| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86 specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86Subtarget.h" |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "X86.h" |
| #include "X86CallLowering.h" |
| #include "X86LegalizerInfo.h" |
| #include "X86MacroFusion.h" |
| #include "X86RegisterBankInfo.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| #if defined(_MSC_VER) |
| #include <intrin.h> |
| #endif |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "subtarget" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #include "X86GenSubtargetInfo.inc" |
| |
| // Temporary option to control early if-conversion for x86 while adding machine |
| // models. |
| static cl::opt<bool> |
| X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, |
| cl::desc("Enable early if-conversion on X86")); |
| |
| |
| /// Classify a blockaddress reference for the current subtarget according to how |
| /// we should reference it in a non-pcrel context. |
| unsigned char X86Subtarget::classifyBlockAddressReference() const { |
| return classifyLocalReference(nullptr); |
| } |
| |
| /// Classify a global variable reference for the current subtarget according to |
| /// how we should reference it in a non-pcrel context. |
| unsigned char |
| X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const { |
| return classifyGlobalReference(GV, *GV->getParent()); |
| } |
| |
| unsigned char |
| X86Subtarget::classifyLocalReference(const GlobalValue *GV) const { |
| // Tagged globals have non-zero upper bits, which makes direct references |
| // require a 64-bit immediate. On the small code model this causes relocation |
| // errors, so we go through the GOT instead. |
| if (AllowTaggedGlobals && TM.getCodeModel() == CodeModel::Small && GV && |
| !isa<Function>(GV)) |
| return X86II::MO_GOTPCREL_NORELAX; |
| |
| // If we're not PIC, it's not very interesting. |
| if (!isPositionIndependent()) |
| return X86II::MO_NO_FLAG; |
| |
| if (is64Bit()) { |
| // 64-bit ELF PIC local references may use GOTOFF relocations. |
| if (isTargetELF()) { |
| switch (TM.getCodeModel()) { |
| // 64-bit small code model is simple: All rip-relative. |
| case CodeModel::Tiny: |
| llvm_unreachable("Tiny codesize model not supported on X86"); |
| case CodeModel::Small: |
| case CodeModel::Kernel: |
| return X86II::MO_NO_FLAG; |
| |
| // The large PIC code model uses GOTOFF. |
| case CodeModel::Large: |
| return X86II::MO_GOTOFF; |
| |
| // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data. |
| case CodeModel::Medium: |
| // Constant pool and jump table handling pass a nullptr to this |
| // function so we need to use isa_and_nonnull. |
| if (isa_and_nonnull<Function>(GV)) |
| return X86II::MO_NO_FLAG; // All code is RIP-relative |
| return X86II::MO_GOTOFF; // Local symbols use GOTOFF. |
| } |
| llvm_unreachable("invalid code model"); |
| } |
| |
| // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq, |
| // both of which use MO_NO_FLAG. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| // The COFF dynamic linker just patches the executable sections. |
| if (isTargetCOFF()) |
| return X86II::MO_NO_FLAG; |
| |
| if (isTargetDarwin()) { |
| // 32 bit macho has no relocation for a-b if a is undefined, even if |
| // b is in the section that is being relocated. |
| // This means we have to use o load even for GVs that are known to be |
| // local to the dso. |
| if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) |
| return X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| |
| return X86II::MO_PIC_BASE_OFFSET; |
| } |
| |
| return X86II::MO_GOTOFF; |
| } |
| |
| unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV, |
| const Module &M) const { |
| // The static large model never uses stubs. |
| if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent()) |
| return X86II::MO_NO_FLAG; |
| |
| // Absolute symbols can be referenced directly. |
| if (GV) { |
| if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) { |
| // See if we can use the 8-bit immediate form. Note that some instructions |
