| //===- X86InstructionSelector.cpp -----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the InstructionSelector class for |
| /// X86. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrInfo.h" |
| #include "X86RegisterBankInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <tuple> |
| |
| #define DEBUG_TYPE "X86-isel" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| #define GET_GLOBALISEL_PREDICATE_BITSET |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATE_BITSET |
| |
| class X86InstructionSelector : public InstructionSelector { |
| public: |
| X86InstructionSelector(const X86TargetMachine &TM, const X86Subtarget &STI, |
| const X86RegisterBankInfo &RBI); |
| |
| bool select(MachineInstr &I) override; |
| static const char *getName() { return DEBUG_TYPE; } |
| |
| private: |
| /// tblgen-erated 'select' implementation, used as the initial selector for |
| /// the patterns that don't require complex C++. |
| bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; |
| |
| // TODO: remove after supported by Tablegen-erated instruction selection. |
| unsigned getLoadStoreOp(const LLT &Ty, const RegisterBank &RB, unsigned Opc, |
| Align Alignment) const; |
| |
| bool selectLoadStoreOp(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectFrameIndexOrGep(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectConstant(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectTruncOrPtrToInt(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectZext(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectAnyext(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectCmp(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectFCmp(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectUadde(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectCopy(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF); |
| bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF); |
| bool selectInsert(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectExtract(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectCondBranch(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectTurnIntoCOPY(MachineInstr &I, MachineRegisterInfo &MRI, |
| const unsigned DstReg, |
| const TargetRegisterClass *DstRC, |
| const unsigned SrcReg, |
| const TargetRegisterClass *SrcRC) const; |
| bool materializeFP(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectImplicitDefOrPHI(MachineInstr &I, MachineRegisterInfo &MRI) const; |
| bool selectDivRem(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| bool selectIntrinsicWSideEffects(MachineInstr &I, MachineRegisterInfo &MRI, |
| MachineFunction &MF) const; |
| |
| // emit insert subreg instruction and insert it before MachineInstr &I |
| bool emitInsertSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I, |
| MachineRegisterInfo &MRI, MachineFunction &MF) const; |
| // emit extract subreg instruction and insert it before MachineInstr &I |
| bool emitExtractSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I, |
| MachineRegisterInfo &MRI, MachineFunction &MF) const; |
| |
| const TargetRegisterClass *getRegClass(LLT Ty, const RegisterBank &RB) const; |
| const TargetRegisterClass *getRegClass(LLT Ty, unsigned Reg, |
| MachineRegisterInfo &MRI) const; |
| |
| const X86TargetMachine &TM; |
| const X86Subtarget &STI; |
| const X86InstrInfo &TII; |
| const X86RegisterInfo &TRI; |
| const X86RegisterBankInfo &RBI; |
| |
| #define GET_GLOBALISEL_PREDICATES_DECL |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_DECL |
| |
| #define GET_GLOBALISEL_TEMPORARIES_DECL |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_DECL |
| }; |
| |
| } // end anonymous namespace |
| |
