \code
/// void f() {
/// if (true);
/// for (; true; );
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
///
/// The matcher \matcher{stmt(mapAnyOf(ifStmt, forStmt).with(
/// hasCondition(cxxBoolLiteral(equals(true)))
/// ))},
/// which is equivalent to
/// \matcher{stmt(anyOf(
/// ifStmt(hasCondition(cxxBoolLiteral(equals(true)))).bind("trueCond"),
/// forStmt(hasCondition(cxxBoolLiteral(equals(true)))).bind("trueCond")
/// ))},
/// matches \match{if (true);} and \match{for (; true; );}.
///
/// The with() chain-call accepts zero or more matchers which are combined
/// as-if with allOf() in each of the node matchers.
///
/// Usable as: Any Matcher
template <typename T, typename... U>
auto mapAnyOf(internal::VariadicDynCastAllOfMatcher<T, U> const &...) {
return internal::MapAnyOfHelper<U...>();
}
/// Matches nodes which can be used with binary operators.
///
/// A comparison of two expressions might be represented in the clang AST as a
/// \c binaryOperator, a \c cxxOperatorCallExpr or a
/// \c cxxRewrittenBinaryOperator, depending on
///
/// * whether the types of var1 and var2 are fundamental (binaryOperator) or at
/// least one is a class type (\c cxxOperatorCallExpr)
/// * whether the code appears in a template declaration, if at least one of the
/// vars is a dependent-type (\c binaryOperator)
/// * whether the code relies on a rewritten binary operator, such as a
/// spaceship operator or an inverted equality operator
/// (\c cxxRewrittenBinaryOperator)
///
/// This matcher elides details in places where the matchers for the nodes are
/// compatible.
///
/// Given
/// \code
/// struct S{
/// bool operator!=(const S&) const;
/// };
///
/// void foo()
/// {
/// 1 != 2;
/// S() != S();
/// }
///
/// template<typename T>
/// void templ()
/// {
/// 3 != 4;
/// T() != S();
/// }
/// struct HasOpEq
/// {
/// friend bool
/// operator==(const HasOpEq &, const HasOpEq&) noexcept = default;
/// };
///
/// void inverse()
/// {
/// HasOpEq e1;
/// HasOpEq e2;
/// if (e1 != e2)
/// return;
/// }
///
/// struct HasSpaceship
/// {
/// friend bool
/// operator<=>(const HasSpaceship &,
/// const HasSpaceship&) noexcept = default;
/// };
///
/// void use_spaceship()
/// {
/// HasSpaceship s1;
/// HasSpaceship s2;
/// if (s1 != s2)
/// return;
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++20-or-later}
///
/// The matcher \matcher{binaryOperation(
/// hasOperatorName("!="),
/// hasLHS(expr().bind("lhs")),
/// hasRHS(expr().bind("rhs"))
/// )}
/// matches \match{1 != 2}, \match{S() != S()}, \match{3 != 4},
/// \match{T() != S()}, \match{e1 != e2} and \match{s1 != s2}.
extern const internal::MapAnyOfMatcher<BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator>
binaryOperation;
/// Matches function calls and constructor calls
///
/// Because \c CallExpr and \c CXXConstructExpr do not share a common
/// base class with API accessing arguments etc, AST Matchers for code
/// which should match both are typically duplicated. This matcher
/// removes the need for duplication.
///
/// Given
/// \code
/// struct ConstructorTakesInt
/// {
/// ConstructorTakesInt(int i) {}
/// };
///
/// void callTakesInt(int i)
/// {
/// }
///
/// void doCall()
/// {
/// callTakesInt(42);
/// }
///
/// void doConstruct()
/// {
/// ConstructorTakesInt cti(42);
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{expr(invocation(hasArgument(0, integerLiteral(equals(42)))))}
/// matches the expressions \match{callTakesInt(42)}
/// and \match{cti(42)}.
extern const internal::MapAnyOfMatcher<CallExpr, CXXConstructExpr> invocation;
/// Matches unary expressions that have a specific type of argument.
///
/// Given
/// \code
/// int a, c; float b; int s = sizeof(a) + sizeof(b) + alignof(c);
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
/// The matcher
/// \matcher{unaryExprOrTypeTraitExpr(hasArgumentOfType(asString("int")))}
/// matches \match{sizeof(a)} and \match{alignof(c)}
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, hasArgumentOfType,
internal::Matcher<QualType>, InnerMatcher) {
const QualType ArgumentType = Node.getTypeOfArgument();
return InnerMatcher.matches(ArgumentType, Finder, Builder);
}
/// Matches unary expressions of a certain kind.
///
/// Given
/// \code
/// int x;
/// int s = sizeof(x) + alignof(x);
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
/// The matcher \matcher{unaryExprOrTypeTraitExpr(ofKind(UETT_SizeOf))}
/// matches \match{sizeof(x)}
///
/// If the matcher is use from clang-query, UnaryExprOrTypeTrait parameter
/// should be passed as a quoted string. e.g., ofKind("UETT_SizeOf").
AST_MATCHER_P(UnaryExprOrTypeTraitExpr, ofKind, UnaryExprOrTypeTrait, Kind) {
return Node.getKind() == Kind;
}
/// Same as unaryExprOrTypeTraitExpr, but only matching
/// alignof.
///
/// Given
/// \code
/// int align = alignof(int);
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
///
/// The matcher \matcher{alignOfExpr(expr())}
/// matches \match{alignof(int)}.
inline internal::BindableMatcher<Stmt>
alignOfExpr(const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(
allOf(anyOf(ofKind(UETT_AlignOf), ofKind(UETT_PreferredAlignOf)),
InnerMatcher)));
}
/// Same as unaryExprOrTypeTraitExpr, but only matching
/// sizeof.
///
/// Given
/// \code
/// struct S { double x; double y; };
/// int size = sizeof(struct S);
/// \endcode
///
/// The matcher \matcher{sizeOfExpr(expr())}
/// matches \match{sizeof(struct S)}.
inline internal::BindableMatcher<Stmt> sizeOfExpr(
const internal::Matcher<UnaryExprOrTypeTraitExpr> &InnerMatcher) {
return stmt(unaryExprOrTypeTraitExpr(
allOf(ofKind(UETT_SizeOf), InnerMatcher)));
}
/// Matches NamedDecl nodes that have the specified name.
///
/// Supports specifying enclosing namespaces or classes by prefixing the name
/// with '<enclosing>::'.
/// Does not match typedefs of an underlying type with the given name.
///
/// Given
/// \code
/// class X;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{namedDecl(hasName("X"))}
/// matches \match{class X}.
///
/// Given
/// \code
/// namespace a { namespace b { class X; } }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matchers \matcher{namedDecl(hasName("::a::b::X"))},
/// \matcher{namedDecl(hasName("a::b::X"))},
/// \matcher{namedDecl(hasName("b::X"))} and
/// \matcher{namedDecl(hasName("X"))}
/// match \match{class X}.
inline internal::Matcher<NamedDecl> hasName(StringRef Name) {
return internal::Matcher<NamedDecl>(
new internal::HasNameMatcher({std::string(Name)}));
}
/// Matches NamedDecl nodes that have any of the specified names.
///
/// This matcher is only provided as a performance optimization of hasName.
///
/// Given
/// \code
/// void f(int a, int b);
/// \endcode
///
/// The matcher \matcher{namedDecl(hasAnyName("a", "b"))},
/// which is equivalent to the matcher
/// \matcher{namedDecl(hasAnyName("a", "b"))},
/// matches \match{int a} and \match{int b}, but not
/// \nomatch{void f(int a, int b)}.
extern const internal::VariadicFunction<internal::Matcher<NamedDecl>, StringRef,
internal::hasAnyNameFunc>
hasAnyName;
/// Matches NamedDecl nodes whose fully qualified names contain
/// a substring matched by the given RegExp.
///
/// Supports specifying enclosing namespaces or classes by
/// prefixing the name with '<enclosing>::'. Does not match typedefs
/// of an underlying type with the given name.
///
/// Given
/// \code
/// namespace foo { namespace bar { class X; } }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{namedDecl(matchesName("^::foo:.*X"))}
/// matches \match{class X}.
AST_MATCHER_REGEX(NamedDecl, matchesName, RegExp) {
std::string FullNameString = "::" + Node.getQualifiedNameAsString();
return RegExp->match(FullNameString);
}
/// Matches overloaded operator names.
///
/// Matches overloaded operator names specified in strings without the
/// "operator" prefix: e.g. "<<".
///
/// Given
/// \code
/// struct A { int operator*(); };
/// const A &operator<<(const A &a, const A &b);
/// void f(A a) {
/// a << a; // <-- This matches
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxOperatorCallExpr(hasOverloadedOperatorName("<<"))}
/// matches \match{a << a}.
/// The matcher
/// \matcher{cxxRecordDecl(hasMethod(hasOverloadedOperatorName("*")))}
/// matches \match{struct A { int operator*(); }}.
///
/// Usable as: Matcher<CXXOperatorCallExpr>, Matcher<FunctionDecl>
inline internal::PolymorphicMatcher<
internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>
hasOverloadedOperatorName(StringRef Name) {
return internal::PolymorphicMatcher<
internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>({std::string(Name)});
}
/// Matches overloaded operator names.
///
/// Matches overloaded operator names specified in strings without the
/// "operator" prefix: e.g. "<<".
///
/// hasAnyOverloadedOperatorName("+", "-")
///
/// Given
/// \code
/// struct Point { double x; double y; };
/// Point operator+(const Point&, const Point&);
/// Point operator-(const Point&, const Point&);
///
/// Point sub(Point a, Point b) {
/// return b - a;
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{functionDecl(hasAnyOverloadedOperatorName("+", "-"))},
/// which is equivalent to
/// \matcher{functionDecl(anyOf(hasAnyOverloadedOperatorName("+"),
/// hasOverloadedOperatorName("-")))},
/// matches \match{Point operator+(const Point&, const Point&)} and
/// \match{Point operator-(const Point&, const Point&)}.
/// The matcher
/// \matcher{cxxOperatorCallExpr(hasAnyOverloadedOperatorName("+", "-"))},
/// which is equivalent to
/// \matcher{cxxOperatorCallExpr(anyOf(hasOverloadedOperatorName("+"),
/// hasOverloadedOperatorName("-")))},
/// matches \match{b - a}.
///
/// Is equivalent to
/// anyOf(hasOverloadedOperatorName("+"), hasOverloadedOperatorName("-"))
extern const internal::VariadicFunction<
internal::PolymorphicMatcher<internal::HasOverloadedOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CXXOperatorCallExpr, FunctionDecl),
std::vector<std::string>>,
StringRef, internal::hasAnyOverloadedOperatorNameFunc>
hasAnyOverloadedOperatorName;
/// Matches template-dependent, but known, member names.
///
/// In template declarations, dependent members are not resolved and so can
/// not be matched to particular named declarations.
///
/// This matcher allows to match on the known name of members.
///
/// Given
/// \code
/// template <typename T>
/// struct S {
/// void mem();
/// };
/// template <typename T>
/// void x() {
/// S<T> s;
/// s.mem();
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxDependentScopeMemberExpr(hasMemberName("mem"))}
/// matches \match{s.mem}.
AST_MATCHER_P(CXXDependentScopeMemberExpr, hasMemberName, std::string, N) {
return Node.getMember().getAsString() == N;
}
/// Matches template-dependent, but known, member names against an already-bound
/// node
///
/// In template declarations, dependent members are not resolved and so can
/// not be matched to particular named declarations.
///
/// This matcher allows to match on the name of already-bound VarDecl, FieldDecl
/// and CXXMethodDecl nodes.
///
/// Given
/// \code
/// template <typename T>
/// struct S {
/// void mem();
/// };
/// template <typename T>
/// void x() {
/// S<T> s;
/// s.mem();
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxDependentScopeMemberExpr(
/// hasObjectExpression(declRefExpr(hasType(
/// elaboratedType(namesType(templateSpecializationType(
/// hasDeclaration(classTemplateDecl(has(cxxRecordDecl(has(
/// cxxMethodDecl(hasName("mem")).bind("templMem")
/// )))))
/// )))
/// ))),
/// memberHasSameNameAsBoundNode("templMem")
/// )}
/// matches \match{s.mem}, with the inner matcher
/// \matcher{type=sub$cxxMethodDecl(hasName("mem"))} matching
/// \match{sub=templMem$void mem()} of the \c S template.
AST_MATCHER_P(CXXDependentScopeMemberExpr, memberHasSameNameAsBoundNode,
std::string, BindingID) {
auto MemberName = Node.getMember().getAsString();
return Builder->removeBindings(
[this, MemberName](const BoundNodesMap &Nodes) {
const DynTypedNode &BN = Nodes.getNode(this->BindingID);
if (const auto *ND = BN.get<NamedDecl>()) {
if (!isa<FieldDecl, CXXMethodDecl, VarDecl>(ND))
return true;
return ND->getName() != MemberName;
}
return true;
});
}
/// Matches C++ classes that are directly or indirectly derived from a class
/// matching \c Base, or Objective-C classes that directly or indirectly
/// subclass a class matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Example matches Y, Z, C (Base == hasName("X"))
/// \code
/// class X {};
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
///
/// class Foo {};
/// typedef Foo Alias;
/// class Bar : public Alias {};
/// // derived from a type that Alias is a typedef of Foo
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxRecordDecl(isDerivedFrom(hasName("X")))}
/// matches \match{class Y : public X {}}, \match{class Z : public Y {}}
/// and \match{class C : public B {}}.
///
/// The matcher \matcher{cxxRecordDecl(isDerivedFrom(hasName("Foo")))}
/// matches \match{class Bar : public Alias {}}.
///
/// In the following example, Bar matches isDerivedFrom(hasName("NSObject"))
/// \code
/// @interface NSObject @end
/// @interface Bar : NSObject @end
/// \endcode
/// \compile_args{-ObjC}
///
/// Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl>
AST_POLYMORPHIC_MATCHER_P(
isDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base) {
// Check if the node is a C++ struct/union/class.
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/false);
// The node must be an Objective-C class.
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
/*Directly=*/false);
}
/// Overloaded method as shortcut for \c isDerivedFrom(hasName(...)).
///
/// Matches C++ classes that are directly or indirectly derived from a class
/// matching \c Base, or Objective-C classes that directly or indirectly
/// subclass a class matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Example matches Y, Z, C (Base == hasName("X"))
/// \code
/// class X {};
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
///
/// class Foo {};
/// typedef Foo Alias;
/// class Bar : public Alias {}; // derived from Alias, which is a
/// // typedef of Foo
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxRecordDecl(isDerivedFrom("X"))}
/// matches \match{class Y : public X {}}, \match{class Z : public Y {}}
/// and \match{class C : public B {}}.
///
/// The matcher \matcher{cxxRecordDecl(isDerivedFrom("Foo"))}
/// matches \match{class Bar : public Alias {}}.
///
/// In the following example, Bar matches isDerivedFrom(hasName("NSObject"))
/// \code
/// @interface NSObject @end
/// @interface Bar : NSObject @end
/// \endcode
/// \compile_args{-ObjC}
///
/// Usable as: Matcher<CXXRecordDecl>, Matcher<ObjCInterfaceDecl>
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches C++ classes that have a direct or indirect base matching \p
/// BaseSpecMatcher.
///
/// Given
/// \code
/// class Foo {};
/// class Bar : Foo {};
/// class Baz : Bar {};
/// class SpecialBase {};
/// class Proxy : SpecialBase {}; // matches Proxy
/// class IndirectlyDerived : Proxy {}; //matches IndirectlyDerived
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("SpecialBase")))))}
/// matches \match{class Proxy : SpecialBase {}} and
/// \match{class IndirectlyDerived : Proxy {}}.
// FIXME: Refactor this and isDerivedFrom to reuse implementation.
AST_MATCHER_P(CXXRecordDecl, hasAnyBase, internal::Matcher<CXXBaseSpecifier>,
BaseSpecMatcher) {
return internal::matchesAnyBase(Node, BaseSpecMatcher, Finder, Builder);
}
/// Matches C++ classes that have a direct base matching \p BaseSpecMatcher.
///
/// Given
/// \code
/// class Foo {};
/// class Bar : Foo {};
/// class Baz : Bar {};
/// class SpecialBase {};
/// class Proxy : SpecialBase {}; // matches Proxy
/// class IndirectlyDerived : Proxy {}; // doesn't match
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasDirectBase(hasType(cxxRecordDecl(hasName("SpecialBase")))))}
/// matches \match{class Proxy : SpecialBase {}}.
AST_MATCHER_P(CXXRecordDecl, hasDirectBase, internal::Matcher<CXXBaseSpecifier>,
BaseSpecMatcher) {
return Node.hasDefinition() &&
llvm::any_of(Node.bases(), [&](const CXXBaseSpecifier &Base) {
return BaseSpecMatcher.matches(Base, Finder, Builder);
});
}
/// Similar to \c isDerivedFrom(), but also matches classes that directly
/// match \c Base.
///
/// Given
/// \code
/// class X {};
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(isSameOrDerivedFrom(cxxRecordDecl(hasName("X"))),
/// isDefinition())}
/// matches \match{class X {}}, \match{class Y : public X {}},
/// \match{class Z : public Y {}} and \match{class C : public B {}}.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isSameOrDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base, 0) {
const auto M = anyOf(Base, isDerivedFrom(Base));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Similar to \c isDerivedFrom(), but also matches classes that directly
/// match \c Base.
/// Overloaded method as shortcut for
/// \c isSameOrDerivedFrom(hasName(...)).
///
/// Given
/// \code
/// class X {};
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(isSameOrDerivedFrom("X"), isDefinition())}
/// matches \match{class X {}}, \match{class Y : public X {}},
/// \match{class Z : public Y {}} and \match{class C : public B {}}.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isSameOrDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isSameOrDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches C++ or Objective-C classes that are directly derived from a class
/// matching \c Base.
///
/// Note that a class is not considered to be derived from itself.
///
/// Given
/// \code
/// class X {};
/// class Y : public X {}; // directly derived
/// class Z : public Y {}; // indirectly derived
/// typedef X A;
/// typedef A B;
/// class C : public B {}; // derived from a typedef of X
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(isDirectlyDerivedFrom(namedDecl(hasName("X"))))}
/// matches \match{class Y : public X {}} and \match{class C : public B {}}
/// (Base == hasName("X").
///
/// In the following example, Bar matches isDerivedFrom(hasName("X")):
/// \code
/// class Foo {};
/// typedef Foo X;
/// class Bar : public Foo {}; // derived from a type that X is a typedef of
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(isDerivedFrom(hasName("X")))}
/// matches \match{class Bar : public Foo {}}.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDirectlyDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
internal::Matcher<NamedDecl>, Base, 0) {
// Check if the node is a C++ struct/union/class.
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Finder->classIsDerivedFrom(RD, Base, Builder, /*Directly=*/true);
// The node must be an Objective-C class.
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Finder->objcClassIsDerivedFrom(InterfaceDecl, Base, Builder,
/*Directly=*/true);
}
/// Overloaded method as shortcut for \c isDirectlyDerivedFrom(hasName(...)).
///
/// Given
/// \code
/// struct Base {};
/// struct DirectlyDerived : public Base {};
/// struct IndirectlyDerived : public DirectlyDerived {};
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxRecordDecl(isDirectlyDerivedFrom("Base"))}
/// matches \match{struct DirectlyDerived : public Base {}}, but not
/// \nomatch{struct IndirectlyDerived : public DirectlyDerived {}}.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
isDirectlyDerivedFrom,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl, ObjCInterfaceDecl),
std::string, BaseName, 1) {
if (BaseName.empty())
return false;
const auto M = isDirectlyDerivedFrom(hasName(BaseName));
if (const auto *RD = dyn_cast<CXXRecordDecl>(&Node))
return Matcher<CXXRecordDecl>(M).matches(*RD, Finder, Builder);
const auto *InterfaceDecl = cast<ObjCInterfaceDecl>(&Node);
return Matcher<ObjCInterfaceDecl>(M).matches(*InterfaceDecl, Finder, Builder);
}
/// Matches the first method of a class or struct that satisfies \c
/// InnerMatcher.
///
/// Given
/// \code
/// class A { void func(); };
/// class B { void member(); };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxRecordDecl(hasMethod(hasName("func")))}
/// matches the declaration of \match{class A { void func(); }}
/// but does not match \nomatch{class B { void member(); }}
AST_MATCHER_P(CXXRecordDecl, hasMethod, internal::Matcher<CXXMethodDecl>,
InnerMatcher) {
BoundNodesTreeBuilder Result(*Builder);
auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.method_begin(),
Node.method_end(), Finder, &Result);
if (MatchIt == Node.method_end())
return false;
if (Finder->isTraversalIgnoringImplicitNodes() && (*MatchIt)->isImplicit())
return false;
*Builder = std::move(Result);
return true;
}
/// Matches the generated class of lambda expressions.
///
/// Given
/// \code
/// auto x = []{};
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{varDecl(hasType(cxxRecordDecl(isLambda())))}
/// matches \match{auto x = []{}}.
AST_MATCHER(CXXRecordDecl, isLambda) {
return Node.isLambda();
}
/// Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Given
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(has(cxxRecordDecl(hasName("X"))))}
/// matches \match{count=3$class X {}} three times for the definitions of \c X
/// that contain the implicit class declarations of \c X ,
/// and \match{count=2$class Y { class X {}; }} two times for the two different
/// definitions of \c Y that contain \c X .
///
/// ChildT must be an AST base type.
///
/// Usable as: Any Matcher
/// Note that has is direct matcher, so it also matches things like implicit
/// casts and paren casts. If you are matching with expr then you should
/// probably consider using ignoringParenImpCasts:
///
/// Given
/// \code
/// int x =0;
/// double y = static_cast<double>(x);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxStaticCastExpr(has(ignoringParenImpCasts(declRefExpr())))}.
/// matches \match{static_cast<double>(x)}
extern const internal::ArgumentAdaptingMatcherFunc<internal::HasMatcher> has;
/// Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Given
/// \code
/// class X {}; // Matches X, because X::X is a class of name X inside X.
/// class Y { class X {}; };
/// class Z { class Y { class X {}; }; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasDescendant(cxxRecordDecl(hasName("X"))))}
/// matches \match{count=3$class X {}} three times for the definitions of \c X
/// that contain the implicit class declarations of \c X ,
/// \match{count=2$class Y { class X {}; }} two times for the declaration of
/// \c X they contain, and \match{class Z { class Y { class X {}; }; }}.
///
/// DescendantT must be an AST base type.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasDescendantMatcher>
hasDescendant;
/// Matches AST nodes that have child AST nodes that match the
/// provided matcher.
///
/// Given
/// \code
/// class X {};
/// class Y { class X {}; }; // Matches Y, because Y::X is a class of name X
/// // inside Y.
/// class Z { class Y { class X {}; }; }; // Does not match Z.
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(forEach(cxxRecordDecl(hasName("X"))))}
/// matches \match{type=typestr$class X},
/// \match{type=typestr$class Y},
/// \match{type=typestr$class Y::X},
/// \match{type=typestr$class Z::Y::X} and \match{type=typestr$class Z::Y}
///
/// ChildT must be an AST base type.
///
/// As opposed to 'has', 'forEach' will cause a match for each result that
/// matches instead of only on the first one.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<internal::ForEachMatcher>
forEach;
/// Matches AST nodes that have descendant AST nodes that match the
/// provided matcher.
///
/// Given
/// \code
/// class X {};
/// class A { class X {}; }; // Matches A, because A::X is a class of name
/// // X inside A.
/// class B { class C { class X {}; }; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(forEachDescendant(cxxRecordDecl(hasName("X"))))}
/// matches \match{count=3$class X {}} three times, once for each of the
/// declared classes \c X and their implicit class declaration,
/// \match{class A { class X {}; }},
/// \match{class B { class C { class X {}; }; }} and
/// \match{class C { class X {}; }}.
///
/// DescendantT must be an AST base type.
///
/// As opposed to 'hasDescendant', 'forEachDescendant' will cause a match for
/// each result that matches instead of only on the first one.
///
/// Note: Recursively combined ForEachDescendant can cause many matches:
/// \code
/// struct A {
/// struct B {
/// struct C {};
/// struct D {};
/// };
/// };
///
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(forEachDescendant(cxxRecordDecl(
/// forEachDescendant(cxxRecordDecl().bind("inner"))
/// ).bind("middle")))}
/// will match 9 times:
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$B} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$B} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$C} in the middle and the definition of
/// \match{sub=inner;type=name$B} as the innermost \c cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$C} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$B} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$B} in the middle and the definition of
/// \match{sub=inner;type=name$D} as the innermost \c cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$B} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$D} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$C} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$C} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$A} with the definition of
/// \match{sub=middle;type=name$D} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$D} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$B} with the definition of
/// \match{sub=middle;type=name$C} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$C} as the innermost \c
/// cxxRecordDecl.
///
/// It matches the definition of \match{type=name$B} with the definition of
/// \match{sub=middle;type=name$D} in the middle and the implicit class
/// declaration of \match{sub=inner;type=name$D} as the innermost \c
/// cxxRecordDecl.
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::ForEachDescendantMatcher>
forEachDescendant;
/// Matches if the node or any descendant matches.
///
/// Generates results for each match.
///
/// For example, in:
/// \code
/// class A { class B {}; class C {}; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasName("::A"),
/// findAll(cxxRecordDecl(isDefinition()).bind("m")))}
/// matches \match{count=3$class A { class B {}; class C {}; }} three times,
/// with \matcher{type=sub$cxxRecordDecl(isDefinition()).bind("m")}
/// matching \match{type=name;sub=m$A},
/// \match{type=name;sub=m$B} and \match{type=name;sub=m$C}.
///
/// Usable as: Any Matcher
template <typename T>
internal::Matcher<T> findAll(const internal::Matcher<T> &Matcher) {
return eachOf(Matcher, forEachDescendant(Matcher));
}
/// Matches AST nodes that have a parent that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { for (;;) { int x = 42; if (true) { int x = 43; } } }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{compoundStmt(hasParent(ifStmt()))}
/// matches \match{{ int x = 43; }}
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasParentMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
hasParent;
/// Matches AST nodes that have an ancestor that matches the provided
/// matcher.
