|  | //===- InferAddressSpace.cpp - --------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // CUDA C/C++ includes memory space designation as variable type qualifers (such | 
|  | // as __global__ and __shared__). Knowing the space of a memory access allows | 
|  | // CUDA compilers to emit faster PTX loads and stores. For example, a load from | 
|  | // shared memory can be translated to `ld.shared` which is roughly 10% faster | 
|  | // than a generic `ld` on an NVIDIA Tesla K40c. | 
|  | // | 
|  | // Unfortunately, type qualifiers only apply to variable declarations, so CUDA | 
|  | // compilers must infer the memory space of an address expression from | 
|  | // type-qualified variables. | 
|  | // | 
|  | // LLVM IR uses non-zero (so-called) specific address spaces to represent memory | 
|  | // spaces (e.g. addrspace(3) means shared memory). The Clang frontend | 
|  | // places only type-qualified variables in specific address spaces, and then | 
|  | // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) | 
|  | // (so-called the generic address space) for other instructions to use. | 
|  | // | 
|  | // For example, the Clang translates the following CUDA code | 
|  | //   __shared__ float a[10]; | 
|  | //   float v = a[i]; | 
|  | // to | 
|  | //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* | 
|  | //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i | 
|  | //   %v = load float, float* %1 ; emits ld.f32 | 
|  | // @a is in addrspace(3) since it's type-qualified, but its use from %1 is | 
|  | // redirected to %0 (the generic version of @a). | 
|  | // | 
|  | // The optimization implemented in this file propagates specific address spaces | 
|  | // from type-qualified variable declarations to its users. For example, it | 
|  | // optimizes the above IR to | 
|  | //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i | 
|  | //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32 | 
|  | // propagating the addrspace(3) from @a to %1. As the result, the NVPTX | 
|  | // codegen is able to emit ld.shared.f32 for %v. | 
|  | // | 
|  | // Address space inference works in two steps. First, it uses a data-flow | 
|  | // analysis to infer as many generic pointers as possible to point to only one | 
|  | // specific address space. In the above example, it can prove that %1 only | 
|  | // points to addrspace(3). This algorithm was published in | 
|  | //   CUDA: Compiling and optimizing for a GPU platform | 
|  | //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang | 
|  | //   ICCS 2012 | 
|  | // | 
|  | // Then, address space inference replaces all refinable generic pointers with | 
|  | // equivalent specific pointers. | 
|  | // | 
|  | // The major challenge of implementing this optimization is handling PHINodes, | 
|  | // which may create loops in the data flow graph. This brings two complications. | 
|  | // | 
|  | // First, the data flow analysis in Step 1 needs to be circular. For example, | 
|  | //     %generic.input = addrspacecast float addrspace(3)* %input to float* | 
|  | //   loop: | 
|  | //     %y = phi [ %generic.input, %y2 ] | 
|  | //     %y2 = getelementptr %y, 1 | 
|  | //     %v = load %y2 | 
|  | //     br ..., label %loop, ... | 
|  | // proving %y specific requires proving both %generic.input and %y2 specific, | 
|  | // but proving %y2 specific circles back to %y. To address this complication, | 
|  | // the data flow analysis operates on a lattice: | 
|  | //   uninitialized > specific address spaces > generic. | 
|  | // All address expressions (our implementation only considers phi, bitcast, | 
|  | // addrspacecast, and getelementptr) start with the uninitialized address space. | 
|  | // The monotone transfer function moves the address space of a pointer down a | 
|  | // lattice path from uninitialized to specific and then to generic. A join | 
|  | // operation of two different specific address spaces pushes the expression down | 
|  | // to the generic address space. The analysis completes once it reaches a fixed | 
|  | // point. | 
|  | // | 
|  | // Second, IR rewriting in Step 2 also needs to be circular. For example, | 
|  | // converting %y to addrspace(3) requires the compiler to know the converted | 
|  | // %y2, but converting %y2 needs the converted %y. To address this complication, | 
|  | // we break these cycles using "poison" placeholders. When converting an | 
|  | // instruction `I` to a new address space, if its operand `Op` is not converted | 
|  | // yet, we let `I` temporarily use `poison` and fix all the uses later. | 
|  | // For instance, our algorithm first converts %y to | 
|  | //   %y' = phi float addrspace(3)* [ %input, poison ] | 
|  | // Then, it converts %y2 to | 
|  | //   %y2' = getelementptr %y', 1 | 
|  | // Finally, it fixes the poison in %y' so that | 
|  | //   %y' = phi float addrspace(3)* [ %input, %y2' ] | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/InferAddressSpaces.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "infer-address-spaces" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( | 
|  | "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, | 
|  | cl::desc("The default address space is assumed as the flat address space. " | 
|  | "This is mainly for test purpose.")); | 
|  |  | 
|  | static const unsigned UninitializedAddressSpace = | 
|  | std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; | 
|  | // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on | 
|  | // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new | 
|  | // addrspace is inferred on the *use* of a pointer. This map is introduced to | 
|  | // infer addrspace from the addrspace predicate assumption built from assume | 
|  | // intrinsic. In that scenario, only specific uses (under valid assumption | 
|  | // context) could be inferred with a new addrspace. | 
|  | using PredicatedAddrSpaceMapTy = | 
|  | DenseMap<std::pair<const Value *, const Value *>, unsigned>; | 
|  | using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; | 
|  |  | 
|  | class InferAddressSpaces : public FunctionPass { | 
|  | unsigned FlatAddrSpace = 0; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | InferAddressSpaces() | 
|  | : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) { | 
|  | initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) { | 
|  | initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  | }; | 
|  |  | 
|  | class InferAddressSpacesImpl { | 
|  | AssumptionCache &AC; | 
|  | Function *F = nullptr; | 
|  | const DominatorTree *DT = nullptr; | 
|  | const TargetTransformInfo *TTI = nullptr; | 
|  | const DataLayout *DL = nullptr; | 
|  |  | 
|  | /// Target specific address space which uses of should be replaced if | 