| #define GET_GLOBALISEL_IMPL |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_IMPL |
| |
| X86InstructionSelector::X86InstructionSelector(const X86TargetMachine &TM, |
| const X86Subtarget &STI, |
| const X86RegisterBankInfo &RBI) |
| : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()), |
| TRI(*STI.getRegisterInfo()), RBI(RBI), |
| #define GET_GLOBALISEL_PREDICATES_INIT |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_PREDICATES_INIT |
| #define GET_GLOBALISEL_TEMPORARIES_INIT |
| #include "X86GenGlobalISel.inc" |
| #undef GET_GLOBALISEL_TEMPORARIES_INIT |
| { |
| } |
| |
| // FIXME: This should be target-independent, inferred from the types declared |
| // for each class in the bank. |
| const TargetRegisterClass * |
| X86InstructionSelector::getRegClass(LLT Ty, const RegisterBank &RB) const { |
| if (RB.getID() == X86::GPRRegBankID) { |
| if (Ty.getSizeInBits() <= 8) |
| return &X86::GR8RegClass; |
| if (Ty.getSizeInBits() == 16) |
| return &X86::GR16RegClass; |
| if (Ty.getSizeInBits() == 32) |
| return &X86::GR32RegClass; |
| if (Ty.getSizeInBits() == 64) |
| return &X86::GR64RegClass; |
| } |
| if (RB.getID() == X86::VECRRegBankID) { |
| if (Ty.getSizeInBits() == 32) |
| return STI.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| if (Ty.getSizeInBits() == 64) |
| return STI.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| if (Ty.getSizeInBits() == 128) |
| return STI.hasAVX512() ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| if (Ty.getSizeInBits() == 256) |
| return STI.hasAVX512() ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| if (Ty.getSizeInBits() == 512) |
| return &X86::VR512RegClass; |
| } |
| |
| llvm_unreachable("Unknown RegBank!"); |
| } |
| |
| const TargetRegisterClass * |
| X86InstructionSelector::getRegClass(LLT Ty, unsigned Reg, |
| MachineRegisterInfo &MRI) const { |
| const RegisterBank &RegBank = *RBI.getRegBank(Reg, MRI, TRI); |
| return getRegClass(Ty, RegBank); |
| } |
| |
| static unsigned getSubRegIndex(const TargetRegisterClass *RC) { |
| unsigned SubIdx = X86::NoSubRegister; |
| if (RC == &X86::GR32RegClass) { |
| SubIdx = X86::sub_32bit; |
| } else if (RC == &X86::GR16RegClass) { |
| SubIdx = X86::sub_16bit; |
| } else if (RC == &X86::GR8RegClass) { |
| SubIdx = X86::sub_8bit; |
| } |
| |
| return SubIdx; |
| } |
| |
| static const TargetRegisterClass *getRegClassFromGRPhysReg(Register Reg) { |
| assert(Reg.isPhysical()); |
| if (X86::GR64RegClass.contains(Reg)) |
| return &X86::GR64RegClass; |
| if (X86::GR32RegClass.contains(Reg)) |
| return &X86::GR32RegClass; |
| if (X86::GR16RegClass.contains(Reg)) |
| return &X86::GR16RegClass; |
| if (X86::GR8RegClass.contains(Reg)) |
| return &X86::GR8RegClass; |
| |
| llvm_unreachable("Unknown RegClass for PhysReg!"); |
| } |
| |
| // Set X86 Opcode and constrain DestReg. |
| bool X86InstructionSelector::selectCopy(MachineInstr &I, |
| MachineRegisterInfo &MRI) const { |
| Register DstReg = I.getOperand(0).getReg(); |
| const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI); |
| const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| |
| Register SrcReg = I.getOperand(1).getReg(); |
| const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI); |
| const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| if (DstReg.isPhysical()) { |
| assert(I.isCopy() && "Generic operators do not allow physical registers"); |
| |
| if (DstSize > SrcSize && SrcRegBank.getID() == X86::GPRRegBankID && |
| DstRegBank.getID() == X86::GPRRegBankID) { |
| |
| const TargetRegisterClass *SrcRC = |
| getRegClass(MRI.getType(SrcReg), SrcRegBank); |
| const TargetRegisterClass *DstRC = getRegClassFromGRPhysReg(DstReg); |
| |
| if (SrcRC != DstRC) { |
| // This case can be generated by ABI lowering, performe anyext |