///
/// Given
/// \code
/// void f() { if (true) { int x = 42; } }
/// void g() { for (;;) { int x = 43; } }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{expr(integerLiteral(hasAncestor(ifStmt())))}
/// matches \match{42}
/// but does not match \nomatch{43}
///
/// Usable as: Any Matcher
extern const internal::ArgumentAdaptingMatcherFunc<
internal::HasAncestorMatcher,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>,
internal::TypeList<Decl, NestedNameSpecifierLoc, Stmt, TypeLoc, Attr>>
hasAncestor;
/// Matches if the provided matcher does not match.
///
/// Given
/// \code
/// int x;
/// int y = 0;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{varDecl(unless(hasInitializer(expr())))}
/// matches \match{int x}, but not \nomatch{int y = 0}.
///
/// Usable as: Any Matcher
extern const internal::VariadicOperatorMatcherFunc<1, 1> unless;
/// Matches a node if the declaration associated with that node
/// matches the given matcher.
///
/// The associated declaration is:
/// - for type nodes, the declaration of the underlying type
/// - for CallExpr, the declaration of the callee
/// - for MemberExpr, the declaration of the referenced member
/// - for CXXConstructExpr, the declaration of the constructor
/// - for CXXNewExpr, the declaration of the operator new
/// - for ObjCIvarExpr, the declaration of the ivar
///
/// Given
/// \code
/// class X {};
/// typedef X Y;
/// Y y;
/// \endcode
/// \compile_args{-std=c++}
/// For type nodes, hasDeclaration will generally match the declaration of the
/// sugared type, i.e., the matcher
/// \matcher{varDecl(hasType(qualType(hasDeclaration(decl().bind("d")))))},
/// matches \match{Y y}, with
/// the matcher \matcher{type=sub$decl()} matching
/// \match{sub=d$typedef X Y;}.
/// A common use case is to match the underlying, desugared type.
/// This can be achieved by using the hasUnqualifiedDesugaredType matcher:
/// \matcher{varDecl(hasType(hasUnqualifiedDesugaredType(
/// recordType(hasDeclaration(decl().bind("d"))))))}
/// matches \match{Y y}.
/// In this matcher, the matcher \matcher{type=sub$decl()} will match the
/// CXXRecordDecl
/// \match{sub=d$class X {};}.
///
/// Usable as: Matcher<AddrLabelExpr>, Matcher<CallExpr>,
/// Matcher<CXXConstructExpr>, Matcher<CXXNewExpr>, Matcher<DeclRefExpr>,
/// Matcher<EnumType>, Matcher<InjectedClassNameType>, Matcher<LabelStmt>,
/// Matcher<MemberExpr>, Matcher<QualType>, Matcher<RecordType>,
/// Matcher<TagType>, Matcher<TemplateSpecializationType>,
/// Matcher<TemplateTypeParmType>, Matcher<TypedefType>,
/// Matcher<UnresolvedUsingType>
inline internal::PolymorphicMatcher<
internal::HasDeclarationMatcher,
void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>
hasDeclaration(const internal::Matcher<Decl> &InnerMatcher) {
return internal::PolymorphicMatcher<
internal::HasDeclarationMatcher,
void(internal::HasDeclarationSupportedTypes), internal::Matcher<Decl>>(
InnerMatcher);
}
/// Matches a \c NamedDecl whose underlying declaration matches the given
/// matcher.
///
/// Given
/// \code
/// namespace N { template<class T> void f(T t); }
/// template <class T> void g() { using N::f; f(T()); }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++11-or-later}
/// The matcher \matcher{unresolvedLookupExpr(hasAnyDeclaration(
/// namedDecl(hasUnderlyingDecl(hasName("::N::f")))))}
/// matches \match{f} in \c g().
AST_MATCHER_P(NamedDecl, hasUnderlyingDecl, internal::Matcher<NamedDecl>,
InnerMatcher) {
const NamedDecl *UnderlyingDecl = Node.getUnderlyingDecl();
return UnderlyingDecl != nullptr &&
InnerMatcher.matches(*UnderlyingDecl, Finder, Builder);
}
/// Matches on the implicit object argument of a member call expression, after
/// stripping off any parentheses or implicit casts.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// Y g();
/// class X : public Y {};
/// void z(Y y, X x) { y.m(); (g()).m(); x.m(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("Y")))))}
/// matches \match{y.m()} and \match{(g()).m()}.
/// The matcher
/// \matcher{cxxMemberCallExpr(on(hasType(cxxRecordDecl(hasName("X")))))}
/// matches \match{x.m()}.
/// The matcher \matcher{cxxMemberCallExpr(on(callExpr()))}
/// matches \match{(g()).m()}.
///
/// FIXME: Overload to allow directly matching types?
AST_MATCHER_P(CXXMemberCallExpr, on, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument()
->IgnoreParenImpCasts();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches on the receiver of an ObjectiveC Message expression.
///
/// \code
/// NSString *webViewJavaScript = ...
/// UIWebView *webView = ...
/// [webView stringByEvaluatingJavaScriptFromString:webViewJavascript];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objCMessageExpr(hasReceiverType(asString("UIWebView
/// *")))} matches
/// \match{[webViewstringByEvaluatingJavaScriptFromString:webViewJavascript];}
AST_MATCHER_P(ObjCMessageExpr, hasReceiverType, internal::Matcher<QualType>,
InnerMatcher) {
const QualType TypeDecl = Node.getReceiverType();
return InnerMatcher.matches(TypeDecl, Finder, Builder);
}
/// Returns true when the Objective-C method declaration is a class method.
///
/// Given
/// \code
/// @interface I + (void)foo; @end
/// @interface I - (void)bar; @end
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objcMethodDecl(isClassMethod())}
/// matches \match{@interface I + (void)foo; @end}
/// but does not match \nomatch{interface I + (void)foo; @end}
AST_MATCHER(ObjCMethodDecl, isClassMethod) {
return Node.isClassMethod();
}
/// Returns true when the Objective-C method declaration is an instance method.
///
/// Given
/// \code
/// @interface I - (void)bar; @end
/// @interface I + (void)foo; @end
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objcMethodDecl(isInstanceMethod())}
/// matches \match{@interface I - (void)bar; @end}
/// but does not match \nomatch{@interface I - (void)foo; @end}
/// \compile_args{-ObjC}
AST_MATCHER(ObjCMethodDecl, isInstanceMethod) {
return Node.isInstanceMethod();
}
/// Returns true when the Objective-C message is sent to a class.
///
/// Given
/// \code
/// [NSString stringWithFormat:@"format"];
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objcMessageExpr(isClassMessage())}
/// matches \match{[NSString stringWithFormat:@"format"];}
/// but does not match \nomatch{[[x containsString:@"h"]}
AST_MATCHER(ObjCMessageExpr, isClassMessage) {
return Node.isClassMessage();
}
/// Returns true when the Objective-C message is sent to an instance.
///
/// Given
/// \code
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// [NSString stringWithFormat:@"format"];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objcMessageExpr(isInstanceMessage())}
/// matches \match{[x containsString:@"h"];}
/// but does not match \nomatch{[NSString stringWithFormat:@"format"];}
AST_MATCHER(ObjCMessageExpr, isInstanceMessage) {
return Node.isInstanceMessage();
}
/// Matches if the Objective-C message is sent to an instance,
/// and the inner matcher matches on that instance.
///
/// Given
/// \code
/// NSString *x = @"hello";
/// [x containsString:@"h"];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher
/// \matcher{objcMessageExpr(hasReceiver(declRefExpr(to(varDecl(hasName("x"))))))}
/// matches \match{[x containsString:@"h"];}
AST_MATCHER_P(ObjCMessageExpr, hasReceiver, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *ReceiverNode = Node.getInstanceReceiver();
return (ReceiverNode != nullptr &&
InnerMatcher.matches(*ReceiverNode->IgnoreParenImpCasts(), Finder,
Builder));
}
/// Matches when BaseName == Selector.getAsString()
///
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher
/// \matcher{objCMessageExpr(hasSelector("loadHTMLString:baseURL:"));} matches
/// the outer message expr in the code below, but NOT the message invocation
/// for self.bodyView.
AST_MATCHER_P(ObjCMessageExpr, hasSelector, std::string, BaseName) {
Selector Sel = Node.getSelector();
return BaseName == Sel.getAsString();
}
/// Matches when at least one of the supplied string equals to the
/// Selector.getAsString()
///
/// \code
/// [myObj methodA:argA];
/// [myObj methodB:argB];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objCMessageExpr(hasSelector("methodA:", "methodB:"));}
/// matches \match{[myObj methodA:argA];} and \match{[myObj methodB:argB];}
extern const internal::VariadicFunction<internal::Matcher<ObjCMessageExpr>,
StringRef,
internal::hasAnySelectorFunc>
hasAnySelector;
/// Matches ObjC selectors whose name contains
/// a substring matched by the given RegExp.
///
/// Given
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher
/// \matcher{objCMessageExpr(matchesSelector("loadHTMLString\:baseURL?"))}
/// matches the outer message expr in the code below, but NOT the message
/// invocation for self.bodyView.
AST_MATCHER_REGEX(ObjCMessageExpr, matchesSelector, RegExp) {
std::string SelectorString = Node.getSelector().getAsString();
return RegExp->match(SelectorString);
}
/// Matches when the selector is the empty selector
///
/// Matches only when the selector of the objCMessageExpr is NULL. This may
/// represent an error condition in the tree!
AST_MATCHER(ObjCMessageExpr, hasNullSelector) {
return Node.getSelector().isNull();
}
/// Matches when the selector is a Unary Selector
///
/// Given
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{objCMessageExpr(matchesSelector(hasUnarySelector());}
/// matches \match{self.bodyView}, but does not match the outer message
/// invocation of "loadHTMLString:baseURL:".
AST_MATCHER(ObjCMessageExpr, hasUnarySelector) {
return Node.getSelector().isUnarySelector();
}
/// Matches when the selector is a keyword selector
///
/// Given
/// \code
/// UIWebView *webView = ...;
/// CGRect bodyFrame = webView.frame;
/// bodyFrame.size.height = self.bodyContentHeight;
/// webView.frame = bodyFrame;
/// // ^---- matches here
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{objCMessageExpr(hasKeywordSelector())} matches the
/// generated setFrame message expression in
AST_MATCHER(ObjCMessageExpr, hasKeywordSelector) {
return Node.getSelector().isKeywordSelector();
}
/// Matches when the selector has the specified number of arguments
///
/// \code
/// [self.bodyView loadHTMLString:html baseURL:NULL];
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objCMessageExpr(numSelectorArgs(0))}
/// matches \match{self.bodyView}.
/// The matcher \matcher{objCMessageExpr(numSelectorArgs(2))}
/// matches the invocation of \match{loadHTMLString:baseURL:}
/// but does not match \nomatch{self.bodyView}
AST_MATCHER_P(ObjCMessageExpr, numSelectorArgs, unsigned, N) {
return Node.getSelector().getNumArgs() == N;
}
/// Matches if the call or fold expression's callee expression matches.
///
/// Given
/// \code
/// class Y { void x() { this->x(); x(); Y y; y.x(); } };
/// void f() { f(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{callExpr(callee(expr().bind("callee")))}
/// matches \match{this->x()}, \match{x()}, \match{y.x()}, \match{f()}
/// with \matcher{type=sub$expr()} inside of \c callee
/// matching \match{sub=callee$this->x}, \match{sub=callee$x},
/// \match{sub=callee$y.x}, \match{sub=callee$f} respectively
///
/// Given
/// \code
/// struct Dummy {};
/// // makes sure there is a callee, otherwise there would be no callee,
/// // just a builtin operator
/// Dummy operator+(Dummy, Dummy);
/// // not defining a '*' operator
///
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ... * 1);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
/// The matcher \matcher{cxxFoldExpr(callee(expr().bind("op")))}
/// matches \match{(0 + ... + args)}
/// with \matcher{type=sub$callee(...)} matching \match{sub=op$*},
/// but does not match \nomatch{(args * ... * 1)}.
/// A \c CXXFoldExpr only has an \c UnresolvedLookupExpr as a callee.
/// When there are no define operators that could be used instead of builtin
/// ones, then there will be no \c callee .
///
/// Note: Callee cannot take the more general internal::Matcher<Expr>
/// because this introduces ambiguous overloads with calls to Callee taking a
/// internal::Matcher<Decl>, as the matcher hierarchy is purely
/// implemented in terms of implicit casts.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(callee,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXFoldExpr),
internal::Matcher<Stmt>, InnerMatcher, 0) {
const auto *ExprNode = Node.getCallee();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches 1) if the call expression's callee's declaration matches the
/// given matcher; or 2) if the Obj-C message expression's callee's method
/// declaration matches the given matcher.
///
/// Example 1
/// \code
/// class Y { public: void x(); };
/// void z() { Y y; y.x(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{callExpr(callee(cxxMethodDecl(hasName("x"))))}
/// matches \match{y.x()}
///
/// Example 2
/// \code
/// @interface I: NSObject
/// +(void)foo;
/// @end
/// ...
/// [I foo]
/// \endcode
/// \compile_args{-ObjC}
/// The matcher
/// \matcher{objcMessageExpr(callee(objcMethodDecl(hasName("foo"))))}
/// matches \match{[I foo]}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
callee, AST_POLYMORPHIC_SUPPORTED_TYPES(ObjCMessageExpr, CallExpr),
internal::Matcher<Decl>, InnerMatcher, 1) {
if (isa<CallExpr>(&Node))
return callExpr(hasDeclaration(InnerMatcher))
.matches(Node, Finder, Builder);
else {
// The dynamic cast below is guaranteed to succeed as there are only 2
// supported return types.
const auto *MsgNode = cast<ObjCMessageExpr>(&Node);
const Decl *DeclNode = MsgNode->getMethodDecl();
return (DeclNode != nullptr &&
InnerMatcher.matches(*DeclNode, Finder, Builder));
}
}
/// Matches if the expression's or declaration's type matches a type
/// matcher.
///
/// Exmaple
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// typedef int U;
/// class Y { friend class X; };
/// class Z : public virtual X {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{expr(hasType(cxxRecordDecl(hasName("X"))))}
/// matches \match{x} and \match{z}.
/// The matcher \matcher{varDecl(hasType(cxxRecordDecl(hasName("X"))))}
/// matches \match{X z}
/// The matcher \matcher{typedefDecl(hasType(asString("int")))}
/// matches \match{typedef int U}
/// The matcher \matcher{friendDecl(hasType(asString("class X")))}
/// matches \match{friend class X}
/// The matcher \matcher{cxxRecordDecl(hasAnyBase(cxxBaseSpecifier(hasType(
/// asString("X"))).bind("b")))} matches \match{class Z : public virtual X {}},
/// with \matcher{type=sub$cxxBaseSpecifier(...)}
/// matching \match{sub=b$public virtual X}.
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
hasType,
AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, TypedefNameDecl,
ValueDecl, CXXBaseSpecifier),
internal::Matcher<QualType>, InnerMatcher, 0) {
QualType QT = internal::getUnderlyingType(Node);
if (!QT.isNull())
return InnerMatcher.matches(QT, Finder, Builder);
return false;
}
/// Overloaded to match the declaration of the expression's or value
/// declaration's type.
///
/// In case of a value declaration (for example a variable declaration),
/// this resolves one layer of indirection. For example, in the value
/// declaration "X x;", cxxRecordDecl(hasName("X")) matches the declaration of
/// X, while varDecl(hasType(cxxRecordDecl(hasName("X")))) matches the
/// declaration of x.
///
/// \code
/// class X {};
/// void y(X &x) { x; X z; }
/// class Y { friend class X; };
/// class Z : public virtual X {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{expr(hasType(cxxRecordDecl(hasName("X"))))}
/// matches \match{x} and \match{z}.
/// The matcher \matcher{varDecl(hasType(cxxRecordDecl(hasName("X"))))}
/// matches \match{X z}.
/// The matcher \matcher{friendDecl(hasType(asString("class X")))}
/// matches \match{friend class X}.
/// The matcher \matcher{cxxRecordDecl(hasAnyBase(cxxBaseSpecifier(hasType(
/// asString("X"))).bind("b")))} matches
/// \match{class Z : public virtual X {}},
/// with \matcher{type=sub$cxxBaseSpecifier(...)}
/// matching \match{sub=b$public virtual X}.
///
/// Given
/// \code
/// class Base {};
/// class Derived : Base {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasAnyBase(hasType(cxxRecordDecl(hasName("Base")))))}
/// matches \match{class Derived : Base {}}.
///
/// Usable as: Matcher<Expr>, Matcher<FriendDecl>, Matcher<ValueDecl>,
/// Matcher<CXXBaseSpecifier>
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(
hasType,
AST_POLYMORPHIC_SUPPORTED_TYPES(Expr, FriendDecl, ValueDecl,
CXXBaseSpecifier),
internal::Matcher<Decl>, InnerMatcher, 1) {
QualType QT = internal::getUnderlyingType(Node);
if (!QT.isNull())
return qualType(hasDeclaration(InnerMatcher)).matches(QT, Finder, Builder);
return false;
}
/// Matches if the type location of a node matches the inner matcher.
///
/// Given
/// \code
/// int x;
/// \endcode
/// The matcher \matcher{declaratorDecl(hasTypeLoc(loc(asString("int"))))}
/// matches \match{int x}.
///
/// Given
/// \code
/// struct point { point(double, double); };
/// point p = point(1.0, -1.0);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxTemporaryObjectExpr(hasTypeLoc(loc(asString("point"))))}
/// matches \match{point(1.0, -1.0)}.
///
/// Given
/// \code
/// struct Foo { Foo(int, int); };
/// Foo x = Foo(1, 2);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxTemporaryObjectExpr(hasTypeLoc(
/// loc(asString("Foo"))))}
/// matches \match{Foo(1, 2)}.
///
/// Usable as: Matcher<BlockDecl>, Matcher<CXXBaseSpecifier>,
/// Matcher<CXXCtorInitializer>, Matcher<CXXFunctionalCastExpr>,
/// Matcher<CXXNewExpr>, Matcher<CXXTemporaryObjectExpr>,
/// Matcher<CXXUnresolvedConstructExpr>,
/// Matcher<CompoundLiteralExpr>,
/// Matcher<DeclaratorDecl>, Matcher<ExplicitCastExpr>,
/// Matcher<ObjCPropertyDecl>, Matcher<TemplateArgumentLoc>,
/// Matcher<TypedefNameDecl>
AST_POLYMORPHIC_MATCHER_P(
hasTypeLoc,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BlockDecl, CXXBaseSpecifier, CXXCtorInitializer, CXXFunctionalCastExpr,
CXXNewExpr, CXXTemporaryObjectExpr, CXXUnresolvedConstructExpr,
CompoundLiteralExpr, DeclaratorDecl, ExplicitCastExpr, ObjCPropertyDecl,
TemplateArgumentLoc, TypedefNameDecl),
internal::Matcher<TypeLoc>, Inner) {
TypeSourceInfo *source = internal::GetTypeSourceInfo(Node);
if (source == nullptr) {
// This happens for example for implicit destructors.
return false;
}
return Inner.matches(source->getTypeLoc(), Finder, Builder);
}
/// Matches if the matched type is represented by the given string.
///
/// Given
/// \code
/// class Y { public: void x(); };
/// void z() { Y* y; y->x(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMemberCallExpr(on(hasType(asString("Y *"))))}
/// matches \match{y->x()}
AST_MATCHER_P(QualType, asString, std::string, Name) {
return Name == Node.getAsString();
}
/// Matches if the matched type is a pointer type and the pointee type
/// matches the specified matcher.
///
/// Given
/// \code
/// class Y { public: void x(); };
/// void z() { Y *y; y->x(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMemberCallExpr(on(hasType(pointsTo(
/// qualType()))))}
/// matches \match{y->x()}
AST_MATCHER_P(
QualType, pointsTo, internal::Matcher<QualType>,
InnerMatcher) {
return (!Node.isNull() && Node->isAnyPointerType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// Matches if the matched type is a pointer type and the pointee type
/// matches the specified matcher.
/// Overloaded to match the pointee type's declaration.
///
/// Given
/// \code
/// class Y { public: void x(); };
/// void z() { Y *y; y->x(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMemberCallExpr(on(hasType(pointsTo(
/// cxxRecordDecl(hasName("Y"))))))}
/// matches \match{y->x()}
AST_MATCHER_P_OVERLOAD(QualType, pointsTo, internal::Matcher<Decl>,
InnerMatcher, 1) {
return pointsTo(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches if the matched type matches the unqualified desugared
/// type of the matched node.
///
/// For example, in:
/// \code
/// class A {};
/// using B = A;
/// B b;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{varDecl(hasType(hasUnqualifiedDesugaredType(recordType())))}
/// matches \match{B b}.
AST_MATCHER_P(Type, hasUnqualifiedDesugaredType, internal::Matcher<Type>,
InnerMatcher) {
return InnerMatcher.matches(*Node.getUnqualifiedDesugaredType(), Finder,
Builder);
}
/// Matches if the matched type is a reference type and the referenced
/// type matches the specified matcher.
///
/// Given
/// \code
/// class X {
/// void a(X b) {
/// X &x = b;
/// const X &y = b;
/// }
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{varDecl(hasType(references(qualType())))} matches
/// \match{X &x = b} and \match{const X &y = b}.
AST_MATCHER_P(QualType, references, internal::Matcher<QualType>, InnerMatcher) {
return (!Node.isNull() && Node->isReferenceType() &&
InnerMatcher.matches(Node->getPointeeType(), Finder, Builder));
}
/// Matches QualTypes whose canonical type matches InnerMatcher.
///
/// Given
/// \code
/// typedef int &int_ref;
/// int a;
/// int_ref b = a;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{varDecl(hasType(qualType(referenceType())))}
/// does not match \nomatch{int_ref b = a},
/// but the matcher
/// \matcher{varDecl(hasType(qualType(hasCanonicalType(referenceType()))))}
/// does match \match{int_ref b = a}.
AST_MATCHER_P(QualType, hasCanonicalType, internal::Matcher<QualType>,
InnerMatcher) {
if (Node.isNull())
return false;
return InnerMatcher.matches(Node.getCanonicalType(), Finder, Builder);
}
/// Matches if the matched type is a reference type and the referenced
/// type matches the specified matcher.
/// Overloaded to match the referenced type's declaration.
///
/// Given
/// \code
/// class X {
/// void a(X b) {
/// X &x = b;
/// const X &y = b;
/// }
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{varDecl(hasType(references(cxxRecordDecl(hasName("X")))))} matches
/// \match{X &x = b} and \match{const X &y = b}.
AST_MATCHER_P_OVERLOAD(QualType, references, internal::Matcher<Decl>,
InnerMatcher, 1) {
return references(qualType(hasDeclaration(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches on the implicit object argument of a member call expression. Unlike
/// `on`, matches the argument directly without stripping away anything.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// Y g();
/// class X : public Y { public: void g(); };
/// void z(Y y, X x) { y.m(); x.m(); x.g(); (g()).m(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMemberCallExpr(onImplicitObjectArgument(hasType(
/// cxxRecordDecl(hasName("Y")))))}
/// matches \match{y.m()}, \match{x.m()} and \match{(g()).m()}
/// but does not match \nomatch{x.g()}.
/// The matcher \matcher{cxxMemberCallExpr(on(callExpr()))}
/// only matches \match{(g()).m()}, because the parens are ignored.
/// FIXME: should they be ignored? (ignored bc of `on`)
///
/// FIXME: Overload to allow directly matching types?
AST_MATCHER_P(CXXMemberCallExpr, onImplicitObjectArgument,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *ExprNode = Node.getImplicitObjectArgument();
return (ExprNode != nullptr &&
InnerMatcher.matches(*ExprNode, Finder, Builder));
}
/// Matches if the type of the expression's implicit object argument either
/// matches the InnerMatcher, or is a pointer to a type that matches the
/// InnerMatcher.
///
/// Given
/// \code
/// class Y { public: void m() const; };
/// class X : public Y { public: void g(); };
/// void z() { const Y y; y.m(); const Y *p; p->m(); X x; x.m(); x.g(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxMemberCallExpr(thisPointerType(isConstQualified()))}
/// matches \match{y.m()}, \match{x.m()} and \match{p->m()},
/// but not \nomatch{x.g()}.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<QualType>, InnerMatcher, 0) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// Overloaded to match the type's declaration.
///
/// Given
/// \code
/// class Y { public: void m(); };
/// class X : public Y { public: void g(); };
/// void z() { Y y; y.m(); Y *p; p->m(); X x; x.m(); x.g(); }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMemberCallExpr(thisPointerType(
/// cxxRecordDecl(hasName("Y"))))}
/// matches \match{y.m()}, \match{p->m()} and \match{x.m()}.
/// The matcher \matcher{cxxMemberCallExpr(thisPointerType(
/// cxxRecordDecl(hasName("X"))))}
/// matches \match{x.g()}.
AST_MATCHER_P_OVERLOAD(CXXMemberCallExpr, thisPointerType,
internal::Matcher<Decl>, InnerMatcher, 1) {
return onImplicitObjectArgument(
anyOf(hasType(InnerMatcher), hasType(pointsTo(InnerMatcher))))
.matches(Node, Finder, Builder);
}
/// Matches a DeclRefExpr that refers to a declaration that matches the
/// specified matcher.
///
/// Given
/// \code
/// void foo() {
/// bool x;
/// if (x) {}
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{declRefExpr(to(varDecl(hasName("x"))))}
/// matches \match{x} inside the condition of the if-stmt.
AST_MATCHER_P(DeclRefExpr, to, internal::Matcher<Decl>, InnerMatcher) {
const Decl *DeclNode = Node.getDecl();
return (DeclNode != nullptr &&
InnerMatcher.matches(*DeclNode, Finder, Builder));
}
/// Matches if a node refers to a declaration through a specific
/// using shadow declaration.