| // will sign extend the immediate operand, so to be conservative we only |
| // accept the range [0,128). |
| if (CR->getUnsignedMax().ult(128)) |
| return X86II::MO_ABS8; |
| else |
| return X86II::MO_NO_FLAG; |
| } |
| } |
| |
| if (TM.shouldAssumeDSOLocal(M, GV)) |
| return classifyLocalReference(GV); |
| |
| if (isTargetCOFF()) { |
| // ExternalSymbolSDNode like _tls_index. |
| if (!GV) |
| return X86II::MO_NO_FLAG; |
| if (GV->hasDLLImportStorageClass()) |
| return X86II::MO_DLLIMPORT; |
| return X86II::MO_COFFSTUB; |
| } |
| // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables. |
| if (isOSWindows()) |
| return X86II::MO_NO_FLAG; |
| |
| if (is64Bit()) { |
| // ELF supports a large, truly PIC code model with non-PC relative GOT |
| // references. Other object file formats do not. Use the no-flag, 64-bit |
| // reference for them. |
| if (TM.getCodeModel() == CodeModel::Large) |
| return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG; |
| // Tagged globals have non-zero upper bits, which makes direct references |
| // require a 64-bit immediate. So we can't let the linker relax the |
| // relocation to a 32-bit RIP-relative direct reference. |
| if (AllowTaggedGlobals && GV && !isa<Function>(GV)) |
| return X86II::MO_GOTPCREL_NORELAX; |
| return X86II::MO_GOTPCREL; |
| } |
| |
| if (isTargetDarwin()) { |
| if (!isPositionIndependent()) |
| return X86II::MO_DARWIN_NONLAZY; |
| return X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| } |
| |
| // 32-bit ELF references GlobalAddress directly in static relocation model. |
| // We cannot use MO_GOT because EBX may not be set up. |
| if (TM.getRelocationModel() == Reloc::Static) |
| return X86II::MO_NO_FLAG; |
| return X86II::MO_GOT; |
| } |
| |
| unsigned char |
| X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const { |
| return classifyGlobalFunctionReference(GV, *GV->getParent()); |
| } |
| |
| unsigned char |
| X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV, |
| const Module &M) const { |
| if (TM.shouldAssumeDSOLocal(M, GV)) |
| return X86II::MO_NO_FLAG; |
| |
| // Functions on COFF can be non-DSO local for three reasons: |
| // - They are intrinsic functions (!GV) |
| // - They are marked dllimport |
| // - They are extern_weak, and a stub is needed |
| if (isTargetCOFF()) { |
| if (!GV) |
| return X86II::MO_NO_FLAG; |
| if (GV->hasDLLImportStorageClass()) |
| return X86II::MO_DLLIMPORT; |
| return X86II::MO_COFFSTUB; |
| } |
| |
| const Function *F = dyn_cast_or_null<Function>(GV); |
| |
| if (isTargetELF()) { |
| if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv())) |
| // According to psABI, PLT stub clobbers XMM8-XMM15. |
| // In Regcall calling convention those registers are used for passing |
| // parameters. Thus we need to prevent lazy binding in Regcall. |
| return X86II::MO_GOTPCREL; |
| // If PLT must be avoided then the call should be via GOTPCREL. |
| if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) || |
| (!F && M.getRtLibUseGOT())) && |
| is64Bit()) |
| return X86II::MO_GOTPCREL; |
| // Reference ExternalSymbol directly in static relocation model. |
| if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static) |
| return X86II::MO_NO_FLAG; |
| return X86II::MO_PLT; |
| } |
| |
| if (is64Bit()) { |
| if (F && F->hasFnAttribute(Attribute::NonLazyBind)) |
| // If the function is marked as non-lazy, generate an indirect call |
| // which loads from the GOT directly. This avoids runtime overhead |
| // at the cost of eager binding (and one extra byte of encoding). |
| return X86II::MO_GOTPCREL; |
| return X86II::MO_NO_FLAG; |
| } |
| |
| return X86II::MO_NO_FLAG; |
| } |
| |
| /// Return true if the subtarget allows calls to immediate address. |
| bool X86Subtarget::isLegalToCallImmediateAddr() const { |
| // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32 |
| // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does, |
| // the following check for Win32 should be removed. |
| if (In64BitMode || isTargetWin32()) |
| return false; |
| return isTargetELF() || TM.getRelocationModel() == Reloc::Static; |
| } |
| |