| Register ExtSrc = MRI.createVirtualRegister(DstRC); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG)) |
| .addDef(ExtSrc) |
| .addImm(0) |
| .addReg(SrcReg) |
| .addImm(getSubRegIndex(SrcRC)); |
| |
| I.getOperand(1).setReg(ExtSrc); |
| } |
| } |
| |
| return true; |
| } |
| |
| assert((!SrcReg.isPhysical() || I.isCopy()) && |
| "No phys reg on generic operators"); |
| assert((DstSize == SrcSize || |
| // Copies are a mean to setup initial types, the number of |
| // bits may not exactly match. |
| (SrcReg.isPhysical() && |
| DstSize <= RBI.getSizeInBits(SrcReg, MRI, TRI))) && |
| "Copy with different width?!"); |
| |
| const TargetRegisterClass *DstRC = |
| getRegClass(MRI.getType(DstReg), DstRegBank); |
| |
| if (SrcRegBank.getID() == X86::GPRRegBankID && |
| DstRegBank.getID() == X86::GPRRegBankID && SrcSize > DstSize && |
| SrcReg.isPhysical()) { |
| // Change the physical register to performe truncate. |
| |
| const TargetRegisterClass *SrcRC = getRegClassFromGRPhysReg(SrcReg); |
| |
| if (DstRC != SrcRC) { |
| I.getOperand(1).setSubReg(getSubRegIndex(DstRC)); |
| I.getOperand(1).substPhysReg(SrcReg, TRI); |
| } |
| } |
| |
| // No need to constrain SrcReg. It will get constrained when |
| // we hit another of its use or its defs. |
| // Copies do not have constraints. |
| const TargetRegisterClass *OldRC = MRI.getRegClassOrNull(DstReg); |
| if (!OldRC || !DstRC->hasSubClassEq(OldRC)) { |
| if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| } |
| I.setDesc(TII.get(X86::COPY)); |
| return true; |
| } |
| |
| bool X86InstructionSelector::select(MachineInstr &I) { |
| assert(I.getParent() && "Instruction should be in a basic block!"); |
| assert(I.getParent()->getParent() && "Instruction should be in a function!"); |
| |
| MachineBasicBlock &MBB = *I.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| unsigned Opcode = I.getOpcode(); |
| if (!isPreISelGenericOpcode(Opcode)) { |
| // Certain non-generic instructions also need some special handling. |
| |
| if (Opcode == TargetOpcode::LOAD_STACK_GUARD) |
| return false; |
| |
| if (I.isCopy()) |
| return selectCopy(I, MRI); |
| |
| return true; |
| } |
| |
| assert(I.getNumOperands() == I.getNumExplicitOperands() && |
| "Generic instruction has unexpected implicit operands\n"); |
| |
| if (selectImpl(I, *CoverageInfo)) |
| return true; |
| |
| LLVM_DEBUG(dbgs() << " C++ instruction selection: "; I.print(dbgs())); |
| |
| // TODO: This should be implemented by tblgen. |
| switch (I.getOpcode()) { |
| default: |
| return false; |
| case TargetOpcode::G_STORE: |
| case TargetOpcode::G_LOAD: |
| return selectLoadStoreOp(I, MRI, MF); |
| case TargetOpcode::G_PTR_ADD: |
| case TargetOpcode::G_FRAME_INDEX: |
| return selectFrameIndexOrGep(I, MRI, MF); |
| case TargetOpcode::G_GLOBAL_VALUE: |
| return selectGlobalValue(I, MRI, MF); |
| case TargetOpcode::G_CONSTANT: |
| return selectConstant(I, MRI, MF); |
| case TargetOpcode::G_FCONSTANT: |
| return materializeFP(I, MRI, MF); |
| case TargetOpcode::G_PTRTOINT: |
| case TargetOpcode::G_TRUNC: |
| return selectTruncOrPtrToInt(I, MRI, MF); |
| case TargetOpcode::G_INTTOPTR: |
| return selectCopy(I, MRI); |
| case TargetOpcode::G_ZEXT: |
| return selectZext(I, MRI, MF); |
| case TargetOpcode::G_ANYEXT: |
| return selectAnyext(I, MRI, MF); |
| case TargetOpcode::G_ICMP: |
| return selectCmp(I, MRI, MF); |
| case TargetOpcode::G_FCMP: |
| return selectFCmp(I, MRI, MF); |
| case TargetOpcode::G_UADDE: |
| return selectUadde(I, MRI, MF); |
| case TargetOpcode::G_UNMERGE_VALUES: |
| return selectUnmergeValues(I, MRI, MF); |
| case TargetOpcode::G_MERGE_VALUES: |
| case TargetOpcode::G_CONCAT_VECTORS: |
| return selectMergeValues(I, MRI, MF); |
