| //===-- RISCVFrameLowering.cpp - RISC-V Frame Information -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the RISC-V implementation of TargetFrameLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVFrameLowering.h" |
| #include "MCTargetDesc/RISCVBaseInfo.h" |
| #include "RISCVMachineFunctionInfo.h" |
| #include "RISCVSubtarget.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/CFIInstBuilder.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/Support/LEB128.h" |
| |
| #include <algorithm> |
| |
| #define DEBUG_TYPE "riscv-frame" |
| |
| using namespace llvm; |
| |
| static Align getABIStackAlignment(RISCVABI::ABI ABI) { |
| if (ABI == RISCVABI::ABI_ILP32E) |
| return Align(4); |
| if (ABI == RISCVABI::ABI_LP64E) |
| return Align(8); |
| return Align(16); |
| } |
| |
| RISCVFrameLowering::RISCVFrameLowering(const RISCVSubtarget &STI) |
| : TargetFrameLowering( |
| StackGrowsDown, getABIStackAlignment(STI.getTargetABI()), |
| /*LocalAreaOffset=*/0, |
| /*TransientStackAlignment=*/getABIStackAlignment(STI.getTargetABI())), |
| STI(STI) {} |
| |
| // The register used to hold the frame pointer. |
| static constexpr MCPhysReg FPReg = RISCV::X8; |
| |
| // The register used to hold the stack pointer. |
| static constexpr MCPhysReg SPReg = RISCV::X2; |
| |
| // The register used to hold the return address. |
| static constexpr MCPhysReg RAReg = RISCV::X1; |
| |
| // LIst of CSRs that are given a fixed location by save/restore libcalls or |
| // Zcmp/Xqccmp Push/Pop. The order in this table indicates the order the |
| // registers are saved on the stack. Zcmp uses the reverse order of save/restore |
| // and Xqccmp on the stack, but this is handled when offsets are calculated. |
| static const MCPhysReg FixedCSRFIMap[] = { |
| /*ra*/ RAReg, /*s0*/ FPReg, /*s1*/ RISCV::X9, |
| /*s2*/ RISCV::X18, /*s3*/ RISCV::X19, /*s4*/ RISCV::X20, |
| /*s5*/ RISCV::X21, /*s6*/ RISCV::X22, /*s7*/ RISCV::X23, |
| /*s8*/ RISCV::X24, /*s9*/ RISCV::X25, /*s10*/ RISCV::X26, |
| /*s11*/ RISCV::X27}; |
| |
| // The number of stack bytes allocated by `QC.C.MIENTER(.NEST)` and popped by |
| // `QC.C.MILEAVERET`. |
| static constexpr uint64_t QCIInterruptPushAmount = 96; |
| |
| static const std::pair<MCPhysReg, int8_t> FixedCSRFIQCIInterruptMap[] = { |
| /* -1 is a gap for mepc/mnepc */ |
| {/*fp*/ FPReg, -2}, |
| /* -3 is a gap for qc.mcause */ |
| {/*ra*/ RAReg, -4}, |
| /* -5 is reserved */ |
| {/*t0*/ RISCV::X5, -6}, |
| {/*t1*/ RISCV::X6, -7}, |
| {/*t2*/ RISCV::X7, -8}, |
| {/*a0*/ RISCV::X10, -9}, |
| {/*a1*/ RISCV::X11, -10}, |
| {/*a2*/ RISCV::X12, -11}, |
| {/*a3*/ RISCV::X13, -12}, |
| {/*a4*/ RISCV::X14, -13}, |
| {/*a5*/ RISCV::X15, -14}, |
| {/*a6*/ RISCV::X16, -15}, |
| {/*a7*/ RISCV::X17, -16}, |
| {/*t3*/ RISCV::X28, -17}, |
| {/*t4*/ RISCV::X29, -18}, |
| {/*t5*/ RISCV::X30, -19}, |
| {/*t6*/ RISCV::X31, -20}, |
| /* -21, -22, -23, -24 are reserved */ |
| }; |
| |
| // For now we use x3, a.k.a gp, as pointer to shadow call stack. |
| // User should not use x3 in their asm. |
| static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const DebugLoc &DL) { |
| const auto &STI = MF.getSubtarget<RISCVSubtarget>(); |
| bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") && |
| STI.hasStdExtZicfiss(); |
| bool HasSWShadowStack = |
| MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack); |
| if (!HasHWShadowStack && !HasSWShadowStack) |
| return; |
| |
| const llvm::RISCVRegisterInfo *TRI = STI.getRegisterInfo(); |
| |
| // Do not save RA to the SCS if it's not saved to the regular stack, |
| // i.e. RA is not at risk of being overwritten. |
| std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo(); |
| if (llvm::none_of( |
| CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; })) |
| return; |
| |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| if (HasHWShadowStack) { |
| BuildMI(MBB, MI, DL, TII->get(RISCV::SSPUSH)).addReg(RAReg); |
| return; |
| } |
| |
| Register SCSPReg = RISCVABI::getSCSPReg(); |
| |
| bool IsRV64 = STI.is64Bit(); |
| int64_t SlotSize = STI.getXLen() / 8; |
| // Store return address to shadow call stack |
| // addi gp, gp, [4|8] |
| // s[w|d] ra, -[4|8](gp) |
| BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI)) |
| .addReg(SCSPReg, RegState::Define) |
| .addReg(SCSPReg) |
| .addImm(SlotSize) |
| .setMIFlag(MachineInstr::FrameSetup); |
| BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RAReg) |
| .addReg(SCSPReg) |
| .addImm(-SlotSize) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // Emit a CFI instruction that causes SlotSize to be subtracted from the value |
| // of the shadow stack pointer when unwinding past this frame. |
| char DwarfSCSReg = TRI->getDwarfRegNum(SCSPReg, /*IsEH*/ true); |
| assert(DwarfSCSReg < 32 && "SCS Register should be < 32 (X3)."); |
| |
| char Offset = static_cast<char>(-SlotSize) & 0x7f; |
| const char CFIInst[] = { |
| dwarf::DW_CFA_val_expression, |
| DwarfSCSReg, // register |
| 2, // length |
| static_cast<char>(unsigned(dwarf::DW_OP_breg0 + DwarfSCSReg)), |
| Offset, // addend (sleb128) |
| }; |
| |
| CFIInstBuilder(MBB, MI, MachineInstr::FrameSetup) |
| .buildEscape(StringRef(CFIInst, sizeof(CFIInst))); |
| } |
| |
| static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const DebugLoc &DL) { |
| const auto &STI = MF.getSubtarget<RISCVSubtarget>(); |
| bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") && |
| STI.hasStdExtZicfiss(); |
| bool HasSWShadowStack = |
| MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack); |
| if (!HasHWShadowStack && !HasSWShadowStack) |
| return; |
| |
| // See emitSCSPrologue() above. |
| std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo(); |
| if (llvm::none_of( |
| CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; })) |
| return; |
| |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| if (HasHWShadowStack) { |
| BuildMI(MBB, MI, DL, TII->get(RISCV::SSPOPCHK)).addReg(RAReg); |
| return; |
| } |
| |
| Register SCSPReg = RISCVABI::getSCSPReg(); |
| |
| bool IsRV64 = STI.is64Bit(); |
| int64_t SlotSize = STI.getXLen() / 8; |
| // Load return address from shadow call stack |
| // l[w|d] ra, -[4|8](gp) |
| // addi gp, gp, -[4|8] |
| BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW)) |
| .addReg(RAReg, RegState::Define) |
| .addReg(SCSPReg) |
| .addImm(-SlotSize) |
| .setMIFlag(MachineInstr::FrameDestroy); |
| BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI)) |
| .addReg(SCSPReg, RegState::Define) |
| .addReg(SCSPReg) |
| .addImm(-SlotSize) |
| .setMIFlag(MachineInstr::FrameDestroy); |
| // Restore the SCS pointer |
| CFIInstBuilder(MBB, MI, MachineInstr::FrameDestroy).buildRestore(SCSPReg); |
| } |
| |
| // Insert instruction to swap mscratchsw with sp |
| static void emitSiFiveCLICStackSwap(MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL) { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| if (!RVFI->isSiFiveStackSwapInterrupt(MF)) |
| return; |
| |
| const auto &STI = MF.getSubtarget<RISCVSubtarget>(); |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| |
| assert(STI.hasVendorXSfmclic() && "Stack Swapping Requires XSfmclic"); |
| |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW)) |
| .addReg(SPReg, RegState::Define) |
| .addImm(RISCVSysReg::sf_mscratchcsw) |
| .addReg(SPReg, RegState::Kill) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // FIXME: CFI Information for this swap. |
| } |
| |
| static void |
| createSiFivePreemptibleInterruptFrameEntries(MachineFunction &MF, |
| RISCVMachineFunctionInfo &RVFI) { |
| if (!RVFI.isSiFivePreemptibleInterrupt(MF)) |
| return; |
| |
| const TargetRegisterClass &RC = RISCV::GPRRegClass; |
| const TargetRegisterInfo &TRI = |
| *MF.getSubtarget<RISCVSubtarget>().getRegisterInfo(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // Create two frame objects for spilling X8 and X9, which will be done in |
| // `emitSiFiveCLICPreemptibleSaves`. This is in addition to any other stack |
| // objects we might have for X8 and X9, as they might be saved twice. |
| for (int I = 0; I < 2; ++I) { |
| int FI = MFI.CreateStackObject(TRI.getSpillSize(RC), TRI.getSpillAlign(RC), |
| true); |
| RVFI.pushInterruptCSRFrameIndex(FI); |
| } |
| } |
| |
| static void emitSiFiveCLICPreemptibleSaves(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL) { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| if (!RVFI->isSiFivePreemptibleInterrupt(MF)) |
| return; |
| |
| const auto &STI = MF.getSubtarget<RISCVSubtarget>(); |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| |
| // FIXME: CFI Information here is nonexistent/wrong. |
| |
| // X8 and X9 might be stored into the stack twice, initially into the |
| // `interruptCSRFrameIndex` here, and then maybe again into their CSI frame |
| // index. |
| // |
| // This is done instead of telling the register allocator that we need two |
| // VRegs to store the value of `mcause` and `mepc` through the instruction, |
| // which affects other passes. |
| TII->storeRegToStackSlot(MBB, MBBI, RISCV::X8, /* IsKill=*/true, |
| RVFI->getInterruptCSRFrameIndex(0), |
| &RISCV::GPRRegClass, STI.getRegisterInfo(), |
| Register(), MachineInstr::FrameSetup); |
| TII->storeRegToStackSlot(MBB, MBBI, RISCV::X9, /* IsKill=*/true, |
| RVFI->getInterruptCSRFrameIndex(1), |
| &RISCV::GPRRegClass, STI.getRegisterInfo(), |
| Register(), MachineInstr::FrameSetup); |
| |
| // Put `mcause` into X8 (s0), and `mepc` into X9 (s1). If either of these are |
| // used in the function, then they will appear in `getUnmanagedCSI` and will |
| // be saved again. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS)) |
| .addReg(RISCV::X8, RegState::Define) |
| .addImm(RISCVSysReg::mcause) |
| .addReg(RISCV::X0) |
| .setMIFlag(MachineInstr::FrameSetup); |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS)) |
| .addReg(RISCV::X9, RegState::Define) |
| .addImm(RISCVSysReg::mepc) |
| .addReg(RISCV::X0) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // Enable interrupts. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRSI)) |
| .addReg(RISCV::X0, RegState::Define) |
| .addImm(RISCVSysReg::mstatus) |
| .addImm(8) |
| .setMIFlag(MachineInstr::FrameSetup); |
| } |
| |
| static void emitSiFiveCLICPreemptibleRestores(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL) { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| if (!RVFI->isSiFivePreemptibleInterrupt(MF)) |
| return; |
| |
| const auto &STI = MF.getSubtarget<RISCVSubtarget>(); |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| |
| // FIXME: CFI Information here is nonexistent/wrong. |
| |
| // Disable interrupts. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRCI)) |
| .addReg(RISCV::X0, RegState::Define) |
| .addImm(RISCVSysReg::mstatus) |
| .addImm(8) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // Restore `mepc` from x9 (s1), and `mcause` from x8 (s0). If either were used |
| // in the function, they have already been restored once, so now have the |
| // value stored in `emitSiFiveCLICPreemptibleSaves`. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW)) |