| void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, |
| StringRef FS) { |
| if (CPU.empty()) |
| CPU = "generic"; |
| |
| if (TuneCPU.empty()) |
| TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect. |
| |
| std::string FullFS = X86_MC::ParseX86Triple(TargetTriple); |
| assert(!FullFS.empty() && "Failed to parse X86 triple"); |
| |
| if (!FS.empty()) |
| FullFS = (Twine(FullFS) + "," + FS).str(); |
| |
| // Parse features string and set the CPU. |
| ParseSubtargetFeatures(CPU, TuneCPU, FullFS); |
| |
| // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of |
| // 16-bytes and under that are reasonably fast. These features were |
| // introduced with Intel's Nehalem/Silvermont and AMD's Family10h |
| // micro-architectures respectively. |
| if (hasSSE42() || hasSSE4A()) |
| IsUAMem16Slow = false; |
| |
| LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel |
| << ", 3DNowLevel " << X863DNowLevel << ", 64bit " |
| << HasX86_64 << "\n"); |
| if (In64BitMode && !HasX86_64) |
| report_fatal_error("64-bit code requested on a subtarget that doesn't " |
| "support it!"); |
| |
| // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all |
| // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes |
| // following the i386 psABI, while on Illumos it is always 16 bytes. |
| if (StackAlignOverride) |
| stackAlignment = *StackAlignOverride; |
| else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() || |
| isTargetNaCl() || In64BitMode) |
| stackAlignment = Align(16); |
| |
| // Consume the vector width attribute or apply any target specific limit. |
| if (PreferVectorWidthOverride) |
| PreferVectorWidth = PreferVectorWidthOverride; |
| else if (Prefer128Bit) |
| PreferVectorWidth = 128; |
| else if (Prefer256Bit) |
| PreferVectorWidth = 256; |
| } |
| |
| X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU, |
| StringRef TuneCPU, |
| StringRef FS) { |
| initSubtargetFeatures(CPU, TuneCPU, FS); |
| return *this; |
| } |
| |
| X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, |
| StringRef FS, const X86TargetMachine &TM, |
| MaybeAlign StackAlignOverride, |
| unsigned PreferVectorWidthOverride, |
| unsigned RequiredVectorWidth) |
| : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS), |
| PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT), |
| StackAlignOverride(StackAlignOverride), |
| PreferVectorWidthOverride(PreferVectorWidthOverride), |
| RequiredVectorWidth(RequiredVectorWidth), |
| InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)), |
| TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) { |
| // Determine the PICStyle based on the target selected. |
| if (!isPositionIndependent()) |
| setPICStyle(PICStyles::Style::None); |
| else if (is64Bit()) |
| setPICStyle(PICStyles::Style::RIPRel); |
| else if (isTargetCOFF()) |
| setPICStyle(PICStyles::Style::None); |
| else if (isTargetDarwin()) |
| setPICStyle(PICStyles::Style::StubPIC); |
| else if (isTargetELF()) |
| setPICStyle(PICStyles::Style::GOT); |
| |
| CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering())); |
| Legalizer.reset(new X86LegalizerInfo(*this, TM)); |
| |
| auto *RBI = new X86RegisterBankInfo(*getRegisterInfo()); |
| RegBankInfo.reset(RBI); |
| InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI)); |
| } |
| |
| const CallLowering *X86Subtarget::getCallLowering() const { |
| return CallLoweringInfo.get(); |
| } |
| |
| InstructionSelector *X86Subtarget::getInstructionSelector() const { |
| return InstSelector.get(); |
| } |
| |
| const LegalizerInfo *X86Subtarget::getLegalizerInfo() const { |
| return Legalizer.get(); |
| } |
| |
| const RegisterBankInfo *X86Subtarget::getRegBankInfo() const { |
| return RegBankInfo.get(); |
| } |
| |
| bool X86Subtarget::enableEarlyIfConversion() const { |
| return hasCMov() && X86EarlyIfConv; |
| } |
| |
| void X86Subtarget::getPostRAMutations( |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { |
| Mutations.push_back(createX86MacroFusionDAGMutation()); |
| } |
| |
| bool X86Subtarget::isPositionIndependent() const { |
| return TM.isPositionIndependent(); |
| } |