| case TargetOpcode::G_EXTRACT: |
| return selectExtract(I, MRI, MF); |
| case TargetOpcode::G_INSERT: |
| return selectInsert(I, MRI, MF); |
| case TargetOpcode::G_BRCOND: |
| return selectCondBranch(I, MRI, MF); |
| case TargetOpcode::G_IMPLICIT_DEF: |
| case TargetOpcode::G_PHI: |
| return selectImplicitDefOrPHI(I, MRI); |
| case TargetOpcode::G_SDIV: |
| case TargetOpcode::G_UDIV: |
| case TargetOpcode::G_SREM: |
| case TargetOpcode::G_UREM: |
| return selectDivRem(I, MRI, MF); |
| case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| return selectIntrinsicWSideEffects(I, MRI, MF); |
| } |
| |
| return false; |
| } |
| |
| unsigned X86InstructionSelector::getLoadStoreOp(const LLT &Ty, |
| const RegisterBank &RB, |
| unsigned Opc, |
| Align Alignment) const { |
| bool Isload = (Opc == TargetOpcode::G_LOAD); |
| bool HasAVX = STI.hasAVX(); |
| bool HasAVX512 = STI.hasAVX512(); |
| bool HasVLX = STI.hasVLX(); |
| |
| if (Ty == LLT::scalar(8)) { |
| if (X86::GPRRegBankID == RB.getID()) |
| return Isload ? X86::MOV8rm : X86::MOV8mr; |
| } else if (Ty == LLT::scalar(16)) { |
| if (X86::GPRRegBankID == RB.getID()) |
| return Isload ? X86::MOV16rm : X86::MOV16mr; |
| } else if (Ty == LLT::scalar(32) || Ty == LLT::pointer(0, 32)) { |
| if (X86::GPRRegBankID == RB.getID()) |
| return Isload ? X86::MOV32rm : X86::MOV32mr; |
| if (X86::VECRRegBankID == RB.getID()) |
| return Isload ? (HasAVX512 ? X86::VMOVSSZrm_alt : |
| HasAVX ? X86::VMOVSSrm_alt : |
| X86::MOVSSrm_alt) |
| : (HasAVX512 ? X86::VMOVSSZmr : |
| HasAVX ? X86::VMOVSSmr : |
| X86::MOVSSmr); |
| } else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64)) { |
| if (X86::GPRRegBankID == RB.getID()) |
| return Isload ? X86::MOV64rm : X86::MOV64mr; |
| if (X86::VECRRegBankID == RB.getID()) |
| return Isload ? (HasAVX512 ? X86::VMOVSDZrm_alt : |
| HasAVX ? X86::VMOVSDrm_alt : |
| X86::MOVSDrm_alt) |
| : (HasAVX512 ? X86::VMOVSDZmr : |
| HasAVX ? X86::VMOVSDmr : |
| X86::MOVSDmr); |
| } else if (Ty.isVector() && Ty.getSizeInBits() == 128) { |
| if (Alignment >= Align(16)) |
| return Isload ? (HasVLX ? X86::VMOVAPSZ128rm |
| : HasAVX512 |
| ? X86::VMOVAPSZ128rm_NOVLX |
| : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) |
| : (HasVLX ? X86::VMOVAPSZ128mr |
| : HasAVX512 |
| ? X86::VMOVAPSZ128mr_NOVLX |
| : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); |
| else |
| return Isload ? (HasVLX ? X86::VMOVUPSZ128rm |
| : HasAVX512 |
| ? X86::VMOVUPSZ128rm_NOVLX |
| : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) |
| : (HasVLX ? X86::VMOVUPSZ128mr |
| : HasAVX512 |
| ? X86::VMOVUPSZ128mr_NOVLX |
| : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); |
| } else if (Ty.isVector() && Ty.getSizeInBits() == 256) { |
| if (Alignment >= Align(32)) |
| return Isload ? (HasVLX ? X86::VMOVAPSZ256rm |
| : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX |
| : X86::VMOVAPSYrm) |
| : (HasVLX ? X86::VMOVAPSZ256mr |
| : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX |
| : X86::VMOVAPSYmr); |
| else |
| return Isload ? (HasVLX ? X86::VMOVUPSZ256rm |
| : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX |
| : X86::VMOVUPSYrm) |
| : (HasVLX ? X86::VMOVUPSZ256mr |
| : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX |
| : X86::VMOVUPSYmr); |
| } else if (Ty.isVector() && Ty.getSizeInBits() == 512) { |
| if (Alignment >= Align(64)) |
| return Isload ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; |
| else |
| return Isload ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; |
| } |
| return Opc; |
| } |
| |
| // Fill in an address from the given instruction. |
| static void X86SelectAddress(const MachineInstr &I, |
| const MachineRegisterInfo &MRI, |
| X86AddressMode &AM) { |