|  | /// possible. | 
|  | unsigned FlatAddrSpace = 0; | 
|  |  | 
|  | // Try to update the address space of V. If V is updated, returns true and | 
|  | // false otherwise. | 
|  | bool updateAddressSpace(const Value &V, | 
|  | ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | PredicatedAddrSpaceMapTy &PredicatedAS) const; | 
|  |  | 
|  | // Tries to infer the specific address space of each address expression in | 
|  | // Postorder. | 
|  | void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, | 
|  | ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | PredicatedAddrSpaceMapTy &PredicatedAS) const; | 
|  |  | 
|  | bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; | 
|  |  | 
|  | Value *cloneInstructionWithNewAddressSpace( | 
|  | Instruction *I, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS, | 
|  | SmallVectorImpl<const Use *> *PoisonUsesToFix) const; | 
|  |  | 
|  | void performPointerReplacement( | 
|  | Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<Instruction *> &DeadInstructions) const; | 
|  |  | 
|  | // Changes the flat address expressions in function F to point to specific | 
|  | // address spaces if InferredAddrSpace says so. Postorder is the postorder of | 
|  | // all flat expressions in the use-def graph of function F. | 
|  | bool rewriteWithNewAddressSpaces( | 
|  | ArrayRef<WeakTrackingVH> Postorder, | 
|  | const ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS) const; | 
|  |  | 
|  | void appendsFlatAddressExpressionToPostorderStack( | 
|  | Value *V, PostorderStackTy &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const; | 
|  |  | 
|  | bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, | 
|  | Value *NewV) const; | 
|  | void collectRewritableIntrinsicOperands(IntrinsicInst *II, | 
|  | PostorderStackTy &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const; | 
|  |  | 
|  | std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; | 
|  |  | 
|  | Value *cloneValueWithNewAddressSpace( | 
|  | Value *V, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS, | 
|  | SmallVectorImpl<const Use *> *PoisonUsesToFix) const; | 
|  | unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; | 
|  |  | 
|  | unsigned getPredicatedAddrSpace(const Value &PtrV, | 
|  | const Value *UserCtx) const; | 
|  |  | 
|  | public: | 
|  | InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, | 
|  | const TargetTransformInfo *TTI, unsigned FlatAddrSpace) | 
|  | : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} | 
|  | bool run(Function &F); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char InferAddressSpaces::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", | 
|  | false, false) | 
|  |  | 
|  | static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { | 
|  | assert(Ty->isPtrOrPtrVectorTy()); | 
|  | PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); | 
|  | return Ty->getWithNewType(NPT); | 
|  | } | 
|  |  | 
|  | // Check whether that's no-op pointer bicast using a pair of | 
|  | // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over | 
|  | // different address spaces. | 
|  | static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, | 
|  | const TargetTransformInfo *TTI) { | 
|  | assert(I2P->getOpcode() == Instruction::IntToPtr); | 
|  | auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); | 
|  | if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) | 
|  | return false; | 
|  | // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a | 
|  | // no-op cast. Besides checking both of them are no-op casts, as the | 
|  | // reinterpreted pointer may be used in other pointer arithmetic, we also | 
|  | // need to double-check that through the target-specific hook. That ensures | 
|  | // the underlying target also agrees that's a no-op address space cast and | 
|  | // pointer bits are preserved. | 
|  | // The current IR spec doesn't have clear rules on address space casts, | 
|  | // especially a clear definition for pointer bits in non-default address | 
|  | // spaces. It would be undefined if that pointer is dereferenced after an | 
|  | // invalid reinterpret cast. Also, due to the unclearness for the meaning of | 
|  | // bits in non-default address spaces in the current spec, the pointer | 
|  | // arithmetic may also be undefined after invalid pointer reinterpret cast. | 
|  | // However, as we confirm through the target hooks that it's a no-op | 
|  | // addrspacecast, it doesn't matter since the bits should be the same. | 
|  | unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); | 
|  | unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); | 
|  | return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), | 
|  | I2P->getOperand(0)->getType(), I2P->getType(), | 
|  | DL) && | 
|  | CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), | 
|  | P2I->getOperand(0)->getType(), P2I->getType(), | 
|  | DL) && | 
|  | (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); | 
|  | } | 
|  |  | 
|  | // Returns true if V is an address expression. | 
|  | // TODO: Currently, we consider only phi, bitcast, addrspacecast, and | 
|  | // getelementptr operators. | 
|  | static bool isAddressExpression(const Value &V, const DataLayout &DL, | 
|  | const TargetTransformInfo *TTI) { | 
|  | const Operator *Op = dyn_cast<Operator>(&V); | 
|  | if (!Op) | 
|  | return false; | 
|  |  | 
|  | switch (Op->getOpcode()) { | 
|  | case Instruction::PHI: | 
|  | assert(Op->getType()->isPtrOrPtrVectorTy()); | 
|  | return true; | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::GetElementPtr: | 
|  | return true; | 
|  | case Instruction::Select: | 
|  | return Op->getType()->isPtrOrPtrVectorTy(); | 
|  | case Instruction::Call: { | 
|  | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); | 
|  | return II && II->getIntrinsicID() == Intrinsic::ptrmask; | 
|  | } | 
|  | case Instruction::IntToPtr: | 
|  | return isNoopPtrIntCastPair(Op, DL, TTI); | 
|  | default: | 
|  | // That value is an address expression if it has an assumed address space. | 
|  | return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the pointer operands of V. | 
|  | // | 
|  | // Precondition: V is an address expression. | 
|  | static SmallVector<Value *, 2> | 
|  | getPointerOperands(const Value &V, const DataLayout &DL, | 
|  | const TargetTransformInfo *TTI) { | 
|  | const Operator &Op = cast<Operator>(V); | 
|  | switch (Op.getOpcode()) { | 
|  | case Instruction::PHI: { | 
|  | auto IncomingValues = cast<PHINode>(Op).incoming_values(); | 
|  | return {IncomingValues.begin(), IncomingValues.end()}; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::GetElementPtr: | 
|  | return {Op.getOperand(0)}; | 
