blob: fecd960d694b12e9548dd322cba5a0fc258b1efd [file] [log] [blame]
//===- LoopLikeSCFOpsTest.cpp - SCF LoopLikeOpInterface Tests -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OwningOpRef.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::scf;
//===----------------------------------------------------------------------===//
// Test Fixture
//===----------------------------------------------------------------------===//
class SCFLoopLikeTest : public ::testing::Test {
protected:
SCFLoopLikeTest() : b(&context), loc(UnknownLoc::get(&context)) {
context.loadDialect<affine::AffineDialect, arith::ArithDialect,
scf::SCFDialect>();
}
void checkUnidimensional(LoopLikeOpInterface loopLikeOp) {
std::optional<OpFoldResult> maybeSingleLb =
loopLikeOp.getSingleLowerBound();
EXPECT_TRUE(maybeSingleLb.has_value());
std::optional<OpFoldResult> maybeSingleUb =
loopLikeOp.getSingleUpperBound();
EXPECT_TRUE(maybeSingleUb.has_value());
std::optional<OpFoldResult> maybeSingleStep = loopLikeOp.getSingleStep();
EXPECT_TRUE(maybeSingleStep.has_value());
std::optional<OpFoldResult> maybeSingleIndVar =
loopLikeOp.getSingleInductionVar();
EXPECT_TRUE(maybeSingleIndVar.has_value());
std::optional<SmallVector<OpFoldResult>> maybeLb =
loopLikeOp.getLoopLowerBounds();
ASSERT_TRUE(maybeLb.has_value());
EXPECT_EQ((*maybeLb).size(), 1u);
std::optional<SmallVector<OpFoldResult>> maybeUb =
loopLikeOp.getLoopUpperBounds();
ASSERT_TRUE(maybeUb.has_value());
EXPECT_EQ((*maybeUb).size(), 1u);
std::optional<SmallVector<OpFoldResult>> maybeStep =
loopLikeOp.getLoopSteps();
ASSERT_TRUE(maybeStep.has_value());
EXPECT_EQ((*maybeStep).size(), 1u);
std::optional<SmallVector<Value>> maybeInductionVars =
loopLikeOp.getLoopInductionVars();
ASSERT_TRUE(maybeInductionVars.has_value());
EXPECT_EQ((*maybeInductionVars).size(), 1u);
}
void checkMultidimensional(LoopLikeOpInterface loopLikeOp) {
std::optional<OpFoldResult> maybeSingleLb =
loopLikeOp.getSingleLowerBound();
EXPECT_FALSE(maybeSingleLb.has_value());
std::optional<OpFoldResult> maybeSingleUb =
loopLikeOp.getSingleUpperBound();
EXPECT_FALSE(maybeSingleUb.has_value());
std::optional<OpFoldResult> maybeSingleStep = loopLikeOp.getSingleStep();
EXPECT_FALSE(maybeSingleStep.has_value());
std::optional<OpFoldResult> maybeSingleIndVar =
loopLikeOp.getSingleInductionVar();
EXPECT_FALSE(maybeSingleIndVar.has_value());
std::optional<SmallVector<OpFoldResult>> maybeLb =
loopLikeOp.getLoopLowerBounds();
ASSERT_TRUE(maybeLb.has_value());
EXPECT_EQ((*maybeLb).size(), 2u);
std::optional<SmallVector<OpFoldResult>> maybeUb =
loopLikeOp.getLoopUpperBounds();
ASSERT_TRUE(maybeUb.has_value());
EXPECT_EQ((*maybeUb).size(), 2u);
std::optional<SmallVector<OpFoldResult>> maybeStep =
loopLikeOp.getLoopSteps();
ASSERT_TRUE(maybeStep.has_value());
EXPECT_EQ((*maybeStep).size(), 2u);
std::optional<SmallVector<Value>> maybeInductionVars =
loopLikeOp.getLoopInductionVars();
ASSERT_TRUE(maybeInductionVars.has_value());
EXPECT_EQ((*maybeInductionVars).size(), 2u);
}
void checkNormalized(LoopLikeOpInterface loopLikeOp) {
std::optional<SmallVector<OpFoldResult>> maybeLb =
loopLikeOp.getLoopLowerBounds();
ASSERT_TRUE(maybeLb.has_value());
std::optional<SmallVector<OpFoldResult>> maybeStep =
loopLikeOp.getLoopSteps();
ASSERT_TRUE(maybeStep.has_value());
auto allEqual = [](ArrayRef<OpFoldResult> results, int64_t val) {
return llvm::all_of(results, [&](OpFoldResult ofr) {
auto intValue = getConstantIntValue(ofr);