///
/// Given
/// \code
/// namespace a { int f(); }
/// using a::f;
/// int x = f();
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{declRefExpr(throughUsingDecl(anything()))}
/// matches \match{f}
///
/// \code
/// namespace a { class X{}; }
/// using a::X;
/// X x;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{typeLoc(loc(usingType(throughUsingDecl(anything()))))}
/// matches \match{X}
///
/// Usable as: Matcher<DeclRefExpr>, Matcher<UsingType>
AST_POLYMORPHIC_MATCHER_P(throughUsingDecl,
AST_POLYMORPHIC_SUPPORTED_TYPES(DeclRefExpr,
UsingType),
internal::Matcher<UsingShadowDecl>, Inner) {
const NamedDecl *FoundDecl = Node.getFoundDecl();
if (const UsingShadowDecl *UsingDecl = dyn_cast<UsingShadowDecl>(FoundDecl))
return Inner.matches(*UsingDecl, Finder, Builder);
return false;
}
/// Matches an \c OverloadExpr if any of the declarations in the set of
/// overloads matches the given matcher.
///
/// Given
/// \code
/// template <typename T> void foo(T);
/// template <typename T> void bar(T);
/// template <typename T> void baz(T t) {
/// foo(t);
/// bar(t);
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unresolvedLookupExpr(hasAnyDeclaration(
/// functionTemplateDecl(hasName("foo"))))}
/// matches \match{foo} in \c foo(t);
/// but does not match \nomatch{bar} in \c bar(t);
AST_MATCHER_P(OverloadExpr, hasAnyDeclaration, internal::Matcher<Decl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.decls_begin(),
Node.decls_end(), Finder,
Builder) != Node.decls_end();
}
/// Matches the Decl of a DeclStmt which has a single declaration.
///
/// Given
/// \code
/// void foo() {
/// int a, b;
/// int c;
/// }
/// \endcode
/// The matcher \matcher{declStmt(hasSingleDecl(anything()))}
/// matches \match{int c;}
/// but does not match \nomatch{int a, b;}
AST_MATCHER_P(DeclStmt, hasSingleDecl, internal::Matcher<Decl>, InnerMatcher) {
if (Node.isSingleDecl()) {
const Decl *FoundDecl = Node.getSingleDecl();
return InnerMatcher.matches(*FoundDecl, Finder, Builder);
}
return false;
}
/// Matches a variable declaration that has an initializer expression
/// that matches the given matcher.
///
/// Given
/// \code
/// int y() { return 0; }
/// void foo() {
/// int x = y();
/// }
/// \endcode
/// The matcher \matcher{varDecl(hasInitializer(callExpr()))}
/// matches \match{int x = y()}
AST_MATCHER_P(
VarDecl, hasInitializer, internal::Matcher<Expr>,
InnerMatcher) {
const Expr *Initializer = Node.getAnyInitializer();
return (Initializer != nullptr &&
InnerMatcher.matches(*Initializer, Finder, Builder));
}
/// Matches a variable serving as the implicit variable for a lambda init-
/// capture.
///
/// Given
/// \code
/// auto f = [x = 3]() { return x; };
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{varDecl(isInitCapture())}
/// matches \match{x = 3}.
AST_MATCHER(VarDecl, isInitCapture) { return Node.isInitCapture(); }
/// Matches each lambda capture in a lambda expression.
///
/// Given
/// \code
/// int main() {
/// int x;
/// int y;
/// float z;
/// auto f = [=]() { return x + y + z; };
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{lambdaExpr(forEachLambdaCapture(
/// lambdaCapture(capturesVar(
/// varDecl(hasType(isInteger())).bind("captured")))))}
/// matches \match{count=2$[=]() { return x + y + z; }} two times,
/// with \matcher{type=sub$varDecl(hasType(isInteger()))} matching
/// \match{sub=captured$int x} and \match{sub=captured$int y}.
AST_MATCHER_P(LambdaExpr, forEachLambdaCapture,
internal::Matcher<LambdaCapture>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto &Capture : Node.captures()) {
if (Finder->isTraversalIgnoringImplicitNodes() && Capture.isImplicit())
continue;
BoundNodesTreeBuilder CaptureBuilder(*Builder);
if (InnerMatcher.matches(Capture, Finder, &CaptureBuilder)) {
Matched = true;
Result.addMatch(CaptureBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// \brief Matches a static variable with local scope.
///
/// Given
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// static int z;
/// \endcode
/// The matcher \matcher{varDecl(isStaticLocal())}
/// matches \match{static int y}.
AST_MATCHER(VarDecl, isStaticLocal) {
return Node.isStaticLocal();
}
/// Matches a variable declaration that has function scope and is a
/// non-static local variable.
///
/// Given
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
/// The matcher \matcher{varDecl(hasLocalStorage())}
/// matches \match{int x}.
AST_MATCHER(VarDecl, hasLocalStorage) {
return Node.hasLocalStorage();
}
/// Matches a variable declaration that does not have local storage.
///
/// Given
/// \code
/// void f() {
/// int x;
/// static int y;
/// }
/// int z;
/// \endcode
/// The matcher \matcher{varDecl(hasGlobalStorage())}
/// matches \match{static int y} and \match{int z}.
AST_MATCHER(VarDecl, hasGlobalStorage) {
return Node.hasGlobalStorage();
}
/// Matches a variable declaration that has automatic storage duration.
///
/// Given
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{varDecl(hasAutomaticStorageDuration())}
/// matches \match{int x}
/// but does not match \nomatch{static int y}, \nomatch{thread_local int z} or
/// \nomatch{int a}
AST_MATCHER(VarDecl, hasAutomaticStorageDuration) {
return Node.getStorageDuration() == SD_Automatic;
}
/// Matches a variable declaration that has static storage duration.
/// It includes the variable declared at namespace scope and those declared
/// with "static" and "extern" storage class specifiers.
///
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// static int b;
/// extern int c;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{varDecl(hasStaticStorageDuration())}
/// matches \match{static int y}, \match{int a}, \match{static int b} and
/// \match{extern int c}
AST_MATCHER(VarDecl, hasStaticStorageDuration) {
return Node.getStorageDuration() == SD_Static;
}
/// Matches a variable declaration that has thread storage duration.
///
/// Given
/// \code
/// void f() {
/// int x;
/// static int y;
/// thread_local int z;
/// }
/// int a;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{varDecl(hasThreadStorageDuration())}
/// matches \match{thread_local int z}
/// but does not match \nomatch{int x} or \nomatch{type=name$a}.
AST_MATCHER(VarDecl, hasThreadStorageDuration) {
return Node.getStorageDuration() == SD_Thread;
}
/// Matches a variable declaration that is an exception variable from
/// a C++ catch block, or an Objective-C \@catch statement.
///
/// Given
/// \code
/// void f(int y) {
/// try {
/// } catch (int x) {
/// }
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{varDecl(isExceptionVariable())}
/// matches \match{int x}.
AST_MATCHER(VarDecl, isExceptionVariable) {
return Node.isExceptionVariable();
}
/// Checks that a call expression or a constructor call expression has
/// a specific number of arguments (including absent default arguments).
///
/// Given
/// \code
/// void f(int x, int y);
/// void foo() {
/// f(0, 0);
/// }
/// \endcode
/// The matcher \matcher{callExpr(argumentCountIs(2))}
/// matches \match{f(0, 0)}.
AST_POLYMORPHIC_MATCHER_P(argumentCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
unsigned, N) {
unsigned NumArgs = Node.getNumArgs();
if (!Finder->isTraversalIgnoringImplicitNodes())
return NumArgs == N;
while (NumArgs) {
if (!isa<CXXDefaultArgExpr>(Node.getArg(NumArgs - 1)))
break;
--NumArgs;
}
return NumArgs == N;
}
/// Checks that a call expression or a constructor call expression has at least
/// the specified number of arguments (including absent default arguments).
///
/// Given
/// \code
/// void f(int x, int y);
/// void g(int x, int y, int z);
/// void foo() {
/// f(0, 0);
/// g(0, 0, 0);
/// }
/// \endcode
/// The matcher \matcher{callExpr(argumentCountAtLeast(2))}
/// matches \match{f(0, 0)} and \match{g(0, 0, 0)}
AST_POLYMORPHIC_MATCHER_P(argumentCountAtLeast,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
unsigned, N) {
unsigned NumArgs = Node.getNumArgs();
if (!Finder->isTraversalIgnoringImplicitNodes())
return NumArgs >= N;
while (NumArgs) {
if (!isa<CXXDefaultArgExpr>(Node.getArg(NumArgs - 1)))
break;
--NumArgs;
}
return NumArgs >= N;
}
/// Matches the n'th argument of a call expression or a constructor
/// call expression.
///
/// Given
/// \code
/// void x(int) { int y; x(y); }
/// \endcode
/// The matcher \matcher{callExpr(hasArgument(0, declRefExpr().bind("arg")))}
/// matches \match{x(y)},
/// with \matcher{type=sub$declRefExpr()} matching \match{sub="arg"$y}.
AST_POLYMORPHIC_MATCHER_P2(hasArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
unsigned, N, internal::Matcher<Expr>, InnerMatcher) {
if (N >= Node.getNumArgs())
return false;
const Expr *Arg = Node.getArg(N);
if (Finder->isTraversalIgnoringImplicitNodes() && isa<CXXDefaultArgExpr>(Arg))
return false;
return InnerMatcher.matches(*Arg->IgnoreParenImpCasts(), Finder, Builder);
}
/// Matches the operand that does not contain the parameter pack.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ... * 1);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(hasFoldInit(expr().bind("init")))}
/// matches \match{(0 + ... + args)} and \match{(args * ... * 1)}
/// with \matcher{type=sub$hasFoldInit(expr().bind("init"))} matching
/// \match{sub=init$0} and \match{sub=init$1}.
AST_MATCHER_P(CXXFoldExpr, hasFoldInit, internal::Matcher<Expr>, InnerMacher) {
const auto *const Init = Node.getInit();
return Init && InnerMacher.matches(*Init, Finder, Builder);
}
/// Matches the operand that contains the parameter pack.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ... * 1);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(hasPattern(expr().bind("pattern")))}
/// matches \match{(0 + ... + args)} and \match{(args * ... * 1)},
/// with \matcher{type=sub$hasPattern(expr().bind("pattern"))} matching
/// \match{count=2;sub=pattern$args} two times.
AST_MATCHER_P(CXXFoldExpr, hasPattern, internal::Matcher<Expr>, InnerMacher) {
const Expr *const Pattern = Node.getPattern();
return Pattern && InnerMacher.matches(*Pattern, Finder, Builder);
}
/// Matches right-folding fold expressions.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ... * 1);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(isRightFold())}
/// matches \match{(args * ... * 1)}.
AST_MATCHER(CXXFoldExpr, isRightFold) { return Node.isRightFold(); }
/// Matches left-folding fold expressions.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ... * 1);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(isLeftFold())}
/// matches \match{(0 + ... + args)}.
AST_MATCHER(CXXFoldExpr, isLeftFold) { return Node.isLeftFold(); }
/// Matches unary fold expressions, i.e. fold expressions without an
/// initializer.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ...);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(isUnaryFold())}
/// matches \match{(args * ...)}, but not \nomatch{(0 + ... + args)}.
AST_MATCHER(CXXFoldExpr, isUnaryFold) { return Node.getInit() == nullptr; }
/// Matches binary fold expressions, i.e. fold expressions with an initializer.
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
///
/// template <typename... Args>
/// auto multiply(Args... args) {
/// return (args * ...);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
///
/// The matcher \matcher{cxxFoldExpr(isBinaryFold())}
/// matches \match{(0 + ... + args)}.
AST_MATCHER(CXXFoldExpr, isBinaryFold) { return Node.getInit() != nullptr; }
/// Matches the n'th item of an initializer list expression.
///
/// Given
/// \code
/// int y = 42;
/// int x{y};
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{initListExpr(hasInit(0, expr()))}
/// matches \match{{y}}.
AST_MATCHER_P2(InitListExpr, hasInit, unsigned, N, internal::Matcher<Expr>,
InnerMatcher) {
return N < Node.getNumInits() &&
InnerMatcher.matches(*Node.getInit(N), Finder, Builder);
}
/// Matches declaration statements that contain a specific number of
/// declarations.
///
/// Given
/// \code
/// void foo() {
/// int a, b;
/// int c;
/// int d = 2, e;
/// }
/// \endcode
/// The matcher \matcher{declStmt(declCountIs(2))}
/// matches \match{int a, b;} and \match{int d = 2, e;},
/// but does not match \nomatch{int c;}
AST_MATCHER_P(DeclStmt, declCountIs, unsigned, N) {
return std::distance(Node.decl_begin(), Node.decl_end()) == (ptrdiff_t)N;
}
/// Matches the n'th declaration of a declaration statement.
///
/// Note that this does not work for global declarations because the AST
/// breaks up multiple-declaration DeclStmt's into multiple single-declaration
/// DeclStmt's.
///
/// Given non-global declarations
/// \code
/// void foo() {
/// int a, b = 0;
/// int c;
/// int d = 2, e;
/// }
/// \endcode
/// The matcher \matcher{declStmt(containsDeclaration(
/// 0, varDecl(hasInitializer(anything()))))}
/// matches \match{int d = 2, e;}.
/// The matcher \matcher{declStmt(containsDeclaration(1, varDecl()))}
/// matches \match{int a, b = 0;} and \match{int d = 2, e;}
/// but does not match \nomatch{int c;}.
AST_MATCHER_P2(DeclStmt, containsDeclaration, unsigned, N,
internal::Matcher<Decl>, InnerMatcher) {
const unsigned NumDecls = std::distance(Node.decl_begin(), Node.decl_end());
if (N >= NumDecls)
return false;
DeclStmt::const_decl_iterator Iterator = Node.decl_begin();
std::advance(Iterator, N);
return InnerMatcher.matches(**Iterator, Finder, Builder);
}
/// Matches a C++ catch statement that has a catch-all handler.
///
/// Given
/// \code
/// void foo() {
/// try {}
/// catch (int) {}
/// catch (...) {}
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxCatchStmt(isCatchAll())}
/// matches \match{catch (...) {}}
/// but does not match \nomatch{catch(int)}
AST_MATCHER(CXXCatchStmt, isCatchAll) {
return Node.getExceptionDecl() == nullptr;
}
/// Matches a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(
/// hasAnyConstructorInitializer(cxxCtorInitializer().bind("ctor_init"))
/// )}
/// matches \match{Foo() : foo_(1) { }},
/// with \matcher{type=sub$cxxCtorInitializer()}
/// matching \match{sub=ctor_init$foo_(1)}.
AST_MATCHER_P(CXXConstructorDecl, hasAnyConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
auto MatchIt = matchesFirstInPointerRange(InnerMatcher, Node.init_begin(),
Node.init_end(), Finder, Builder);
if (MatchIt == Node.init_end())
return false;
return (*MatchIt)->isWritten() || !Finder->isTraversalIgnoringImplicitNodes();
}
/// Matches the field declaration of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxConstructorDecl(hasAnyConstructorInitializer(
/// forField(fieldDecl(hasName("foo_")).bind("field"))))}
/// matches \match{Foo() : foo_(1) { }},
/// with \matcher{type=sub$fieldDecl(hasName("foo_"))}
/// matching \match{sub=field$foo_(1)}.
AST_MATCHER_P(CXXCtorInitializer, forField,
internal::Matcher<FieldDecl>, InnerMatcher) {
const FieldDecl *NodeAsDecl = Node.getAnyMember();
return (NodeAsDecl != nullptr &&
InnerMatcher.matches(*NodeAsDecl, Finder, Builder));
}
/// Matches the initializer expression of a constructor initializer.
///
/// Given
/// \code
/// struct Foo {
/// Foo() : foo_(1) { }
/// int foo_;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxConstructorDecl(hasAnyConstructorInitializer(
/// withInitializer(integerLiteral(equals(1)).bind("literal"))))}
/// matches \match{Foo() : foo_(1) { }},
/// with \matcher{type=sub$integerLiteral(equals(1))} matching
/// \match{sub=literal$1}.
AST_MATCHER_P(CXXCtorInitializer, withInitializer,
internal::Matcher<Expr>, InnerMatcher) {
const Expr* NodeAsExpr = Node.getInit();
return (NodeAsExpr != nullptr &&
InnerMatcher.matches(*NodeAsExpr, Finder, Builder));
}
/// Matches a constructor initializer if it is explicitly written in
/// code (as opposed to implicitly added by the compiler).
///
/// Given
/// \code
/// struct Bar { explicit Bar(const char*); };
/// struct Foo {
/// Foo() { }
/// Foo(int) : foo_("A") { }
/// Bar foo_{""};
/// };
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{cxxConstructorDecl(hasAnyConstructorInitializer(isWritten()))} will
/// match \match{Foo(int) : foo_("A") { }}, but not \nomatch{Foo() { }}
AST_MATCHER(CXXCtorInitializer, isWritten) {
return Node.isWritten();
}
/// Matches a constructor initializer if it is initializing a base, as
/// opposed to a member.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxConstructorDecl(hasAnyConstructorInitializer(isBaseInitializer()))}
/// matches \match{E() : B() {}} and \match{D(int i) : I(i) {}}.
/// The constructor of \c D is matched, because it implicitly has a constructor
/// initializer for \c B .
AST_MATCHER(CXXCtorInitializer, isBaseInitializer) {
return Node.isBaseInitializer();
}
/// Matches a constructor initializer if it is initializing a member, as
/// opposed to a base.
///
/// Given
/// \code
/// struct B {};
/// struct D : B {
/// int I;
/// D(int i) : I(i) {}
/// };
/// struct E : B {
/// E() : B() {}
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxConstructorDecl(hasAnyConstructorInitializer(isMemberInitializer()))}
/// will match \match{D(int i) : I(i) {}}, but not match \nomatch{E() : B()
/// {}}.
AST_MATCHER(CXXCtorInitializer, isMemberInitializer) {
return Node.isMemberInitializer();
}
/// Matches any argument of a call expression or a constructor call
/// expression, or an ObjC-message-send expression.
///
/// Given
/// \code
/// void x(int, int, int) { int y = 42; x(1, y, 42); }
/// \endcode
/// The matcher
/// \matcher{callExpr(hasAnyArgument(ignoringImplicit(declRefExpr())))} matches
/// \match{x(1, y, 42)} with hasAnyArgument(...)
/// matching y
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// void foo(I *i) { [i f:12]; }
/// \endcode
/// \compile_args{-ObjC}
/// The matcher
/// \matcher{objcMessageExpr(hasAnyArgument(integerLiteral(equals(12))))}
/// matches \match{[i f:12]}
AST_POLYMORPHIC_MATCHER_P(hasAnyArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(
CallExpr, CXXConstructExpr,
CXXUnresolvedConstructExpr, ObjCMessageExpr),
internal::Matcher<Expr>, InnerMatcher) {
for (const Expr *Arg : Node.arguments()) {
if (Finder->isTraversalIgnoringImplicitNodes() &&
isa<CXXDefaultArgExpr>(Arg))
break;
BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(*Arg, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// Matches lambda captures.
///
/// Given
/// \code
/// int main() {
/// int x;
/// auto f = [x](){};
/// auto g = [x = 1](){};
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{lambdaExpr(hasAnyCapture(lambdaCapture().bind("capture")))},
/// matches \match{[x](){}} and \match{[x = 1](){}},
/// with \matcher{type=sub$lambdaCapture()} matching
/// \match{sub=capture$x} and \match{sub=capture$x = 1}.
extern const internal::VariadicAllOfMatcher<LambdaCapture> lambdaCapture;
/// Matches any capture in a lambda expression.
///
/// Given
/// \code
/// void foo() {
/// int t = 5;
/// auto f = [=](){ return t; };
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{lambdaExpr(hasAnyCapture(lambdaCapture()))} and
/// \matcher{lambdaExpr(hasAnyCapture(lambdaCapture(capturesVar(hasName("t")))))}
/// both match \match{[=](){ return t; }}.
AST_MATCHER_P(LambdaExpr, hasAnyCapture, internal::Matcher<LambdaCapture>,
InnerMatcher) {
for (const LambdaCapture &Capture : Node.captures()) {
clang::ast_matchers::internal::BoundNodesTreeBuilder Result(*Builder);
if (InnerMatcher.matches(Capture, Finder, &Result)) {
*Builder = std::move(Result);
return true;
}
}
return false;
}
/// Matches a `LambdaCapture` that refers to the specified `VarDecl`. The
/// `VarDecl` can be a separate variable that is captured by value or
/// reference, or a synthesized variable if the capture has an initializer.
///
/// Given
/// \code
/// void foo() {
/// int x;
/// auto f = [x](){};
/// auto g = [x = 1](){};
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{lambdaExpr(hasAnyCapture(
/// lambdaCapture(capturesVar(hasName("x"))).bind("capture")))}
/// matches \match{[x](){}} and \match{[x = 1](){}}, with
/// \matcher{type=sub$lambdaCapture(capturesVar(hasName("x"))).bind("capture")}
/// matching \match{sub=capture$x} and \match{sub=capture$x = 1}.
AST_MATCHER_P(LambdaCapture, capturesVar, internal::Matcher<ValueDecl>,
InnerMatcher) {
if (!Node.capturesVariable())
return false;
auto *capturedVar = Node.getCapturedVar();
return capturedVar && InnerMatcher.matches(*capturedVar, Finder, Builder);
}
/// Matches a `LambdaCapture` that refers to 'this'.
///
/// Given
/// \code
/// class C {
/// int cc;
/// int f() {
/// auto l = [this]() { return cc; };
/// return l();
/// }
/// };
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{lambdaExpr(hasAnyCapture(lambdaCapture(capturesThis())))}
/// matches \match{[this]() { return cc; }}.
AST_MATCHER(LambdaCapture, capturesThis) { return Node.capturesThis(); }
/// Matches a constructor call expression which uses list initialization.
///
/// Given
/// \code
/// namespace std {
/// template <typename T>
/// class initializer_list {
/// const T* begin;
/// const T* end;
/// };
/// }
/// template <typename T> class vector {
/// public: vector(std::initializer_list<T>) {}
/// };
///
/// vector<int> a({ 1, 2, 3 });
/// vector<int> b = { 4, 5 };
/// int c[] = { 6, 7 };
/// struct pair { int x; int y; };
/// pair d = { 8, 9 };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++11-or-later}
/// The matcher \matcher{cxxConstructExpr(isListInitialization())}
/// matches \match{{ 4, 5 }}.
AST_MATCHER(CXXConstructExpr, isListInitialization) {
return Node.isListInitialization();
}
/// Matches a constructor call expression which requires
/// zero initialization.
///
/// Given
/// \code
/// void foo() {
/// struct Foo {
/// double x;
/// };
/// auto Val = Foo();
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxConstructExpr(requiresZeroInitialization())}
/// matches \match{Foo()} because the \c x member has to be zero initialized.
AST_MATCHER(CXXConstructExpr, requiresZeroInitialization) {
return Node.requiresZeroInitialization();
}
/// Matches the n'th parameter of a function or an ObjC method
/// declaration or a block.
///
/// Given
/// \code
/// class X { void f(int x) {} };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxMethodDecl(hasParameter(0, hasType(asString("int"))))}
/// matches \match{void f(int x) {}}
/// with hasParameter(...)
/// matching int x.
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// \endcode
/// \compile_args{-ObjC}
///
/// The matcher \matcher{objcMethodDecl(hasParameter(0, hasName("y")))}
/// matches the declaration of method f with hasParameter
/// matching y.
AST_POLYMORPHIC_MATCHER_P2(hasParameter,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
ObjCMethodDecl,
BlockDecl),
unsigned, N, internal::Matcher<ParmVarDecl>,
InnerMatcher) {
return (N < Node.parameters().size()
&& InnerMatcher.matches(*Node.parameters()[N], Finder, Builder));
}
/// Matches if the given method declaration declares a member function with an
/// explicit object parameter.
///
/// Given
/// \code
/// struct A {
/// int operator-(this A, int);
/// void fun(this A &&self);
/// static int operator()(int);
/// int operator+(int);
/// };
/// \endcode
/// \compile_args{-std=c++23-or-later}
///
/// The matcher \matcher{cxxMethodDecl(isExplicitObjectMemberFunction())}
/// matches \match{int operator-(this A, int)} and
/// \match{void fun(this A &&self)},
/// but not \nomatch{static int operator()(int)} or
/// \nomatch{int operator+(int)}.
AST_MATCHER(CXXMethodDecl, isExplicitObjectMemberFunction) {
return Node.isExplicitObjectMemberFunction();
}
/// Matches all arguments and their respective ParmVarDecl.
///
/// Given
/// \code
/// void f(int i);
/// int y;
/// void foo() {
/// f(y);
/// }
/// \endcode
/// The matcher \matcher{callExpr(
/// forEachArgumentWithParam(
/// declRefExpr(to(varDecl(hasName("y")))),
/// parmVarDecl(hasType(isInteger()))
/// ))}
/// matches \match{f(y)};
/// with declRefExpr(...)
/// matching int y
/// and parmVarDecl(...)
/// matching int i
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParam,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, ArgMatcher,
internal::Matcher<ParmVarDecl>, ParamMatcher) {
BoundNodesTreeBuilder Result;
// The first argument of an overloaded member operator is the implicit object
// argument of the method which should not be matched against a parameter, so
// we skip over it here.
BoundNodesTreeBuilder Matches;
unsigned ArgIndex =
cxxOperatorCallExpr(
callee(cxxMethodDecl(unless(isExplicitObjectMemberFunction()))))
.matches(Node, Finder, &Matches)
? 1
: 0;
int ParamIndex = 0;
bool Matched = false;
for (; ArgIndex < Node.getNumArgs(); ++ArgIndex) {
BoundNodesTreeBuilder ArgMatches(*Builder);
if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()),
Finder, &ArgMatches)) {
BoundNodesTreeBuilder ParamMatches(ArgMatches);
if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
hasParameter(ParamIndex, ParamMatcher)))),
callExpr(callee(functionDecl(
hasParameter(ParamIndex, ParamMatcher))))))
.matches(Node, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
}
}
++ParamIndex;
}
*Builder = std::move(Result);
return Matched;
}
/// Matches all arguments and their respective types for a \c CallExpr or
/// \c CXXConstructExpr. It is very similar to \c forEachArgumentWithParam but
/// it works on calls through function pointers as well.