|  | case Instruction::Select: | 
|  | return {Op.getOperand(1), Op.getOperand(2)}; | 
|  | case Instruction::Call: { | 
|  | const IntrinsicInst &II = cast<IntrinsicInst>(Op); | 
|  | assert(II.getIntrinsicID() == Intrinsic::ptrmask && | 
|  | "unexpected intrinsic call"); | 
|  | return {II.getArgOperand(0)}; | 
|  | } | 
|  | case Instruction::IntToPtr: { | 
|  | assert(isNoopPtrIntCastPair(&Op, DL, TTI)); | 
|  | auto *P2I = cast<Operator>(Op.getOperand(0)); | 
|  | return {P2I->getOperand(0)}; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction type."); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, | 
|  | Value *OldV, | 
|  | Value *NewV) const { | 
|  | Module *M = II->getParent()->getParent()->getParent(); | 
|  | Intrinsic::ID IID = II->getIntrinsicID(); | 
|  | switch (IID) { | 
|  | case Intrinsic::objectsize: | 
|  | case Intrinsic::masked_load: { | 
|  | Type *DestTy = II->getType(); | 
|  | Type *SrcTy = NewV->getType(); | 
|  | Function *NewDecl = | 
|  | Intrinsic::getOrInsertDeclaration(M, IID, {DestTy, SrcTy}); | 
|  | II->setArgOperand(0, NewV); | 
|  | II->setCalledFunction(NewDecl); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::ptrmask: | 
|  | // This is handled as an address expression, not as a use memory operation. | 
|  | return false; | 
|  | case Intrinsic::masked_gather: { | 
|  | Type *RetTy = II->getType(); | 
|  | Type *NewPtrTy = NewV->getType(); | 
|  | Function *NewDecl = | 
|  | Intrinsic::getOrInsertDeclaration(M, IID, {RetTy, NewPtrTy}); | 
|  | II->setArgOperand(0, NewV); | 
|  | II->setCalledFunction(NewDecl); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::masked_store: | 
|  | case Intrinsic::masked_scatter: { | 
|  | Type *ValueTy = II->getOperand(0)->getType(); | 
|  | Type *NewPtrTy = NewV->getType(); | 
|  | Function *NewDecl = Intrinsic::getOrInsertDeclaration( | 
|  | M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); | 
|  | II->setArgOperand(1, NewV); | 
|  | II->setCalledFunction(NewDecl); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::prefetch: | 
|  | case Intrinsic::is_constant: { | 
|  | Function *NewDecl = Intrinsic::getOrInsertDeclaration( | 
|  | M, II->getIntrinsicID(), {NewV->getType()}); | 
|  | II->setArgOperand(0, NewV); | 
|  | II->setCalledFunction(NewDecl); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::fake_use: { | 
|  | II->replaceUsesOfWith(OldV, NewV); | 
|  | return true; | 
|  | } | 
|  | default: { | 
|  | Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); | 
|  | if (!Rewrite) | 
|  | return false; | 
|  | if (Rewrite != II) | 
|  | II->replaceAllUsesWith(Rewrite); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( | 
|  | IntrinsicInst *II, PostorderStackTy &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const { | 
|  | auto IID = II->getIntrinsicID(); | 
|  | switch (IID) { | 
|  | case Intrinsic::ptrmask: | 
|  | case Intrinsic::objectsize: | 
|  | appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), | 
|  | PostorderStack, Visited); | 
|  | break; | 
|  | case Intrinsic::is_constant: { | 
|  | Value *Ptr = II->getArgOperand(0); | 
|  | if (Ptr->getType()->isPtrOrPtrVectorTy()) { | 
|  | appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, | 
|  | Visited); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case Intrinsic::masked_load: | 
|  | case Intrinsic::masked_gather: | 
|  | case Intrinsic::prefetch: | 
|  | appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), | 
|  | PostorderStack, Visited); | 
|  | break; | 
|  | case Intrinsic::masked_store: | 
|  | case Intrinsic::masked_scatter: | 
|  | appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), | 
|  | PostorderStack, Visited); | 
|  | break; | 
|  | case Intrinsic::fake_use: { | 
|  | for (Value *Op : II->operands()) { | 
|  | if (Op->getType()->isPtrOrPtrVectorTy()) { | 
|  | appendsFlatAddressExpressionToPostorderStack(Op, PostorderStack, | 
|  | Visited); | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SmallVector<int, 2> OpIndexes; | 
|  | if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { | 
|  | for (int Idx : OpIndexes) { | 
|  | appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), | 
|  | PostorderStack, Visited); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns all flat address expressions in function F. The elements are | 
|  | // If V is an unvisited flat address expression, appends V to PostorderStack | 
|  | // and marks it as visited. | 
|  | void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( | 
|  | Value *V, PostorderStackTy &PostorderStack, | 
|  | DenseSet<Value *> &Visited) const { | 
|  | assert(V->getType()->isPtrOrPtrVectorTy()); | 
|  |  | 
|  | // Generic addressing expressions may be hidden in nested constant | 
|  | // expressions. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | // TODO: Look in non-address parts, like icmp operands. | 
|  | if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) | 
|  | PostorderStack.emplace_back(CE, false); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && | 
|  | isAddressExpression(*V, *DL, TTI)) { | 
|  | if (Visited.insert(V).second) { | 
|  | PostorderStack.emplace_back(V, false); | 
|  |  | 
|  | Operator *Op = cast<Operator>(V); | 
|  | for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { | 
|  | if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) | 
|  | PostorderStack.emplace_back(CE, false); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns all flat address expressions in function F. The elements are ordered | 
|  | // in postorder. | 
|  | std::vector<WeakTrackingVH> | 
|  | InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { | 
|  | // This function implements a non-recursive postorder traversal of a partial | 
|  | // use-def graph of function F. | 
|  | PostorderStackTy PostorderStack; | 
|  | // The set of visited expressions. | 
|  | DenseSet<Value *> Visited; | 
|  |  | 
|  | auto PushPtrOperand = [&](Value *Ptr) { | 
|  | appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); | 
|  | }; | 
|  |  | 
|  | // Look at operations that may be interesting accelerate by moving to a known | 
|  | // address space. We aim at generating after loads and stores, but pure | 
|  | // addressing calculations may also be faster. | 
|  | for (Instruction &I : instructions(F)) { | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { | 
|  | PushPtrOperand(GEP->getPointerOperand()); | 
|  | } else if (auto *LI = dyn_cast<LoadInst>(&I)) | 
|  | PushPtrOperand(LI->getPointerOperand()); | 
|  | else if (auto *SI = dyn_cast<StoreInst>(&I)) | 
|  | PushPtrOperand(SI->getPointerOperand()); | 
|  | else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) | 
|  | PushPtrOperand(RMW->getPointerOperand()); | 