| assert(I.getOperand(0).isReg() && "unsupported opperand."); |
| assert(MRI.getType(I.getOperand(0).getReg()).isPointer() && |
| "unsupported type."); |
| |
| if (I.getOpcode() == TargetOpcode::G_PTR_ADD) { |
| if (auto COff = getIConstantVRegSExtVal(I.getOperand(2).getReg(), MRI)) { |
| int64_t Imm = *COff; |
| if (isInt<32>(Imm)) { // Check for displacement overflow. |
| AM.Disp = static_cast<int32_t>(Imm); |
| AM.Base.Reg = I.getOperand(1).getReg(); |
| return; |
| } |
| } |
| } else if (I.getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| AM.Base.FrameIndex = I.getOperand(1).getIndex(); |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| return; |
| } |
| |
| // Default behavior. |
| AM.Base.Reg = I.getOperand(0).getReg(); |
| } |
| |
| bool X86InstructionSelector::selectLoadStoreOp(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| unsigned Opc = I.getOpcode(); |
| |
| assert((Opc == TargetOpcode::G_STORE || Opc == TargetOpcode::G_LOAD) && |
| "unexpected instruction"); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI); |
| |
| assert(I.hasOneMemOperand()); |
| auto &MemOp = **I.memoperands_begin(); |
| if (MemOp.isAtomic()) { |
| // Note: for unordered operations, we rely on the fact the appropriate MMO |
| // is already on the instruction we're mutating, and thus we don't need to |
| // make any changes. So long as we select an opcode which is capable of |
| // loading or storing the appropriate size atomically, the rest of the |
| // backend is required to respect the MMO state. |
| if (!MemOp.isUnordered()) { |
| LLVM_DEBUG(dbgs() << "Atomic ordering not supported yet\n"); |
| return false; |
| } |
| if (MemOp.getAlign() < Ty.getSizeInBits() / 8) { |
| LLVM_DEBUG(dbgs() << "Unaligned atomics not supported yet\n"); |
| return false; |
| } |
| } |
| |
| unsigned NewOpc = getLoadStoreOp(Ty, RB, Opc, MemOp.getAlign()); |
| if (NewOpc == Opc) |
| return false; |
| |
| X86AddressMode AM; |
| X86SelectAddress(*MRI.getVRegDef(I.getOperand(1).getReg()), MRI, AM); |
| |
| I.setDesc(TII.get(NewOpc)); |
| MachineInstrBuilder MIB(MF, I); |
| if (Opc == TargetOpcode::G_LOAD) { |
| I.RemoveOperand(1); |
| addFullAddress(MIB, AM); |
| } else { |
| // G_STORE (VAL, Addr), X86Store instruction (Addr, VAL) |
| I.RemoveOperand(1); |
| I.RemoveOperand(0); |
| addFullAddress(MIB, AM).addUse(DefReg); |
| } |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| static unsigned getLeaOP(LLT Ty, const X86Subtarget &STI) { |
| if (Ty == LLT::pointer(0, 64)) |
| return X86::LEA64r; |
| else if (Ty == LLT::pointer(0, 32)) |
| return STI.isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r; |
| else |
| llvm_unreachable("Can't get LEA opcode. Unsupported type."); |
| } |
| |
| bool X86InstructionSelector::selectFrameIndexOrGep(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| unsigned Opc = I.getOpcode(); |
| |
| assert((Opc == TargetOpcode::G_FRAME_INDEX || Opc == TargetOpcode::G_PTR_ADD) && |
| "unexpected instruction"); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| |
| // Use LEA to calculate frame index and GEP |
| unsigned NewOpc = getLeaOP(Ty, STI); |
| I.setDesc(TII.get(NewOpc)); |
| MachineInstrBuilder MIB(MF, I); |
| |
| if (Opc == TargetOpcode::G_FRAME_INDEX) { |
| addOffset(MIB, 0); |
| } else { |
| MachineOperand &InxOp = I.getOperand(2); |
| I.addOperand(InxOp); // set IndexReg |
| InxOp.ChangeToImmediate(1); // set Scale |
| MIB.addImm(0).addReg(0); |
| } |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool X86InstructionSelector::selectGlobalValue(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE) && |
| "unexpected instruction"); |
| |
| auto GV = I.getOperand(1).getGlobal(); |
| if (GV->isThreadLocal()) { |
| return false; // TODO: we don't support TLS yet. |