return intValue.has_value() && intValue == val;
});
};
EXPECT_TRUE(allEqual(*maybeLb, 0));
EXPECT_TRUE(allEqual(*maybeStep, 1));
}
MLIRContext context;
OpBuilder b;
Location loc;
};
TEST_F(SCFLoopLikeTest, queryUnidimensionalLooplikes) {
OwningOpRef<arith::ConstantIndexOp> lb =
b.create<arith::ConstantIndexOp>(loc, 0);
OwningOpRef<arith::ConstantIndexOp> ub =
b.create<arith::ConstantIndexOp>(loc, 10);
OwningOpRef<arith::ConstantIndexOp> step =
b.create<arith::ConstantIndexOp>(loc, 2);
OwningOpRef<scf::ForOp> forOp =
b.create<scf::ForOp>(loc, lb.get(), ub.get(), step.get());
checkUnidimensional(forOp.get());
OwningOpRef<scf::ForallOp> forallOp = b.create<scf::ForallOp>(
loc, ArrayRef<OpFoldResult>(lb->getResult()),
ArrayRef<OpFoldResult>(ub->getResult()),
ArrayRef<OpFoldResult>(step->getResult()), ValueRange(), std::nullopt);
checkUnidimensional(forallOp.get());
OwningOpRef<scf::ParallelOp> parallelOp = b.create<scf::ParallelOp>(
loc, ValueRange(lb->getResult()), ValueRange(ub->getResult()),
ValueRange(step->getResult()), ValueRange());
checkUnidimensional(parallelOp.get());
}
TEST_F(SCFLoopLikeTest, queryMultidimensionalLooplikes) {
OwningOpRef<arith::ConstantIndexOp> lb =
b.create<arith::ConstantIndexOp>(loc, 0);
OwningOpRef<arith::ConstantIndexOp> ub =
b.create<arith::ConstantIndexOp>(loc, 10);
OwningOpRef<arith::ConstantIndexOp> step =
b.create<arith::ConstantIndexOp>(loc, 2);
OwningOpRef<scf::ForallOp> forallOp = b.create<scf::ForallOp>(
loc, ArrayRef<OpFoldResult>({lb->getResult(), lb->getResult()}),
ArrayRef<OpFoldResult>({ub->getResult(), ub->getResult()}),
ArrayRef<OpFoldResult>({step->getResult(), step->getResult()}),
ValueRange(), std::nullopt);
checkMultidimensional(forallOp.get());
OwningOpRef<scf::ParallelOp> parallelOp = b.create<scf::ParallelOp>(
loc, ValueRange({lb->getResult(), lb->getResult()}),
ValueRange({ub->getResult(), ub->getResult()}),
ValueRange({step->getResult(), step->getResult()}), ValueRange());
checkMultidimensional(parallelOp.get());
}
TEST_F(SCFLoopLikeTest, testForallNormalize) {
OwningOpRef<arith::ConstantIndexOp> lb =
b.create<arith::ConstantIndexOp>(loc, 1);
OwningOpRef<arith::ConstantIndexOp> ub =
b.create<arith::ConstantIndexOp>(loc, 10);
OwningOpRef<arith::ConstantIndexOp> step =
b.create<arith::ConstantIndexOp>(loc, 3);
scf::ForallOp forallOp = b.create<scf::ForallOp>(
loc, ArrayRef<OpFoldResult>({lb->getResult(), lb->getResult()}),
ArrayRef<OpFoldResult>({ub->getResult(), ub->getResult()}),
ArrayRef<OpFoldResult>({step->getResult(), step->getResult()}),
ValueRange(), std::nullopt);
// Create a user of the induction variable. Bitcast is chosen for simplicity
// since it is unary.
b.setInsertionPointToStart(forallOp.getBody());
b.create<arith::BitcastOp>(UnknownLoc::get(&context), b.getF64Type(),
forallOp.getInductionVar(0));
IRRewriter rewriter(b);
FailureOr<scf::ForallOp> maybeNormalizedForallOp =
normalizeForallOp(rewriter, forallOp);
EXPECT_TRUE(succeeded(maybeNormalizedForallOp));
OwningOpRef<scf::ForallOp> normalizedForallOp(*maybeNormalizedForallOp);
checkNormalized(normalizedForallOp.get());
// Check that the IV user has been updated to use the denormalized variable.
Block *body = normalizedForallOp->getBody();
auto bitcastOps = body->getOps<arith::BitcastOp>();
ASSERT_EQ(std::distance(bitcastOps.begin(), bitcastOps.end()), 1);
arith::BitcastOp ivUser = *bitcastOps.begin();
ASSERT_NE(ivUser.getIn(), normalizedForallOp->getInductionVar(0));
}