///
/// The difference is, that function pointers do not provide access to a
/// \c ParmVarDecl, but only the \c QualType for each argument.
///
/// Given
/// \code
/// void f(int i);
/// void foo(int y) {
/// f(y);
/// void (*f_ptr)(int) = f;
/// f_ptr(y);
/// }
/// \endcode
/// The matcher \matcher{callExpr(
/// forEachArgumentWithParamType(
/// declRefExpr(to(varDecl(hasName("y")))),
/// qualType(isInteger()).bind("type")
/// ))}
/// matches \match{f(y)} and \match{f_ptr(y)}
/// with declRefExpr(...)
/// matching int y
/// and qualType(...)
/// matching int
AST_POLYMORPHIC_MATCHER_P2(forEachArgumentWithParamType,
AST_POLYMORPHIC_SUPPORTED_TYPES(CallExpr,
CXXConstructExpr),
internal::Matcher<Expr>, ArgMatcher,
internal::Matcher<QualType>, ParamMatcher) {
BoundNodesTreeBuilder Result;
// The first argument of an overloaded member operator is the implicit object
// argument of the method which should not be matched against a parameter, so
// we skip over it here.
BoundNodesTreeBuilder Matches;
unsigned ArgIndex =
cxxOperatorCallExpr(
callee(cxxMethodDecl(unless(isExplicitObjectMemberFunction()))))
.matches(Node, Finder, &Matches)
? 1
: 0;
const FunctionProtoType *FProto = nullptr;
if (const auto *Call = dyn_cast<CallExpr>(&Node)) {
if (const auto *Value =
dyn_cast_or_null<ValueDecl>(Call->getCalleeDecl())) {
QualType QT = Value->getType().getCanonicalType();
// This does not necessarily lead to a `FunctionProtoType`,
// e.g. K&R functions do not have a function prototype.
if (QT->isFunctionPointerType())
FProto = QT->getPointeeType()->getAs<FunctionProtoType>();
if (QT->isMemberFunctionPointerType()) {
const auto *MP = QT->getAs<MemberPointerType>();
assert(MP && "Must be member-pointer if its a memberfunctionpointer");
FProto = MP->getPointeeType()->getAs<FunctionProtoType>();
assert(FProto &&
"The call must have happened through a member function "
"pointer");
}
}
}
unsigned ParamIndex = 0;
bool Matched = false;
unsigned NumArgs = Node.getNumArgs();
if (FProto && FProto->isVariadic())
NumArgs = std::min(NumArgs, FProto->getNumParams());
for (; ArgIndex < NumArgs; ++ArgIndex, ++ParamIndex) {
BoundNodesTreeBuilder ArgMatches(*Builder);
if (ArgMatcher.matches(*(Node.getArg(ArgIndex)->IgnoreParenCasts()), Finder,
&ArgMatches)) {
BoundNodesTreeBuilder ParamMatches(ArgMatches);
// This test is cheaper compared to the big matcher in the next if.
// Therefore, please keep this order.
if (FProto && FProto->getNumParams() > ParamIndex) {
QualType ParamType = FProto->getParamType(ParamIndex);
if (ParamMatcher.matches(ParamType, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
continue;
}
}
if (expr(anyOf(cxxConstructExpr(hasDeclaration(cxxConstructorDecl(
hasParameter(ParamIndex, hasType(ParamMatcher))))),
callExpr(callee(functionDecl(
hasParameter(ParamIndex, hasType(ParamMatcher)))))))
.matches(Node, Finder, &ParamMatches)) {
Result.addMatch(ParamMatches);
Matched = true;
continue;
}
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches the ParmVarDecl nodes that are at the N'th position in the parameter
/// list. The parameter list could be that of either a block, function, or
/// objc-method.
///
///
/// Given
///
/// \code
/// void f(int a, int b, int c) {
/// }
/// \endcode
///
/// The matcher \matcher{parmVarDecl(isAtPosition(0))} matches
/// \match{int a}.
///
/// The matcher \matcher{parmVarDecl(isAtPosition(1))}
/// matches \match{int b}.
AST_MATCHER_P(ParmVarDecl, isAtPosition, unsigned, N) {
const clang::DeclContext *Context = Node.getParentFunctionOrMethod();
if (const auto *Decl = dyn_cast_or_null<FunctionDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
if (const auto *Decl = dyn_cast_or_null<BlockDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
if (const auto *Decl = dyn_cast_or_null<ObjCMethodDecl>(Context))
return N < Decl->param_size() && Decl->getParamDecl(N) == &Node;
return false;
}
/// Matches any parameter of a function or an ObjC method declaration or a
/// block.
///
/// Does not match the 'this' parameter of a method.
///
/// Given
/// \code
/// class X { void f(int x, int y, int z) {} };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxMethodDecl(hasAnyParameter(
/// parmVarDecl(hasName("y")).bind("parm")))}
/// matches \match{void f(int x, int y, int z) {}},
/// with \matcher{type=sub$parmVarDecl(hasName("y"))}
/// matching \match{sub=parm$int y}.
///
/// For ObjectiveC, given
/// \code
/// @interface I - (void) f:(int) y; @end
/// \endcode
/// \compile_args{-ObjC}
///
/// the matcher \matcher{objcMethodDecl(hasAnyParameter(hasName("y")))}
/// matches the declaration of method f with hasParameter
/// matching y.
///
/// For blocks, given
/// \code
/// b = ^(int y) { printf("%d", y) };
/// \endcode
/// \compile_args{-ObjC}
///
/// the matcher \matcher{blockDecl(hasAnyParameter(hasName("y")))}
/// matches the declaration of the block b with hasParameter
/// matching y.
AST_POLYMORPHIC_MATCHER_P(hasAnyParameter,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
ObjCMethodDecl,
BlockDecl),
internal::Matcher<ParmVarDecl>,
InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.param_begin(),
Node.param_end(), Finder,
Builder) != Node.param_end();
}
/// Matches \c FunctionDecls and \c FunctionProtoTypes that have a
/// specific parameter count.
///
/// Given
/// \code
/// void f(int i) {}
/// void g(int i, int j) {}
/// void h(int i, int j);
/// void j(int i);
/// void k(int x, int y, int z, ...);
/// \endcode
/// The matcher \matcher{functionDecl(parameterCountIs(2))}
/// matches \match{void g(int i, int j) {}} and \match{void h(int i, int j)}
/// The matcher \matcher{functionProtoType(parameterCountIs(1))}
/// matches the type \match{type=typestr;count=2$void (int)} of \c f and \c j.
/// The matcher \matcher{functionProtoType(parameterCountIs(3))} matches the
/// type \match{type=typestr$void (int, int, int, ...)} of \c k.
AST_POLYMORPHIC_MATCHER_P(parameterCountIs,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType),
unsigned, N) {
return Node.getNumParams() == N;
}
/// Matches templateSpecializationType, class template specialization,
/// variable template specialization, and function template specialization
/// nodes where the template argument matches the inner matcher. This matcher
/// may produce multiple matches.
///
/// Given
/// \code
/// template <typename T, unsigned N, unsigned M>
/// struct Matrix {};
///
/// constexpr unsigned R = 2;
/// Matrix<int, R * 2, R * 4> M;
///
/// template <typename T, typename U>
/// void f(T&& t, U&& u) {}
///
/// void foo() {
/// bool B = false;
/// f(R, B);
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++11-or-later}
/// The matcher
/// \matcher{templateSpecializationType(forEachTemplateArgument(isExpr(expr().bind("t_arg"))))}
/// matches \match{type=typestr;count=2$Matrix<int, R * 2, R * 4>} twice, with
/// \matcher{type=sub$expr()} matching \match{sub=t_arg$R * 2} and
/// \match{sub=t_arg$R * 4}.
/// The matcher
/// \matcher{functionDecl(forEachTemplateArgument(refersToType(qualType().bind("type"))))}
/// matches the specialization of \match{count=2$void f(T&& t, U&& u) {}} twice
/// for each of the template arguments, with \matcher{type=sub$qualType()}
/// matching
/// \match{sub=type;type=typestr$unsigned} and
/// \match{sub=type;type=typestr$bool}.
AST_POLYMORPHIC_MATCHER_P(
forEachTemplateArgument,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
VarTemplateSpecializationDecl, FunctionDecl,
TemplateSpecializationType),
internal::Matcher<TemplateArgument>, InnerMatcher) {
ArrayRef<TemplateArgument> TemplateArgs =
clang::ast_matchers::internal::getTemplateSpecializationArgs(Node);
clang::ast_matchers::internal::BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto &Arg : TemplateArgs) {
clang::ast_matchers::internal::BoundNodesTreeBuilder ArgBuilder(*Builder);
if (InnerMatcher.matches(Arg, Finder, &ArgBuilder)) {
Matched = true;
Result.addMatch(ArgBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches \c FunctionDecls that have a noreturn attribute.
///
/// Given
/// \code
/// void nope();
/// [[noreturn]] void a();
/// __attribute__((noreturn)) void b();
/// struct C { [[noreturn]] void c(); };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(isNoReturn())}
/// matches \match{void a()}, \match{__attribute__((noreturn)) void b()} and
/// \match{void c()} but does not match \nomatch{void nope()}.
AST_MATCHER(FunctionDecl, isNoReturn) { return Node.isNoReturn(); }
/// Matches the return type of a function declaration.
///
/// Given
/// \code
/// class X { int f() { return 1; } };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(returns(asString("int")))}
/// matches \match{int f() { return 1; }}.
AST_MATCHER_P(FunctionDecl, returns,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getReturnType(), Finder, Builder);
}
/// Matches extern "C" function or variable declarations.
///
/// Given
/// \code
/// extern "C" void f() {}
/// extern "C" { void g() {} }
/// void h() {}
/// extern "C" int x = 1;
/// extern "C" { int y = 2; }
/// int z = 3;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(isExternC())}
/// matches \match{void f() {}} and \match{void g() {}}.
/// The matcher \matcher{varDecl(isExternC())}
/// matches \match{int x = 1} and \match{int y = 2}, but does not
/// match \nomatch{int z = 3}.
AST_POLYMORPHIC_MATCHER(isExternC, AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
VarDecl)) {
return Node.isExternC();
}
/// Matches variable/function declarations that have "static" storage
/// class specifier ("static" keyword) written in the source.
///
/// Given
/// \code
/// static void f() {}
/// static int i = 0;
/// extern int j;
/// int k;
/// \endcode
/// The matcher \matcher{functionDecl(isStaticStorageClass())}
/// matches \match{static void f() {}}.
/// The matcher \matcher{varDecl(isStaticStorageClass())}
/// matches \match{static int i = 0}.
AST_POLYMORPHIC_MATCHER(isStaticStorageClass,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
VarDecl)) {
return Node.getStorageClass() == SC_Static;
}
/// Matches deleted function declarations.
///
/// Given
/// \code
/// void Func();
/// void DeletedFunc() = delete;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(isDeleted())}
/// matches \match{void DeletedFunc()},
/// but does not match \nomatch{void Func()}.
AST_MATCHER(FunctionDecl, isDeleted) {
return Node.isDeleted();
}
/// Matches defaulted function declarations.
///
/// Given
/// \code
/// class A { ~A(); };
/// class B { ~B() = default; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(isDefaulted())}
/// matches \match{~B() = default},
/// but does not match \nomatch{~A()}.
AST_MATCHER(FunctionDecl, isDefaulted) {
return Node.isDefaulted();
}
/// Matches weak function declarations.
///
/// Given
/// \code
/// static void f();
/// void g() __attribute__((weak));
/// \endcode
/// The matcher \matcher{functionDecl(isWeak())}
/// matches the weak declaration
/// \match{void g() __attribute__((weak))},
/// but does not match \nomatch{static void foo_v1()}.
AST_MATCHER(FunctionDecl, isWeak) { return Node.isWeak(); }
/// Matches functions that have a dynamic exception specification.
///
/// Given
/// \code
/// void f(int);
/// void g(int) noexcept;
/// void h(int) noexcept(true);
/// void i(int) noexcept(false);
/// void j(int) throw();
/// void k(int) throw(int);
/// void l(int) throw(...);
/// \endcode
/// \compile_args{-std=c++11-14}
/// The matcher \matcher{functionDecl(hasDynamicExceptionSpec())}
/// matches the declarations \match{void j(int) throw()},
/// \match{void k(int) throw(int)}
/// and \match{void l(int) throw(...)},
/// but does not match \nomatch{void f(int)}, \nomatch{void g(int) noexcept},
/// \nomatch{void h(int) noexcept(true)}
/// or \nomatch{void i(int) noexcept(true)}.
/// The matcher
/// \matcher{functionProtoType(hasDynamicExceptionSpec())} matches
/// the type \match{type=typestr$void (int) throw()} of \c j ,
/// the type \match{type=typestr$void (int) throw(int)} of \c k and
/// the type \match{type=typestr$void (int) throw(...)} of \c l .
/// It does not match
/// the type \nomatch{type=typestr$void (int) noexcept} of \c f ,
/// the type \nomatch{type=typestr$void (int) noexcept} of \c g ,
/// the type \nomatch{type=typestr$void (int) noexcept(int)} of \c h or
/// the type \nomatch{type=typestr$void (int) noexcept(...)} of \c i .
AST_POLYMORPHIC_MATCHER(hasDynamicExceptionSpec,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
if (const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node))
return FnTy->hasDynamicExceptionSpec();
return false;
}
/// Matches functions that have a non-throwing exception specification.
///
/// Given
/// \code
/// void f(int);
/// void g(int) noexcept;
/// void h(int) noexcept(false);
/// void i(int) throw();
/// void j(int) throw(int);
/// \endcode
/// \compile_args{-std=c++11-14}
/// The matcher \matcher{functionDecl(isNoThrow())}
/// matches the declaration \match{void g(int) noexcept}
/// and \match{void i(int) throw()},
/// but does not match \nomatch{void f(int)},
/// \nomatch{void h(int) noexcept(false)}
/// or \nomatch{void j(int) throw(int)}.
/// The matcher
/// \matcher{functionProtoType(isNoThrow())}
/// matches the type \match{type=typestr$void (int) throw()} of \c i
/// and the type \match{type=typestr$void (int) noexcept} of \c g,
/// but does not match
/// the type \nomatch{type=typestr$void (int)} of \c f ,
/// the type \nomatch{type=typestr$void (int) noexcept(false)} of \c h or
/// the type \nomatch{type=typestr$void (int) throw(int)} of \c j .
AST_POLYMORPHIC_MATCHER(isNoThrow,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl,
FunctionProtoType)) {
const FunctionProtoType *FnTy = internal::getFunctionProtoType(Node);
// If the function does not have a prototype, then it is assumed to be a
// throwing function (as it would if the function did not have any exception
// specification).
if (!FnTy)
return false;
// Assume the best for any unresolved exception specification.
if (isUnresolvedExceptionSpec(FnTy->getExceptionSpecType()))
return true;
return FnTy->isNothrow();
}
/// Matches consteval function declarations and if consteval/if ! consteval
/// statements.
///
/// Given
/// \code
/// consteval int a();
/// void b() { if consteval {} }
/// void c() { if ! consteval {} }
/// void d() { if ! consteval {} else {} }
/// \endcode
/// \compile_args{-std=c++23-or-later}
/// The matcher \matcher{functionDecl(isConsteval())}
/// matches \match{consteval int a()}.
/// The matcher \matcher{ifStmt(isConsteval())}
/// matches the if statements
/// \match{if consteval {}}, \match{if ! consteval {}} and
/// \match{if ! consteval {} else {}}.
AST_POLYMORPHIC_MATCHER(isConsteval,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, IfStmt)) {
return Node.isConsteval();
}
/// Matches constexpr variable and function declarations,
/// and if constexpr.
///
/// Given
/// \code
/// constexpr int foo = 42;
/// constexpr int bar();
/// void baz() { if constexpr(1 > 0) {} }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{varDecl(isConstexpr())}
/// matches \match{constexpr int foo = 42}.
/// The matcher \matcher{functionDecl(isConstexpr())}
/// matches \match{constexpr int bar()}.
/// The matcher \matcher{ifStmt(isConstexpr())}
/// matches \match{if constexpr(1 > 0) {}}.
AST_POLYMORPHIC_MATCHER(isConstexpr,
AST_POLYMORPHIC_SUPPORTED_TYPES(VarDecl,
FunctionDecl,
IfStmt)) {
return Node.isConstexpr();
}
/// Matches constinit variable declarations.
///
/// Given
/// \code
/// constinit int foo = 42;
/// constinit const char* bar = "bar";
/// int baz = 42;
/// [[clang::require_constant_initialization]] int xyz = 42;
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher \matcher{varDecl(isConstinit())}
/// matches the declaration of \match{constinit int foo = 42}
/// and \match{constinit const char* bar = "bar"},
/// but does not match \nomatch{int baz = 42} or
/// \nomatch{[[clang::require_constant_initialization]] int xyz = 42}.
AST_MATCHER(VarDecl, isConstinit) {
if (const auto *CIA = Node.getAttr<ConstInitAttr>())
return CIA->isConstinit();
return false;
}
/// Matches selection statements with initializer.
///
/// Given
/// \code
/// struct vec { int* begin(); int* end(); };
/// int foobar();
/// vec& get_range();
/// void foo() {
/// if (int i = foobar(); i > 0) {}
/// switch (int i = foobar(); i) {}
/// for (auto& a = get_range(); auto& x : a) {}
/// }
/// void bar() {
/// if (foobar() > 0) {}
/// switch (foobar()) {}
/// for (auto& x : get_range()) {}
/// }
/// \endcode
/// \compile_args{-std=c++20-or-later}
/// The matcher \matcher{ifStmt(hasInitStatement(anything()))}
/// matches the if statement \match{if (int i = foobar(); i > 0) {}}
/// in foo but not \nomatch{if (foobar() > 0) {}} in bar.
/// The matcher \matcher{switchStmt(hasInitStatement(anything()))}
/// matches the switch statement \match{switch (int i = foobar(); i) {}}
/// in foo but not \nomatch{switch (foobar()) {}} in bar.
/// The matcher \matcher{cxxForRangeStmt(hasInitStatement(anything()))}
/// matches the range for statement
/// \match{for (auto& a = get_range(); auto& x : a) {}} in foo
/// but not \nomatch{for (auto& x : get_range()) {}} in bar.
AST_POLYMORPHIC_MATCHER_P(hasInitStatement,
AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, SwitchStmt,
CXXForRangeStmt),
internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *Init = Node.getInit();
return Init != nullptr && InnerMatcher.matches(*Init, Finder, Builder);
}
/// Matches the condition expression of an if statement, for loop,
/// switch statement or conditional operator.
///
/// Given
/// \code
/// void foo() {
/// if (true) {}
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{ifStmt(hasCondition(cxxBoolLiteral(equals(true))))}
/// \match{if (true) {}}
AST_POLYMORPHIC_MATCHER_P(
hasCondition,
AST_POLYMORPHIC_SUPPORTED_TYPES(IfStmt, ForStmt, WhileStmt, DoStmt,
SwitchStmt, AbstractConditionalOperator),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const Condition = Node.getCond();
return (Condition != nullptr &&
InnerMatcher.matches(*Condition, Finder, Builder));
}
/// Matches the then-statement of an if statement.
///
/// Given
/// \code
/// void foo() {
/// if (false) true; else false;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{ifStmt(hasThen(cxxBoolLiteral(equals(true))))}
/// \match{if (false) true; else false}
AST_MATCHER_P(IfStmt, hasThen, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Then = Node.getThen();
return (Then != nullptr && InnerMatcher.matches(*Then, Finder, Builder));
}
/// Matches the else-statement of an if statement.
///
/// Given
/// \code
/// void foo() {
/// if (false) false; else true;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{ifStmt(hasElse(cxxBoolLiteral(equals(true))))}
/// \match{if (false) false; else true}
AST_MATCHER_P(IfStmt, hasElse, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Else = Node.getElse();
return (Else != nullptr && InnerMatcher.matches(*Else, Finder, Builder));
}
/// Matches if a node equals a previously bound node.
///
/// Matches a node if it equals the node previously bound to \p ID.
///
/// Given
/// \code
/// class X { int a; int b; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(
/// has(fieldDecl(hasName("a"), hasType(type().bind("t")))),
/// has(fieldDecl(hasName("b"), hasType(type(equalsBoundNode("t"))))))}
/// matches \match{class X { int a; int b; }}, as \c a and \c b have the same
/// type.
///
/// Note that when multiple matches are involved via \c forEach* matchers,
/// \c equalsBoundNodes acts as a filter.
/// For example:
/// compoundStmt(
/// forEachDescendant(varDecl().bind("d")),
/// forEachDescendant(declRefExpr(to(decl(equalsBoundNode("d"))))))
/// will trigger a match for each combination of variable declaration
/// and reference to that variable declaration within a compound statement.
AST_POLYMORPHIC_MATCHER_P(equalsBoundNode,
AST_POLYMORPHIC_SUPPORTED_TYPES(Stmt, Decl, Type,
QualType),
std::string, ID) {
// FIXME: Figure out whether it makes sense to allow this
// on any other node types.
// For *Loc it probably does not make sense, as those seem
// unique. For NestedNameSepcifier it might make sense, as
// those also have pointer identity, but I'm not sure whether
// they're ever reused.
internal::NotEqualsBoundNodePredicate Predicate;
Predicate.ID = ID;
Predicate.Node = DynTypedNode::create(Node);
return Builder->removeBindings(Predicate);
}
/// Matches the condition variable statement in an if statement.
///
/// Given
/// \code
/// struct A {};
/// A* GetAPointer();
/// void foo() {
/// if (A* a = GetAPointer()) {}
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{ifStmt(hasConditionVariableStatement(declStmt()))}
/// \match{if (A* a = GetAPointer()) {}}
AST_MATCHER_P(IfStmt, hasConditionVariableStatement,
internal::Matcher<DeclStmt>, InnerMatcher) {
const DeclStmt *const DeclarationStatement =
Node.getConditionVariableDeclStmt();
return DeclarationStatement != nullptr &&
InnerMatcher.matches(*DeclarationStatement, Finder, Builder);
}
/// Matches the index expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// The matcher \matcher{arraySubscriptExpr(hasIndex(integerLiteral()))}
/// matches \match{i[1]} with the \c integerLiteral() matching \c 1
AST_MATCHER_P(ArraySubscriptExpr, hasIndex, internal::Matcher<Expr>,
InnerMatcher) {
if (const Expr *Expression = Node.getIdx())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// Matches the base expression of an array subscript expression.
///
/// Given
/// \code
/// int i[5];
/// void f() { i[1] = 42; }
/// \endcode
/// The matcher \matcher{arraySubscriptExpr(hasBase(implicitCastExpr(
/// hasSourceExpression(declRefExpr()))))}
/// matches \match{i[1]} with the \c declRefExpr() matching \c i
AST_MATCHER_P(ArraySubscriptExpr, hasBase,
internal::Matcher<Expr>, InnerMatcher) {
if (const Expr* Expression = Node.getBase())
return InnerMatcher.matches(*Expression, Finder, Builder);
return false;
}
/// Matches a 'for', 'while', 'while' statement or a function or coroutine
/// definition that has a given body. Note that in case of functions or
/// coroutines this matcher only matches the definition itself and not the
/// other declarations of the same function or coroutine.
///
/// Given
/// \code
/// void foo() {
/// for (;;) {}
/// }
/// \endcode
/// The matcher \matcher{forStmt(hasBody(compoundStmt().bind("body")))}
/// matches \match{for (;;) {}}
/// with \matcher{type=sub$compoundStmt()}
/// matching \match{sub=body${}}
///
/// Given
/// \code
/// void f();
/// void f() {}
/// \endcode
/// The matcher \matcher{functionDecl(hasBody(compoundStmt().bind("compound")))}
/// \match{void f() {}}
/// with \matcher{type=sub$compoundStmt()}
/// matching \match{sub=compound${}},
/// but it does not match \nomatch{void f();}.
AST_POLYMORPHIC_MATCHER_P(
hasBody,
AST_POLYMORPHIC_SUPPORTED_TYPES(DoStmt, ForStmt, WhileStmt, CXXForRangeStmt,
FunctionDecl, CoroutineBodyStmt),
internal::Matcher<Stmt>, InnerMatcher) {
if (Finder->isTraversalIgnoringImplicitNodes() && isDefaultedHelper(&Node))
return false;
const Stmt *const Statement = internal::GetBodyMatcher<NodeType>::get(Node);
return (Statement != nullptr &&
InnerMatcher.matches(*Statement, Finder, Builder));
}
/// Matches a function declaration that has a given body present in the AST.
/// Note that this matcher matches all the declarations of a function whose
/// body is present in the AST.
///
/// Given
/// \code
/// void f();
/// void f() {}
/// void g();
/// \endcode
/// The matcher \matcher{functionDecl(hasAnyBody(compoundStmt().bind("body")))}
/// matches \match{void f() {}} and the declaration \match{void f()},
/// with \matcher{type=sub$compoundStmt()} matching \match{sub=body${}}, but it
/// does not match \nomatch{void g()}.
AST_MATCHER_P(FunctionDecl, hasAnyBody, internal::Matcher<Stmt>, InnerMatcher) {
const Stmt *const Statement = Node.getBody();
return (Statement != nullptr &&
InnerMatcher.matches(*Statement, Finder, Builder));
}
/// Matches compound statements where at least one substatement matches
/// a given matcher. Also matches StmtExprs that have CompoundStmt as children.
///
/// Given
/// \code
/// void foo() { { {}; 1+2; } }
/// \endcode
/// The matcher
/// \matcher{compoundStmt(hasAnySubstatement(compoundStmt().bind("compound")))}
/// \match{{ {}; 1+2; }} and \match{{ { {}; 1+2; } }}
/// with \matcher{type=sub$compoundStmt()}
/// matching \match{sub=compound${}} and \match{sub=compound${ {}; 1+2; }}.