| .addReg(RISCV::X0, RegState::Define) |
| .addImm(RISCVSysReg::mepc) |
| .addReg(RISCV::X9, RegState::Kill) |
| .setMIFlag(MachineInstr::FrameSetup); |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW)) |
| .addReg(RISCV::X0, RegState::Define) |
| .addImm(RISCVSysReg::mcause) |
| .addReg(RISCV::X8, RegState::Kill) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // X8 and X9 need to be restored to their values on function entry, which we |
| // saved onto the stack in `emitSiFiveCLICPreemptibleSaves`. |
| TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X9, |
| RVFI->getInterruptCSRFrameIndex(1), |
| &RISCV::GPRRegClass, STI.getRegisterInfo(), |
| Register(), MachineInstr::FrameSetup); |
| TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X8, |
| RVFI->getInterruptCSRFrameIndex(0), |
| &RISCV::GPRRegClass, STI.getRegisterInfo(), |
| Register(), MachineInstr::FrameSetup); |
| } |
| |
| // Get the ID of the libcall used for spilling and restoring callee saved |
| // registers. The ID is representative of the number of registers saved or |
| // restored by the libcall, except it is zero-indexed - ID 0 corresponds to a |
| // single register. |
| static int getLibCallID(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF)) |
| return -1; |
| |
| MCRegister MaxReg; |
| for (auto &CS : CSI) |
| // assignCalleeSavedSpillSlots assigns negative frame indexes to |
| // registers which can be saved by libcall. |
| if (CS.getFrameIdx() < 0) |
| MaxReg = std::max(MaxReg.id(), CS.getReg().id()); |
| |
| if (!MaxReg) |
| return -1; |
| |
| switch (MaxReg.id()) { |
| default: |
| llvm_unreachable("Something has gone wrong!"); |
| // clang-format off |
| case /*s11*/ RISCV::X27: return 12; |
| case /*s10*/ RISCV::X26: return 11; |
| case /*s9*/ RISCV::X25: return 10; |
| case /*s8*/ RISCV::X24: return 9; |
| case /*s7*/ RISCV::X23: return 8; |
| case /*s6*/ RISCV::X22: return 7; |
| case /*s5*/ RISCV::X21: return 6; |
| case /*s4*/ RISCV::X20: return 5; |
| case /*s3*/ RISCV::X19: return 4; |
| case /*s2*/ RISCV::X18: return 3; |
| case /*s1*/ RISCV::X9: return 2; |
| case /*s0*/ FPReg: return 1; |
| case /*ra*/ RAReg: return 0; |
| // clang-format on |
| } |
| } |
| |
| // Get the name of the libcall used for spilling callee saved registers. |
| // If this function will not use save/restore libcalls, then return a nullptr. |
| static const char * |
| getSpillLibCallName(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| static const char *const SpillLibCalls[] = { |
| "__riscv_save_0", |
| "__riscv_save_1", |
| "__riscv_save_2", |
| "__riscv_save_3", |
| "__riscv_save_4", |
| "__riscv_save_5", |
| "__riscv_save_6", |
| "__riscv_save_7", |
| "__riscv_save_8", |
| "__riscv_save_9", |
| "__riscv_save_10", |
| "__riscv_save_11", |
| "__riscv_save_12" |
| }; |
| |
| int LibCallID = getLibCallID(MF, CSI); |
| if (LibCallID == -1) |
| return nullptr; |
| return SpillLibCalls[LibCallID]; |
| } |
| |
| // Get the name of the libcall used for restoring callee saved registers. |
| // If this function will not use save/restore libcalls, then return a nullptr. |
| static const char * |
| getRestoreLibCallName(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| static const char *const RestoreLibCalls[] = { |
| "__riscv_restore_0", |
| "__riscv_restore_1", |
| "__riscv_restore_2", |
| "__riscv_restore_3", |
| "__riscv_restore_4", |
| "__riscv_restore_5", |
| "__riscv_restore_6", |
| "__riscv_restore_7", |
| "__riscv_restore_8", |
| "__riscv_restore_9", |
| "__riscv_restore_10", |
| "__riscv_restore_11", |
| "__riscv_restore_12" |
| }; |
| |
| int LibCallID = getLibCallID(MF, CSI); |
| if (LibCallID == -1) |
| return nullptr; |
| return RestoreLibCalls[LibCallID]; |
| } |
| |
| // Get the max reg of Push/Pop for restoring callee saved registers. |
| static unsigned getNumPushPopRegs(const std::vector<CalleeSavedInfo> &CSI) { |
| unsigned NumPushPopRegs = 0; |
| for (auto &CS : CSI) { |
| auto *FII = llvm::find_if(FixedCSRFIMap, |
| [&](MCPhysReg P) { return P == CS.getReg(); }); |
| if (FII != std::end(FixedCSRFIMap)) { |
| unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII); |
| NumPushPopRegs = std::max(NumPushPopRegs, RegNum + 1); |
| } |
| } |
| assert(NumPushPopRegs != 12 && "x26 requires x27 to also be pushed"); |
| return NumPushPopRegs; |
| } |
| |
| // Return true if the specified function should have a dedicated frame |
| // pointer register. This is true if frame pointer elimination is |
| // disabled, if it needs dynamic stack realignment, if the function has |
| // variable sized allocas, or if the frame address is taken. |
| bool RISCVFrameLowering::hasFPImpl(const MachineFunction &MF) const { |
| const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| return MF.getTarget().Options.DisableFramePointerElim(MF) || |
| RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || |
| MFI.isFrameAddressTaken(); |
| } |
| |
| bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| |
| // If we do not reserve stack space for outgoing arguments in prologue, |
| // we will adjust the stack pointer before call instruction. After the |
| // adjustment, we can not use SP to access the stack objects for the |
| // arguments. Instead, use BP to access these stack objects. |
| return (MFI.hasVarSizedObjects() || |
| (!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() || |
| MFI.getMaxCallFrameSize() != 0))) && |
| TRI->hasStackRealignment(MF); |
| } |
| |
| // Determines the size of the frame and maximum call frame size. |
| void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const { |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Get the number of bytes to allocate from the FrameInfo. |
| uint64_t FrameSize = MFI.getStackSize(); |
| |
| // QCI Interrupts use at least 96 bytes of stack space |
| if (RVFI->useQCIInterrupt(MF)) |
| FrameSize = std::max(FrameSize, QCIInterruptPushAmount); |
| |
| // Get the alignment. |
| Align StackAlign = getStackAlign(); |
| |
| // Make sure the frame is aligned. |
| FrameSize = alignTo(FrameSize, StackAlign); |
| |
| // Update frame info. |
| MFI.setStackSize(FrameSize); |
| |
| // When using SP or BP to access stack objects, we may require extra padding |
| // to ensure the bottom of the RVV stack is correctly aligned within the main |
| // stack. We calculate this as the amount required to align the scalar local |
| // variable section up to the RVV alignment. |
| const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
| if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) { |
| int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() - |
| RVFI->getVarArgsSaveSize(); |
| if (auto RVVPadding = |
| offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign())) |
| RVFI->setRVVPadding(RVVPadding); |
| } |
| } |
| |
| // Returns the stack size including RVV padding (when required), rounded back |
| // up to the required stack alignment. |
| uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding( |
| const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign()); |
| } |
| |
| static SmallVector<CalleeSavedInfo, 8> |
| getUnmanagedCSI(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| SmallVector<CalleeSavedInfo, 8> NonLibcallCSI; |
| |
| for (auto &CS : CSI) { |
| int FI = CS.getFrameIdx(); |
| if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default) |
| NonLibcallCSI.push_back(CS); |
| } |
| |
| return NonLibcallCSI; |
| } |
| |
| static SmallVector<CalleeSavedInfo, 8> |
| getRVVCalleeSavedInfo(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| SmallVector<CalleeSavedInfo, 8> RVVCSI; |
| |
| for (auto &CS : CSI) { |
| int FI = CS.getFrameIdx(); |
| if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::ScalableVector) |
| RVVCSI.push_back(CS); |
| } |
| |
| return RVVCSI; |
| } |
| |
| static SmallVector<CalleeSavedInfo, 8> |
| getPushOrLibCallsSavedInfo(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| SmallVector<CalleeSavedInfo, 8> PushOrLibCallsCSI; |
| if (!RVFI->useSaveRestoreLibCalls(MF) && !RVFI->isPushable(MF)) |
| return PushOrLibCallsCSI; |
| |
| for (const auto &CS : CSI) { |
| if (RVFI->useQCIInterrupt(MF)) { |
| // Some registers are saved by both `QC.C.MIENTER(.NEST)` and |
| // `QC.CM.PUSH(FP)`. In these cases, prioritise the CFI info that points |
| // to the versions saved by `QC.C.MIENTER(.NEST)` which is what FP |
| // unwinding would use. |
| const auto *FII = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) { |
| return P.first == CS.getReg(); |
| }); |
| if (FII != std::end(FixedCSRFIQCIInterruptMap)) |
| continue; |
| } |
| |
| const auto *FII = llvm::find_if( |
| FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); }); |
| if (FII != std::end(FixedCSRFIMap)) |
| PushOrLibCallsCSI.push_back(CS); |
| } |
| |
| return PushOrLibCallsCSI; |
| } |
| |
| static SmallVector<CalleeSavedInfo, 8> |
| getQCISavedInfo(const MachineFunction &MF, |
| const std::vector<CalleeSavedInfo> &CSI) { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| SmallVector<CalleeSavedInfo, 8> QCIInterruptCSI; |
| if (!RVFI->useQCIInterrupt(MF)) |
| return QCIInterruptCSI; |
| |
| for (const auto &CS : CSI) { |
| const auto *FII = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) { |
| return P.first == CS.getReg(); |
| }); |
| if (FII != std::end(FixedCSRFIQCIInterruptMap)) |
| QCIInterruptCSI.push_back(CS); |
| } |
| |
| return QCIInterruptCSI; |
| } |
| |
| void RISCVFrameLowering::allocateAndProbeStackForRVV( |
| MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Amount, |
| MachineInstr::MIFlag Flag, bool EmitCFI, bool DynAllocation) const { |
| assert(Amount != 0 && "Did not need to adjust stack pointer for RVV."); |
| |
| // Emit a variable-length allocation probing loop. |
| |
| // Get VLEN in TargetReg |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| Register TargetReg = RISCV::X6; |
| uint32_t NumOfVReg = Amount / RISCV::RVVBytesPerBlock; |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::PseudoReadVLENB), TargetReg) |
| .setMIFlag(Flag); |
| TII->mulImm(MF, MBB, MBBI, DL, TargetReg, NumOfVReg, Flag); |
| |
| CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup); |
| if (EmitCFI) { |
| // Set the CFA register to TargetReg. |
| CFIBuilder.buildDefCFA(TargetReg, -Amount); |
| } |
| |
| // It will be expanded to a probe loop in `inlineStackProbe`. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC_RVV)) |
| .addReg(SPReg) |
| .addReg(TargetReg); |
| |
| if (EmitCFI) { |
| // Set the CFA register back to SP. |
| CFIBuilder.buildDefCFARegister(SPReg); |
| } |
| |
| // SUB SP, SP, T1 |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::SUB), SPReg) |
| .addReg(SPReg) |
| .addReg(TargetReg) |
| .setMIFlag(Flag); |
| |
| // If we have a dynamic allocation later we need to probe any residuals. |
| if (DynAllocation) { |
| BuildMI(MBB, MBBI, DL, TII->get(STI.is64Bit() ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| |
| static void appendScalableVectorExpression(const TargetRegisterInfo &TRI, |