| } |
| |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| X86AddressMode AM; |
| AM.GV = GV; |
| AM.GVOpFlags = STI.classifyGlobalReference(GV); |
| |
| // TODO: The ABI requires an extra load. not supported yet. |
| if (isGlobalStubReference(AM.GVOpFlags)) |
| return false; |
| |
| // TODO: This reference is relative to the pic base. not supported yet. |
| if (isGlobalRelativeToPICBase(AM.GVOpFlags)) |
| return false; |
| |
| if (STI.isPICStyleRIPRel()) { |
| // Use rip-relative addressing. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| unsigned NewOpc = getLeaOP(Ty, STI); |
| |
| I.setDesc(TII.get(NewOpc)); |
| MachineInstrBuilder MIB(MF, I); |
| |
| I.RemoveOperand(1); |
| addFullAddress(MIB, AM); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool X86InstructionSelector::selectConstant(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_CONSTANT) && |
| "unexpected instruction"); |
| |
| const Register DefReg = I.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DefReg); |
| |
| if (RBI.getRegBank(DefReg, MRI, TRI)->getID() != X86::GPRRegBankID) |
| return false; |
| |
| uint64_t Val = 0; |
| if (I.getOperand(1).isCImm()) { |
| Val = I.getOperand(1).getCImm()->getZExtValue(); |
| I.getOperand(1).ChangeToImmediate(Val); |
| } else if (I.getOperand(1).isImm()) { |
| Val = I.getOperand(1).getImm(); |
| } else |
| llvm_unreachable("Unsupported operand type."); |
| |
| unsigned NewOpc; |
| switch (Ty.getSizeInBits()) { |
| case 8: |
| NewOpc = X86::MOV8ri; |
| break; |
| case 16: |
| NewOpc = X86::MOV16ri; |
| break; |
| case 32: |
| NewOpc = X86::MOV32ri; |
| break; |
| case 64: |
| // TODO: in case isUInt<32>(Val), X86::MOV32ri can be used |
| if (isInt<32>(Val)) |
| NewOpc = X86::MOV64ri32; |
| else |
| NewOpc = X86::MOV64ri; |
| break; |
| default: |
| llvm_unreachable("Can't select G_CONSTANT, unsupported type."); |
| } |
| |
| I.setDesc(TII.get(NewOpc)); |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| // Helper function for selectTruncOrPtrToInt and selectAnyext. |
| // Returns true if DstRC lives on a floating register class and |
| // SrcRC lives on a 128-bit vector class. |
| static bool canTurnIntoCOPY(const TargetRegisterClass *DstRC, |
| const TargetRegisterClass *SrcRC) { |
| return (DstRC == &X86::FR32RegClass || DstRC == &X86::FR32XRegClass || |
| DstRC == &X86::FR64RegClass || DstRC == &X86::FR64XRegClass) && |
| (SrcRC == &X86::VR128RegClass || SrcRC == &X86::VR128XRegClass); |
| } |
| |
| bool X86InstructionSelector::selectTurnIntoCOPY( |
| MachineInstr &I, MachineRegisterInfo &MRI, const unsigned DstReg, |
| const TargetRegisterClass *DstRC, const unsigned SrcReg, |
| const TargetRegisterClass *SrcRC) const { |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| I.setDesc(TII.get(X86::COPY)); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectTruncOrPtrToInt(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_TRUNC || |
| I.getOpcode() == TargetOpcode::G_PTRTOINT) && |
| "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| if (DstRB.getID() != SrcRB.getID()) { |
| LLVM_DEBUG(dbgs() << TII.getName(I.getOpcode()) |
| << " input/output on different banks\n"); |
| return false; |
| } |
| |
| const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB); |
| const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB); |
| |
| if (!DstRC || !SrcRC) |
| return false; |
| |
| // If that's truncation of the value that lives on the vector class and goes |
| // into the floating class, just replace it with copy, as we are able to |
| // select it as a regular move. |
| if (canTurnIntoCOPY(DstRC, SrcRC)) |
| return selectTurnIntoCOPY(I, MRI, DstReg, DstRC, SrcReg, SrcRC); |
| |
| if (DstRB.getID() != X86::GPRRegBankID) |