AST_POLYMORPHIC_MATCHER_P(hasAnySubstatement,
AST_POLYMORPHIC_SUPPORTED_TYPES(CompoundStmt,
StmtExpr),
internal::Matcher<Stmt>, InnerMatcher) {
const CompoundStmt *CS = CompoundStmtMatcher<NodeType>::get(Node);
return CS && matchesFirstInPointerRange(InnerMatcher, CS->body_begin(),
CS->body_end(), Finder,
Builder) != CS->body_end();
}
/// Checks that a compound statement contains a specific number of
/// child statements.
///
/// Example: Given
/// \code
/// void foo() {
/// { for (;;) {} }
/// }
/// \endcode
/// The matcher \matcher{compoundStmt(statementCountIs(0))}
/// \match{{}}
/// but does not match the outer compound statement.
AST_MATCHER_P(CompoundStmt, statementCountIs, unsigned, N) {
return Node.size() == N;
}
/// Matches literals that are equal to the given value of type ValueT.
///
/// Given
/// \code
/// void f(char, bool, double, int);
/// void foo() {
/// f('\0', false, 3.14, 42);
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{characterLiteral(equals(0U))} matches \match{'\0'}.
/// The matchers \matcher{cxxBoolLiteral(equals(false))} and
/// \matcher{cxxBoolLiteral(equals(0))} match \match{false}.
/// The matcher \matcher{floatLiteral(equals(3.14))} matches \match{3.14}.
/// The matcher \matcher{integerLiteral(equals(42))} matches \match{42}.
///
/// Note that you cannot directly match a negative numeric literal because the
/// minus sign is not part of the literal: It is a unary operator whose operand
/// is the positive numeric literal. Instead, you must use a unaryOperator()
/// matcher to match the minus sign:
///
/// Given
/// \code
/// int val = -1;
/// \endcode
///
/// The matcher \matcher{unaryOperator(hasOperatorName("-"),
/// hasUnaryOperand(integerLiteral(equals(1))))}
/// matches \match{-1}.
///
/// Usable as: Matcher<CharacterLiteral>, Matcher<CXXBoolLiteralExpr>,
/// Matcher<FloatingLiteral>, Matcher<IntegerLiteral>
template <typename ValueT>
internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
void(internal::AllNodeBaseTypes), ValueT>
equals(const ValueT &Value) {
return internal::PolymorphicMatcher<internal::ValueEqualsMatcher,
void(internal::AllNodeBaseTypes), ValueT>(
Value);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
IntegerLiteral),
bool, Value, 0) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
IntegerLiteral),
unsigned, Value, 1) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
AST_POLYMORPHIC_MATCHER_P_OVERLOAD(equals,
AST_POLYMORPHIC_SUPPORTED_TYPES(CharacterLiteral,
CXXBoolLiteralExpr,
FloatingLiteral,
IntegerLiteral),
double, Value, 2) {
return internal::ValueEqualsMatcher<NodeType, ParamT>(Value)
.matchesNode(Node);
}
/// Matches the operator Name of operator expressions and fold expressions
/// (binary or unary).
///
/// Given
/// \code
//// void foo(bool a, bool b) {
/// !(a || b);
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{binaryOperator(hasOperatorName("||"))}
/// matches \match{a || b}
///
/// Given
/// \code
/// template <typename... Args>
/// auto sum(Args... args) {
/// return (0 + ... + args);
/// }
/// \endcode
/// \compile_args{-std=c++17-or-later}
/// The matcher \matcher{cxxFoldExpr(hasOperatorName("+"))}
/// matches \match{(0 + ... + args)}.
AST_POLYMORPHIC_MATCHER_P(
hasOperatorName,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, CXXFoldExpr,
UnaryOperator),
std::string, Name) {
if (std::optional<StringRef> OpName = internal::getOpName(Node))
return *OpName == Name;
return false;
}
/// Matches operator expressions (binary or unary) that have any of the
/// specified names.
///
/// It provides a compact way of writing if an operator has any of the specified
/// names:
/// The matcher
/// \c hasAnyOperatorName("+", "-")
/// Is equivalent to
/// \c{anyOf(hasOperatorName("+"), hasOperatorName("-"))}
///
/// Given
/// \code
//// void foo(bool a, bool b) {
/// !(a || b);
/// }
///
//// void bar(bool a, bool b) {
/// a && b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{binaryOperator(hasAnyOperatorName("||", "&&"))}
/// matches \match{a || b} and \match{a && b}.
/// The matcher \matcher{unaryOperator(hasAnyOperatorName("-", "!"))}
/// matches \match{!(a || b)}.
extern const internal::VariadicFunction<
internal::PolymorphicMatcher<internal::HasAnyOperatorNameMatcher,
AST_POLYMORPHIC_SUPPORTED_TYPES(
BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator, UnaryOperator),
std::vector<std::string>>,
StringRef, internal::hasAnyOperatorNameFunc>
hasAnyOperatorName;
/// Matches all kinds of assignment operators.
///
/// Given
/// \code
/// void foo(int a, int b) {
/// if (a == b)
/// a += b;
/// }
/// \endcode
/// The matcher \matcher{binaryOperator(isAssignmentOperator())}
/// matches \match{a += b}.
///
/// Given
/// \code
/// struct S { S& operator=(const S&); };
/// void x() { S s1, s2; s1 = s2; }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxOperatorCallExpr(isAssignmentOperator())}
/// matches \match{s1 = s2}.
AST_POLYMORPHIC_MATCHER(
isAssignmentOperator,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator)) {
return Node.isAssignmentOp();
}
/// Matches comparison operators.
///
/// Given
/// \code
/// void foo(int a, int b) {
/// if (a == b)
/// a += b;
/// }
/// \endcode
/// The matcher \matcher{binaryOperator(isComparisonOperator())}
/// matches \match{a == b}
///
/// Given
/// \code
/// struct S { bool operator<(const S& other); };
/// void x(S s1, S s2) { bool b1 = s1 < s2; }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxOperatorCallExpr(isComparisonOperator())}
/// matches \match{s1 < s2}
AST_POLYMORPHIC_MATCHER(
isComparisonOperator,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator)) {
return Node.isComparisonOp();
}
/// Matches the left hand side of binary operator expressions.
///
/// Given
/// \code
/// void foo(bool a, bool b) {
/// a || b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{binaryOperator(hasLHS(expr().bind("lhs")))}
/// matches \match{a || b},
/// with \matcher{type=sub$expr()}
/// matching \match{sub=lhs$a}.
AST_POLYMORPHIC_MATCHER_P(
hasLHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator,
ArraySubscriptExpr, CXXFoldExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *LeftHandSide = internal::getLHS(Node);
return (LeftHandSide != nullptr &&
InnerMatcher.matches(*LeftHandSide, Finder, Builder));
}
/// Matches the right hand side of binary operator expressions.
///
/// Given
/// \code
/// void foo(bool a, bool b) {
/// a || b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{binaryOperator(hasRHS(expr().bind("rhs")))}
/// matches \match{a || b},
/// with \matcher{type=sub$expr()}
/// matching \match{sub=rhs$b}.
AST_POLYMORPHIC_MATCHER_P(
hasRHS,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXRewrittenBinaryOperator,
ArraySubscriptExpr, CXXFoldExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *RightHandSide = internal::getRHS(Node);
return (RightHandSide != nullptr &&
InnerMatcher.matches(*RightHandSide, Finder, Builder));
}
/// Matches if either the left hand side or the right hand side of a
/// binary operator or fold expression matches.
///
/// Given
/// \code
/// struct S {};
/// bool operator ==(const S&, const S&);
///
/// void f(int a, const S&lhs, const S&rhs) {
/// a + 0;
/// lhs == rhs;
/// lhs != rhs;
/// }
///
/// template <typename ...Ts>
/// auto sum(Ts... args) {
/// return (0 + ... + args);
/// }
/// \endcode
/// \compile_args{-std=c++20-or-later}
///
/// The matcher \matcher{binaryOperator(hasEitherOperand(integerLiteral()))}
/// matches \match{a + 0}.
/// The matcher \matcher{cxxOperatorCallExpr(hasEitherOperand(declRefExpr(to(
/// parmVarDecl(hasName("lhs"))))))} matches \match{lhs == rhs} and
/// \match{lhs != rhs}.
/// The matcher \matcher{cxxFoldExpr(hasEitherOperand(integerLiteral()))}
/// matches \match{(0 + ... + args)}.
AST_POLYMORPHIC_MATCHER_P(
hasEitherOperand,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXFoldExpr, CXXRewrittenBinaryOperator),
internal::Matcher<Expr>, InnerMatcher) {
return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
anyOf(hasLHS(InnerMatcher), hasRHS(InnerMatcher)))
.matches(Node, Finder, Builder);
}
/// Matches if both matchers match with opposite sides of the binary operator
/// or fold expression.
///
/// Given
/// \code
/// void foo() {
/// 1 + 2; // Match
/// 2 + 1; // Match
/// 1 + 1; // No match
/// 2 + 2; // No match
/// }
/// \endcode
/// The matcher \matcher{binaryOperator(hasOperands(integerLiteral(equals(1)),
/// integerLiteral(equals(2))))}
/// matches \match{1 + 2} and \match{2 + 1},
/// but does not match \nomatch{1 + 1}
/// or \nomatch{2 + 2}.
AST_POLYMORPHIC_MATCHER_P2(
hasOperands,
AST_POLYMORPHIC_SUPPORTED_TYPES(BinaryOperator, CXXOperatorCallExpr,
CXXFoldExpr, CXXRewrittenBinaryOperator),
internal::Matcher<Expr>, Matcher1, internal::Matcher<Expr>, Matcher2) {
return internal::VariadicDynCastAllOfMatcher<Stmt, NodeType>()(
anyOf(allOf(hasLHS(Matcher1), hasRHS(Matcher2)),
allOf(hasRHS(Matcher1), hasLHS(Matcher2))))
.matches(Node, Finder, Builder);
}
/// Matches if the operand of a unary operator matches.
///
/// \code
/// void foo() {
/// !true;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher
/// \matcher{unaryOperator(hasUnaryOperand(cxxBoolLiteral(equals(true))))}
/// matches \match{!true}.
AST_POLYMORPHIC_MATCHER_P(hasUnaryOperand,
AST_POLYMORPHIC_SUPPORTED_TYPES(UnaryOperator,
CXXOperatorCallExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const Operand = internal::getSubExpr(Node);
return (Operand != nullptr &&
InnerMatcher.matches(*Operand, Finder, Builder));
}
/// Matches if the cast's source expression
/// or opaque value's source expression matches the given matcher.
///
/// Given
/// \code
/// struct URL { URL(const char*); };
/// URL url = "a string";
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{castExpr(hasSourceExpression(cxxConstructExpr()))}
/// matches \match{"a string"}.
///
/// Given
/// \code
/// void foo(bool b) {
/// int a = b ?: 1;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher
/// \matcher{opaqueValueExpr(hasSourceExpression(
/// implicitCastExpr(has(
/// implicitCastExpr(has(declRefExpr()))))))}
/// matches \match{count=2$b} twice, for the condition and the true expression.
AST_POLYMORPHIC_MATCHER_P(hasSourceExpression,
AST_POLYMORPHIC_SUPPORTED_TYPES(CastExpr,
OpaqueValueExpr),
internal::Matcher<Expr>, InnerMatcher) {
const Expr *const SubExpression =
internal::GetSourceExpressionMatcher<NodeType>::get(Node);
return (SubExpression != nullptr &&
InnerMatcher.matches(*SubExpression, Finder, Builder));
}
/// Matches casts that has a given cast kind.
///
/// Given
/// \code
/// int *p = 0;
/// \endcode
/// The matcher \matcher{castExpr(hasCastKind(CK_NullToPointer))}
/// matches the implicit cast around \match{0}
///
/// If the matcher is use from clang-query, CastKind parameter
/// should be passed as a quoted string. e.g., hasCastKind("CK_NullToPointer").
AST_MATCHER_P(CastExpr, hasCastKind, CastKind, Kind) {
return Node.getCastKind() == Kind;
}
/// Matches casts whose destination type matches a given matcher.
///
/// (Note: Clang's AST refers to other conversions as "casts" too, and calls
/// actual casts "explicit" casts.)
///
/// \code
/// unsigned int a = (unsigned int)0;
/// \endcode
///
/// The matcher \matcher{explicitCastExpr(hasDestinationType(
/// qualType(isUnsignedInteger())))} matches \match{(unsigned int)0}.
AST_MATCHER_P(ExplicitCastExpr, hasDestinationType, internal::Matcher<QualType>,
InnerMatcher) {
const QualType NodeType = Node.getTypeAsWritten();
return InnerMatcher.matches(NodeType, Finder, Builder);
}
/// Matches implicit casts whose destination type matches a given
/// matcher.
///
/// Given
/// \code
/// unsigned int a = 0;
/// \endcode
///
/// The matcher
/// \matcher{implicitCastExpr(hasImplicitDestinationType(
/// qualType(isUnsignedInteger())))} matches \match{0}.
AST_MATCHER_P(ImplicitCastExpr, hasImplicitDestinationType,
internal::Matcher<QualType>, InnerMatcher) {
return InnerMatcher.matches(Node.getType(), Finder, Builder);
}
/// Matches TagDecl object that are spelled with "struct."
///
/// Example matches S, but not C, U or E.
/// \code
/// struct S;
/// class C;
/// union U;
/// enum E {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{tagDecl(isStruct())} matches \match{struct S},
/// but does not match \nomatch{class C}, \nomatch{union U} or
/// \nomatch{enum E {}}.
AST_MATCHER(TagDecl, isStruct) {
return Node.isStruct();
}
/// Matches TagDecl object that are spelled with "union."
///
/// Given
/// \code
/// struct S;
/// class C;
/// union U;
/// enum E {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{tagDecl(isUnion())} matches \match{union U},
/// but does not match \nomatch{struct S}, \nomatch{class C} or
/// \nomatch{enum E {}}.
AST_MATCHER(TagDecl, isUnion) {
return Node.isUnion();
}
/// Matches TagDecl object that are spelled with "class."
///
/// Given
/// \code
/// struct S;
/// class C;
/// union U;
/// enum E {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{tagDecl(isClass())} matches \match{class C},
/// but does not match \nomatch{struct S}, \nomatch{union U} or
/// \nomatch{enum E {}}.
AST_MATCHER(TagDecl, isClass) {
return Node.isClass();
}
/// Matches TagDecl object that are spelled with "enum."
///
/// Given
/// \code
/// struct S;
/// class C;
/// union U;
/// enum E {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{tagDecl(isEnum())} matches \match{enum E {}},
/// but does not match \nomatch{struct S}, \nomatch{class C} or
/// \nomatch{union U}.
AST_MATCHER(TagDecl, isEnum) {
return Node.isEnum();
}
/// Matches the true branch expression of a conditional operator.
///
/// Example 1 (conditional ternary operator): matches a
/// Given
/// \code
/// void foo(bool condition, int a, int b) {
/// condition ? a : b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher
/// \matcher{conditionalOperator(hasTrueExpression(expr().bind("true")))}
/// matches \match{condition ? a : b},
/// with \matcher{type=sub$expr()} matching \match{sub=true$a}.
///
/// Example 2 (conditional binary operator): matches opaqueValueExpr(condition)
/// Given
/// \code
/// void foo(bool condition, int a, int b) {
/// condition ?: b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher \matcher{binaryConditionalOperator(hasTrueExpression(expr()))}
/// matches \match{condition ?: b},
/// with \matcher{type=sub$expr()} matching \match{sub=true$conditoin}.
AST_MATCHER_P(AbstractConditionalOperator, hasTrueExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getTrueExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// Matches the false branch expression of a conditional operator
/// (binary or ternary).
///
/// Example matches b
/// \code
/// void foo(bool condition, int a, int b) {
/// condition ? a : b;
/// condition ?: b;
/// }
/// \endcode
/// \compile_args{-std=c++,c23-or-later}
/// The matcher
/// \matcher{conditionalOperator(hasFalseExpression(expr().bind("false")))}
/// matches \match{condition ? a : b},
/// with \matcher{type=sub$expr()} matching \match{sub=false$b}.
/// The matcher
/// \matcher{binaryConditionalOperator(hasFalseExpression(expr().bind("false")))}
/// matches \match{condition ?: b},
/// with \matcher{type=sub$expr()} matching \match{sub=false$b}.
AST_MATCHER_P(AbstractConditionalOperator, hasFalseExpression,
internal::Matcher<Expr>, InnerMatcher) {
const Expr *Expression = Node.getFalseExpr();
return (Expression != nullptr &&
InnerMatcher.matches(*Expression, Finder, Builder));
}
/// Matches if a declaration has a body attached.
///
/// Example matches A, va, fa
/// \code
/// class A {};
/// class B; // Doesn't match, as it has no body.
/// int va;
/// extern int vb; // Doesn't match, as it doesn't define the variable.
/// void fa() {}
/// void fb(); // Doesn't match, as it has no body.
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{tagDecl(isDefinition())}
/// matches \match{class A {}}.
/// The matcher \matcher{varDecl(isDefinition())}
/// matches \match{int va}.
/// The matcher \matcher{functionDecl(isDefinition())}
/// matches \match{void fa() {}}.
///
/// \code
/// @interface X
/// - (void)ma; // Doesn't match, interface is declaration.
/// @end
/// @implementation X
/// - (void)ma {}
/// @end
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{objcMethodDecl(isDefinition())}
/// matches \match{- (void)ma {}}
///
/// Usable as: Matcher<TagDecl>, Matcher<VarDecl>, Matcher<FunctionDecl>,
/// Matcher<ObjCMethodDecl>
AST_POLYMORPHIC_MATCHER(isDefinition,
AST_POLYMORPHIC_SUPPORTED_TYPES(TagDecl, VarDecl,
ObjCMethodDecl,
FunctionDecl)) {
return Node.isThisDeclarationADefinition();
}
/// Matches if a function declaration is variadic.
///
/// Example matches f, but not g or h. The function i will not match, even when
/// compiled in C mode.
/// \code
/// void f(...);
/// void g(int);
/// template <typename... Ts> void h(Ts...);
/// void i();
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{functionDecl(isVariadic())}
/// matches \match{void f(...)},
/// but does not match \nomatch{void g(int)},
/// \nomatch{template <typename... Ts> void h(Ts...)},
/// or \nomatch{void i()}.
AST_MATCHER(FunctionDecl, isVariadic) {
return Node.isVariadic();
}
/// Matches the class declaration that the given method declaration
/// belongs to.
///
/// FIXME: Generalize this for other kinds of declarations.
/// FIXME: What other kind of declarations would we need to generalize
/// this to?
///
/// Given
/// \code
/// class A {
/// public:
/// A();
/// void foo();
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(ofClass(hasName("A")))}
/// matches \match{A()} and \match{void foo()}.
AST_MATCHER_P(CXXMethodDecl, ofClass,
internal::Matcher<CXXRecordDecl>, InnerMatcher) {
ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
const CXXRecordDecl *Parent = Node.getParent();
return (Parent != nullptr &&
InnerMatcher.matches(*Parent, Finder, Builder));
}
/// Matches each method overridden by the given method. This matcher may
/// produce multiple matches.
///
/// Given
/// \code
/// class A { virtual void f(); };
/// class B : public A { void f(); };
/// class C : public B { void f(); };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b")))}
/// matches \match{void f()} of \c C ,
/// with \matcher{type=sub$cxxMethodDecl()} matching
/// \match{sub=b$virtual void f()} of \c A ,
/// but the matcher does not match \nomatch{void f()} of \c B because
/// it is not overridden by C::f.
///
/// The check can produce multiple matches in case of multiple inheritance, e.g.
/// \code
/// class A1 { virtual void f(); };
/// class A2 { virtual void f(); };
/// class C : public A1, public A2 { void f(); };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(ofClass(hasName("C")),
/// forEachOverridden(cxxMethodDecl().bind("b")))}
/// matches \match{void f()} of \c C with the inner
/// \matcher{type=sub$cxxMethodDecl()} matching \match{sub=b$virtual void f()}
/// inside of \c A1 , and \match{void f()} of \c C with the inner
/// \matcher{type=sub$cxxMethodDecl()} matching \match{sub=b$virtual void f()}
/// inside of \c A2.
AST_MATCHER_P(CXXMethodDecl, forEachOverridden,
internal::Matcher<CXXMethodDecl>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *Overridden : Node.overridden_methods()) {
BoundNodesTreeBuilder OverriddenBuilder(*Builder);
const bool OverriddenMatched =
InnerMatcher.matches(*Overridden, Finder, &OverriddenBuilder);
if (OverriddenMatched) {
Matched = true;
Result.addMatch(OverriddenBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches declarations of virtual methods and C++ base specifers that specify
/// virtual inheritance.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x(); // matches x
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(isVirtual())}
/// matches \match{virtual void x()}.
///
/// Given
/// \code
/// struct Base {};
/// struct DirectlyDerived : virtual Base {}; // matches Base
/// struct IndirectlyDerived : DirectlyDerived, Base {}; // matches Base
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{cxxRecordDecl(hasDirectBase(cxxBaseSpecifier(isVirtual())))}
/// matches \match{struct DirectlyDerived : virtual Base {}}.
///
/// Usable as: Matcher<CXXMethodDecl>, Matcher<CXXBaseSpecifier>
AST_POLYMORPHIC_MATCHER(isVirtual,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXMethodDecl,
CXXBaseSpecifier)) {
return Node.isVirtual();
}
/// Matches if the given method declaration has an explicit "virtual".
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// void x();
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(isVirtualAsWritten())}
/// matches \match{virtual void x()} of \c A,
/// but does not match \notmatch{void x()} of \c B .
AST_MATCHER(CXXMethodDecl, isVirtualAsWritten) {
return Node.isVirtualAsWritten();
}
AST_MATCHER(CXXConstructorDecl, isInheritingConstructor) {
return Node.isInheritingConstructor();
}
/// Matches if the given method or class declaration is final.
///
/// Given
/// \code
/// class A final {};
///
/// struct B {
/// virtual void f();
/// };
///
/// struct C : B {
/// void f() final;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(isFinal())}
/// matches \match{class A final {}},
/// but does not match \nomatch{type=name$B} or \nomatch{type=name$C}.
/// The matcher \matcher{cxxMethodDecl(isFinal())}
/// matches \match{void f() final} in \c C ,
/// but it does not match \nomatch{virtual void f()} in \c B .
AST_POLYMORPHIC_MATCHER(isFinal,
AST_POLYMORPHIC_SUPPORTED_TYPES(CXXRecordDecl,
CXXMethodDecl)) {
return Node.template hasAttr<FinalAttr>();
}
/// Matches if the given method declaration is pure.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x() = 0;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(isPure())}
/// matches \match{virtual void x() = 0}
AST_MATCHER(CXXMethodDecl, isPure) { return Node.isPureVirtual(); }
/// Matches if the given method declaration is const.
///
/// Given
/// \code
/// struct A {
/// void foo() const;
/// void bar();
/// };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxMethodDecl(isConst())}
/// matches \match{void foo() const} but not \nomatch{void bar()}.
AST_MATCHER(CXXMethodDecl, isConst) {
return Node.isConst();
}
/// Matches if the given method declaration declares a copy assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxMethodDecl(isCopyAssignmentOperator())}
/// matches \match{A &operator=(const A &)}
/// but does not match \nomatch{A &operator=(A &&)}
AST_MATCHER(CXXMethodDecl, isCopyAssignmentOperator) {
return Node.isCopyAssignmentOperator();
}
/// Matches if the given method declaration declares a move assignment
/// operator.
///
/// Given
/// \code
/// struct A {
/// A &operator=(const A &);
/// A &operator=(A &&);
/// };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxMethodDecl(isMoveAssignmentOperator())}
/// matches \match{A &operator=(A &&)}
/// but does not match \nomatch{A &operator=(const A &)}
AST_MATCHER(CXXMethodDecl, isMoveAssignmentOperator) {
return Node.isMoveAssignmentOperator();
}
/// Matches if the given method declaration overrides another method.
///
/// Given
/// \code
/// class A {
/// public:
/// virtual void x();
/// };
/// class B : public A {
/// public:
/// void x() override;
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxMethodDecl(isOverride())}
/// matches \match{void x() override}
AST_MATCHER(CXXMethodDecl, isOverride) {
return Node.size_overridden_methods() > 0 || Node.hasAttr<OverrideAttr>();
}
/// Matches method declarations that are user-provided.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &) = default; // #2
/// S(S &&) = delete; // #3
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(isUserProvided())}
/// will match \match{S()}, but not \notmatch{S(const S &) = default} or
/// \notmatch{S(S &&) = delete}
AST_MATCHER(CXXMethodDecl, isUserProvided) {
return Node.isUserProvided();
}
/// Matches member expressions that are called with '->' as opposed
/// to '.'.
///
/// Member calls on the implicit this pointer match as called with '->'.
///
/// Given
/// \code
/// class Y {
/// void x() { this->x(); x(); Y y; y.x(); a; this->b; Y::b; }
/// template <class T> void f() { this->f<T>(); f<T>(); }
/// int a;
/// static int b;
/// };
/// template <class T>
/// class Z {
/// void x() {
/// this->m;
/// this->t;
/// this->t->m;
/// }
/// int m;
/// T* t;
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{memberExpr(isArrow())}
/// matches \match{this->x}, \match{x}, \match{a},
/// \match{this->b}, \match{this->m} and two times \match{count=2$this->t},
/// once for the standalone member expression, and once for the member
/// expression that later accesses \c m .
/// Additionally, it does not match \nomatch{this->t->t}.
/// The matcher \matcher{cxxDependentScopeMemberExpr(isArrow())}
/// matches \match{this->t->m}, but not \nomatch{this->m} or \nomatch{this->t}.
/// The matcher \matcher{unresolvedMemberExpr(isArrow())}
/// matches \match{this->f<T>}, \match{f<T>}
AST_POLYMORPHIC_MATCHER(
isArrow, AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
CXXDependentScopeMemberExpr)) {
return Node.isArrow();
}
/// Matches QualType nodes that are of integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(long);
/// void c(double);
/// \endcode
/// The matcher \matcher{functionDecl(hasAnyParameter(hasType(isInteger())))}
/// \match{void a(int)}, \match{void b(long)}, but not \nomatch{void c(double)}.