|  | else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) | 
|  | PushPtrOperand(CmpX->getPointerOperand()); | 
|  | else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { | 
|  | // For memset/memcpy/memmove, any pointer operand can be replaced. | 
|  | PushPtrOperand(MI->getRawDest()); | 
|  |  | 
|  | // Handle 2nd operand for memcpy/memmove. | 
|  | if (auto *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | PushPtrOperand(MTI->getRawSource()); | 
|  | } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
|  | collectRewritableIntrinsicOperands(II, PostorderStack, Visited); | 
|  | else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { | 
|  | if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { | 
|  | PushPtrOperand(Cmp->getOperand(0)); | 
|  | PushPtrOperand(Cmp->getOperand(1)); | 
|  | } | 
|  | } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { | 
|  | PushPtrOperand(ASC->getPointerOperand()); | 
|  | } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { | 
|  | if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) | 
|  | PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0)); | 
|  | } else if (auto *RI = dyn_cast<ReturnInst>(&I)) { | 
|  | if (auto *RV = RI->getReturnValue(); | 
|  | RV && RV->getType()->isPtrOrPtrVectorTy()) | 
|  | PushPtrOperand(RV); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<WeakTrackingVH> Postorder; // The resultant postorder. | 
|  | while (!PostorderStack.empty()) { | 
|  | Value *TopVal = PostorderStack.back().getPointer(); | 
|  | // If the operands of the expression on the top are already explored, | 
|  | // adds that expression to the resultant postorder. | 
|  | if (PostorderStack.back().getInt()) { | 
|  | if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) | 
|  | Postorder.push_back(TopVal); | 
|  | PostorderStack.pop_back(); | 
|  | continue; | 
|  | } | 
|  | // Otherwise, adds its operands to the stack and explores them. | 
|  | PostorderStack.back().setInt(true); | 
|  | // Skip values with an assumed address space. | 
|  | if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { | 
|  | for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { | 
|  | appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, | 
|  | Visited); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Postorder; | 
|  | } | 
|  |  | 
|  | // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone | 
|  | // of OperandUse.get() in the new address space. If the clone is not ready yet, | 
|  | // returns poison in the new address space as a placeholder. | 
|  | static Value *operandWithNewAddressSpaceOrCreatePoison( | 
|  | const Use &OperandUse, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS, | 
|  | SmallVectorImpl<const Use *> *PoisonUsesToFix) { | 
|  | Value *Operand = OperandUse.get(); | 
|  |  | 
|  | Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Operand)) | 
|  | return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); | 
|  |  | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) | 
|  | return NewOperand; | 
|  |  | 
|  | Instruction *Inst = cast<Instruction>(OperandUse.getUser()); | 
|  | auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); | 
|  | if (I != PredicatedAS.end()) { | 
|  | // Insert an addrspacecast on that operand before the user. | 
|  | unsigned NewAS = I->second; | 
|  | Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); | 
|  | auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); | 
|  | NewI->insertBefore(Inst->getIterator()); | 
|  | NewI->setDebugLoc(Inst->getDebugLoc()); | 
|  | return NewI; | 
|  | } | 
|  |  | 
|  | PoisonUsesToFix->push_back(&OperandUse); | 
|  | return PoisonValue::get(NewPtrTy); | 
|  | } | 
|  |  | 
|  | // Returns a clone of `I` with its operands converted to those specified in | 
|  | // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an | 
|  | // operand whose address space needs to be modified might not exist in | 
|  | // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and | 
|  | // adds that operand use to PoisonUsesToFix so that caller can fix them later. | 
|  | // | 
|  | // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast | 
|  | // from a pointer whose type already matches. Therefore, this function returns a | 
|  | // Value* instead of an Instruction*. | 
|  | // | 
|  | // This may also return nullptr in the case the instruction could not be | 
|  | // rewritten. | 
|  | Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( | 
|  | Instruction *I, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS, | 
|  | SmallVectorImpl<const Use *> *PoisonUsesToFix) const { | 
|  | Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); | 
|  |  | 
|  | if (I->getOpcode() == Instruction::AddrSpaceCast) { | 
|  | Value *Src = I->getOperand(0); | 
|  | // Because `I` is flat, the source address space must be specific. | 
|  | // Therefore, the inferred address space must be the source space, according | 
|  | // to our algorithm. | 
|  | assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); | 
|  | if (Src->getType() != NewPtrType) | 
|  | return new BitCastInst(Src, NewPtrType); | 
|  | return Src; | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | // Technically the intrinsic ID is a pointer typed argument, so specially | 
|  | // handle calls early. | 
|  | assert(II->getIntrinsicID() == Intrinsic::ptrmask); | 
|  | Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( | 
|  | II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, | 
|  | PredicatedAS, PoisonUsesToFix); | 
|  | Value *Rewrite = | 
|  | TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); | 
|  | if (Rewrite) { | 
|  | assert(Rewrite != II && "cannot modify this pointer operation in place"); | 
|  | return Rewrite; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned AS = TTI->getAssumedAddrSpace(I); | 
|  | if (AS != UninitializedAddressSpace) { | 
|  | // For the assumed address space, insert an `addrspacecast` to make that | 
|  | // explicit. | 
|  | Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); | 
|  | auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); | 
|  | NewI->insertAfter(I->getIterator()); | 
|  | NewI->setDebugLoc(I->getDebugLoc()); | 
|  | return NewI; | 
|  | } | 
|  |  | 
|  | // Computes the converted pointer operands. | 
|  | SmallVector<Value *, 4> NewPointerOperands; | 
|  | for (const Use &OperandUse : I->operands()) { | 
|  | if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) | 
|  | NewPointerOperands.push_back(nullptr); | 
|  | else | 
|  | NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( | 
|  | OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, | 
|  | PoisonUsesToFix)); | 