| SmallVectorImpl<char> &Expr, |
| int FixedOffset, int ScalableOffset, |
| llvm::raw_string_ostream &Comment) { |
| unsigned DwarfVLenB = TRI.getDwarfRegNum(RISCV::VLENB, true); |
| uint8_t Buffer[16]; |
| if (FixedOffset) { |
| Expr.push_back(dwarf::DW_OP_consts); |
| Expr.append(Buffer, Buffer + encodeSLEB128(FixedOffset, Buffer)); |
| Expr.push_back((uint8_t)dwarf::DW_OP_plus); |
| Comment << (FixedOffset < 0 ? " - " : " + ") << std::abs(FixedOffset); |
| } |
| |
| Expr.push_back((uint8_t)dwarf::DW_OP_consts); |
| Expr.append(Buffer, Buffer + encodeSLEB128(ScalableOffset, Buffer)); |
| |
| Expr.push_back((uint8_t)dwarf::DW_OP_bregx); |
| Expr.append(Buffer, Buffer + encodeULEB128(DwarfVLenB, Buffer)); |
| Expr.push_back(0); |
| |
| Expr.push_back((uint8_t)dwarf::DW_OP_mul); |
| Expr.push_back((uint8_t)dwarf::DW_OP_plus); |
| |
| Comment << (ScalableOffset < 0 ? " - " : " + ") << std::abs(ScalableOffset) |
| << " * vlenb"; |
| } |
| |
| static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI, |
| Register Reg, |
| uint64_t FixedOffset, |
| uint64_t ScalableOffset) { |
| assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV"); |
| SmallString<64> Expr; |
| std::string CommentBuffer; |
| llvm::raw_string_ostream Comment(CommentBuffer); |
| // Build up the expression (Reg + FixedOffset + ScalableOffset * VLENB). |
| unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true); |
| Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg)); |
| Expr.push_back(0); |
| if (Reg == SPReg) |
| Comment << "sp"; |
| else |
| Comment << printReg(Reg, &TRI); |
| |
| appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset, |
| Comment); |
| |
| SmallString<64> DefCfaExpr; |
| uint8_t Buffer[16]; |
| DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); |
| DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer)); |
| DefCfaExpr.append(Expr.str()); |
| |
| return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(), |
| Comment.str()); |
| } |
| |
| static MCCFIInstruction createDefCFAOffset(const TargetRegisterInfo &TRI, |
| Register Reg, uint64_t FixedOffset, |
| uint64_t ScalableOffset) { |
| assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV"); |
| SmallString<64> Expr; |
| std::string CommentBuffer; |
| llvm::raw_string_ostream Comment(CommentBuffer); |
| Comment << printReg(Reg, &TRI) << " @ cfa"; |
| |
| // Build up the expression (FixedOffset + ScalableOffset * VLENB). |
| appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset, |
| Comment); |
| |
| SmallString<64> DefCfaExpr; |
| uint8_t Buffer[16]; |
| unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true); |
| DefCfaExpr.push_back(dwarf::DW_CFA_expression); |
| DefCfaExpr.append(Buffer, Buffer + encodeULEB128(DwarfReg, Buffer)); |
| DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer)); |
| DefCfaExpr.append(Expr.str()); |
| |
| return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(), |
| Comment.str()); |
| } |
| |
| // Allocate stack space and probe it if necessary. |
| void RISCVFrameLowering::allocateStack(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| MachineFunction &MF, uint64_t Offset, |
| uint64_t RealStackSize, bool EmitCFI, |
| bool NeedProbe, uint64_t ProbeSize, |
| bool DynAllocation) const { |
| DebugLoc DL; |
| const RISCVRegisterInfo *RI = STI.getRegisterInfo(); |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| bool IsRV64 = STI.is64Bit(); |
| CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup); |
| |
| // Simply allocate the stack if it's not big enough to require a probe. |
| if (!NeedProbe || Offset <= ProbeSize) { |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Offset), |
| MachineInstr::FrameSetup, getStackAlign()); |
| |
| if (EmitCFI) |
| CFIBuilder.buildDefCFAOffset(RealStackSize); |
| |
| if (NeedProbe && DynAllocation) { |
| // s[d|w] zero, 0(sp) |
| BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| |
| return; |
| } |
| |
| // Unroll the probe loop depending on the number of iterations. |
| if (Offset < ProbeSize * 5) { |
| uint64_t CurrentOffset = 0; |
| while (CurrentOffset + ProbeSize <= Offset) { |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, |
| StackOffset::getFixed(-ProbeSize), MachineInstr::FrameSetup, |
| getStackAlign()); |
| // s[d|w] zero, 0(sp) |
| BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| CurrentOffset += ProbeSize; |
| if (EmitCFI) |
| CFIBuilder.buildDefCFAOffset(CurrentOffset); |
| } |
| |
| uint64_t Residual = Offset - CurrentOffset; |
| if (Residual) { |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, |
| StackOffset::getFixed(-Residual), MachineInstr::FrameSetup, |
| getStackAlign()); |
| if (EmitCFI) |
| CFIBuilder.buildDefCFAOffset(Offset); |
| |
| if (DynAllocation) { |
| // s[d|w] zero, 0(sp) |
| BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| |
| return; |
| } |
| |
| // Emit a variable-length allocation probing loop. |
| uint64_t RoundedSize = alignDown(Offset, ProbeSize); |
| uint64_t Residual = Offset - RoundedSize; |
| |
| Register TargetReg = RISCV::X6; |
| // SUB TargetReg, SP, RoundedSize |
| RI->adjustReg(MBB, MBBI, DL, TargetReg, SPReg, |
| StackOffset::getFixed(-RoundedSize), MachineInstr::FrameSetup, |
| getStackAlign()); |
| |
| if (EmitCFI) { |
| // Set the CFA register to TargetReg. |
| CFIBuilder.buildDefCFA(TargetReg, RoundedSize); |
| } |
| |
| // It will be expanded to a probe loop in `inlineStackProbe`. |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC)) |
| .addReg(SPReg) |
| .addReg(TargetReg); |
| |
| if (EmitCFI) { |
| // Set the CFA register back to SP. |
| CFIBuilder.buildDefCFARegister(SPReg); |
| } |
| |
| if (Residual) { |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Residual), |
| MachineInstr::FrameSetup, getStackAlign()); |
| if (DynAllocation) { |
| // s[d|w] zero, 0(sp) |
| BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| |
| if (EmitCFI) |
| CFIBuilder.buildDefCFAOffset(Offset); |
| } |
| |
| static bool isPush(unsigned Opcode) { |
| switch (Opcode) { |
| case RISCV::CM_PUSH: |
| case RISCV::QC_CM_PUSH: |
| case RISCV::QC_CM_PUSHFP: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool isPop(unsigned Opcode) { |
| // There are other pops but these are the only ones introduced during this |
| // pass. |
| switch (Opcode) { |
| case RISCV::CM_POP: |
| case RISCV::QC_CM_POP: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned getPushOpcode(RISCVMachineFunctionInfo::PushPopKind Kind, |
| bool UpdateFP) { |
| switch (Kind) { |
| case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp: |
| return RISCV::CM_PUSH; |
| case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp: |
| return UpdateFP ? RISCV::QC_CM_PUSHFP : RISCV::QC_CM_PUSH; |
| default: |
| llvm_unreachable("Unhandled PushPopKind"); |
| } |
| } |
| |
| static unsigned getPopOpcode(RISCVMachineFunctionInfo::PushPopKind Kind) { |
| // There are other pops but they are introduced later by the Push/Pop |
| // Optimizer. |
| switch (Kind) { |
| case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp: |
| return RISCV::CM_POP; |
| case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp: |
| return RISCV::QC_CM_POP; |
| default: |
| llvm_unreachable("Unhandled PushPopKind"); |
| } |
| } |
| |
| void RISCVFrameLowering::emitPrologue(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| const RISCVRegisterInfo *RI = STI.getRegisterInfo(); |
| MachineBasicBlock::iterator MBBI = MBB.begin(); |
| |
| Register BPReg = RISCVABI::getBPReg(); |
| |
| // Debug location must be unknown since the first debug location is used |
| // to determine the end of the prologue. |
| DebugLoc DL; |
| |
| // All calls are tail calls in GHC calling conv, and functions have no |
| // prologue/epilogue. |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| return; |
| |
| // SiFive CLIC needs to swap `sp` into `sf.mscratchcsw` |
| emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL); |
| |
| // Emit prologue for shadow call stack. |
| emitSCSPrologue(MF, MBB, MBBI, DL); |
| |
| // We keep track of the first instruction because it might be a |
| // `(QC.)CM.PUSH(FP)`, and we may need to adjust the immediate rather than |
| // inserting an `addi sp, sp, -N*16` |
| auto PossiblePush = MBBI; |
| |
| // Skip past all callee-saved register spill instructions. |
| while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) |
| ++MBBI; |
| |
| // Determine the correct frame layout |
| determineFrameLayout(MF); |
| |
| const auto &CSI = MFI.getCalleeSavedInfo(); |
| |
| // Skip to before the spills of scalar callee-saved registers |
| // FIXME: assumes exactly one instruction is used to restore each |
| // callee-saved register. |
| MBBI = std::prev(MBBI, getRVVCalleeSavedInfo(MF, CSI).size() + |
| getUnmanagedCSI(MF, CSI).size()); |
| CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup); |
| |
| // If libcalls are used to spill and restore callee-saved registers, the frame |
| // has two sections; the opaque section managed by the libcalls, and the |
| // section managed by MachineFrameInfo which can also hold callee saved |
| // registers in fixed stack slots, both of which have negative frame indices. |
| // This gets even more complicated when incoming arguments are passed via the |
| // stack, as these too have negative frame indices. An example is detailed |
| // below: |
| // |
| // | incoming arg | <- FI[-3] |
| // | libcallspill | |
| // | calleespill | <- FI[-2] |
| // | calleespill | <- FI[-1] |
| // | this_frame | <- FI[0] |
| // |
| // For negative frame indices, the offset from the frame pointer will differ |
| // depending on which of these groups the frame index applies to. |
| // The following calculates the correct offset knowing the number of callee |
| // saved registers spilt by the two methods. |
| if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) { |
| // Calculate the size of the frame managed by the libcall. The stack |
| // alignment of these libcalls should be the same as how we set it in |
| // getABIStackAlignment. |
| unsigned LibCallFrameSize = |
| alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign()); |
| RVFI->setLibCallStackSize(LibCallFrameSize); |
| |
| CFIBuilder.buildDefCFAOffset(LibCallFrameSize); |
| for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI)) |
| CFIBuilder.buildOffset(CS.getReg(), |
| MFI.getObjectOffset(CS.getFrameIdx())); |
| } |
| |
| // FIXME (note copied from Lanai): This appears to be overallocating. Needs |
| // investigation. Get the number of bytes to allocate from the FrameInfo. |
| uint64_t RealStackSize = getStackSizeWithRVVPadding(MF); |
| uint64_t StackSize = RealStackSize - RVFI->getReservedSpillsSize(); |
| uint64_t RVVStackSize = RVFI->getRVVStackSize(); |
| |
| // Early exit if there is no need to allocate on the stack |
| if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0) |
| return; |
| |
| // If the stack pointer has been marked as reserved, then produce an error if |
| // the frame requires stack allocation |