AST_MATCHER(QualType, isInteger) {
return Node->isIntegerType();
}
/// Matches QualType nodes that are of unsigned integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// The matcher
/// \matcher{functionDecl(hasAnyParameter(hasType(isUnsignedInteger())))}
/// matches \match{void b(unsigned long)},
/// but it does not match \nomatch{void a(int)} and \nomatch{void c(double)}.
AST_MATCHER(QualType, isUnsignedInteger) {
return Node->isUnsignedIntegerType();
}
/// Matches QualType nodes that are of signed integer type.
///
/// Given
/// \code
/// void a(int);
/// void b(unsigned long);
/// void c(double);
/// \endcode
/// The matcher
/// \matcher{functionDecl(hasAnyParameter(hasType(isSignedInteger())))} matches
/// \match{void a(int)}, but not \notmatch{void b(unsigned long)} or
/// \notmatch{void c(double)}.
AST_MATCHER(QualType, isSignedInteger) {
return Node->isSignedIntegerType();
}
/// Matches QualType nodes that are of character type.
///
/// Given
/// \code
/// void a(char);
/// void b(wchar_t);
/// void c(double);
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{functionDecl(hasAnyParameter(hasType(isAnyCharacter())))}
/// \match{void a(char)}, \match{void b(wchar_t)}, but not
/// \notmatch{void c(double)}.
AST_MATCHER(QualType, isAnyCharacter) {
return Node->isAnyCharacterType();
}
/// Matches QualType nodes that are of any pointer type; this includes
/// the Objective-C object pointer type, which is different despite being
/// syntactically similar.
///
/// Given
/// \code
/// int *i = nullptr;
///
/// @interface Foo
/// @end
/// Foo *f;
///
/// int j;
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{varDecl(hasType(isAnyPointer()))}
/// \match{int *i} and \match{Foo *f}, but not \nomatch{int j}.
AST_MATCHER(QualType, isAnyPointer) {
return Node->isAnyPointerType();
}
/// Matches QualType nodes that are const-qualified, i.e., that
/// include "top-level" const.
///
/// Given
/// \code
/// void a(int);
/// void b(int const);
/// void c(const int);
/// void d(const int*);
/// \endcode
/// The matcher
/// \matcher{functionDecl(hasAnyParameter(hasType(isConstQualified())))}
/// matches \match{void b(int const)} and \match{void c(const int)}.
/// It does not match \notmatch{void d(const int*)} as there
/// is no top-level \c const on the parameter type \c{const int *}.
AST_MATCHER(QualType, isConstQualified) {
return Node.isConstQualified();
}
/// Matches QualType nodes that are volatile-qualified, i.e., that
/// include "top-level" volatile.
///
/// Given
/// \code
/// void a(int);
/// void b(int volatile);
/// void c(volatile int);
/// void d(volatile int*);
/// \endcode
/// The matcher
/// \matcher{functionDecl(hasAnyParameter(hasType(isVolatileQualified())))}
/// matches \match{void b(int volatile)} and \match{void c(volatile int)}.
/// It does not match \notmatch{void d(volatile int*)} as there
/// is no top-level volatile on the parameter type "volatile int *".
AST_MATCHER(QualType, isVolatileQualified) {
return Node.isVolatileQualified();
}
/// Matches QualType nodes that have local CV-qualifiers attached to
/// the node, not hidden within a typedef.
///
/// Given
/// \code
/// typedef const int const_int;
/// const_int i = 0;
/// int *const j = nullptr;
/// int *volatile k;
/// int m;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{varDecl(hasType(hasLocalQualifiers()))} matches
/// \match{int *const j = nullptr} and \match{int *volatile k},
/// bot not \notmatch{const_int i} because the const qualifier is not local.
AST_MATCHER(QualType, hasLocalQualifiers) {
return Node.hasLocalQualifiers();
}
/// Matches a member expression where the member is matched by a
/// given matcher.
///
/// Given
/// \code
/// struct { int first = 0, second = 1; } first, second;
/// int i = second.first;
/// int j = first.second;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{memberExpr(member(hasName("first")))}
/// matches \match{second.first}
/// but not \notmatch{first.second}.
AST_MATCHER_P(MemberExpr, member,
internal::Matcher<ValueDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getMemberDecl(), Finder, Builder);
}
/// Matches a member expression where the object expression is matched by a
/// given matcher. Implicit object expressions are included; that is, it matches
/// use of implicit `this`.
///
/// Given
/// \code
/// struct X {
/// int m;
/// int f(X x) { x.m; return m; }
/// };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{memberExpr(hasObjectExpression(hasType(cxxRecordDecl(hasName("X")))))}
/// matches \match{x.m}, but not \nomatch{m}; however,
/// The matcher \matcher{memberExpr(hasObjectExpression(hasType(pointsTo(
/// cxxRecordDecl(hasName("X"))))))}
/// matches \match{m} (aka. this->m), but not \nomatch{x.m}.
AST_POLYMORPHIC_MATCHER_P(
hasObjectExpression,
AST_POLYMORPHIC_SUPPORTED_TYPES(MemberExpr, UnresolvedMemberExpr,
CXXDependentScopeMemberExpr),
internal::Matcher<Expr>, InnerMatcher) {
if (const auto *E = dyn_cast<UnresolvedMemberExpr>(&Node))
if (E->isImplicitAccess())
return false;
if (const auto *E = dyn_cast<CXXDependentScopeMemberExpr>(&Node))
if (E->isImplicitAccess())
return false;
return InnerMatcher.matches(*Node.getBase(), Finder, Builder);
}
/// Matches any using shadow declaration.
///
/// Given
/// \code
/// namespace X { void b(); }
/// using X::b;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{usingDecl(hasAnyUsingShadowDecl(hasName("b")))}
/// matches \match{using X::b}
AST_MATCHER_P(BaseUsingDecl, hasAnyUsingShadowDecl,
internal::Matcher<UsingShadowDecl>, InnerMatcher) {
return matchesFirstInPointerRange(InnerMatcher, Node.shadow_begin(),
Node.shadow_end(), Finder,
Builder) != Node.shadow_end();
}
/// Matches a using shadow declaration where the target declaration is
/// matched by the given matcher.
///
/// Given
/// \code
/// namespace X { int a; void b(); }
/// using X::a;
/// using X::b;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{usingDecl(hasAnyUsingShadowDecl(hasTargetDecl(functionDecl())))}
/// matches \match{using X::b}
/// but not \notmatch{using X::a}
AST_MATCHER_P(UsingShadowDecl, hasTargetDecl,
internal::Matcher<NamedDecl>, InnerMatcher) {
return InnerMatcher.matches(*Node.getTargetDecl(), Finder, Builder);
}
/// Matches template instantiations of function, class, or static
/// member variable template instantiations.
///
/// Given
/// \code
/// template <typename T> class X {};
/// class A {};
/// X<A> x;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("::X"),
/// isTemplateInstantiation())}
/// matches \match{type=typestr$class X<class A>}.
/// \code
/// template <typename T> class X {};
/// class A {};
/// template class X<A>;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("::X"),
/// isTemplateInstantiation())}
/// matches \match{template class X<A>}
/// \code
/// template <typename T> class X {};
/// class A {};
/// extern template class X<A>;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("::X"),
/// isTemplateInstantiation())}
/// matches \match{extern template class X<A>}
///
/// But given
/// \code
/// template <typename T> class X {};
/// class A {};
/// template <> class X<A> {};
/// X<A> x;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("::X"),
/// isTemplateInstantiation())}
/// \nomatch{} does not match, as X<A> is an explicit template specialization.
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isTemplateInstantiation,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ImplicitInstantiation ||
Node.getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDefinition ||
Node.getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDeclaration);
}
/// Matches declarations that are template instantiations or are inside
/// template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { T i; }
/// void foo() {
/// A(0);
/// A(0U);
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{functionDecl(isInstantiated())}
/// matches the two instantiations of \match{count=2$void A(T t) { T i; }} that
/// are generated for \c int , and for \c{unsigned int}.
AST_MATCHER_FUNCTION(internal::Matcher<Decl>, isInstantiated) {
auto IsInstantiation = decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation()),
varDecl(isTemplateInstantiation())));
return decl(anyOf(IsInstantiation, hasAncestor(IsInstantiation)));
}
/// Matches statements inside of a template instantiation.
///
/// Given
/// \code
/// int j;
/// template<typename T> void A(T t) { T i; }
/// void foo() {
/// A(0);
/// A(0U);
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{declStmt(isInTemplateInstantiation())}
/// matches \match{count=2$T i;} twice, once for \c int and once for
/// \c{unsigned int}.
/// The matcher \matcher{declStmt(unless(isInTemplateInstantiation()))} will
/// match \match{T i;} once inside the template definition, but not for any of
/// the instantiated bodies.
AST_MATCHER_FUNCTION(internal::Matcher<Stmt>, isInTemplateInstantiation) {
return stmt(hasAncestor(decl(anyOf(cxxRecordDecl(isTemplateInstantiation()),
functionDecl(isTemplateInstantiation()),
varDecl(isTemplateInstantiation())))));
}
/// Matches explicit template specializations of function, class, or
/// static member variable template instantiations.
///
/// Given
/// \code
/// template<typename T> void A(T t) { }
/// template<> void A(int N) { }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{functionDecl(isExplicitTemplateSpecialization())}
/// matches the specialization \match{template<> void A(int N) { }}.
///
/// Usable as: Matcher<FunctionDecl>, Matcher<VarDecl>, Matcher<CXXRecordDecl>
AST_POLYMORPHIC_MATCHER(isExplicitTemplateSpecialization,
AST_POLYMORPHIC_SUPPORTED_TYPES(FunctionDecl, VarDecl,
CXXRecordDecl)) {
return (Node.getTemplateSpecializationKind() == TSK_ExplicitSpecialization);
}
/// Matches \c TypeLocs for which the given inner
/// QualType-matcher matches.
///
/// \code
/// int a = 10;
/// \endcode
///
/// The matcher \matcher{typeLoc(loc(qualType(isInteger())))}
/// matches the \match{int} of \c a .
AST_MATCHER_FUNCTION_P_OVERLOAD(internal::BindableMatcher<TypeLoc>, loc,
internal::Matcher<QualType>, InnerMatcher, 0) {
return internal::BindableMatcher<TypeLoc>(
new internal::TypeLocTypeMatcher(InnerMatcher));
}
/// Matches `QualifiedTypeLoc`s in the clang AST.
///
/// Given
/// \code
/// const int x = 0;
/// \endcode
///
/// The matcher \matcher{qualifiedTypeLoc()}
/// matches the type of the variable declaration \c x . However, the
/// current implementation of \c QualifiedTypeLoc does not store the source
/// locations for the qualifiers of the type \match{int}.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, QualifiedTypeLoc>
qualifiedTypeLoc;
/// Matches `QualifiedTypeLoc`s that have an unqualified `TypeLoc` matching
/// `InnerMatcher`.
///
/// Given
/// \code
/// int* const x = nullptr;
/// const int y = 0;
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
///
/// The matcher \matcher{qualifiedTypeLoc(hasUnqualifiedLoc(pointerTypeLoc()))}
/// matches the type \match{int*} of the variable declaration \c{x}, but
/// not \c{y}.
AST_MATCHER_P(QualifiedTypeLoc, hasUnqualifiedLoc, internal::Matcher<TypeLoc>,
InnerMatcher) {
return InnerMatcher.matches(Node.getUnqualifiedLoc(), Finder, Builder);
}
/// Matches a function declared with the specified return `TypeLoc`.
///
/// Given
/// \code
/// int f() { return 5; }
/// void g() {}
/// \endcode
/// The matcher
/// \matcher{functionDecl(hasReturnTypeLoc(typeLoc(loc(asString("int")))))}
/// matches the declaration of \match{int f() { return 5; }} with
/// \matcher{type=sub$typeLoc(loc(asString("int")))} matching the spelling of
/// \match{sub=loc$int}, but the matcher does not match \notmatch{void g() {}}.
AST_MATCHER_P(FunctionDecl, hasReturnTypeLoc, internal::Matcher<TypeLoc>,
ReturnMatcher) {
auto Loc = Node.getFunctionTypeLoc();
return Loc && ReturnMatcher.matches(Loc.getReturnLoc(), Finder, Builder);
}
/// Matches pointer `TypeLoc`s.
///
/// Given
/// \code
/// int* x;
/// \endcode
/// The matcher \matcher{pointerTypeLoc()}
/// matches \match{int*}.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, PointerTypeLoc>
pointerTypeLoc;
/// Matches pointer `TypeLoc`s that have a pointee `TypeLoc` matching
/// `PointeeMatcher`.
///
/// Given
/// \code
/// int* x;
/// \endcode
/// The matcher \matcher{pointerTypeLoc(hasPointeeLoc(loc(asString("int"))))}
/// matches \match{int*}.
AST_MATCHER_P(PointerTypeLoc, hasPointeeLoc, internal::Matcher<TypeLoc>,
PointeeMatcher) {
return PointeeMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
}
/// Matches reference `TypeLoc`s.
///
/// Given
/// \code
/// int x = 3;
/// int& l = x;
/// int&& r = 3;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{referenceTypeLoc()}
/// matches \match{int&} and \match{int&&}.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ReferenceTypeLoc>
referenceTypeLoc;
/// Matches reference `TypeLoc`s that have a referent `TypeLoc` matching
/// `ReferentMatcher`.
///
/// Given
/// \code
/// int x = 3;
/// int& xx = x;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{referenceTypeLoc(hasReferentLoc(loc(asString("int"))))}
/// matches \match{int&}.
AST_MATCHER_P(ReferenceTypeLoc, hasReferentLoc, internal::Matcher<TypeLoc>,
ReferentMatcher) {
return ReferentMatcher.matches(Node.getPointeeLoc(), Finder, Builder);
}
/// Matches template specialization `TypeLoc`s.
///
/// Given
/// \code
/// template <typename T> class C {};
/// C<char> var;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{varDecl(hasTypeLoc(elaboratedTypeLoc(hasNamedTypeLoc(
/// templateSpecializationTypeLoc(typeLoc())))))}
/// matches \match{C<char> var}.
extern const internal::VariadicDynCastAllOfMatcher<
TypeLoc, TemplateSpecializationTypeLoc>
templateSpecializationTypeLoc;
/// Matches template specialization `TypeLoc`s, class template specializations,
/// variable template specializations, and function template specializations
/// that have at least one `TemplateArgumentLoc` matching the given
/// `InnerMatcher`.
///
/// Given
/// \code
/// template<typename T> class A {};
/// A<int> a;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{varDecl(hasTypeLoc(elaboratedTypeLoc(hasNamedTypeLoc(
/// templateSpecializationTypeLoc(hasAnyTemplateArgumentLoc(
/// hasTypeLoc(loc(asString("int")))))))))} matches \match{A<int> a}.
AST_POLYMORPHIC_MATCHER_P(
hasAnyTemplateArgumentLoc,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
VarTemplateSpecializationDecl, FunctionDecl,
DeclRefExpr, TemplateSpecializationTypeLoc),
internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
auto Args = internal::getTemplateArgsWritten(Node);
return matchesFirstInRange(InnerMatcher, Args.begin(), Args.end(), Finder,
Builder) != Args.end();
return false;
}
/// Matches template specialization `TypeLoc`s, class template specializations,
/// variable template specializations, and function template specializations
/// where the n'th `TemplateArgumentLoc` matches the given `InnerMatcher`.
///
/// Given
/// \code
/// template<typename T, typename U> class A {};
/// A<double, int> b;
/// A<int, double> c;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{varDecl(hasTypeLoc(elaboratedTypeLoc(hasNamedTypeLoc(
/// templateSpecializationTypeLoc(hasTemplateArgumentLoc(0,
/// hasTypeLoc(loc(asString("double")))))))))}
/// matches \match{A<double, int> b}, but not \notmatch{A<int, double> c}.
AST_POLYMORPHIC_MATCHER_P2(
hasTemplateArgumentLoc,
AST_POLYMORPHIC_SUPPORTED_TYPES(ClassTemplateSpecializationDecl,
VarTemplateSpecializationDecl, FunctionDecl,
DeclRefExpr, TemplateSpecializationTypeLoc),
unsigned, Index, internal::Matcher<TemplateArgumentLoc>, InnerMatcher) {
auto Args = internal::getTemplateArgsWritten(Node);
return Index < Args.size() &&
InnerMatcher.matches(Args[Index], Finder, Builder);
}
/// Matches C or C++ elaborated `TypeLoc`s.
///
/// Given
/// \code
/// struct s {};
/// struct s ss;
/// \endcode
/// The matcher \matcher{elaboratedTypeLoc()}
/// matches the type \match{struct s} of \c ss.
extern const internal::VariadicDynCastAllOfMatcher<TypeLoc, ElaboratedTypeLoc>
elaboratedTypeLoc;
/// Matches elaborated `TypeLoc`s that have a named `TypeLoc` matching
/// `InnerMatcher`.
///
/// Given
/// \code
/// template <typename T>
/// class C {};
/// class C<int> c;
///
/// class D {};
/// class D d;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{elaboratedTypeLoc(hasNamedTypeLoc(templateSpecializationTypeLoc()))}
/// matches \match{class C<int>}, but not \notmatch{ckass D}
AST_MATCHER_P(ElaboratedTypeLoc, hasNamedTypeLoc, internal::Matcher<TypeLoc>,
InnerMatcher) {
return InnerMatcher.matches(Node.getNamedTypeLoc(), Finder, Builder);
}
/// Matches type \c bool.
///
/// Given
/// \code
/// struct S { bool func(); };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(returns(booleanType()))}
/// \match{bool func()}.
AST_MATCHER(Type, booleanType) {
return Node.isBooleanType();
}
/// Matches type \c void.
///
/// Given
/// \code
/// struct S { void func(); };
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{functionDecl(returns(voidType()))}
/// \match{void func()}.
AST_MATCHER(Type, voidType) {
return Node.isVoidType();
}
template <typename NodeType>
using AstTypeMatcher = internal::VariadicDynCastAllOfMatcher<Type, NodeType>;
/// Matches builtin Types.
///
/// Given
/// \code
/// enum E { Ok };
/// enum E e;
/// int b;
/// float c;
/// \endcode
/// The matcher \matcher{varDecl(hasType(builtinType()))}
/// matches \match{int b} and \match{float c}.
extern const AstTypeMatcher<BuiltinType> builtinType;
/// Matches all kinds of arrays.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[4];
/// void f() { int c[a[0]]; }
/// \endcode
/// The matcher \matcher{arrayType()}
/// \match{type=typestr$int[4]}, \match{type=typestr$int[a[0]]} and
/// \match{type=typestr$int[]};
extern const AstTypeMatcher<ArrayType> arrayType;
/// Matches C99 complex types.
///
/// Given
/// \code
/// _Complex float f;
/// \endcode
/// The matcher \matcher{complexType()}
/// \match{type=typestr$_Complex float}
extern const AstTypeMatcher<ComplexType> complexType;
/// Matches any real floating-point type (float, double, long double).
///
/// Given
/// \code
/// int i;
/// float f;
/// \endcode
/// The matcher \matcher{type(realFloatingPointType())}
/// matches \match{type=typestr$float}
/// but does not match \nomatch{type=typestr$int}.
AST_MATCHER(Type, realFloatingPointType) {
return Node.isRealFloatingType();
}
/// Matches arrays and C99 complex types that have a specific element
/// type.
///
/// Given
/// \code
/// struct A {};
/// A a[7];
/// int b[7];
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{arrayType(hasElementType(builtinType()))}
/// \match{type=typestr$int[7]}
///
/// Usable as: Matcher<ArrayType>, Matcher<ComplexType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasElementType, getElement,
AST_POLYMORPHIC_SUPPORTED_TYPES(ArrayType,
ComplexType));
/// Matches C arrays with a specified constant size.
///
/// Given
/// \code
/// void foo() {
/// int a[2];
/// int b[] = { 2, 3 };
/// int c[b[0]];
/// }
/// \endcode
/// The matcher \matcher{constantArrayType()}
/// \match{type=typestr$int[2]}
extern const AstTypeMatcher<ConstantArrayType> constantArrayType;
/// Matches nodes that have the specified size.
///
/// Given
/// \code
/// int a[42];
/// int b[2 * 21];
/// int c[41], d[43];
/// char *s = "abcd";
/// wchar_t *ws = L"abcd";
/// char *w = "a";
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{constantArrayType(hasSize(42))}
/// matches \match{type=typestr;count=2$int[42]} twice.
/// The matcher \matcher{stringLiteral(hasSize(4))}
/// matches \match{"abcd"} and \match{L"abcd"}.
AST_POLYMORPHIC_MATCHER_P(hasSize,
AST_POLYMORPHIC_SUPPORTED_TYPES(ConstantArrayType,
StringLiteral),
unsigned, N) {
return internal::HasSizeMatcher<NodeType>::hasSize(Node, N);
}
/// Matches C++ arrays whose size is a value-dependent expression.
///
/// Given
/// \code
/// template<typename T, int Size>
/// class array {
/// T data[Size];
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{dependentSizedArrayType()}
/// \match{type=typestr$T[Size]}
extern const AstTypeMatcher<DependentSizedArrayType> dependentSizedArrayType;
/// Matches C++ extended vector type where either the type or size is
/// dependent.
///
/// Given
/// \code
/// template<typename T, int Size>
/// class vector {
/// typedef T __attribute__((ext_vector_type(Size))) type;
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{dependentSizedExtVectorType()}
/// \match{type=typestr$T __attribute__((ext_vector_type(Size)))}
extern const AstTypeMatcher<DependentSizedExtVectorType>
dependentSizedExtVectorType;
/// Matches C arrays with unspecified size.
///
/// Given
/// \code
/// int a[] = { 2, 3 };
/// int b[42];
/// void f(int c[]) { int d[a[0]]; };
/// \endcode
/// The matcher \matcher{incompleteArrayType()}
/// \match{type=typestr$int[]} and \match{type=typestr$int[]}
extern const AstTypeMatcher<IncompleteArrayType> incompleteArrayType;
/// Matches C arrays with a specified size that is not an
/// integer-constant-expression.
///
/// Given
/// \code
/// void f() {
/// int a[] = { 2, 3 };
/// int b[42];
/// int c[a[0]];
/// }
/// \endcode
/// The matcher \matcher{variableArrayType()}
/// \match{type=typestr$int[a[0]]}
extern const AstTypeMatcher<VariableArrayType> variableArrayType;
/// Matches \c VariableArrayType nodes that have a specific size
/// expression.
///
/// Given
/// \code
/// void f(int b) {
/// int a[b];
/// }
/// \endcode
/// The matcher
/// \matcher{variableArrayType(hasSizeExpr(ignoringImpCasts(declRefExpr(to(
/// varDecl(hasName("b")))))))}
/// matches \match{type=typestr$int[b]}
AST_MATCHER_P(VariableArrayType, hasSizeExpr,
internal::Matcher<Expr>, InnerMatcher) {
return InnerMatcher.matches(*Node.getSizeExpr(), Finder, Builder);
}
/// Matches atomic types.
///
/// Given
/// \code
/// _Atomic(int) i;
/// \endcode
/// The matcher \matcher{atomicType()}
/// \match{type=typestr$_Atomic(int)}
extern const AstTypeMatcher<AtomicType> atomicType;
/// Matches atomic types with a specific value type.
///
/// Given
/// \code
/// _Atomic(int) i;
/// _Atomic(float) f;
/// \endcode
/// The matcher \matcher{atomicType(hasValueType(isInteger()))}
/// \match{type=typestr$_Atomic(int)}.
///
/// Usable as: Matcher<AtomicType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(hasValueType, getValue,
AST_POLYMORPHIC_SUPPORTED_TYPES(AtomicType));
/// Matches types nodes representing C++11 auto types.
///
/// Given
/// \code
/// void foo() {
/// auto n = 4;
/// int v[] = { 2, 3 };
/// for (auto i : v) { };
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{autoType()}
/// matches the \match{type=typestr;count=5$auto} of \c n and \c i ,
/// as well as the auto types for the implicitly generated code of the range-for
/// loop (for the range, the begin iterator and the end iterator).
extern const AstTypeMatcher<AutoType> autoType;
/// Matches types nodes representing C++11 decltype(<expr>) types.
///
/// Given
/// \code
/// short i = 1;
/// int j = 42;
/// decltype(i + j) result = i + j;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{decltypeType()}
/// \match{type=typestr$decltype(i + j)}
extern const AstTypeMatcher<DecltypeType> decltypeType;
/// Matches \c AutoType nodes where the deduced type is a specific type.
///
/// Note: There is no \c TypeLoc for the deduced type and thus no
/// \c getDeducedLoc() matcher.
///
/// Given
/// \code
/// auto a = 1;
/// auto b = 2.0;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{varDecl(hasType(autoType(hasDeducedType(isInteger()))))}
/// matches \match{auto a = 1}, but does not match \nomatch{auto b = 2.0}.
///
/// Usable as: Matcher<AutoType>
AST_TYPE_TRAVERSE_MATCHER(hasDeducedType, getDeducedType,
AST_POLYMORPHIC_SUPPORTED_TYPES(AutoType));
/// Matches \c DecltypeType or \c UsingType nodes to find the underlying type.
///
/// Given
/// \code
/// decltype(1) a = 1;
/// decltype(2.0) b = 2.0;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{decltypeType(hasUnderlyingType(isInteger()))}
/// matches the type \match{type=typestr$decltype(1)} of the variable
/// declaration of \c a .
///
/// Usable as: Matcher<DecltypeType>, Matcher<UsingType>
AST_TYPE_TRAVERSE_MATCHER(hasUnderlyingType, getUnderlyingType,
AST_POLYMORPHIC_SUPPORTED_TYPES(DecltypeType,
UsingType));
/// Matches \c FunctionType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// The matcher \matcher{functionType()}
/// \match{type=typestr$int (int)} and the type of
/// \match{std=c++,c23-or-later;type=typestr$void (void)} in C++ and in C23 and
/// later. Before C23, the function type for \c f will be matched the same way,
/// but the function type for \c g will match
/// \match{std=c17-or-earlier;type=typestr$void ()}.
extern const AstTypeMatcher<FunctionType> functionType;
/// Matches \c FunctionProtoType nodes.