|  | } | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | return new BitCastInst(NewPointerOperands[0], NewPtrType); | 
|  | case Instruction::PHI: { | 
|  | assert(I->getType()->isPtrOrPtrVectorTy()); | 
|  | PHINode *PHI = cast<PHINode>(I); | 
|  | PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); | 
|  | for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { | 
|  | unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); | 
|  | NewPHI->addIncoming(NewPointerOperands[OperandNo], | 
|  | PHI->getIncomingBlock(Index)); | 
|  | } | 
|  | return NewPHI; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); | 
|  | GetElementPtrInst *NewGEP = GetElementPtrInst::Create( | 
|  | GEP->getSourceElementType(), NewPointerOperands[0], | 
|  | SmallVector<Value *, 4>(GEP->indices())); | 
|  | NewGEP->setIsInBounds(GEP->isInBounds()); | 
|  | return NewGEP; | 
|  | } | 
|  | case Instruction::Select: | 
|  | assert(I->getType()->isPtrOrPtrVectorTy()); | 
|  | return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], | 
|  | NewPointerOperands[2], "", nullptr, I); | 
|  | case Instruction::IntToPtr: { | 
|  | assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); | 
|  | Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); | 
|  | if (Src->getType() == NewPtrType) | 
|  | return Src; | 
|  |  | 
|  | // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a | 
|  | // source address space from a generic pointer source need to insert a cast | 
|  | // back. | 
|  | return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the | 
|  | // constant expression `CE` with its operands replaced as specified in | 
|  | // ValueWithNewAddrSpace. | 
|  | static Value *cloneConstantExprWithNewAddressSpace( | 
|  | ConstantExpr *CE, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, | 
|  | const TargetTransformInfo *TTI) { | 
|  | Type *TargetType = | 
|  | CE->getType()->isPtrOrPtrVectorTy() | 
|  | ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) | 
|  | : CE->getType(); | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::AddrSpaceCast) { | 
|  | // Because CE is flat, the source address space must be specific. | 
|  | // Therefore, the inferred address space must be the source space according | 
|  | // to our algorithm. | 
|  | assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == | 
|  | NewAddrSpace); | 
|  | return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); | 
|  | } | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::BitCast) { | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) | 
|  | return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); | 
|  | return ConstantExpr::getAddrSpaceCast(CE, TargetType); | 
|  | } | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::IntToPtr) { | 
|  | assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); | 
|  | Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); | 
|  | assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); | 
|  | return ConstantExpr::getBitCast(Src, TargetType); | 
|  | } | 
|  |  | 
|  | // Computes the operands of the new constant expression. | 
|  | bool IsNew = false; | 
|  | SmallVector<Constant *, 4> NewOperands; | 
|  | for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { | 
|  | Constant *Operand = CE->getOperand(Index); | 
|  | // If the address space of `Operand` needs to be modified, the new operand | 
|  | // with the new address space should already be in ValueWithNewAddrSpace | 
|  | // because (1) the constant expressions we consider (i.e. addrspacecast, | 
|  | // bitcast, and getelementptr) do not incur cycles in the data flow graph | 
|  | // and (2) this function is called on constant expressions in postorder. | 
|  | if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { | 
|  | IsNew = true; | 
|  | NewOperands.push_back(cast<Constant>(NewOperand)); | 
|  | continue; | 
|  | } | 
|  | if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) | 
|  | if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( | 
|  | CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { | 
|  | IsNew = true; | 
|  | NewOperands.push_back(cast<Constant>(NewOperand)); | 
|  | continue; | 
|  | } | 
|  | // Otherwise, reuses the old operand. | 
|  | NewOperands.push_back(Operand); | 
|  | } | 
|  |  | 
|  | // If !IsNew, we will replace the Value with itself. However, replaced values | 
|  | // are assumed to wrapped in an addrspacecast cast later so drop it now. | 
|  | if (!IsNew) | 
|  | return nullptr; | 
|  |  | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | // Needs to specify the source type while constructing a getelementptr | 
|  | // constant expression. | 
|  | return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, | 
|  | cast<GEPOperator>(CE)->getSourceElementType()); | 
|  | } | 
|  |  | 
|  | return CE->getWithOperands(NewOperands, TargetType); | 
|  | } | 
|  |  | 
|  | // Returns a clone of the value `V`, with its operands replaced as specified in | 
|  | // ValueWithNewAddrSpace. This function is called on every flat address | 
|  | // expression whose address space needs to be modified, in postorder. | 
|  | // | 
|  | // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. | 
|  | Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( | 
|  | Value *V, unsigned NewAddrSpace, | 
|  | const ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS, | 
|  | SmallVectorImpl<const Use *> *PoisonUsesToFix) const { | 
|  | // All values in Postorder are flat address expressions. | 
|  | assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && | 
|  | isAddressExpression(*V, *DL, TTI)); | 
|  |  | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | Value *NewV = cloneInstructionWithNewAddressSpace( | 
|  | I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); | 
|  | if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { | 
|  | if (NewI->getParent() == nullptr) { | 
|  | NewI->insertBefore(I->getIterator()); | 
|  | NewI->takeName(I); | 
|  | NewI->setDebugLoc(I->getDebugLoc()); | 
|  | } | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | return cloneConstantExprWithNewAddressSpace( | 
|  | cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); | 
|  | } | 
|  |  | 
|  | // Defines the join operation on the address space lattice (see the file header | 
|  | // comments). | 
|  | unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, | 
|  | unsigned AS2) const { | 
|  | if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) | 
|  | return FlatAddrSpace; | 
|  |  | 
|  | if (AS1 == UninitializedAddressSpace) | 
|  | return AS2; | 
|  | if (AS2 == UninitializedAddressSpace) | 
|  | return AS1; | 
|  |  | 
|  | // The join of two different specific address spaces is flat. | 
|  | return (AS1 == AS2) ? AS1 : FlatAddrSpace; | 