| if (STI.isRegisterReservedByUser(SPReg)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), "Stack pointer required, but has been reserved."}); |
| |
| uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); |
| // Split the SP adjustment to reduce the offsets of callee saved spill. |
| if (FirstSPAdjustAmount) { |
| StackSize = FirstSPAdjustAmount; |
| RealStackSize = FirstSPAdjustAmount; |
| } |
| |
| if (RVFI->useQCIInterrupt(MF)) { |
| // The function starts with `QC.C.MIENTER(.NEST)`, so the `(QC.)CM.PUSH(FP)` |
| // could only be the next instruction. |
| ++PossiblePush; |
| |
| // Insert the CFI metadata before where we think the `(QC.)CM.PUSH(FP)` |
| // could be. The PUSH will also get its own CFI metadata for its own |
| // modifications, which should come after the PUSH. |
| CFIInstBuilder PushCFIBuilder(MBB, PossiblePush, MachineInstr::FrameSetup); |
| PushCFIBuilder.buildDefCFAOffset(QCIInterruptPushAmount); |
| for (const CalleeSavedInfo &CS : getQCISavedInfo(MF, CSI)) |
| PushCFIBuilder.buildOffset(CS.getReg(), |
| MFI.getObjectOffset(CS.getFrameIdx())); |
| } |
| |
| if (RVFI->isPushable(MF) && PossiblePush != MBB.end() && |
| isPush(PossiblePush->getOpcode())) { |
| // Use available stack adjustment in push instruction to allocate additional |
| // stack space. Align the stack size down to a multiple of 16. This is |
| // needed for RVE. |
| // FIXME: Can we increase the stack size to a multiple of 16 instead? |
| uint64_t StackAdj = |
| std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48)); |
| PossiblePush->getOperand(1).setImm(StackAdj); |
| StackSize -= StackAdj; |
| |
| CFIBuilder.buildDefCFAOffset(RealStackSize - StackSize); |
| for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI)) |
| CFIBuilder.buildOffset(CS.getReg(), |
| MFI.getObjectOffset(CS.getFrameIdx())); |
| } |
| |
| // Allocate space on the stack if necessary. |
| auto &Subtarget = MF.getSubtarget<RISCVSubtarget>(); |
| const RISCVTargetLowering *TLI = Subtarget.getTargetLowering(); |
| bool NeedProbe = TLI->hasInlineStackProbe(MF); |
| uint64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign()); |
| bool DynAllocation = |
| MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation(); |
| if (StackSize != 0) |
| allocateStack(MBB, MBBI, MF, StackSize, RealStackSize, /*EmitCFI=*/true, |
| NeedProbe, ProbeSize, DynAllocation); |
| |
| // Save SiFive CLIC CSRs into Stack |
| emitSiFiveCLICPreemptibleSaves(MF, MBB, MBBI, DL); |
| |
| // The frame pointer is callee-saved, and code has been generated for us to |
| // save it to the stack. We need to skip over the storing of callee-saved |
| // registers as the frame pointer must be modified after it has been saved |
| // to the stack, not before. |
| // FIXME: assumes exactly one instruction is used to save each callee-saved |
| // register. |
| std::advance(MBBI, getUnmanagedCSI(MF, CSI).size()); |
| CFIBuilder.setInsertPoint(MBBI); |
| |
| // Iterate over list of callee-saved registers and emit .cfi_offset |
| // directives. |
| for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI)) |
| CFIBuilder.buildOffset(CS.getReg(), MFI.getObjectOffset(CS.getFrameIdx())); |
| |
| // Generate new FP. |
| if (hasFP(MF)) { |
| if (STI.isRegisterReservedByUser(FPReg)) |
| MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ |
| MF.getFunction(), "Frame pointer required, but has been reserved."}); |
| // The frame pointer does need to be reserved from register allocation. |
| assert(MF.getRegInfo().isReserved(FPReg) && "FP not reserved"); |
| |
| // Some stack management variants automatically keep FP updated, so we don't |
| // need an instruction to do so. |
| if (!RVFI->hasImplicitFPUpdates(MF)) { |
| RI->adjustReg( |
| MBB, MBBI, DL, FPReg, SPReg, |
| StackOffset::getFixed(RealStackSize - RVFI->getVarArgsSaveSize()), |
| MachineInstr::FrameSetup, getStackAlign()); |
| } |
| |
| CFIBuilder.buildDefCFA(FPReg, RVFI->getVarArgsSaveSize()); |
| } |
| |
| uint64_t SecondSPAdjustAmount = 0; |
| // Emit the second SP adjustment after saving callee saved registers. |
| if (FirstSPAdjustAmount) { |
| SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount; |
| assert(SecondSPAdjustAmount > 0 && |
| "SecondSPAdjustAmount should be greater than zero"); |
| |
| allocateStack(MBB, MBBI, MF, SecondSPAdjustAmount, |
| getStackSizeWithRVVPadding(MF), !hasFP(MF), NeedProbe, |
| ProbeSize, DynAllocation); |
| } |
| |
| if (RVVStackSize) { |
| if (NeedProbe) { |
| allocateAndProbeStackForRVV(MF, MBB, MBBI, DL, RVVStackSize, |
| MachineInstr::FrameSetup, !hasFP(MF), |
| DynAllocation); |
| } else { |
| // We must keep the stack pointer aligned through any intermediate |
| // updates. |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, |
| StackOffset::getScalable(-RVVStackSize), |
| MachineInstr::FrameSetup, getStackAlign()); |
| } |
| |
| if (!hasFP(MF)) { |
| // Emit .cfi_def_cfa_expression "sp + StackSize + RVVStackSize * vlenb". |
| CFIBuilder.insertCFIInst(createDefCFAExpression( |
| *RI, SPReg, getStackSizeWithRVVPadding(MF), RVVStackSize / 8)); |
| } |
| |
| std::advance(MBBI, getRVVCalleeSavedInfo(MF, CSI).size()); |
| emitCalleeSavedRVVPrologCFI(MBB, MBBI, hasFP(MF)); |
| } |
| |
| if (hasFP(MF)) { |
| // Realign Stack |
| const RISCVRegisterInfo *RI = STI.getRegisterInfo(); |
| if (RI->hasStackRealignment(MF)) { |
| Align MaxAlignment = MFI.getMaxAlign(); |
| |
| const RISCVInstrInfo *TII = STI.getInstrInfo(); |
| if (isInt<12>(-(int)MaxAlignment.value())) { |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg) |
| .addReg(SPReg) |
| .addImm(-(int)MaxAlignment.value()) |
| .setMIFlag(MachineInstr::FrameSetup); |
| } else { |
| unsigned ShiftAmount = Log2(MaxAlignment); |
| Register VR = |
| MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass); |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR) |
| .addReg(SPReg) |
| .addImm(ShiftAmount) |
| .setMIFlag(MachineInstr::FrameSetup); |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg) |
| .addReg(VR) |
| .addImm(ShiftAmount) |
| .setMIFlag(MachineInstr::FrameSetup); |
| } |
| if (NeedProbe && RVVStackSize == 0) { |
| // Do a probe if the align + size allocated just passed the probe size |
| // and was not yet probed. |
| if (SecondSPAdjustAmount < ProbeSize && |
| SecondSPAdjustAmount + MaxAlignment.value() >= ProbeSize) { |
| bool IsRV64 = STI.is64Bit(); |
| BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| // FP will be used to restore the frame in the epilogue, so we need |
| // another base register BP to record SP after re-alignment. SP will |
| // track the current stack after allocating variable sized objects. |
| if (hasBP(MF)) { |
| // move BP, SP |
| BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlag(MachineInstr::FrameSetup); |
| } |
| } |
| } |
| } |
| |
| void RISCVFrameLowering::deallocateStack(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL, |
| uint64_t &StackSize, |
| int64_t CFAOffset) const { |
| const RISCVRegisterInfo *RI = STI.getRegisterInfo(); |
| |
| RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(StackSize), |
| MachineInstr::FrameDestroy, getStackAlign()); |
| StackSize = 0; |
| |
| CFIInstBuilder(MBB, MBBI, MachineInstr::FrameDestroy) |
| .buildDefCFAOffset(CFAOffset); |
| } |
| |
| void RISCVFrameLowering::emitEpilogue(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| const RISCVRegisterInfo *RI = STI.getRegisterInfo(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // All calls are tail calls in GHC calling conv, and functions have no |
| // prologue/epilogue. |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| return; |
| |
| // Get the insert location for the epilogue. If there were no terminators in |
| // the block, get the last instruction. |
| MachineBasicBlock::iterator MBBI = MBB.end(); |
| DebugLoc DL; |
| if (!MBB.empty()) { |
| MBBI = MBB.getLastNonDebugInstr(); |
| if (MBBI != MBB.end()) |
| DL = MBBI->getDebugLoc(); |
| |
| MBBI = MBB.getFirstTerminator(); |
| |
| // Skip to before the restores of all callee-saved registers. |
| while (MBBI != MBB.begin() && |
| std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy)) |
| --MBBI; |
| } |
| |
| const auto &CSI = MFI.getCalleeSavedInfo(); |
| |
| // Skip to before the restores of scalar callee-saved registers |
| // FIXME: assumes exactly one instruction is used to restore each |
| // callee-saved register. |
| auto FirstScalarCSRRestoreInsn = |
| std::next(MBBI, getRVVCalleeSavedInfo(MF, CSI).size()); |
| CFIInstBuilder CFIBuilder(MBB, FirstScalarCSRRestoreInsn, |
| MachineInstr::FrameDestroy); |
| |
| uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); |
| uint64_t RealStackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount |
| : getStackSizeWithRVVPadding(MF); |
| uint64_t StackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount |
| : getStackSizeWithRVVPadding(MF) - |
| RVFI->getReservedSpillsSize(); |
| uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize(); |
| uint64_t RVVStackSize = RVFI->getRVVStackSize(); |
| |
| bool RestoreSPFromFP = RI->hasStackRealignment(MF) || |
| MFI.hasVarSizedObjects() || !hasReservedCallFrame(MF); |
| if (RVVStackSize) { |
| // If RestoreSPFromFP the stack pointer will be restored using the frame |
| // pointer value. |
| if (!RestoreSPFromFP) |
| RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg, |
| StackOffset::getScalable(RVVStackSize), |
| MachineInstr::FrameDestroy, getStackAlign()); |
| |
| if (!hasFP(MF)) |
| CFIBuilder.buildDefCFA(SPReg, RealStackSize); |
| |
| emitCalleeSavedRVVEpilogCFI(MBB, FirstScalarCSRRestoreInsn); |
| } |
| |
| if (FirstSPAdjustAmount) { |
| uint64_t SecondSPAdjustAmount = |
| getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount; |
| assert(SecondSPAdjustAmount > 0 && |
| "SecondSPAdjustAmount should be greater than zero"); |
| |
| // If RestoreSPFromFP the stack pointer will be restored using the frame |
| // pointer value. |
| if (!RestoreSPFromFP) |
| RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg, |
| StackOffset::getFixed(SecondSPAdjustAmount), |
| MachineInstr::FrameDestroy, getStackAlign()); |
| |
| if (!hasFP(MF)) |
| CFIBuilder.buildDefCFAOffset(FirstSPAdjustAmount); |
| } |
| |
| // Restore the stack pointer using the value of the frame pointer. Only |
| // necessary if the stack pointer was modified, meaning the stack size is |
| // unknown. |
| // |
| // In order to make sure the stack point is right through the EH region, |
| // we also need to restore stack pointer from the frame pointer if we |
| // don't preserve stack space within prologue/epilogue for outgoing variables, |
| // normally it's just checking the variable sized object is present or not |
| // is enough, but we also don't preserve that at prologue/epilogue when |
| // have vector objects in stack. |
| if (RestoreSPFromFP) { |
| assert(hasFP(MF) && "frame pointer should not have been eliminated"); |
| RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, FPReg, |