///
/// Given
/// \code
/// int (*f)(int);
/// void g();
/// \endcode
/// The matcher \matcher{functionProtoType()}
/// matches the type \match{type=typestr$int (int)} of 'f' and the type
/// \match{std=c++,c23-or-later;type=typestr$void (void)} of 'g' in C++ mode.
/// In C, the type \nomatch{std=c;type=typestr$void ()} of 'g' is not
/// matched because it does not contain a prototype.
extern const AstTypeMatcher<FunctionProtoType> functionProtoType;
/// Matches \c ParenType nodes.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int *array_of_ptrs[4];
/// \endcode
///
/// The matcher \matcher{varDecl(hasType(pointsTo(parenType())))}
/// matches \match{int (*ptr_to_array)[4]}, but not
/// \nomatch{int *array_of_ptrs[4]}.
extern const AstTypeMatcher<ParenType> parenType;
/// Matches \c ParenType nodes where the inner type is a specific type.
///
/// Given
/// \code
/// int (*ptr_to_array)[4];
/// int (*ptr_to_func)(int);
/// \endcode
///
/// The matcher
/// \matcher{varDecl(hasType(pointsTo(parenType(innerType(functionType())))))}
/// matches \match{int (*ptr_to_func)(int)} but not
/// \nomatch{int (*ptr_to_array)[4]}.
///
/// Usable as: Matcher<ParenType>
AST_TYPE_TRAVERSE_MATCHER(innerType, getInnerType,
AST_POLYMORPHIC_SUPPORTED_TYPES(ParenType));
/// Matches block pointer types, i.e. types syntactically represented as
/// "void (^)(int)".
///
/// The \c pointee is always required to be a \c FunctionType.
extern const AstTypeMatcher<BlockPointerType> blockPointerType;
/// Matches member pointer types.
/// Given
/// \code
/// struct A { int i; };
/// int A::* ptr = &A::i;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{memberPointerType()}
/// matches \match{type=typestr$int struct A::*}.
extern const AstTypeMatcher<MemberPointerType> memberPointerType;
/// Matches pointer types, but does not match Objective-C object pointer
/// types.
///
/// Given
/// \code
/// typedef int* int_ptr;
/// void foo(char *str,
/// int val,
/// int *val_ptr,
/// int_ptr not_a_ptr,
/// int_ptr *ptr);
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{parmVarDecl(hasType(pointerType()))}
/// matches \match{char *str}, \match{int *val_ptr} and
/// \match{int_ptr *ptr}.
///
/// \code
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// \compile_args{-ObjC}
extern const AstTypeMatcher<PointerType> pointerType;
/// Matches an Objective-C object pointer type, which is different from
/// a pointer type, despite being syntactically similar.
///
/// Given
/// \code
/// int *a;
///
/// @interface Foo
/// @end
/// Foo *f;
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{pointerType()}
/// matches \match{type=typestr$Foo *}, but does not match
/// \nomatch{type=typestr$int *}.
extern const AstTypeMatcher<ObjCObjectPointerType> objcObjectPointerType;
/// Matches both lvalue and rvalue reference types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{referenceType()} matches the type
/// \match{type=typestr$int &} of \c b , the type \match{type=typestr$int &&} of
/// \c c, the type
/// \match{type=typestr$auto &} \c d, and the type
/// \match{type=typestr;count=2$auto &&} of \c e and \c f.
extern const AstTypeMatcher<ReferenceType> referenceType;
/// Matches lvalue reference types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{lValueReferenceType()} matches the type
/// \match{type=typestr$int &} of \c b and the type \match{type=typestr$auto &}
/// of \c d.
/// FIXME: figure out why auto changechange matches twice
extern const AstTypeMatcher<LValueReferenceType> lValueReferenceType;
/// Matches rvalue reference types.
///
/// Given
/// \code
/// int *a;
/// int &b = *a;
/// int &&c = 1;
/// auto &d = b;
/// auto &&e = c;
/// auto &&f = 2;
/// int g = 5;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{rValueReferenceType()} matches the type
/// \match{type=typestr$int &&} of \c c and the type
/// \match{type=typestr;count=2$auto &&} of \c e and \c f.
extern const AstTypeMatcher<RValueReferenceType> rValueReferenceType;
/// Narrows PointerType (and similar) matchers to those where the
/// \c pointee matches a given matcher.
///
/// Given
/// \code
/// int *a;
/// const int *b;
/// int * const c = nullptr;
/// const float *f;
/// \endcode
/// \compile_args{-std=c++11-or-later,c23-or-later}
/// The matcher \matcher{pointerType(pointee(isConstQualified(), isInteger()))}
/// matches \match{type=typestr$const int *},
/// but does not match \nomatch{type=typestr$int * const}
/// or \nomatch{type=typestr$const float *}.
///
/// Usable as: Matcher<BlockPointerType>, Matcher<MemberPointerType>,
/// Matcher<PointerType>, Matcher<ReferenceType>
AST_TYPELOC_TRAVERSE_MATCHER_DECL(
pointee, getPointee,
AST_POLYMORPHIC_SUPPORTED_TYPES(BlockPointerType, MemberPointerType,
PointerType, ReferenceType));
/// Matches typedef types.
///
/// Given
/// \code
/// typedef int X;
/// X x = 0;
/// \endcode
/// The matcher \matcher{typedefType()}
/// matches \match{type=typestr$X}.
extern const AstTypeMatcher<TypedefType> typedefType;
/// Matches qualified types when the qualifier is applied via a macro.
///
/// Given
/// \code
/// #define CDECL __attribute__((cdecl))
/// typedef void (CDECL *X)();
/// typedef void (__attribute__((cdecl)) *Y)();
/// \endcode
/// The matcher \matcher{macroQualifiedType()}
/// matches the type \match{type=typestr;std=c++,c23-or-later$CDECL void
/// (void)} of the typedef declaration of \c X , unless when in C98-C17, there
/// \match{type=typestr;std=c17-or-earlier$CDECL void ()},
/// but it does not match the type
/// \nomatch{type=typestr$__attribute((cdecl)) void ()} of \c Y .
extern const AstTypeMatcher<MacroQualifiedType> macroQualifiedType;
/// Matches enum types.
///
/// Given
/// \code
/// enum C { Green };
/// enum class S { Red };
///
/// C c;
/// S s;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{enumType()} matches the type
/// \match{type=typestr$enum C} of \c c ,
/// and the type \match{type=typestr$enum S} of \c s .
extern const AstTypeMatcher<EnumType> enumType;
/// Matches template specialization types.
///
/// Given
/// \code
/// template <typename T>
/// class C { };
///
/// template class C<int>;
/// C<int> intvar;
/// C<char> charvar;
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{templateSpecializationType()} matches the type
/// \match{type=typestr$C<int>} of the explicit instantiation in \c A and the
/// type \match{type=typestr$C<char>} of the variable declaration in
/// \c B.
extern const AstTypeMatcher<TemplateSpecializationType>
templateSpecializationType;
/// Matches C++17 deduced template specialization types, e.g. deduced class
/// template types.
///
/// Given
/// \code
/// template <typename T>
/// class C { public: C(T); };
///
/// C c(123);
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++17-or-later}
/// The matcher \matcher{deducedTemplateSpecializationType()} matches the type
/// \match{type=typestr$C} of the declaration of the variable \c c.
extern const AstTypeMatcher<DeducedTemplateSpecializationType>
deducedTemplateSpecializationType;
/// Matches types nodes representing unary type transformations.
///
/// Given
/// \code
/// template <typename T> struct A {
/// typedef __underlying_type(T) type;
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{unaryTransformType()}
/// matches \match{type=typestr$__underlying_type(T)}
extern const AstTypeMatcher<UnaryTransformType> unaryTransformType;
/// Matches record types (e.g. structs, classes).
///
/// Given
/// \code
/// class C {};
/// struct S {};
///
/// C c;
/// S s;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{recordType()} matches the type
/// \match{type=typestr;count=3$class C} of the variable declaration of \c c and
/// matches the type \match{type=typestr;count=3$struct S} of the variable
/// declaration of \c s.
/// Both of these types are matched three times, once for the type of the
/// variable, once for the definition of the class, and once for the type of the
/// implicit class declaration.
extern const AstTypeMatcher<RecordType> recordType;
/// Matches tag types (record and enum types).
///
/// Given
/// \code
/// enum E { Ok };
/// class C {};
///
/// E e;
/// C c;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{tagType()} matches the type
/// \match{type=typestr$enum E} of variable \c e and the type
/// \match{type=typestr;count=3;std=c++$class C} three times, once for the type
/// of the variable \c c , once for the type of the class definition and once of
/// the type in the implicit class declaration.
extern const AstTypeMatcher<TagType> tagType;
/// Matches types specified with an elaborated type keyword or with a
/// qualified name.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// class C {};
///
/// C c;
/// N::M::D d;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{elaboratedType()} matches the type
/// \match{type=typestr;count=3$C} three times. Once for the type of the
/// variable \c c, once for the type of the class definition and once for the
/// type in the implicit class declaration. For \c{class D}, it matches
/// \match{type=typestr$N::M::D} of variable \c d and its class definition and
/// implicit class declaration \match{type=typestr;count=2$D} one time
/// respectively.
extern const AstTypeMatcher<ElaboratedType> elaboratedType;
/// Matches ElaboratedTypes whose qualifier, a NestedNameSpecifier,
/// matches \c InnerMatcher if the qualifier exists.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// N::M::D d;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N")))))}
/// matches the type \match{type=typestr$N::M::D} of the variable declaration
/// of \c d.
AST_MATCHER_P(ElaboratedType, hasQualifier,
internal::Matcher<NestedNameSpecifier>, InnerMatcher) {
if (const NestedNameSpecifier *Qualifier = Node.getQualifier())
return InnerMatcher.matches(*Qualifier, Finder, Builder);
return false;
}
/// Matches ElaboratedTypes whose named type matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// enum E { Ok };
/// }
/// }
/// N::M::E e = N::M::Ok;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{elaboratedType(namesType(enumType()))}
/// matches the type \match{type=typestr$N::M::E} of the declaration of \c e .
AST_MATCHER_P(ElaboratedType, namesType, internal::Matcher<QualType>,
InnerMatcher) {
return InnerMatcher.matches(Node.getNamedType(), Finder, Builder);
}
/// Matches types specified through a using declaration.
///
/// Given
/// \code
/// namespace a { struct S {}; }
/// using a::S;
/// S s;
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{usingType()} matches the type \match{type=typestr$a::S}
/// of the variable declaration of \c s.
extern const AstTypeMatcher<UsingType> usingType;
/// Matches types that represent the result of substituting a type for a
/// template type parameter.
///
/// Given
/// \code
/// template <typename T>
/// void F(T t) {
/// T local;
/// int i = 1 + t;
/// }
/// void f() {
/// F(0);
/// }
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{varDecl(hasType(substTemplateTypeParmType()))}
/// matches \match{T t} and \match{T local} for the substituted template type
/// \c int in the instantiation of \c F .
extern const AstTypeMatcher<SubstTemplateTypeParmType>
substTemplateTypeParmType;
/// Matches template type parameter substitutions that have a replacement
/// type that matches the provided matcher.
///
/// Given
/// \code
/// template <typename T>
/// double F(T t);
/// int i;
/// double j = F(i);
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
///
/// The matcher \matcher{substTemplateTypeParmType(hasReplacementType(type()))}
/// matches \match{type=typestr$int}.
AST_TYPE_TRAVERSE_MATCHER(
hasReplacementType, getReplacementType,
AST_POLYMORPHIC_SUPPORTED_TYPES(SubstTemplateTypeParmType));
/// Matches template type parameter types.
///
/// Given
/// \code
/// template <typename T> void f(int i);
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher \matcher{templateTypeParmType()} matches \match{type=typestr$T},
/// but does not match \nomatch{type=typestr$int}.
extern const AstTypeMatcher<TemplateTypeParmType> templateTypeParmType;
/// Matches injected class name types.
///
/// Given
/// \code
/// template <typename T> struct S {
/// void f(S s);
/// void g(S<T> s);
/// };
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++}
/// The matcher
/// \matcher{parmVarDecl(hasType(elaboratedType(namesType(injectedClassNameType()))))}
/// matches \match{S s}, but not \notmatch{S<T> s}
extern const AstTypeMatcher<InjectedClassNameType> injectedClassNameType;
/// Matches decayed type
/// \code
/// void f(int i[]) {
/// i[1] = 0;
/// }
/// \endcode
/// The matcher
/// \matcher{valueDecl(hasType(decayedType(hasDecayedType(pointerType()))))}
/// matches \match{int i[]} in declaration of \c{f}.
/// The matcher
/// \matcher{expr(hasType(decayedType(hasDecayedType(pointerType()))))}
/// matches \match{count=2$i} twice, once for the \c DeclRefExpr and oncde for
/// the cast from an l- to an r-value in \c{i[1]}.
///
extern const AstTypeMatcher<DecayedType> decayedType;
/// Matches the decayed type, whoes decayed type matches \c InnerMatcher
///
/// Given
/// \code
/// void f(int i[]) {
/// i[1] = 0;
/// }
/// \endcode
///
/// The matcher \matcher{parmVarDecl(hasType(decayedType()))}
/// matches \match{int i[]}.
AST_MATCHER_P(DecayedType, hasDecayedType, internal::Matcher<QualType>,
InnerType) {
return InnerType.matches(Node.getDecayedType(), Finder, Builder);
}
/// Matches declarations whose declaration context, interpreted as a
/// Decl, matches \c InnerMatcher.
///
/// Given
/// \code
/// namespace N {
/// namespace M {
/// class D {};
/// }
/// }
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{cxxRecordDecl(hasDeclContext(namedDecl(hasName("M"))))}
/// matches the definition of \match{class D {}}.
AST_MATCHER_P(Decl, hasDeclContext, internal::Matcher<Decl>, InnerMatcher) {
const DeclContext *DC = Node.getDeclContext();
if (!DC) return false;
return InnerMatcher.matches(*Decl::castFromDeclContext(DC), Finder, Builder);
}
/// Matches nested name specifiers.
///
/// Given
/// \code
/// namespace ns {
/// struct A { static void f(); };
/// void A::f() {}
/// void g() { A::f(); }
/// }
/// ns::A a;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{nestedNameSpecifier()}
/// matches \match{type=name$ns} and both spellings of
/// \match{type=name;count=2$A} in \c A::f() and \c ns::A .
extern const internal::VariadicAllOfMatcher<NestedNameSpecifier>
nestedNameSpecifier;
/// Same as \c nestedNameSpecifier but matches \c NestedNameSpecifierLoc.
///
/// Given
/// \code
/// namespace ns {
/// struct A { static void f(); };
/// void A::f() {}
/// void g() { A::f(); }
/// }
/// ns::A a;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{nestedNameSpecifierLoc()} matches
/// \match{count=2$A::} twice for the spellings in \c A::f() and \c ns::A ,
/// and \match{ns::} once.
extern const internal::VariadicAllOfMatcher<NestedNameSpecifierLoc>
nestedNameSpecifierLoc;
/// Matches \c NestedNameSpecifierLocs for which the given inner
/// NestedNameSpecifier-matcher matches.
///
/// Given
/// \code
/// namespace ns {
/// struct A { static void f(); };
/// void A::f() {}
/// void g() { A::f(); }
/// }
/// ns::A a;
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{nestedNameSpecifierLoc(loc(specifiesType(
/// hasDeclaration(namedDecl(hasName("A"))))))} matches \match{count=2$A::}
/// twice for the spellings in \c A::f() and \c ns::A .
AST_MATCHER_FUNCTION_P_OVERLOAD(
internal::BindableMatcher<NestedNameSpecifierLoc>, loc,
internal::Matcher<NestedNameSpecifier>, InnerMatcher, 1) {
return internal::BindableMatcher<NestedNameSpecifierLoc>(
new internal::LocMatcher<NestedNameSpecifierLoc, NestedNameSpecifier>(
InnerMatcher));
}
/// Matches nested name specifiers that specify a type matching the
/// given \c QualType matcher without qualifiers.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{nestedNameSpecifier(specifiesType(
/// hasDeclaration(cxxRecordDecl(hasName("A")))
/// ))}
/// matches the spelling of \match{type=name$A} in \c A::B::C .
AST_MATCHER_P(NestedNameSpecifier, specifiesType,
internal::Matcher<QualType>, InnerMatcher) {
if (!Node.getAsType())
return false;
return InnerMatcher.matches(QualType(Node.getAsType(), 0), Finder, Builder);
}
/// Matches nested name specifier locs that specify a type matching the
/// given \c TypeLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{nestedNameSpecifierLoc(specifiesTypeLoc(loc(qualType(
/// hasDeclaration(cxxRecordDecl(hasName("A")))))))}
/// matches \match{A::}
AST_MATCHER_P(NestedNameSpecifierLoc, specifiesTypeLoc,
internal::Matcher<TypeLoc>, InnerMatcher) {
return Node && Node.getNestedNameSpecifier()->getAsType() &&
InnerMatcher.matches(Node.getTypeLoc(), Finder, Builder);
}
/// Matches on the prefix of a \c NestedNameSpecifier.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{nestedNameSpecifier(hasPrefix(specifiesType(asString(
/// "struct A"))))} matches \match{type=typestr$struct A::B}
AST_MATCHER_P_OVERLOAD(NestedNameSpecifier, hasPrefix,
internal::Matcher<NestedNameSpecifier>, InnerMatcher,
0) {
const NestedNameSpecifier *NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(*NextNode, Finder, Builder);
}
/// Matches on the prefix of a \c NestedNameSpecifierLoc.
///
/// Given
/// \code
/// struct A { struct B { struct C {}; }; };
/// A::B::C c;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{nestedNameSpecifierLoc(hasPrefix(loc(specifiesType(asString(
/// "struct A")))))} matches \match{A::B::}.
AST_MATCHER_P_OVERLOAD(NestedNameSpecifierLoc, hasPrefix,
internal::Matcher<NestedNameSpecifierLoc>, InnerMatcher,
1) {
NestedNameSpecifierLoc NextNode = Node.getPrefix();
if (!NextNode)
return false;
return InnerMatcher.matches(NextNode, Finder, Builder);
}
/// Matches nested name specifiers that specify a namespace matching the
/// given namespace matcher.
///
/// Given
/// \code
/// namespace ns { struct A {}; }
/// ns::A a;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher
/// \matcher{nestedNameSpecifier(specifiesNamespace(hasName("ns")))} matches
/// the spelling of \match{type=name$ns} in \c ns::A .
AST_MATCHER_P(NestedNameSpecifier, specifiesNamespace,
internal::Matcher<NamespaceDecl>, InnerMatcher) {
if (!Node.getAsNamespace())
return false;
return InnerMatcher.matches(*Node.getAsNamespace(), Finder, Builder);
}
/// Matches attributes.
/// Attributes may be attached with a variety of different syntaxes (including
/// keywords, C++11 attributes, GNU ``__attribute``` and MSVC `__declspec``,
/// and ``#pragma``s). They may also be implicit.
///
/// Given
/// \code
/// struct [[nodiscard]] Foo{};
/// void bar(int * __attribute__((nonnull)) );
/// __declspec(noinline) void baz();
///
/// #pragma omp declare simd
/// int min();
/// \endcode
/// \compile_args{-fdeclspec;-fopenmp}
/// The matcher \matcher{attr()}
/// matches \match{nodiscard}, \match{nonnull}, \match{noinline}, and
/// \match{declare simd}.
extern const internal::VariadicAllOfMatcher<Attr> attr;
/// Overloads for the \c equalsNode matcher.
/// FIXME: Implement for other node types.
/// @{
/// Matches if a node equals another node.
///
/// \c Decl has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Decl, equalsNode, const Decl*, Other, 0) {
return &Node == Other;
}
/// Matches if a node equals another node.
///
/// \c Stmt has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Stmt, equalsNode, const Stmt*, Other, 1) {
return &Node == Other;
}
/// Matches if a node equals another node.
///
/// \c Type has pointer identity in the AST.
AST_MATCHER_P_OVERLOAD(Type, equalsNode, const Type*, Other, 2) {
return &Node == Other;
}
/// @}
/// Matches each case or default statement belonging to the given switch
/// statement. This matcher may produce multiple matches.
///
/// Given
/// \code
/// void foo() {
/// switch (1) { case 1: case 2: default: switch (2) { case 3: case 4: ; } }
/// }
/// \endcode
/// The matcher
/// \matcher{switchStmt(forEachSwitchCase(caseStmt().bind("c")))}
/// matches four times, matching
/// \match{count=2$switch (1) { case 1: case 2: default: switch (2) { case 3:
/// case 4: ; } }} twice and
/// \match{count=2$switch (2) { case 3: case 4: ; }} twice, with
/// \matcher{type=sub$caseStmt()} matching each of \match{sub=c$case 1:},
/// \match{sub=c$case 2:}, \match{sub=c$case 3:}
/// and \match{sub=c$case 4:}.
AST_MATCHER_P(SwitchStmt, forEachSwitchCase, internal::Matcher<SwitchCase>,
InnerMatcher) {
BoundNodesTreeBuilder Result;
// FIXME: getSwitchCaseList() does not necessarily guarantee a stable
// iteration order. We should use the more general iterating matchers once
// they are capable of expressing this matcher (for example, it should ignore
// case statements belonging to nested switch statements).
bool Matched = false;
for (const SwitchCase *SC = Node.getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
BoundNodesTreeBuilder CaseBuilder(*Builder);
bool CaseMatched = InnerMatcher.matches(*SC, Finder, &CaseBuilder);
if (CaseMatched) {
Matched = true;
Result.addMatch(CaseBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches each constructor initializer in a constructor definition.
///
/// Given
/// \code
/// class A { A() : i(42), j(42) {} int i; int j; };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(forEachConstructorInitializer(
/// forField(fieldDecl().bind("x"))))}
/// matches the constructor of \match{count=2$A() : i(42), j(42) {}} twice, with
/// \matcher{type=sub$fieldDecl()} matching \match{sub=field$i} and
/// \match{sub=field$j} respectively.
AST_MATCHER_P(CXXConstructorDecl, forEachConstructorInitializer,
internal::Matcher<CXXCtorInitializer>, InnerMatcher) {
BoundNodesTreeBuilder Result;
bool Matched = false;
for (const auto *I : Node.inits()) {
if (Finder->isTraversalIgnoringImplicitNodes() && !I->isWritten())
continue;
BoundNodesTreeBuilder InitBuilder(*Builder);
if (InnerMatcher.matches(*I, Finder, &InitBuilder)) {
Matched = true;
Result.addMatch(InitBuilder);
}
}
*Builder = std::move(Result);
return Matched;
}
/// Matches constructor declarations that are copy constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(isCopyConstructor())}
/// matches \match{S(const S &)},
/// but does not match \nomatch{S()} or \nomatch{S(S &&)}.
AST_MATCHER(CXXConstructorDecl, isCopyConstructor) {
return Node.isCopyConstructor();
}
/// Matches constructor declarations that are move constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(isMoveConstructor())}
/// matches \match{S(S &&)}
/// but does not match \nomatch{S();} or \nomatch{S(S &&);}
AST_MATCHER(CXXConstructorDecl, isMoveConstructor) {
return Node.isMoveConstructor();
}
/// Matches constructor declarations that are default constructors.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(const S &); // #2
/// S(S &&); // #3
/// };
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxConstructorDecl(isDefaultConstructor())}
/// matches \match{S()}
/// but does not match \nomatch{S(const S &);} or \nomatch{S(S &&);}.
AST_MATCHER(CXXConstructorDecl, isDefaultConstructor) {
return Node.isDefaultConstructor();
}
/// Matches constructors that delegate to another constructor.
///
/// Given
/// \code
/// struct S {
/// S(); // #1
/// S(int) {} // #2
/// S(S &&) : S() {} // #3
/// };
/// S::S() : S(0) {} // #4
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{cxxConstructorDecl(isDelegatingConstructor())}
/// matches \match{S(S &&) : S() {}} and \match{S::S() : S(0) {}},
/// but does not match \nomatch{S()} or \nomatch{S(int)}.
AST_MATCHER(CXXConstructorDecl, isDelegatingConstructor) {
return Node.isDelegatingConstructor();
}
/// Matches constructor, conversion function, and deduction guide declarations
/// that have an explicit specifier if this explicit specifier is resolved to
/// true.
///
/// Given
/// \code
/// template<bool b>
/// struct S {
/// S(int); // #1
/// explicit S(double); // #2
/// operator int(); // #3
/// explicit operator bool(); // #4
/// explicit(false) S(bool); // # 7
/// explicit(true) S(char); // # 8
/// explicit(b) S(float); // # 9
/// };
/// S(int) -> S<true>; // #5
/// explicit S(double) -> S<false>; // #6
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++20-or-later}
/// The matcher \matcher{cxxConstructorDecl(isExplicit())}
/// matches \match{explicit S(double)}
/// and \match{explicit(true) S(char)}
/// but does not match \nomatch{S(int);}, \nomatch{explicit(false) S(bool);} or
/// \nomatch{explicit(b) S(float)}
/// The matcher \matcher{cxxConversionDecl(isExplicit())}
/// matches \match{explicit operator bool()}
/// but does not match \nomatch{operator int()}.
/// The matcher \matcher{cxxDeductionGuideDecl(isExplicit())}
/// matches the deduction guide \match{explicit S(double) -> S<false>},
/// the implicit copy deduction candiate
/// \match{type=typestr$auto (double) -> S<b>} and
/// the implicitly generated deduction guide for \match{explicit(true) S(char)},
/// but does not match \nomatch{S(int) -> S<true>}.
AST_POLYMORPHIC_MATCHER(isExplicit, AST_POLYMORPHIC_SUPPORTED_TYPES(
CXXConstructorDecl, CXXConversionDecl,
CXXDeductionGuideDecl)) {
return Node.isExplicit();
}
/// Matches the expression in an explicit specifier if present in the given
/// declaration.