|  | } | 
|  |  | 
|  | bool InferAddressSpacesImpl::run(Function &CurFn) { | 
|  | F = &CurFn; | 
|  | DL = &F->getDataLayout(); | 
|  |  | 
|  | if (AssumeDefaultIsFlatAddressSpace) | 
|  | FlatAddrSpace = 0; | 
|  |  | 
|  | if (FlatAddrSpace == UninitializedAddressSpace) { | 
|  | FlatAddrSpace = TTI->getFlatAddressSpace(); | 
|  | if (FlatAddrSpace == UninitializedAddressSpace) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Collects all flat address expressions in postorder. | 
|  | std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F); | 
|  |  | 
|  | // Runs a data-flow analysis to refine the address spaces of every expression | 
|  | // in Postorder. | 
|  | ValueToAddrSpaceMapTy InferredAddrSpace; | 
|  | PredicatedAddrSpaceMapTy PredicatedAS; | 
|  | inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); | 
|  |  | 
|  | // Changes the address spaces of the flat address expressions who are inferred | 
|  | // to point to a specific address space. | 
|  | return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, | 
|  | PredicatedAS); | 
|  | } | 
|  |  | 
|  | // Constants need to be tracked through RAUW to handle cases with nested | 
|  | // constant expressions, so wrap values in WeakTrackingVH. | 
|  | void InferAddressSpacesImpl::inferAddressSpaces( | 
|  | ArrayRef<WeakTrackingVH> Postorder, | 
|  | ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | PredicatedAddrSpaceMapTy &PredicatedAS) const { | 
|  | SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); | 
|  | // Initially, all expressions are in the uninitialized address space. | 
|  | for (Value *V : Postorder) | 
|  | InferredAddrSpace[V] = UninitializedAddressSpace; | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | Value *V = Worklist.pop_back_val(); | 
|  |  | 
|  | // Try to update the address space of the stack top according to the | 
|  | // address spaces of its operands. | 
|  | if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) | 
|  | continue; | 
|  |  | 
|  | for (Value *User : V->users()) { | 
|  | // Skip if User is already in the worklist. | 
|  | if (Worklist.count(User)) | 
|  | continue; | 
|  |  | 
|  | auto Pos = InferredAddrSpace.find(User); | 
|  | // Our algorithm only updates the address spaces of flat address | 
|  | // expressions, which are those in InferredAddrSpace. | 
|  | if (Pos == InferredAddrSpace.end()) | 
|  | continue; | 
|  |  | 
|  | // Function updateAddressSpace moves the address space down a lattice | 
|  | // path. Therefore, nothing to do if User is already inferred as flat (the | 
|  | // bottom element in the lattice). | 
|  | if (Pos->second == FlatAddrSpace) | 
|  | continue; | 
|  |  | 
|  | Worklist.insert(User); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr, | 
|  | const Value *UserCtx) const { | 
|  | const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx); | 
|  | if (!UserCtxI) | 
|  | return UninitializedAddressSpace; | 
|  |  | 
|  | const Value *StrippedPtr = Ptr.stripInBoundsOffsets(); | 
|  | for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  | CallInst *CI = cast<CallInst>(AssumeVH); | 
|  | if (!isValidAssumeForContext(CI, UserCtxI, DT)) | 
|  | continue; | 
|  |  | 
|  | const Value *Ptr; | 
|  | unsigned AS; | 
|  | std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); | 
|  | if (Ptr) | 
|  | return AS; | 
|  | } | 
|  |  | 
|  | return UninitializedAddressSpace; | 
|  | } | 
|  |  | 
|  | bool InferAddressSpacesImpl::updateAddressSpace( | 
|  | const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | PredicatedAddrSpaceMapTy &PredicatedAS) const { | 
|  | assert(InferredAddrSpace.count(&V)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n'); | 
|  |  | 
|  | // The new inferred address space equals the join of the address spaces | 
|  | // of all its pointer operands. | 
|  | unsigned NewAS = UninitializedAddressSpace; | 
|  |  | 
|  | const Operator &Op = cast<Operator>(V); | 
|  | if (Op.getOpcode() == Instruction::Select) { | 
|  | Value *Src0 = Op.getOperand(1); | 
|  | Value *Src1 = Op.getOperand(2); | 
|  |  | 
|  | auto I = InferredAddrSpace.find(Src0); | 
|  | unsigned Src0AS = (I != InferredAddrSpace.end()) | 
|  | ? I->second | 
|  | : Src0->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | auto J = InferredAddrSpace.find(Src1); | 
|  | unsigned Src1AS = (J != InferredAddrSpace.end()) | 
|  | ? J->second | 
|  | : Src1->getType()->getPointerAddressSpace(); | 
|  |  | 
|  | auto *C0 = dyn_cast<Constant>(Src0); | 
|  | auto *C1 = dyn_cast<Constant>(Src1); | 
|  |  | 
|  | // If one of the inputs is a constant, we may be able to do a constant | 
|  | // addrspacecast of it. Defer inferring the address space until the input | 
|  | // address space is known. | 
|  | if ((C1 && Src0AS == UninitializedAddressSpace) || | 
|  | (C0 && Src1AS == UninitializedAddressSpace)) | 
|  | return false; | 
|  |  | 
|  | if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) | 
|  | NewAS = Src1AS; | 
|  | else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) | 
|  | NewAS = Src0AS; | 
|  | else | 
|  | NewAS = joinAddressSpaces(Src0AS, Src1AS); | 
|  | } else { | 
|  | unsigned AS = TTI->getAssumedAddrSpace(&V); | 
|  | if (AS != UninitializedAddressSpace) { | 
|  | // Use the assumed address space directly. | 
|  | NewAS = AS; | 
|  | } else { | 
|  | // Otherwise, infer the address space from its pointer operands. | 
|  | for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { | 
|  | auto I = InferredAddrSpace.find(PtrOperand); | 
|  | unsigned OperandAS; | 
|  | if (I == InferredAddrSpace.end()) { | 
|  | OperandAS = PtrOperand->getType()->getPointerAddressSpace(); | 
|  | if (OperandAS == FlatAddrSpace) { | 
|  | // Check AC for assumption dominating V. | 
|  | unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V); | 
|  | if (AS != UninitializedAddressSpace) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "  deduce operand AS from the predicate addrspace " | 
|  | << AS << '\n'); | 
|  | OperandAS = AS; | 
|  | // Record this use with the predicated AS. | 
|  | PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; | 
|  | } | 
|  | } | 
|  | } else | 
|  | OperandAS = I->second; | 
|  |  | 
|  | // join(flat, *) = flat. So we can break if NewAS is already flat. | 
|  | NewAS = joinAddressSpaces(NewAS, OperandAS); | 
|  | if (NewAS == FlatAddrSpace) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned OldAS = InferredAddrSpace.lookup(&V); | 
|  | assert(OldAS != FlatAddrSpace); | 
|  | if (OldAS == NewAS) | 
|  | return false; | 
|  |  | 
|  | // If any updates are made, grabs its users to the worklist because | 
|  | // their address spaces can also be possibly updated. | 
|  | LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n'); | 