| StackOffset::getFixed(-FPOffset), MachineInstr::FrameDestroy, |
| getStackAlign()); |
| } |
| |
| if (hasFP(MF)) |
| CFIBuilder.buildDefCFA(SPReg, RealStackSize); |
| |
| // Skip to after the restores of scalar callee-saved registers |
| // FIXME: assumes exactly one instruction is used to restore each |
| // callee-saved register. |
| MBBI = std::next(FirstScalarCSRRestoreInsn, getUnmanagedCSI(MF, CSI).size()); |
| CFIBuilder.setInsertPoint(MBBI); |
| |
| if (getLibCallID(MF, CSI) != -1) { |
| // tail __riscv_restore_[0-12] instruction is considered as a terminator, |
| // therefore it is unnecessary to place any CFI instructions after it. Just |
| // deallocate stack if needed and return. |
| if (StackSize != 0) |
| deallocateStack(MF, MBB, MBBI, DL, StackSize, |
| RVFI->getLibCallStackSize()); |
| |
| // Emit epilogue for shadow call stack. |
| emitSCSEpilogue(MF, MBB, MBBI, DL); |
| return; |
| } |
| |
| // Recover callee-saved registers. |
| for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI)) |
| CFIBuilder.buildRestore(CS.getReg()); |
| |
| if (RVFI->isPushable(MF) && MBBI != MBB.end() && isPop(MBBI->getOpcode())) { |
| // Use available stack adjustment in pop instruction to deallocate stack |
| // space. Align the stack size down to a multiple of 16. This is needed for |
| // RVE. |
| // FIXME: Can we increase the stack size to a multiple of 16 instead? |
| uint64_t StackAdj = |
| std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48)); |
| MBBI->getOperand(1).setImm(StackAdj); |
| StackSize -= StackAdj; |
| |
| if (StackSize != 0) |
| deallocateStack(MF, MBB, MBBI, DL, StackSize, |
| /*stack_adj of cm.pop instr*/ RealStackSize - StackSize); |
| |
| auto NextI = next_nodbg(MBBI, MBB.end()); |
| if (NextI == MBB.end() || NextI->getOpcode() != RISCV::PseudoRET) { |
| ++MBBI; |
| CFIBuilder.setInsertPoint(MBBI); |
| |
| for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI)) |
| CFIBuilder.buildRestore(CS.getReg()); |
| |
| // Update CFA Offset. If this is a QCI interrupt function, there will be a |
| // leftover offset which is deallocated by `QC.C.MILEAVERET`, otherwise |
| // getQCIInterruptStackSize() will be 0. |
| CFIBuilder.buildDefCFAOffset(RVFI->getQCIInterruptStackSize()); |
| } |
| } |
| |
| emitSiFiveCLICPreemptibleRestores(MF, MBB, MBBI, DL); |
| |
| // Deallocate stack if StackSize isn't a zero yet. If this is a QCI interrupt |
| // function, there will be a leftover offset which is deallocated by |
| // `QC.C.MILEAVERET`, otherwise getQCIInterruptStackSize() will be 0. |
| if (StackSize != 0) |
| deallocateStack(MF, MBB, MBBI, DL, StackSize, |
| RVFI->getQCIInterruptStackSize()); |
| |
| // Emit epilogue for shadow call stack. |
| emitSCSEpilogue(MF, MBB, MBBI, DL); |
| |
| // SiFive CLIC needs to swap `sf.mscratchcsw` into `sp` |
| emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL); |
| } |
| |
| StackOffset |
| RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, |
| Register &FrameReg) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Callee-saved registers should be referenced relative to the stack |
| // pointer (positive offset), otherwise use the frame pointer (negative |
| // offset). |
| const auto &CSI = getUnmanagedCSI(MF, MFI.getCalleeSavedInfo()); |
| int MinCSFI = 0; |
| int MaxCSFI = -1; |
| StackOffset Offset; |
| auto StackID = MFI.getStackID(FI); |
| |
| assert((StackID == TargetStackID::Default || |
| StackID == TargetStackID::ScalableVector) && |
| "Unexpected stack ID for the frame object."); |
| if (StackID == TargetStackID::Default) { |
| assert(getOffsetOfLocalArea() == 0 && "LocalAreaOffset is not 0!"); |
| Offset = StackOffset::getFixed(MFI.getObjectOffset(FI) + |
| MFI.getOffsetAdjustment()); |
| } else if (StackID == TargetStackID::ScalableVector) { |
| Offset = StackOffset::getScalable(MFI.getObjectOffset(FI)); |
| } |
| |
| uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF); |
| |
| if (CSI.size()) { |
| MinCSFI = CSI[0].getFrameIdx(); |
| MaxCSFI = CSI[CSI.size() - 1].getFrameIdx(); |
| } |
| |
| if (FI >= MinCSFI && FI <= MaxCSFI) { |
| FrameReg = SPReg; |
| |
| if (FirstSPAdjustAmount) |
| Offset += StackOffset::getFixed(FirstSPAdjustAmount); |
| else |
| Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF)); |
| return Offset; |
| } |
| |
| if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) { |
| // If the stack was realigned, the frame pointer is set in order to allow |
| // SP to be restored, so we need another base register to record the stack |
| // after realignment. |
| // |--------------------------| -- <-- FP |
| // | callee-allocated save | | <----| |
| // | area for register varargs| | | |
| // |--------------------------| | | |
| // | callee-saved registers | | | |
| // |--------------------------| -- | |
| // | realignment (the size of | | | |
| // | this area is not counted | | | |
| // | in MFI.getStackSize()) | | | |
| // |--------------------------| -- |-- MFI.getStackSize() |
| // | RVV alignment padding | | | |
| // | (not counted in | | | |
| // | MFI.getStackSize() but | | | |
| // | counted in | | | |
| // | RVFI.getRVVStackSize()) | | | |
| // |--------------------------| -- | |
| // | RVV objects | | | |
| // | (not counted in | | | |
| // | MFI.getStackSize()) | | | |
| // |--------------------------| -- | |
| // | padding before RVV | | | |
| // | (not counted in | | | |
| // | MFI.getStackSize() or in | | | |
| // | RVFI.getRVVStackSize()) | | | |
| // |--------------------------| -- | |
| // | scalar local variables | | <----' |
| // |--------------------------| -- <-- BP (if var sized objects present) |
| // | VarSize objects | | |
| // |--------------------------| -- <-- SP |
| if (hasBP(MF)) { |
| FrameReg = RISCVABI::getBPReg(); |
| } else { |
| // VarSize objects must be empty in this case! |
| assert(!MFI.hasVarSizedObjects()); |
| FrameReg = SPReg; |
| } |
| } else { |
| FrameReg = RI->getFrameRegister(MF); |
| } |
| |
| if (FrameReg == FPReg) { |
| Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize()); |
| // When using FP to access scalable vector objects, we need to minus |
| // the frame size. |
| // |
| // |--------------------------| -- <-- FP |
| // | callee-allocated save | | |
| // | area for register varargs| | |
| // |--------------------------| | |
| // | callee-saved registers | | |
| // |--------------------------| | MFI.getStackSize() |
| // | scalar local variables | | |
| // |--------------------------| -- (Offset of RVV objects is from here.) |
| // | RVV objects | |
| // |--------------------------| |
| // | VarSize objects | |
| // |--------------------------| <-- SP |
| if (StackID == TargetStackID::ScalableVector) { |
| assert(!RI->hasStackRealignment(MF) && |
| "Can't index across variable sized realign"); |
| // We don't expect any extra RVV alignment padding, as the stack size |
| // and RVV object sections should be correct aligned in their own |
| // right. |
| assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) && |
| "Inconsistent stack layout"); |
| Offset -= StackOffset::getFixed(MFI.getStackSize()); |
| } |
| return Offset; |
| } |
| |
| // This case handles indexing off both SP and BP. |
| // If indexing off SP, there must not be any var sized objects |
| assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects()); |
| |
| // When using SP to access frame objects, we need to add RVV stack size. |
| // |
| // |--------------------------| -- <-- FP |
| // | callee-allocated save | | <----| |
| // | area for register varargs| | | |
| // |--------------------------| | | |
| // | callee-saved registers | | | |
| // |--------------------------| -- | |
| // | RVV alignment padding | | | |
| // | (not counted in | | | |
| // | MFI.getStackSize() but | | | |
| // | counted in | | | |
| // | RVFI.getRVVStackSize()) | | | |
| // |--------------------------| -- | |
| // | RVV objects | | |-- MFI.getStackSize() |
| // | (not counted in | | | |
| // | MFI.getStackSize()) | | | |
| // |--------------------------| -- | |
| // | padding before RVV | | | |
| // | (not counted in | | | |
| // | MFI.getStackSize()) | | | |
| // |--------------------------| -- | |
| // | scalar local variables | | <----' |
| // |--------------------------| -- <-- BP (if var sized objects present) |
| // | VarSize objects | | |
| // |--------------------------| -- <-- SP |
| // |
| // The total amount of padding surrounding RVV objects is described by |
| // RVV->getRVVPadding() and it can be zero. It allows us to align the RVV |
| // objects to the required alignment. |
| if (MFI.getStackID(FI) == TargetStackID::Default) { |
| if (MFI.isFixedObjectIndex(FI)) { |
| assert(!RI->hasStackRealignment(MF) && |
| "Can't index across variable sized realign"); |
| Offset += StackOffset::get(getStackSizeWithRVVPadding(MF), |
| RVFI->getRVVStackSize()); |
| } else { |
| Offset += StackOffset::getFixed(MFI.getStackSize()); |
| } |
| } else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { |
| // Ensure the base of the RVV stack is correctly aligned: add on the |
| // alignment padding. |
| int ScalarLocalVarSize = MFI.getStackSize() - |
| RVFI->getCalleeSavedStackSize() - |
| RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding(); |
| Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize()); |
| } |
| return Offset; |
| } |
| |
| void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF, |
| BitVector &SavedRegs, |
| RegScavenger *RS) const { |
| TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); |
| // Unconditionally spill RA and FP only if the function uses a frame |
| // pointer. |
| if (hasFP(MF)) { |
| SavedRegs.set(RAReg); |
| SavedRegs.set(FPReg); |
| } |
| // Mark BP as used if function has dedicated base pointer. |
| if (hasBP(MF)) |
| SavedRegs.set(RISCVABI::getBPReg()); |
| |
| // When using cm.push/pop we must save X27 if we save X26. |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| if (RVFI->isPushable(MF) && SavedRegs.test(RISCV::X26)) |
| SavedRegs.set(RISCV::X27); |
| |
| // SiFive Preemptible Interrupt Handlers need additional frame entries |
| createSiFivePreemptibleInterruptFrameEntries(MF, *RVFI); |
| } |
| |
| std::pair<int64_t, Align> |
| RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const { |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| // Create a buffer of RVV objects to allocate. |
| SmallVector<int, 8> ObjectsToAllocate; |
| auto pushRVVObjects = [&](int FIBegin, int FIEnd) { |
| for (int I = FIBegin, E = FIEnd; I != E; ++I) { |
| unsigned StackID = MFI.getStackID(I); |
| if (StackID != TargetStackID::ScalableVector) |
| continue; |
| if (MFI.isDeadObjectIndex(I)) |
| continue; |
| |
| ObjectsToAllocate.push_back(I); |
| } |
| }; |
| // First push RVV Callee Saved object, then push RVV stack object |
| std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo(); |
| const auto &RVVCSI = getRVVCalleeSavedInfo(MF, CSI); |
| if (!RVVCSI.empty()) |
| pushRVVObjects(RVVCSI[0].getFrameIdx(), |
| RVVCSI[RVVCSI.size() - 1].getFrameIdx() + 1); |
| pushRVVObjects(0, MFI.getObjectIndexEnd() - RVVCSI.size()); |