///
/// Given
/// \code
/// template<bool b>
/// struct S {
/// S(int); // #1
/// explicit S(double); // #2
/// operator int(); // #3
/// explicit operator bool(); // #4
/// explicit(false) S(bool); // # 7
/// explicit(true) S(char); // # 8
/// explicit(b) S(float); // # 9
/// };
/// S(int) -> S<true>; // #5
/// explicit S(double) -> S<false>; // #6
/// \endcode
/// \compile_args{-fno-delayed-template-parsing;-std=c++20-or-later}
/// The matcher
/// \matcher{cxxConstructorDecl(hasExplicitSpecifier(constantExpr()))} matches
/// \match{explicit(false) S(bool)} and \match{explicit(true) S(char)},
/// but does not match \nomatch{explicit(b) S(float)}, \nomatch{S(int)} or
/// \nomatch{explicit S(double)}.
/// The matcher
/// \matcher{cxxConversionDecl(hasExplicitSpecifier(constantExpr()))} does not
/// match \nomatch{operator int()} or \nomatch{explicit operator bool()}.
/// Matcher
/// The matcher
/// \matcher{cxxDeductionGuideDecl(hasExplicitSpecifier(declRefExpr()))}
/// matches the implicitly generated deduction guide
/// \match{type=typestr$auto (float) -> S<b>} of the constructor
/// \c{explicit(b) S(float)}.
AST_MATCHER_P(FunctionDecl, hasExplicitSpecifier, internal::Matcher<Expr>,
InnerMatcher) {
ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(&Node);
if (!ES.getExpr())
return false;
ASTChildrenNotSpelledInSourceScope RAII(Finder, false);
return InnerMatcher.matches(*ES.getExpr(), Finder, Builder);
}
/// Matches functions, variables and namespace declarations that are marked with
/// the inline keyword.
///
/// Given
/// \code
/// inline void f();
/// void g();
/// namespace n {
/// inline namespace m {}
/// }
/// inline int Foo = 5;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{functionDecl(isInline())} matches
/// \match{inline void f()}.
/// The matcher \matcher{namespaceDecl(isInline())} matches
/// \match{inline namespace m {}}.
/// The matcher \matcher{varDecl(isInline())} matches
/// \match{inline int Foo = 5}.
AST_POLYMORPHIC_MATCHER(isInline, AST_POLYMORPHIC_SUPPORTED_TYPES(NamespaceDecl,
FunctionDecl,
VarDecl)) {
// This is required because the spelling of the function used to determine
// whether inline is specified or not differs between the polymorphic types.
if (const auto *FD = dyn_cast<FunctionDecl>(&Node))
return FD->isInlineSpecified();
if (const auto *NSD = dyn_cast<NamespaceDecl>(&Node))
return NSD->isInline();
if (const auto *VD = dyn_cast<VarDecl>(&Node))
return VD->isInline();
llvm_unreachable("Not a valid polymorphic type");
}
/// Matches anonymous namespace declarations.
///
/// Given
/// \code
/// namespace n {
/// namespace {} // #1
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{namespaceDecl(isAnonymous())}
/// matches \match{namespace {}}, but not \nomatch{namespace n}.
AST_MATCHER(NamespaceDecl, isAnonymous) {
return Node.isAnonymousNamespace();
}
/// Matches declarations in the namespace `std`, but not in nested namespaces.
///
/// Given
/// \code
/// class vector {};
/// namespace foo {
/// class vector {};
/// namespace std {
/// class vector {};
/// }
/// }
/// namespace std {
/// inline namespace __1 {
/// class vector {}; // #1
/// namespace experimental {
/// class vector {};
/// }
/// }
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("vector"), isInStdNamespace())}
/// matches \match{class vector {}} inside of namespace std.
AST_MATCHER(Decl, isInStdNamespace) { return Node.isInStdNamespace(); }
/// Matches declarations in an anonymous namespace.
///
/// Given
/// \code
/// class vector {};
/// namespace foo {
/// class vector {};
/// namespace {
/// class vector {}; // #1
/// }
/// }
/// namespace {
/// class vector {}; // #2
/// namespace foo {
/// class vector {}; // #3
/// }
/// }
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasName("vector"),
/// isInAnonymousNamespace())}
/// matches \match{type=name;count=6$vector},
/// two times for the definition and the implicit class declaration
/// for each of the three definitions of \c vector .
AST_MATCHER(Decl, isInAnonymousNamespace) {
return Node.isInAnonymousNamespace();
}
/// If the given case statement does not use the GNU case range
/// extension, matches the constant given in the statement.
///
/// Given
/// \code
/// void foo() {
/// switch (1) { case 1: break; case 1+1: break; case 3 ... 4: break; }
/// }
/// \endcode
/// The matcher
/// \matcher{caseStmt(hasCaseConstant(constantExpr(has(integerLiteral()))))}
/// matches \match{case 1: break}.
AST_MATCHER_P(CaseStmt, hasCaseConstant, internal::Matcher<Expr>,
InnerMatcher) {
if (Node.getRHS())
return false;
return InnerMatcher.matches(*Node.getLHS(), Finder, Builder);
}
/// Matches declaration that has a given attribute.
///
/// Given
/// \code
/// __attribute__((device)) void f() {}
/// \endcode
/// \compile_args{--cuda-gpu-arch=sm_70;-std=c++}
/// The matcher \matcher{decl(hasAttr(clang::attr::CUDADevice))}
/// matches \match{__attribute__((device)) void f() {}}.
/// If the matcher is used from clang-query, attr::Kind
/// parameter should be passed as a quoted string. e.g.,
/// \c hasAttr("attr::CUDADevice").
AST_MATCHER_P(Decl, hasAttr, attr::Kind, AttrKind) {
for (const auto *Attr : Node.attrs()) {
if (Attr->getKind() == AttrKind)
return true;
}
return false;
}
/// Matches the return value expression of a return statement
///
/// Given
/// \code
/// int foo(int a, int b) {
/// return a + b;
/// }
/// \endcode
/// The matcher
/// \matcher{returnStmt(hasReturnValue(binaryOperator().bind("op")))} matches
/// \match{return a + b}, with \matcher{type=sub$binaryOperator()} matching
/// \match{sub=op$a + b}.
AST_MATCHER_P(ReturnStmt, hasReturnValue, internal::Matcher<Expr>,
InnerMatcher) {
if (const auto *RetValue = Node.getRetValue())
return InnerMatcher.matches(*RetValue, Finder, Builder);
return false;
}
/// Matches CUDA kernel call expression.
///
/// Given
/// \code
/// __global__ void kernel() {}
/// void f() {
/// kernel<<<32, 32>>>();
/// }
/// \endcode
/// \compile_args{--cuda-gpu-arch=sm_70;-std=c++}
/// The matcher \matcher{cudaKernelCallExpr()}
/// matches \match{kernel<<<32, 32>>>()}
extern const internal::VariadicDynCastAllOfMatcher<Stmt, CUDAKernelCallExpr>
cudaKernelCallExpr;
/// Matches expressions that resolve to a null pointer constant, such as
/// GNU's __null, C++11's nullptr, or C's NULL macro.
///
/// Given
/// \code
/// #define NULL 0
/// void *v1 = NULL;
/// void *v2 = nullptr;
/// void *v3 = __null; // GNU extension
/// char *cp = (char *)0;
/// int *ip = 0;
/// int i = 0;
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{expr(nullPointerConstant())}
/// matches the initializer \match{NULL} of v1,
/// matches the initializer \match{nullptr} of v2,
/// matches the initializer \match{__null} of v3,
/// matches the initializer \match{0} of cp and
/// matches the initializer \match{0} of ip,
/// but does not match the initializer \nomatch{i} of i.
AST_MATCHER_FUNCTION(internal::Matcher<Expr>, nullPointerConstant) {
return anyOf(
gnuNullExpr(), cxxNullPtrLiteralExpr(),
integerLiteral(equals(0), hasParent(expr(hasType(pointerType())))));
}
/// Matches the DecompositionDecl the binding belongs to.
///
/// Given
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{bindingDecl(hasName("f"),
/// forDecomposition(decompositionDecl()))}
/// matches \match{type=name$f} in \c{auto &[f, s, t]}.
AST_MATCHER_P(BindingDecl, forDecomposition, internal::Matcher<ValueDecl>,
InnerMatcher) {
if (const ValueDecl *VD = Node.getDecomposedDecl())
return InnerMatcher.matches(*VD, Finder, Builder);
return false;
}
/// Matches the Nth binding of a DecompositionDecl.
///
/// Given
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{decompositionDecl(hasBinding(0,
/// bindingDecl(hasName("f")).bind("fBinding")))}
/// matches \match{auto &[f, s, t] = arr} with 'f' bound to "fBinding".
AST_MATCHER_P2(DecompositionDecl, hasBinding, unsigned, N,
internal::Matcher<BindingDecl>, InnerMatcher) {
if (Node.bindings().size() <= N)
return false;
return InnerMatcher.matches(*Node.bindings()[N], Finder, Builder);
}
/// Matches any binding of a DecompositionDecl.
///
/// For example, in:
/// \code
/// void foo()
/// {
/// int arr[3];
/// auto &[f, s, t] = arr;
///
/// f = 42;
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher
/// \matcher{decompositionDecl(hasAnyBinding(bindingDecl(hasName("f")).bind("fBinding")))}
/// matches \match{auto &[f, s, t] = arr} with 'f' bound to "fBinding".
AST_MATCHER_P(DecompositionDecl, hasAnyBinding, internal::Matcher<BindingDecl>,
InnerMatcher) {
return llvm::any_of(Node.bindings(), [&](const auto *Binding) {
return InnerMatcher.matches(*Binding, Finder, Builder);
});
}
/// Matches declaration of the function the statement belongs to.
///
/// Deprecated. Use forCallable() to correctly handle the situation when
/// the declaration is not a function (but a block or an Objective-C method).
/// The matcher \c forFunction() not only fails to take non-functions
/// into account but also may match the wrong declaration in their presence.
///
/// Given
/// \code
/// struct F {
/// F& operator=(const F& other) {
/// []() { return 42 == 42; };
/// return *this;
/// }
/// };
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{returnStmt(forFunction(hasName("operator=")))}
/// matches \match{return *this}
/// but does not match \nomatch{return 42 == 42}.
AST_MATCHER_P(Stmt, forFunction, internal::Matcher<FunctionDecl>,
InnerMatcher) {
const auto &Parents = Finder->getASTContext().getParents(Node);
llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
while (!Stack.empty()) {
const auto &CurNode = Stack.back();
Stack.pop_back();
if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
if (InnerMatcher.matches(*FuncDeclNode, Finder, Builder)) {
return true;
}
} else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
Builder)) {
return true;
}
} else {
llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
}
}
return false;
}
/// Matches declaration of the function, method, or block the statement
/// belongs to.
///
/// Given
/// \code
/// struct F {
/// F& operator=(const F& other) {
/// []() { return 42 == 42; };
/// return *this;
/// }
/// };
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{returnStmt(forFunction(hasName("operator=")))}
/// matches \match{return *this}
/// but does not match \nomatch{return 42 == 42}.
///
/// Given
/// \code
/// void foo {
/// int x = 1;
/// dispatch_sync(queue, ^{ int y = 2; });
/// }
/// \endcode
/// \compile_args{-ObjC}
/// The matcher \matcher{declStmt(forCallable(objcMethodDecl()))}
/// matches \match{int x = 1}
/// but does not match \nomatch{int y = 2}.
/// The matcher \matcher{declStmt(forCallable(blockDecl()))}
/// matches \match{int y = 2}
/// but does not match \nomatch{int x = 1}.
AST_MATCHER_P(Stmt, forCallable, internal::Matcher<Decl>, InnerMatcher) {
const auto &Parents = Finder->getASTContext().getParents(Node);
llvm::SmallVector<DynTypedNode, 8> Stack(Parents.begin(), Parents.end());
while (!Stack.empty()) {
const auto &CurNode = Stack.back();
Stack.pop_back();
if (const auto *FuncDeclNode = CurNode.get<FunctionDecl>()) {
BoundNodesTreeBuilder B = *Builder;
if (InnerMatcher.matches(*FuncDeclNode, Finder, &B)) {
*Builder = std::move(B);
return true;
}
} else if (const auto *LambdaExprNode = CurNode.get<LambdaExpr>()) {
BoundNodesTreeBuilder B = *Builder;
if (InnerMatcher.matches(*LambdaExprNode->getCallOperator(), Finder,
&B)) {
*Builder = std::move(B);
return true;
}
} else if (const auto *ObjCMethodDeclNode = CurNode.get<ObjCMethodDecl>()) {
BoundNodesTreeBuilder B = *Builder;
if (InnerMatcher.matches(*ObjCMethodDeclNode, Finder, &B)) {
*Builder = std::move(B);
return true;
}
} else if (const auto *BlockDeclNode = CurNode.get<BlockDecl>()) {
BoundNodesTreeBuilder B = *Builder;
if (InnerMatcher.matches(*BlockDeclNode, Finder, &B)) {
*Builder = std::move(B);
return true;
}
} else {
llvm::append_range(Stack, Finder->getASTContext().getParents(CurNode));
}
}
return false;
}
/// Matches a declaration that has external formal linkage.
///
/// Given
/// \code
/// void f() {
/// int a;
/// static int b;
/// }
/// int c;
/// static int d;
/// \endcode
/// The matcher \matcher{varDecl(hasExternalFormalLinkage())}
/// matches \match{int c},
/// but not \nomatch{int a}, \nomatch{static int b} or \nomatch{int d}.
///
/// Given
/// \code
/// namespace {
/// void f() {}
/// }
/// void g() {}
/// static void h() {}
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{functionDecl(hasExternalFormalLinkage())}
/// matches \match{void g() {}}, but not \nomatch{void f() {}} or
/// \nomatch{static void h() {}}.
AST_MATCHER(NamedDecl, hasExternalFormalLinkage) {
return Node.hasExternalFormalLinkage();
}
/// Matches a declaration that has default arguments.
///
/// Given
/// \code
/// void x(int val) {}
/// void y(int val = 0) {}
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher \matcher{parmVarDecl(hasDefaultArgument())}
/// matches \match{int val = 0}.
///
/// Deprecated. Use hasInitializer() instead to be able to
/// match on the contents of the default argument. For example:
///
/// Given
/// \code
/// void x(int val = 7) {}
/// void y(int val = 42) {}
/// \endcode
/// \compile_args{-std=c++}
///
/// The matcher
/// \matcher{parmVarDecl(hasInitializer(integerLiteral(equals(42))))},
/// matches \match{int val = 42}.
AST_MATCHER(ParmVarDecl, hasDefaultArgument) {
return Node.hasDefaultArg();
}
/// Matches array new expressions.
///
/// Given
/// \code
/// struct MyClass { int x; };
/// MyClass *p1 = new MyClass[10];
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxNewExpr(isArray())}
/// matches \match{new MyClass[10]}.
AST_MATCHER(CXXNewExpr, isArray) {
return Node.isArray();
}
/// Matches placement new expression arguments.
///
/// Given
/// \code
/// void *operator new(decltype(sizeof(void*)), int, void*);
/// struct MyClass { int x; };
/// unsigned char Storage[sizeof(MyClass) * 10];
/// MyClass *p1 = new (16, Storage) MyClass();
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{cxxNewExpr(hasPlacementArg(0,
/// integerLiteral(equals(16))))}
/// matches \match{new (16, Storage) MyClass()}.
AST_MATCHER_P2(CXXNewExpr, hasPlacementArg, unsigned, Index,
internal::Matcher<Expr>, InnerMatcher) {
return Node.getNumPlacementArgs() > Index &&
InnerMatcher.matches(*Node.getPlacementArg(Index), Finder, Builder);
}
/// Matches any placement new expression arguments.
///
/// Given
/// \code
/// void* operator new(decltype(sizeof(void*)), void*);
/// struct MyClass { int x; };
/// unsigned char Storage[sizeof(MyClass) * 10];
/// MyClass *p1 = new (Storage) MyClass();
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher \matcher{cxxNewExpr(hasAnyPlacementArg(anything()))}
/// matches \match{new (Storage) MyClass()}.
AST_MATCHER_P(CXXNewExpr, hasAnyPlacementArg, internal::Matcher<Expr>,
InnerMatcher) {
return llvm::any_of(Node.placement_arguments(), [&](const Expr *Arg) {
return InnerMatcher.matches(*Arg, Finder, Builder);
});
}
/// Matches array new expressions with a given array size.
///
/// Given
/// \code
/// void* operator new(decltype(sizeof(void*)));
/// struct MyClass { int x; };
/// MyClass *p1 = new MyClass[10];
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher
/// \matcher{cxxNewExpr(hasArraySize(
/// ignoringImplicit(integerLiteral(equals(10)))))}
/// matches \match{new MyClass[10]}.
AST_MATCHER_P(CXXNewExpr, hasArraySize, internal::Matcher<Expr>, InnerMatcher) {
return Node.isArray() && *Node.getArraySize() &&
InnerMatcher.matches(**Node.getArraySize(), Finder, Builder);
}
/// Matches a class declaration that is defined.
///
/// Given
/// \code
/// class x {};
/// class y;
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{cxxRecordDecl(hasDefinition())}
/// matches \match{class x {}}
AST_MATCHER(CXXRecordDecl, hasDefinition) {
return Node.hasDefinition();
}
/// Matches C++11 scoped enum declaration.
///
/// Given
/// \code
/// enum X {};
/// enum class Y {};
/// \endcode
/// \compile_args{-std=c++}
/// The matcher \matcher{enumDecl(isScoped())}
/// matches \match{enum class Y {}}
AST_MATCHER(EnumDecl, isScoped) {
return Node.isScoped();
}
/// Matches a function declared with a trailing return type.
///
/// Given
/// \code
/// int X() {}
/// auto Y() -> int {}
/// \endcode
/// \compile_args{-std=c++11-or-later}
/// The matcher \matcher{functionDecl(hasTrailingReturn())}
/// matches \match{auto Y() -> int {}}.
AST_MATCHER(FunctionDecl, hasTrailingReturn) {
if (const auto *F = Node.getType()->getAs<FunctionProtoType>())
return F->hasTrailingReturn();
return false;
}
/// Matches expressions that match InnerMatcher that are possibly wrapped in an
/// elidable constructor and other corresponding bookkeeping nodes.
///
/// In C++17, elidable copy constructors are no longer being generated in the
/// AST as it is not permitted by the standard. They are, however, part of the
/// AST in C++14 and earlier. So, a matcher must abstract over these differences
/// to work in all language modes. This matcher skips elidable constructor-call
/// AST nodes, `ExprWithCleanups` nodes wrapping elidable constructor-calls and
/// various implicit nodes inside the constructor calls, all of which will not
/// appear in the C++17 AST.
///
/// Given
/// \code
/// struct H {};
/// H G();
/// void f() {
/// H D = G();
/// }
/// \endcode
/// \compile_args{-std=c++11-or-later}
///
/// The matcher
/// \matcher{varDecl(hasInitializer(ignoringElidableConstructorCall(callExpr())))}
/// matches \match{H D = G()}.
AST_MATCHER_P(Expr, ignoringElidableConstructorCall, internal::Matcher<Expr>,
InnerMatcher) {
// E tracks the node that we are examining.
const Expr *E = &Node;
// If present, remove an outer `ExprWithCleanups` corresponding to the
// underlying `CXXConstructExpr`. This check won't cover all cases of added
// `ExprWithCleanups` corresponding to `CXXConstructExpr` nodes (because the
// EWC is placed on the outermost node of the expression, which this may not
// be), but, it still improves the coverage of this matcher.
if (const auto *CleanupsExpr = dyn_cast<ExprWithCleanups>(&Node))
E = CleanupsExpr->getSubExpr();
if (const auto *CtorExpr = dyn_cast<CXXConstructExpr>(E)) {
if (CtorExpr->isElidable()) {
if (const auto *MaterializeTemp =
dyn_cast<MaterializeTemporaryExpr>(CtorExpr->getArg(0))) {
return InnerMatcher.matches(*MaterializeTemp->getSubExpr(), Finder,
Builder);
}
}
}
return InnerMatcher.matches(Node, Finder, Builder);
}
//----------------------------------------------------------------------------//
// OpenMP handling.
//----------------------------------------------------------------------------//
/// Matches any ``#pragma omp`` executable directive.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// {}
/// #pragma omp parallel default(none)
/// {
/// #pragma omp taskyield
/// }
/// }
/// \endcode
/// \compile_args{-fopenmp}
/// The matcher \matcher{ompExecutableDirective()}
/// matches \match{#pragma omp parallel},
/// \match{#pragma omp parallel default(none)}
/// and \match{#pragma omp taskyield}.
extern const internal::VariadicDynCastAllOfMatcher<Stmt, OMPExecutableDirective>
ompExecutableDirective;
/// Matches standalone OpenMP directives,
/// i.e., directives that can't have a structured block.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// {
/// #pragma omp taskyield
/// }
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher \matcher{ompExecutableDirective(isStandaloneDirective())}
/// matches \match{#pragma omp taskyield}.
AST_MATCHER(OMPExecutableDirective, isStandaloneDirective) {
return Node.isStandaloneDirective();
}
/// Matches the structured-block of the OpenMP executable directive
///
/// Prerequisite: the executable directive must not be standalone directive.
/// If it is, it will never match.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel
/// {}
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasStructuredBlock(nullStmt().bind("stmt")))}
/// matches \match{#pragma omp parallel},
/// with \matcher{type=sub$stmtt()} matching \match{sub=stmt${}}.
AST_MATCHER_P(OMPExecutableDirective, hasStructuredBlock,
internal::Matcher<Stmt>, InnerMatcher) {
if (Node.isStandaloneDirective())
return false; // Standalone directives have no structured blocks.
return InnerMatcher.matches(*Node.getStructuredBlock(), Finder, Builder);
}
/// Matches any clause in an OpenMP directive.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel default(none)
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher \matcher{ompExecutableDirective(hasAnyClause(anything()))}
/// matches \match{#pragma omp parallel default(none)}.
AST_MATCHER_P(OMPExecutableDirective, hasAnyClause,
internal::Matcher<OMPClause>, InnerMatcher) {
ArrayRef<OMPClause *> Clauses = Node.clauses();
return matchesFirstInPointerRange(InnerMatcher, Clauses.begin(),
Clauses.end(), Finder,
Builder) != Clauses.end();
}
/// Matches OpenMP ``default`` clause.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel default(none)
/// ;
/// #pragma omp parallel default(shared)
/// ;
/// #pragma omp parallel default(private)
/// ;
/// #pragma omp parallel default(firstprivate)
/// ;
/// #pragma omp parallel
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasAnyClause(ompDefaultClause()))} matches
/// \match{#pragma omp parallel default(none)},
/// \match{#pragma omp parallel default(shared)},
/// \match{#pragma omp parallel default(private)} and
/// \match{#pragma omp parallel default(firstprivate)}.
extern const internal::VariadicDynCastAllOfMatcher<OMPClause, OMPDefaultClause>
ompDefaultClause;
/// Matches if the OpenMP ``default`` clause has ``none`` kind specified.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel default(none)
/// ;
/// #pragma omp parallel default(shared)
/// ;
/// #pragma omp parallel default(private)
/// ;
/// #pragma omp parallel default(firstprivate)
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasAnyClause(ompDefaultClause(isNoneKind())))}
/// matches only \match{#pragma omp parallel default(none)}.
AST_MATCHER(OMPDefaultClause, isNoneKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_none;
}
/// Matches if the OpenMP ``default`` clause has ``shared`` kind specified.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel default(none)
/// ;
/// #pragma omp parallel default(shared)
/// ;
/// #pragma omp parallel default(private)
/// ;
/// #pragma omp parallel default(firstprivate)
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasAnyClause(ompDefaultClause(isSharedKind())))}
/// matches \match{#pragma omp parallel default(shared)}.
AST_MATCHER(OMPDefaultClause, isSharedKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_shared;
}
/// Matches if the OpenMP ``default`` clause has ``private`` kind
/// specified.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel default(none)
/// ;
/// #pragma omp parallel default(shared)
/// ;
/// #pragma omp parallel default(private)
/// ;
/// #pragma omp parallel default(firstprivate)
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasAnyClause(ompDefaultClause(isPrivateKind())))}
/// matches \match{#pragma omp parallel default(private)}.
AST_MATCHER(OMPDefaultClause, isPrivateKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_private;
}
/// Matches if the OpenMP ``default`` clause has ``firstprivate`` kind
/// specified.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel default(none)
/// ;
/// #pragma omp parallel default(shared)
/// ;
/// #pragma omp parallel default(private)
/// ;
/// #pragma omp parallel default(firstprivate)
/// ;
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(hasAnyClause(ompDefaultClause(isFirstPrivateKind())))}
/// matches \match{#pragma omp parallel default(firstprivate)}.
AST_MATCHER(OMPDefaultClause, isFirstPrivateKind) {
return Node.getDefaultKind() == llvm::omp::OMP_DEFAULT_firstprivate;
}
/// Matches if the OpenMP directive is allowed to contain the specified OpenMP
/// clause kind.
///
/// Given
/// \code
/// void foo() {
/// #pragma omp parallel
/// ;
/// #pragma omp parallel for
/// for (int i = 0; i < 10; ++i) {}
/// #pragma omp for
/// for (int i = 0; i < 10; ++i) {}
/// }
/// \endcode
/// \compile_args{-fopenmp}
///
/// The matcher
/// \matcher{ompExecutableDirective(isAllowedToContainClauseKind(
/// OpenMPClauseKind::OMPC_default))}
/// matches \match{#pragma omp parallel}
/// and \match{#pragma omp parallel for}.
///
/// If the matcher is use from clang-query, ``OpenMPClauseKind`` parameter
/// should be passed as a quoted string. e.g.,
/// ``isAllowedToContainClauseKind("OMPC_default").``
AST_MATCHER_P(OMPExecutableDirective, isAllowedToContainClauseKind,
OpenMPClauseKind, CKind) {
return llvm::omp::isAllowedClauseForDirective(
Node.getDirectiveKind(), CKind,
Finder->getASTContext().getLangOpts().OpenMP);
}
//----------------------------------------------------------------------------//
// End OpenMP handling.
//----------------------------------------------------------------------------//
} // namespace ast_matchers
} // namespace clang
#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERS_H