|  | InferredAddrSpace[&V] = NewAS; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal | 
|  | /// with \p NewVal. | 
|  | static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx, | 
|  | Value *OldVal, Value *NewVal) { | 
|  | Use &U = Inst->getOperandUse(OpIdx); | 
|  | if (U.get() == OldVal) { | 
|  | U.set(NewVal); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename InstrType> | 
|  | static bool replaceSimplePointerUse(const TargetTransformInfo &TTI, | 
|  | InstrType *MemInstr, unsigned AddrSpace, | 
|  | Value *OldV, Value *NewV) { | 
|  | if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) { | 
|  | return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(), | 
|  | OldV, NewV); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If \p OldV is used as the pointer operand of a compatible memory operation | 
|  | /// \p Inst, replaces the pointer operand with NewV. | 
|  | /// | 
|  | /// This covers memory instructions with a single pointer operand that can have | 
|  | /// its address space changed by simply mutating the use to a new value. | 
|  | /// | 
|  | /// \p returns true the user replacement was made. | 
|  | static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI, | 
|  | User *Inst, unsigned AddrSpace, | 
|  | Value *OldV, Value *NewV) { | 
|  | if (auto *LI = dyn_cast<LoadInst>(Inst)) | 
|  | return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV); | 
|  |  | 
|  | if (auto *SI = dyn_cast<StoreInst>(Inst)) | 
|  | return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV); | 
|  |  | 
|  | if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) | 
|  | return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV); | 
|  |  | 
|  | if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) | 
|  | return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Update memory intrinsic uses that require more complex processing than | 
|  | /// simple memory instructions. These require re-mangling and may have multiple | 
|  | /// pointer operands. | 
|  | static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, | 
|  | Value *NewV) { | 
|  | IRBuilder<> B(MI); | 
|  | MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); | 
|  | MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); | 
|  | MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); | 
|  |  | 
|  | if (auto *MSI = dyn_cast<MemSetInst>(MI)) { | 
|  | B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), | 
|  | false, // isVolatile | 
|  | TBAA, ScopeMD, NoAliasMD); | 
|  | } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | Value *Src = MTI->getRawSource(); | 
|  | Value *Dest = MTI->getRawDest(); | 
|  |  | 
|  | // Be careful in case this is a self-to-self copy. | 
|  | if (Src == OldV) | 
|  | Src = NewV; | 
|  |  | 
|  | if (Dest == OldV) | 
|  | Dest = NewV; | 
|  |  | 
|  | if (isa<MemCpyInlineInst>(MTI)) { | 
|  | MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); | 
|  | B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, | 
|  | MTI->getSourceAlign(), MTI->getLength(), | 
|  | false, // isVolatile | 
|  | TBAA, TBAAStruct, ScopeMD, NoAliasMD); | 
|  | } else if (isa<MemCpyInst>(MTI)) { | 
|  | MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); | 
|  | B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), | 
|  | MTI->getLength(), | 
|  | false, // isVolatile | 
|  | TBAA, TBAAStruct, ScopeMD, NoAliasMD); | 
|  | } else { | 
|  | assert(isa<MemMoveInst>(MTI)); | 
|  | B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), | 
|  | MTI->getLength(), | 
|  | false, // isVolatile | 
|  | TBAA, ScopeMD, NoAliasMD); | 
|  | } | 
|  | } else | 
|  | llvm_unreachable("unhandled MemIntrinsic"); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // \p returns true if it is OK to change the address space of constant \p C with | 
|  | // a ConstantExpr addrspacecast. | 
|  | bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, | 
|  | unsigned NewAS) const { | 
|  | assert(NewAS != UninitializedAddressSpace); | 
|  |  | 
|  | unsigned SrcAS = C->getType()->getPointerAddressSpace(); | 
|  | if (SrcAS == NewAS || isa<UndefValue>(C)) | 
|  | return true; | 
|  |  | 
|  | // Prevent illegal casts between different non-flat address spaces. | 
|  | if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) | 
|  | return false; | 
|  |  | 
|  | if (isa<ConstantPointerNull>(C)) | 
|  | return true; | 
|  |  | 
|  | if (auto *Op = dyn_cast<Operator>(C)) { | 
|  | // If we already have a constant addrspacecast, it should be safe to cast it | 
|  | // off. | 
|  | if (Op->getOpcode() == Instruction::AddrSpaceCast) | 
|  | return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), | 
|  | NewAS); | 
|  |  | 
|  | if (Op->getOpcode() == Instruction::IntToPtr && | 
|  | Op->getType()->getPointerAddressSpace() == FlatAddrSpace) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static Value::use_iterator skipToNextUser(Value::use_iterator I, | 
|  | Value::use_iterator End) { | 
|  | User *CurUser = I->getUser(); | 
|  | ++I; | 
|  |  | 
|  | while (I != End && I->getUser() == CurUser) | 
|  | ++I; | 
|  |  | 
|  | return I; | 
|  | } | 
|  |  | 
|  | void InferAddressSpacesImpl::performPointerReplacement( | 
|  | Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace, | 
|  | SmallVectorImpl<Instruction *> &DeadInstructions) const { | 
|  |  | 
|  | User *CurUser = U.getUser(); | 
|  |  | 
|  | unsigned AddrSpace = V->getType()->getPointerAddressSpace(); | 
|  | if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV)) | 
|  | return; | 
|  |  | 
|  | // Skip if the current user is the new value itself. | 
|  | if (CurUser == NewV) | 
|  | return; | 
|  |  | 
|  | auto *CurUserI = dyn_cast<Instruction>(CurUser); | 
|  | if (!CurUserI || CurUserI->getFunction() != F) | 
|  | return; | 
|  |  | 
|  | // Handle more complex cases like intrinsic that need to be remangled. | 
|  | if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { | 
|  | if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { | 
|  | if (rewriteIntrinsicOperands(II, V, NewV)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) { | 
|  | // If we can infer that both pointers are in the same addrspace, | 
|  | // transform e.g. | 
|  | //   %cmp = icmp eq float* %p, %q | 
|  | // into | 
|  | //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q | 
|  |  | 
|  | unsigned NewAS = NewV->getType()->getPointerAddressSpace(); | 
|  | int SrcIdx = U.getOperandNo(); | 
|  | int OtherIdx = (SrcIdx == 0) ? 1 : 0; | 
|  | Value *OtherSrc = Cmp->getOperand(OtherIdx); | 
|  |  | 
|  | if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { | 
|  | if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { | 