| |
| // The minimum alignment is 16 bytes. |
| Align RVVStackAlign(16); |
| const auto &ST = MF.getSubtarget<RISCVSubtarget>(); |
| |
| if (!ST.hasVInstructions()) { |
| assert(ObjectsToAllocate.empty() && |
| "Can't allocate scalable-vector objects without V instructions"); |
| return std::make_pair(0, RVVStackAlign); |
| } |
| |
| // Allocate all RVV locals and spills |
| int64_t Offset = 0; |
| for (int FI : ObjectsToAllocate) { |
| // ObjectSize in bytes. |
| int64_t ObjectSize = MFI.getObjectSize(FI); |
| auto ObjectAlign = |
| std::max(Align(RISCV::RVVBytesPerBlock), MFI.getObjectAlign(FI)); |
| // If the data type is the fractional vector type, reserve one vector |
| // register for it. |
| if (ObjectSize < RISCV::RVVBytesPerBlock) |
| ObjectSize = RISCV::RVVBytesPerBlock; |
| Offset = alignTo(Offset + ObjectSize, ObjectAlign); |
| MFI.setObjectOffset(FI, -Offset); |
| // Update the maximum alignment of the RVV stack section |
| RVVStackAlign = std::max(RVVStackAlign, ObjectAlign); |
| } |
| |
| uint64_t StackSize = Offset; |
| |
| // Ensure the alignment of the RVV stack. Since we want the most-aligned |
| // object right at the bottom (i.e., any padding at the top of the frame), |
| // readjust all RVV objects down by the alignment padding. |
| // Stack size and offsets are multiples of vscale, stack alignment is in |
| // bytes, we can divide stack alignment by minimum vscale to get a maximum |
| // stack alignment multiple of vscale. |
| auto VScale = |
| std::max<uint64_t>(ST.getRealMinVLen() / RISCV::RVVBitsPerBlock, 1); |
| if (auto RVVStackAlignVScale = RVVStackAlign.value() / VScale) { |
| if (auto AlignmentPadding = |
| offsetToAlignment(StackSize, Align(RVVStackAlignVScale))) { |
| StackSize += AlignmentPadding; |
| for (int FI : ObjectsToAllocate) |
| MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding); |
| } |
| } |
| |
| return std::make_pair(StackSize, RVVStackAlign); |
| } |
| |
| static unsigned getScavSlotsNumForRVV(MachineFunction &MF) { |
| // For RVV spill, scalable stack offsets computing requires up to two scratch |
| // registers |
| static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2; |
| |
| // For RVV spill, non-scalable stack offsets computing requires up to one |
| // scratch register. |
| static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1; |
| |
| // ADDI instruction's destination register can be used for computing |
| // offsets. So Scalable stack offsets require up to one scratch register. |
| static constexpr unsigned ScavSlotsADDIScalableObject = 1; |
| |
| static constexpr unsigned MaxScavSlotsNumKnown = |
| std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject, |
| ScavSlotsNumRVVSpillNonScalableObject}); |
| |
| unsigned MaxScavSlotsNum = 0; |
| if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions()) |
| return false; |
| for (const MachineBasicBlock &MBB : MF) |
| for (const MachineInstr &MI : MBB) { |
| bool IsRVVSpill = RISCV::isRVVSpill(MI); |
| for (auto &MO : MI.operands()) { |
| if (!MO.isFI()) |
| continue; |
| bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) == |
| TargetStackID::ScalableVector; |
| if (IsRVVSpill) { |
| MaxScavSlotsNum = std::max( |
| MaxScavSlotsNum, IsScalableVectorID |
| ? ScavSlotsNumRVVSpillScalableObject |
| : ScavSlotsNumRVVSpillNonScalableObject); |
| } else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) { |
| MaxScavSlotsNum = |
| std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject); |
| } |
| } |
| if (MaxScavSlotsNum == MaxScavSlotsNumKnown) |
| return MaxScavSlotsNumKnown; |
| } |
| return MaxScavSlotsNum; |
| } |
| |
| static bool hasRVVFrameObject(const MachineFunction &MF) { |
| // Originally, the function will scan all the stack objects to check whether |
| // if there is any scalable vector object on the stack or not. However, it |
| // causes errors in the register allocator. In issue 53016, it returns false |
| // before RA because there is no RVV stack objects. After RA, it returns true |
| // because there are spilling slots for RVV values during RA. It will not |
| // reserve BP during register allocation and generate BP access in the PEI |
| // pass due to the inconsistent behavior of the function. |
| // |
| // The function is changed to use hasVInstructions() as the return value. It |
| // is not precise, but it can make the register allocation correct. |
| // |
| // FIXME: Find a better way to make the decision or revisit the solution in |
| // D103622. |
| // |
| // Refer to https://github.com/llvm/llvm-project/issues/53016. |
| return MF.getSubtarget<RISCVSubtarget>().hasVInstructions(); |
| } |
| |
| static unsigned estimateFunctionSizeInBytes(const MachineFunction &MF, |
| const RISCVInstrInfo &TII) { |
| unsigned FnSize = 0; |
| for (auto &MBB : MF) { |
| for (auto &MI : MBB) { |
| // Far branches over 20-bit offset will be relaxed in branch relaxation |
| // pass. In the worst case, conditional branches will be relaxed into |
| // the following instruction sequence. Unconditional branches are |
| // relaxed in the same way, with the exception that there is no first |
| // branch instruction. |
| // |
| // foo |
| // bne t5, t6, .rev_cond # `TII->getInstSizeInBytes(MI)` bytes |
| // sd s11, 0(sp) # 4 bytes, or 2 bytes in RVC |
| // jump .restore, s11 # 8 bytes |
| // .rev_cond |
| // bar |
| // j .dest_bb # 4 bytes, or 2 bytes in RVC |
| // .restore: |
| // ld s11, 0(sp) # 4 bytes, or 2 bytes in RVC |
| // .dest: |
| // baz |
| if (MI.isConditionalBranch()) |
| FnSize += TII.getInstSizeInBytes(MI); |
| if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) { |
| if (MF.getSubtarget<RISCVSubtarget>().hasStdExtCOrZca()) |
| FnSize += 2 + 8 + 2 + 2; |
| else |
| FnSize += 4 + 8 + 4 + 4; |
| continue; |
| } |
| |
| FnSize += TII.getInstSizeInBytes(MI); |
| } |
| } |
| return FnSize; |
| } |
| |
| void RISCVFrameLowering::processFunctionBeforeFrameFinalized( |
| MachineFunction &MF, RegScavenger *RS) const { |
| const RISCVRegisterInfo *RegInfo = |
| MF.getSubtarget<RISCVSubtarget>().getRegisterInfo(); |
| const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterClass *RC = &RISCV::GPRRegClass; |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| int64_t RVVStackSize; |
| Align RVVStackAlign; |
| std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF); |
| |
| RVFI->setRVVStackSize(RVVStackSize); |
| RVFI->setRVVStackAlign(RVVStackAlign); |
| |
| if (hasRVVFrameObject(MF)) { |
| // Ensure the entire stack is aligned to at least the RVV requirement: some |
| // scalable-vector object alignments are not considered by the |
| // target-independent code. |
| MFI.ensureMaxAlignment(RVVStackAlign); |
| } |
| |
| unsigned ScavSlotsNum = 0; |
| |
| // estimateStackSize has been observed to under-estimate the final stack |
| // size, so give ourselves wiggle-room by checking for stack size |
| // representable an 11-bit signed field rather than 12-bits. |
| if (!isInt<11>(MFI.estimateStackSize(MF))) |
| ScavSlotsNum = 1; |
| |
| // Far branches over 20-bit offset require a spill slot for scratch register. |
| bool IsLargeFunction = !isInt<20>(estimateFunctionSizeInBytes(MF, *TII)); |
| if (IsLargeFunction) |
| ScavSlotsNum = std::max(ScavSlotsNum, 1u); |
| |
| // RVV loads & stores have no capacity to hold the immediate address offsets |
| // so we must always reserve an emergency spill slot if the MachineFunction |
| // contains any RVV spills. |
| ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF)); |
| |
| for (unsigned I = 0; I < ScavSlotsNum; I++) { |
| int FI = MFI.CreateSpillStackObject(RegInfo->getSpillSize(*RC), |
| RegInfo->getSpillAlign(*RC)); |
| RS->addScavengingFrameIndex(FI); |
| |
| if (IsLargeFunction && RVFI->getBranchRelaxationScratchFrameIndex() == -1) |
| RVFI->setBranchRelaxationScratchFrameIndex(FI); |
| } |
| |
| unsigned Size = RVFI->getReservedSpillsSize(); |
| for (const auto &Info : MFI.getCalleeSavedInfo()) { |
| int FrameIdx = Info.getFrameIdx(); |
| if (FrameIdx < 0 || MFI.getStackID(FrameIdx) != TargetStackID::Default) |
| continue; |
| |
| Size += MFI.getObjectSize(FrameIdx); |
| } |
| RVFI->setCalleeSavedStackSize(Size); |
| } |
| |
| // Not preserve stack space within prologue for outgoing variables when the |
| // function contains variable size objects or there are vector objects accessed |
| // by the frame pointer. |
| // Let eliminateCallFramePseudoInstr preserve stack space for it. |
| bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { |
| return !MF.getFrameInfo().hasVarSizedObjects() && |
| !(hasFP(MF) && hasRVVFrameObject(MF)); |
| } |
| |
| // Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions. |
| MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr( |
| MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| DebugLoc DL = MI->getDebugLoc(); |
| |
| if (!hasReservedCallFrame(MF)) { |
| // If space has not been reserved for a call frame, ADJCALLSTACKDOWN and |
| // ADJCALLSTACKUP must be converted to instructions manipulating the stack |
| // pointer. This is necessary when there is a variable length stack |
| // allocation (e.g. alloca), which means it's not possible to allocate |
| // space for outgoing arguments from within the function prologue. |
| int64_t Amount = MI->getOperand(0).getImm(); |
| |
| if (Amount != 0) { |
| // Ensure the stack remains aligned after adjustment. |
| Amount = alignSPAdjust(Amount); |
| |
| if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN) |
| Amount = -Amount; |
| |
| const RISCVTargetLowering *TLI = |
| MF.getSubtarget<RISCVSubtarget>().getTargetLowering(); |
| int64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign()); |
| if (TLI->hasInlineStackProbe(MF) && -Amount >= ProbeSize) { |
| // When stack probing is enabled, the decrement of SP may need to be |
| // probed. We can handle both the decrement and the probing in |
| // allocateStack. |
| bool DynAllocation = |
| MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation(); |
| allocateStack(MBB, MI, MF, -Amount, -Amount, !hasFP(MF), |
| /*NeedProbe=*/true, ProbeSize, DynAllocation); |
| } else { |
| const RISCVRegisterInfo &RI = *STI.getRegisterInfo(); |
| RI.adjustReg(MBB, MI, DL, SPReg, SPReg, StackOffset::getFixed(Amount), |
| MachineInstr::NoFlags, getStackAlign()); |
| } |
| } |
| } |
| |
| return MBB.erase(MI); |
| } |
| |
| // We would like to split the SP adjustment to reduce prologue/epilogue |
| // as following instructions. In this way, the offset of the callee saved |
| // register could fit in a single store. Supposed that the first sp adjust |
| // amount is 2032. |
| // add sp,sp,-2032 |
| // sw ra,2028(sp) |
| // sw s0,2024(sp) |
| // sw s1,2020(sp) |
| // sw s3,2012(sp) |
| // sw s4,2008(sp) |
| // add sp,sp,-64 |
| uint64_t |
| RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const { |
| const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
| uint64_t StackSize = getStackSizeWithRVVPadding(MF); |
| |
| // Disable SplitSPAdjust if save-restore libcall, push/pop or QCI interrupts |
| // are used. The callee-saved registers will be pushed by the save-restore |
| // libcalls, so we don't have to split the SP adjustment in this case. |
| if (RVFI->getReservedSpillsSize()) |
| return 0; |
| |
| // Return the FirstSPAdjustAmount if the StackSize can not fit in a signed |
| // 12-bit and there exists a callee-saved register needing to be pushed. |
| if (!isInt<12>(StackSize) && (CSI.size() > 0)) { |
| // FirstSPAdjustAmount is chosen at most as (2048 - StackAlign) because |
| // 2048 will cause sp = sp + 2048 in the epilogue to be split into multiple |
| // instructions. Offsets smaller than 2048 can fit in a single load/store |
| // instruction, and we have to stick with the stack alignment. 2048 has |
| // 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for |
| // RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment. |
| const uint64_t StackAlign = getStackAlign().value(); |
| |
| // Amount of (2048 - StackAlign) will prevent callee saved and restored |
| // instructions be compressed, so try to adjust the amount to the largest |
| // offset that stack compression instructions accept when target supports |
| // compression instructions. |
| if (STI.hasStdExtCOrZca()) { |
| // The compression extensions may support the following instructions: |
| // riscv32: c.lwsp rd, offset[7:2] => 2^(6 + 2) |
| // c.swsp rs2, offset[7:2] => 2^(6 + 2) |
| // c.flwsp rd, offset[7:2] => 2^(6 + 2) |
| // c.fswsp rs2, offset[7:2] => 2^(6 + 2) |
| // riscv64: c.ldsp rd, offset[8:3] => 2^(6 + 3) |
| // c.sdsp rs2, offset[8:3] => 2^(6 + 3) |
| // c.fldsp rd, offset[8:3] => 2^(6 + 3) |
| // c.fsdsp rs2, offset[8:3] => 2^(6 + 3) |
| const uint64_t RVCompressLen = STI.getXLen() * 8; |
| // Compared with amount (2048 - StackAlign), StackSize needs to |
| // satisfy the following conditions to avoid using more instructions |
| // to adjust the sp after adjusting the amount, such as |
| // StackSize meets the condition (StackSize <= 2048 + RVCompressLen), |
| // case1: Amount is 2048 - StackAlign: use addi + addi to adjust sp. |
| // case2: Amount is RVCompressLen: use addi + addi to adjust sp. |
| auto CanCompress = [&](uint64_t CompressLen) -> bool { |
| if (StackSize <= 2047 + CompressLen || |
| (StackSize > 2048 * 2 - StackAlign && |
| StackSize <= 2047 * 2 + CompressLen) || |
| StackSize > 2048 * 3 - StackAlign) |
| return true; |
| |
| return false; |
| }; |
| // In the epilogue, addi sp, sp, 496 is used to recover the sp and it |
| // can be compressed(C.ADDI16SP, offset can be [-512, 496]), but |
| // addi sp, sp, 512 can not be compressed. So try to use 496 first. |
| const uint64_t ADDI16SPCompressLen = 496; |
| if (STI.is64Bit() && CanCompress(ADDI16SPCompressLen)) |
| return ADDI16SPCompressLen; |
| if (CanCompress(RVCompressLen)) |
| return RVCompressLen; |
| } |
| return 2048 - StackAlign; |
| } |
| return 0; |
| } |
| |
| bool RISCVFrameLowering::assignCalleeSavedSpillSlots( |
| MachineFunction &MF, const TargetRegisterInfo *TRI, |
| std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex, |
| unsigned &MaxCSFrameIndex) const { |
| auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Preemptible Interrupts have two additional Callee-save Frame Indexes, |
| // not tracked by `CSI`. |
| if (RVFI->isSiFivePreemptibleInterrupt(MF)) { |
| for (int I = 0; I < 2; ++I) { |
| int FI = RVFI->getInterruptCSRFrameIndex(I); |
| MinCSFrameIndex = std::min<unsigned>(MinCSFrameIndex, FI); |
| MaxCSFrameIndex = std::max<unsigned>(MaxCSFrameIndex, FI); |
| } |
| } |
| |
| // Early exit if no callee saved registers are modified! |
| if (CSI.empty()) |
| return true; |
| |
| if (RVFI->useQCIInterrupt(MF)) { |
| RVFI->setQCIInterruptStackSize(QCIInterruptPushAmount); |
| } |
| |
| if (RVFI->isPushable(MF)) { |
| // Determine how many GPRs we need to push and save it to RVFI. |
| unsigned PushedRegNum = getNumPushPopRegs(CSI); |
| |
| // `QC.C.MIENTER(.NEST)` will save `ra` and `s0`, so we should only push if |
| // we want to push more than 2 registers. Otherwise, we should push if we |
| // want to push more than 0 registers. |
| unsigned OnlyPushIfMoreThan = RVFI->useQCIInterrupt(MF) ? 2 : 0; |
| if (PushedRegNum > OnlyPushIfMoreThan) { |
| RVFI->setRVPushRegs(PushedRegNum); |
| RVFI->setRVPushStackSize(alignTo((STI.getXLen() / 8) * PushedRegNum, 16)); |
| } |
| } |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); |
| |
| for (auto &CS : CSI) { |
| MCRegister Reg = CS.getReg(); |
| const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); |
| unsigned Size = RegInfo->getSpillSize(*RC); |
| |
| if (RVFI->useQCIInterrupt(MF)) { |
| const auto *FFI = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) { |
| return P.first == CS.getReg(); |
| }); |
| if (FFI != std::end(FixedCSRFIQCIInterruptMap)) { |
| int64_t Offset = FFI->second * (int64_t)Size; |
| |
| int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset); |
| assert(FrameIdx < 0); |
| CS.setFrameIdx(FrameIdx); |
| continue; |
| } |
| } |
| |
| if (RVFI->useSaveRestoreLibCalls(MF) || RVFI->isPushable(MF)) { |
| const auto *FII = llvm::find_if( |
| FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); }); |
| unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII); |
| |
| if (FII != std::end(FixedCSRFIMap)) { |
| int64_t Offset; |
| if (RVFI->getPushPopKind(MF) == |
| RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp) |
| Offset = -int64_t(RVFI->getRVPushRegs() - RegNum) * Size; |
| else |
| Offset = -int64_t(RegNum + 1) * Size; |
| |
| if (RVFI->useQCIInterrupt(MF)) |
| Offset -= QCIInterruptPushAmount; |
| |
| int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset); |
| assert(FrameIdx < 0); |
| CS.setFrameIdx(FrameIdx); |
| continue; |
| } |
| } |
| |
| // Not a fixed slot. |
| Align Alignment = RegInfo->getSpillAlign(*RC); |
| // We may not be able to satisfy the desired alignment specification of |
| // the TargetRegisterClass if the stack alignment is smaller. Use the |
| // min. |
| Alignment = std::min(Alignment, getStackAlign()); |
| int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); |
| if ((unsigned)FrameIdx < MinCSFrameIndex) |
| MinCSFrameIndex = FrameIdx; |
| if ((unsigned)FrameIdx > MaxCSFrameIndex) |
| MaxCSFrameIndex = FrameIdx; |
| CS.setFrameIdx(FrameIdx); |
| if (RISCVRegisterInfo::isRVVRegClass(RC)) |
| MFI.setStackID(FrameIdx, TargetStackID::ScalableVector); |
| } |
| |
| if (RVFI->useQCIInterrupt(MF)) { |
| // Allocate a fixed object that covers the entire QCI stack allocation, |
| // because there are gaps which are reserved for future use. |
| MFI.CreateFixedSpillStackObject( |
| QCIInterruptPushAmount, -static_cast<int64_t>(QCIInterruptPushAmount)); |
| } |
| |
| if (RVFI->isPushable(MF)) { |
| int64_t QCIOffset = RVFI->useQCIInterrupt(MF) ? QCIInterruptPushAmount : 0; |
| // Allocate a fixed object that covers the full push. |
| if (int64_t PushSize = RVFI->getRVPushStackSize()) |
| MFI.CreateFixedSpillStackObject(PushSize, -PushSize - QCIOffset); |
| } else if (int LibCallRegs = getLibCallID(MF, CSI) + 1) { |
| int64_t LibCallFrameSize = |
| alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign()); |
| MFI.CreateFixedSpillStackObject(LibCallFrameSize, -LibCallFrameSize); |
| } |
| |
| return true; |
| } |
| |
| bool RISCVFrameLowering::spillCalleeSavedRegisters( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { |
| if (CSI.empty()) |
| return true; |
| |
| MachineFunction *MF = MBB.getParent(); |
| const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); |
| DebugLoc DL; |
| if (MI != MBB.end() && !MI->isDebugInstr()) |
| DL = MI->getDebugLoc(); |
| |
| RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| if (RVFI->useQCIInterrupt(*MF)) { |
| // Emit QC.C.MIENTER(.NEST) |
| BuildMI( |
| MBB, MI, DL, |
| TII.get(RVFI->getInterruptStackKind(*MF) == |
| RISCVMachineFunctionInfo::InterruptStackKind::QCINest |
| ? RISCV::QC_C_MIENTER_NEST |
| : RISCV::QC_C_MIENTER)) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| for (auto [Reg, _Offset] : FixedCSRFIQCIInterruptMap) |
| MBB.addLiveIn(Reg); |
| } |
| |
| if (RVFI->isPushable(*MF)) { |
| // Emit CM.PUSH with base StackAdj & evaluate Push stack |
| unsigned PushedRegNum = RVFI->getRVPushRegs(); |
| if (PushedRegNum > 0) { |
| // Use encoded number to represent registers to spill. |
| unsigned Opcode = getPushOpcode( |
| RVFI->getPushPopKind(*MF), hasFP(*MF) && !RVFI->useQCIInterrupt(*MF)); |
| unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum); |
| MachineInstrBuilder PushBuilder = |
| BuildMI(MBB, MI, DL, TII.get(Opcode)) |
| .setMIFlag(MachineInstr::FrameSetup); |
| PushBuilder.addImm(RegEnc); |
| PushBuilder.addImm(0); |
| |
| for (unsigned i = 0; i < PushedRegNum; i++) |
| PushBuilder.addUse(FixedCSRFIMap[i], RegState::Implicit); |
| } |
| } else if (const char *SpillLibCall = getSpillLibCallName(*MF, CSI)) { |
| // Add spill libcall via non-callee-saved register t0. |
| BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5) |
| .addExternalSymbol(SpillLibCall, RISCVII::MO_CALL) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // Add registers spilled in libcall as liveins. |
| for (auto &CS : CSI) |
| MBB.addLiveIn(CS.getReg()); |
| } |
| |
| // Manually spill values not spilled by libcall & Push/Pop. |
| const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI); |
| const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI); |
| |
| auto storeRegsToStackSlots = [&](decltype(UnmanagedCSI) CSInfo) { |
| for (auto &CS : CSInfo) { |
| // Insert the spill to the stack frame. |
| MCRegister Reg = CS.getReg(); |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); |
| TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg), |
| CS.getFrameIdx(), RC, TRI, Register(), |
| MachineInstr::FrameSetup); |
| } |
| }; |
| storeRegsToStackSlots(UnmanagedCSI); |
| storeRegsToStackSlots(RVVCSI); |
| |
| return true; |
| } |
| |
| static unsigned getCalleeSavedRVVNumRegs(const Register &BaseReg) { |
| return RISCV::VRRegClass.contains(BaseReg) ? 1 |
| : RISCV::VRM2RegClass.contains(BaseReg) ? 2 |
| : RISCV::VRM4RegClass.contains(BaseReg) ? 4 |
| : 8; |
| } |
| |
| static MCRegister getRVVBaseRegister(const RISCVRegisterInfo &TRI, |
| const Register &Reg) { |
| MCRegister BaseReg = TRI.getSubReg(Reg, RISCV::sub_vrm1_0); |
| // If it's not a grouped vector register, it doesn't have subregister, so |
| // the base register is just itself. |
| if (BaseReg == RISCV::NoRegister) |
| BaseReg = Reg; |
| return BaseReg; |
| } |
| |
| void RISCVFrameLowering::emitCalleeSavedRVVPrologCFI( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, bool HasFP) const { |
| MachineFunction *MF = MBB.getParent(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| const RISCVRegisterInfo &TRI = *STI.getRegisterInfo(); |
| |
| const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo()); |
| if (RVVCSI.empty()) |
| return; |
| |
| uint64_t FixedSize = getStackSizeWithRVVPadding(*MF); |
| if (!HasFP) { |
| uint64_t ScalarLocalVarSize = |