|  | Cmp->setOperand(OtherIdx, OtherNewV); | 
|  | Cmp->setOperand(SrcIdx, NewV); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Even if the type mismatches, we can cast the constant. | 
|  | if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { | 
|  | if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { | 
|  | Cmp->setOperand(SrcIdx, NewV); | 
|  | Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast( | 
|  | KOtherSrc, NewV->getType())); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) { | 
|  | unsigned NewAS = NewV->getType()->getPointerAddressSpace(); | 
|  | if (ASC->getDestAddressSpace() == NewAS) { | 
|  | ASC->replaceAllUsesWith(NewV); | 
|  | DeadInstructions.push_back(ASC); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, replaces the use with flat(NewV). | 
|  | if (Instruction *VInst = dyn_cast<Instruction>(V)) { | 
|  | // Don't create a copy of the original addrspacecast. | 
|  | if (U == V && isa<AddrSpaceCastInst>(V)) | 
|  | return; | 
|  |  | 
|  | // Insert the addrspacecast after NewV. | 
|  | BasicBlock::iterator InsertPos; | 
|  | if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) | 
|  | InsertPos = std::next(NewVInst->getIterator()); | 
|  | else | 
|  | InsertPos = std::next(VInst->getIterator()); | 
|  |  | 
|  | while (isa<PHINode>(InsertPos)) | 
|  | ++InsertPos; | 
|  | // This instruction may contain multiple uses of V, update them all. | 
|  | CurUser->replaceUsesOfWith( | 
|  | V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos)); | 
|  | } else { | 
|  | CurUserI->replaceUsesOfWith( | 
|  | V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( | 
|  | ArrayRef<WeakTrackingVH> Postorder, | 
|  | const ValueToAddrSpaceMapTy &InferredAddrSpace, | 
|  | const PredicatedAddrSpaceMapTy &PredicatedAS) const { | 
|  | // For each address expression to be modified, creates a clone of it with its | 
|  | // pointer operands converted to the new address space. Since the pointer | 
|  | // operands are converted, the clone is naturally in the new address space by | 
|  | // construction. | 
|  | ValueToValueMapTy ValueWithNewAddrSpace; | 
|  | SmallVector<const Use *, 32> PoisonUsesToFix; | 
|  | for (Value *V : Postorder) { | 
|  | unsigned NewAddrSpace = InferredAddrSpace.lookup(V); | 
|  |  | 
|  | // In some degenerate cases (e.g. invalid IR in unreachable code), we may | 
|  | // not even infer the value to have its original address space. | 
|  | if (NewAddrSpace == UninitializedAddressSpace) | 
|  | continue; | 
|  |  | 
|  | if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { | 
|  | Value *New = | 
|  | cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, | 
|  | PredicatedAS, &PoisonUsesToFix); | 
|  | if (New) | 
|  | ValueWithNewAddrSpace[V] = New; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ValueWithNewAddrSpace.empty()) | 
|  | return false; | 
|  |  | 
|  | // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. | 
|  | for (const Use *PoisonUse : PoisonUsesToFix) { | 
|  | User *V = PoisonUse->getUser(); | 
|  | User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); | 
|  | if (!NewV) | 
|  | continue; | 
|  |  | 
|  | unsigned OperandNo = PoisonUse->getOperandNo(); | 
|  | assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); | 
|  | NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); | 
|  | } | 
|  |  | 
|  | SmallVector<Instruction *, 16> DeadInstructions; | 
|  | ValueToValueMapTy VMap; | 
|  | ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  |  | 
|  | // Replaces the uses of the old address expressions with the new ones. | 
|  | for (const WeakTrackingVH &WVH : Postorder) { | 
|  | assert(WVH && "value was unexpectedly deleted"); | 
|  | Value *V = WVH; | 
|  | Value *NewV = ValueWithNewAddrSpace.lookup(V); | 
|  | if (NewV == nullptr) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  " | 
|  | << *NewV << '\n'); | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | Constant *Replace = | 
|  | ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType()); | 
|  | if (C != Replace) { | 
|  | LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace | 
|  | << ": " << *Replace << '\n'); | 
|  | SmallVector<User *, 16> WorkList; | 
|  | for (User *U : make_early_inc_range(C->users())) { | 
|  | if (auto *I = dyn_cast<Instruction>(U)) { | 
|  | if (I->getFunction() == F) | 
|  | I->replaceUsesOfWith(C, Replace); | 
|  | } else { | 
|  | WorkList.append(U->user_begin(), U->user_end()); | 
|  | } | 
|  | } | 
|  | if (!WorkList.empty()) { | 
|  | VMap[C] = Replace; | 
|  | DenseSet<User *> Visited{WorkList.begin(), WorkList.end()}; | 
|  | while (!WorkList.empty()) { | 
|  | User *U = WorkList.pop_back_val(); | 
|  | if (auto *I = dyn_cast<Instruction>(U)) { | 
|  | if (I->getFunction() == F) | 
|  | VMapper.remapInstruction(*I); | 
|  | continue; | 
|  | } | 
|  | for (User *U2 : U->users()) | 
|  | if (Visited.insert(U2).second) | 
|  | WorkList.push_back(U2); | 
|  | } | 
|  | } | 
|  | V = Replace; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value::use_iterator I, E, Next; | 
|  | for (I = V->use_begin(), E = V->use_end(); I != E;) { | 
|  | Use &U = *I; | 
|  |  | 
|  | // Some users may see the same pointer operand in multiple operands. Skip | 
|  | // to the next instruction. | 
|  | I = skipToNextUser(I, E); | 
|  |  | 
|  | performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace, | 
|  | DeadInstructions); | 
|  | } | 
|  |  | 
|  | if (V->use_empty()) { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | DeadInstructions.push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Instruction *I : DeadInstructions) | 
|  | RecursivelyDeleteTriviallyDeadInstructions(I); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InferAddressSpaces::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | return InferAddressSpacesImpl( | 
|  | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), | 
|  | FlatAddrSpace) | 
|  | .run(F); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { | 
|  | return new InferAddressSpaces(AddressSpace); | 
|  | } | 
|  |  | 
|  | InferAddressSpacesPass::InferAddressSpacesPass() | 
|  | : FlatAddrSpace(UninitializedAddressSpace) {} | 
|  | InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) | 
|  | : FlatAddrSpace(AddressSpace) {} | 
|  |  | 
|  | PreservedAnalyses InferAddressSpacesPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | bool Changed = | 
|  | InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), | 
|  | AM.getCachedResult<DominatorTreeAnalysis>(F), | 
|  | &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) | 
|  | .run(F); | 
|  | if (Changed) { | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  | return PreservedAnalyses::all(); | 
|  | } |