| MFI.getStackSize() - RVFI->getCalleeSavedStackSize() - |
| RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding(); |
| FixedSize -= ScalarLocalVarSize; |
| } |
| |
| CFIInstBuilder CFIBuilder(MBB, MI, MachineInstr::FrameSetup); |
| for (auto &CS : RVVCSI) { |
| // Insert the spill to the stack frame. |
| int FI = CS.getFrameIdx(); |
| MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg()); |
| unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg()); |
| for (unsigned i = 0; i < NumRegs; ++i) { |
| CFIBuilder.insertCFIInst(createDefCFAOffset( |
| TRI, BaseReg + i, -FixedSize, MFI.getObjectOffset(FI) / 8 + i)); |
| } |
| } |
| } |
| |
| void RISCVFrameLowering::emitCalleeSavedRVVEpilogCFI( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { |
| MachineFunction *MF = MBB.getParent(); |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| const RISCVRegisterInfo &TRI = *STI.getRegisterInfo(); |
| |
| CFIInstBuilder CFIHelper(MBB, MI, MachineInstr::FrameDestroy); |
| const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo()); |
| for (auto &CS : RVVCSI) { |
| MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg()); |
| unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg()); |
| for (unsigned i = 0; i < NumRegs; ++i) |
| CFIHelper.buildRestore(BaseReg + i); |
| } |
| } |
| |
| bool RISCVFrameLowering::restoreCalleeSavedRegisters( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { |
| if (CSI.empty()) |
| return true; |
| |
| MachineFunction *MF = MBB.getParent(); |
| const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); |
| DebugLoc DL; |
| if (MI != MBB.end() && !MI->isDebugInstr()) |
| DL = MI->getDebugLoc(); |
| |
| // Manually restore values not restored by libcall & Push/Pop. |
| // Reverse the restore order in epilog. In addition, the return |
| // address will be restored first in the epilogue. It increases |
| // the opportunity to avoid the load-to-use data hazard between |
| // loading RA and return by RA. loadRegFromStackSlot can insert |
| // multiple instructions. |
| const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI); |
| const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI); |
| |
| auto loadRegFromStackSlot = [&](decltype(UnmanagedCSI) CSInfo) { |
| for (auto &CS : CSInfo) { |
| MCRegister Reg = CS.getReg(); |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); |
| TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI, |
| Register(), MachineInstr::FrameDestroy); |
| assert(MI != MBB.begin() && |
| "loadRegFromStackSlot didn't insert any code!"); |
| } |
| }; |
| loadRegFromStackSlot(RVVCSI); |
| loadRegFromStackSlot(UnmanagedCSI); |
| |
| RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| if (RVFI->useQCIInterrupt(*MF)) { |
| // Don't emit anything here because restoration is handled by |
| // QC.C.MILEAVERET which we already inserted to return. |
| assert(MI->getOpcode() == RISCV::QC_C_MILEAVERET && |
| "Unexpected QCI Interrupt Return Instruction"); |
| } |
| |
| if (RVFI->isPushable(*MF)) { |
| unsigned PushedRegNum = RVFI->getRVPushRegs(); |
| if (PushedRegNum > 0) { |
| unsigned Opcode = getPopOpcode(RVFI->getPushPopKind(*MF)); |
| unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum); |
| MachineInstrBuilder PopBuilder = |
| BuildMI(MBB, MI, DL, TII.get(Opcode)) |
| .setMIFlag(MachineInstr::FrameDestroy); |
| // Use encoded number to represent registers to restore. |
| PopBuilder.addImm(RegEnc); |
| PopBuilder.addImm(0); |
| |
| for (unsigned i = 0; i < RVFI->getRVPushRegs(); i++) |
| PopBuilder.addDef(FixedCSRFIMap[i], RegState::ImplicitDefine); |
| } |
| } else { |
| const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI); |
| if (RestoreLibCall) { |
| // Add restore libcall via tail call. |
| MachineBasicBlock::iterator NewMI = |
| BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL)) |
| .addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL) |
| .setMIFlag(MachineInstr::FrameDestroy); |
| |
| // Remove trailing returns, since the terminator is now a tail call to the |
| // restore function. |
| if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) { |
| NewMI->copyImplicitOps(*MF, *MI); |
| MI->eraseFromParent(); |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { |
| // Keep the conventional code flow when not optimizing. |
| if (MF.getFunction().hasOptNone()) |
| return false; |
| |
| return true; |
| } |
| |
| bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { |
| MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); |
| const MachineFunction *MF = MBB.getParent(); |
| const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| |
| // Make sure VTYPE and VL are not live-in since we will use vsetvli in the |
| // prologue to get the VLEN, and that will clobber these registers. |
| // |
| // We may do also check the stack contains objects with scalable vector type, |
| // but this will require iterating over all the stack objects, but this may |
| // not worth since the situation is rare, we could do further check in future |
| // if we find it is necessary. |
| if (STI.preferVsetvliOverReadVLENB() && |
| (MBB.isLiveIn(RISCV::VTYPE) || MBB.isLiveIn(RISCV::VL))) |
| return false; |
| |
| if (!RVFI->useSaveRestoreLibCalls(*MF)) |
| return true; |
| |
| // Inserting a call to a __riscv_save libcall requires the use of the register |
| // t0 (X5) to hold the return address. Therefore if this register is already |
| // used we can't insert the call. |
| |
| RegScavenger RS; |
| RS.enterBasicBlock(*TmpMBB); |
| return !RS.isRegUsed(RISCV::X5); |
| } |
| |
| bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { |
| const MachineFunction *MF = MBB.getParent(); |
| MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); |
| const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>(); |
| |
| // We do not want QC.C.MILEAVERET to be subject to shrink-wrapping - it must |
| // come in the final block of its function as it both pops and returns. |
| if (RVFI->useQCIInterrupt(*MF)) |
| return MBB.succ_empty(); |
| |
| if (!RVFI->useSaveRestoreLibCalls(*MF)) |
| return true; |
| |
| // Using the __riscv_restore libcalls to restore CSRs requires a tail call. |
| // This means if we still need to continue executing code within this function |
| // the restore cannot take place in this basic block. |
| |
| if (MBB.succ_size() > 1) |
| return false; |
| |
| MachineBasicBlock *SuccMBB = |
| MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin(); |
| |
| // Doing a tail call should be safe if there are no successors, because either |
| // we have a returning block or the end of the block is unreachable, so the |
| // restore will be eliminated regardless. |
| if (!SuccMBB) |
| return true; |
| |
| // The successor can only contain a return, since we would effectively be |
| // replacing the successor with our own tail return at the end of our block. |
| return SuccMBB->isReturnBlock() && SuccMBB->size() == 1; |
| } |
| |
| bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const { |
| switch (ID) { |
| case TargetStackID::Default: |
| case TargetStackID::ScalableVector: |
| return true; |
| case TargetStackID::NoAlloc: |
| case TargetStackID::SGPRSpill: |
| case TargetStackID::WasmLocal: |
| return false; |
| } |
| llvm_unreachable("Invalid TargetStackID::Value"); |
| } |
| |
| TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const { |
| return TargetStackID::ScalableVector; |
| } |
| |
| // Synthesize the probe loop. |
| static void emitStackProbeInline(MachineBasicBlock::iterator MBBI, DebugLoc DL, |
| Register TargetReg, bool IsRVV) { |
| assert(TargetReg != RISCV::X2 && "New top of stack cannot already be in SP"); |
| |
| MachineBasicBlock &MBB = *MBBI->getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| |
| auto &Subtarget = MF.getSubtarget<RISCVSubtarget>(); |
| const RISCVInstrInfo *TII = Subtarget.getInstrInfo(); |
| bool IsRV64 = Subtarget.is64Bit(); |
| Align StackAlign = Subtarget.getFrameLowering()->getStackAlign(); |
| const RISCVTargetLowering *TLI = Subtarget.getTargetLowering(); |
| uint64_t ProbeSize = TLI->getStackProbeSize(MF, StackAlign); |
| |
| MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); |
| MachineBasicBlock *LoopTestMBB = |
| MF.CreateMachineBasicBlock(MBB.getBasicBlock()); |
| MF.insert(MBBInsertPoint, LoopTestMBB); |
| MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); |
| MF.insert(MBBInsertPoint, ExitMBB); |
| MachineInstr::MIFlag Flags = MachineInstr::FrameSetup; |
| Register ScratchReg = RISCV::X7; |
| |
| // ScratchReg = ProbeSize |
| TII->movImm(MBB, MBBI, DL, ScratchReg, ProbeSize, Flags); |
| |
| // LoopTest: |
| // SUB SP, SP, ProbeSize |
| BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), SPReg) |
| .addReg(SPReg) |
| .addReg(ScratchReg) |
| .setMIFlags(Flags); |
| |
| // s[d|w] zero, 0(sp) |
| BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, |
| TII->get(IsRV64 ? RISCV::SD : RISCV::SW)) |
| .addReg(RISCV::X0) |
| .addReg(SPReg) |
| .addImm(0) |
| .setMIFlags(Flags); |
| |
| if (IsRVV) { |
| // SUB TargetReg, TargetReg, ProbeSize |
| BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), |
| TargetReg) |
| .addReg(TargetReg) |
| .addReg(ScratchReg) |
| .setMIFlags(Flags); |
| |
| // BGE TargetReg, ProbeSize, LoopTest |
| BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BGE)) |
| .addReg(TargetReg) |
| .addReg(ScratchReg) |
| .addMBB(LoopTestMBB) |
| .setMIFlags(Flags); |
| |
| } else { |
| // BNE SP, TargetReg, LoopTest |
| BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BNE)) |
| .addReg(SPReg) |
| .addReg(TargetReg) |
| .addMBB(LoopTestMBB) |
| .setMIFlags(Flags); |
| } |
| |
| ExitMBB->splice(ExitMBB->end(), &MBB, std::next(MBBI), MBB.end()); |
| ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); |
| |
| LoopTestMBB->addSuccessor(ExitMBB); |
| LoopTestMBB->addSuccessor(LoopTestMBB); |
| MBB.addSuccessor(LoopTestMBB); |
| // Update liveins. |
| fullyRecomputeLiveIns({ExitMBB, LoopTestMBB}); |
| } |
| |
| void RISCVFrameLowering::inlineStackProbe(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| // Get the instructions that need to be replaced. We emit at most two of |
| // these. Remember them in order to avoid complications coming from the need |
| // to traverse the block while potentially creating more blocks. |
| SmallVector<MachineInstr *, 4> ToReplace; |
| for (MachineInstr &MI : MBB) { |
| unsigned Opc = MI.getOpcode(); |
| if (Opc == RISCV::PROBED_STACKALLOC || |
| Opc == RISCV::PROBED_STACKALLOC_RVV) { |
| ToReplace.push_back(&MI); |
| } |
| } |
| |
| for (MachineInstr *MI : ToReplace) { |
| if (MI->getOpcode() == RISCV::PROBED_STACKALLOC || |
| MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV) { |
| MachineBasicBlock::iterator MBBI = MI->getIterator(); |
| DebugLoc DL = MBB.findDebugLoc(MBBI); |
| Register TargetReg = MI->getOperand(1).getReg(); |
| emitStackProbeInline(MBBI, DL, TargetReg, |
| (MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV)); |
| MBBI->eraseFromParent(); |
| } |
| } |
| } |