| return false; |
| |
| unsigned SubIdx; |
| if (DstRC == SrcRC) { |
| // Nothing to be done |
| SubIdx = X86::NoSubRegister; |
| } else if (DstRC == &X86::GR32RegClass) { |
| SubIdx = X86::sub_32bit; |
| } else if (DstRC == &X86::GR16RegClass) { |
| SubIdx = X86::sub_16bit; |
| } else if (DstRC == &X86::GR8RegClass) { |
| SubIdx = X86::sub_8bit; |
| } else { |
| return false; |
| } |
| |
| SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx); |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << "\n"); |
| return false; |
| } |
| |
| I.getOperand(1).setSubReg(SubIdx); |
| |
| I.setDesc(TII.get(X86::COPY)); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectZext(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_ZEXT) && "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| |
| assert(!(SrcTy == LLT::scalar(8) && DstTy == LLT::scalar(16)) && |
| "8=>16 Zext is handled by tablegen"); |
| assert(!(SrcTy == LLT::scalar(8) && DstTy == LLT::scalar(32)) && |
| "8=>32 Zext is handled by tablegen"); |
| assert(!(SrcTy == LLT::scalar(16) && DstTy == LLT::scalar(32)) && |
| "16=>32 Zext is handled by tablegen"); |
| assert(!(SrcTy == LLT::scalar(8) && DstTy == LLT::scalar(64)) && |
| "8=>64 Zext is handled by tablegen"); |
| assert(!(SrcTy == LLT::scalar(16) && DstTy == LLT::scalar(64)) && |
| "16=>64 Zext is handled by tablegen"); |
| assert(!(SrcTy == LLT::scalar(32) && DstTy == LLT::scalar(64)) && |
| "32=>64 Zext is handled by tablegen"); |
| |
| if (SrcTy != LLT::scalar(1)) |
| return false; |
| |
| unsigned AndOpc; |
| if (DstTy == LLT::scalar(8)) |
| AndOpc = X86::AND8ri; |
| else if (DstTy == LLT::scalar(16)) |
| AndOpc = X86::AND16ri8; |
| else if (DstTy == LLT::scalar(32)) |
| AndOpc = X86::AND32ri8; |
| else if (DstTy == LLT::scalar(64)) |
| AndOpc = X86::AND64ri8; |
| else |
| return false; |
| |
| Register DefReg = SrcReg; |
| if (DstTy != LLT::scalar(8)) { |
| Register ImpDefReg = |
| MRI.createVirtualRegister(getRegClass(DstTy, DstReg, MRI)); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImpDefReg); |
| |
| DefReg = MRI.createVirtualRegister(getRegClass(DstTy, DstReg, MRI)); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::INSERT_SUBREG), DefReg) |
| .addReg(ImpDefReg) |
| .addReg(SrcReg) |
| .addImm(X86::sub_8bit); |
| } |
| |
| MachineInstr &AndInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AndOpc), DstReg) |
| .addReg(DefReg) |
| .addImm(1); |
| |
| constrainSelectedInstRegOperands(AndInst, TII, TRI, RBI); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectAnyext(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_ANYEXT) && "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| |
| const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI); |
| const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI); |
| |
| assert(DstRB.getID() == SrcRB.getID() && |
| "G_ANYEXT input/output on different banks\n"); |
| |
| assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() && |
| "G_ANYEXT incorrect operand size"); |
| |
| const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB); |
| const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB); |
| |
| // If that's ANY_EXT of the value that lives on the floating class and goes |
| // into the vector class, just replace it with copy, as we are able to select |
| // it as a regular move. |
| if (canTurnIntoCOPY(SrcRC, DstRC)) |
| return selectTurnIntoCOPY(I, MRI, SrcReg, SrcRC, DstReg, DstRC); |
| |
| if (DstRB.getID() != X86::GPRRegBankID) |
| return false; |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| |
| if (SrcRC == DstRC) { |
| I.setDesc(TII.get(X86::COPY)); |
| return true; |
| } |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG)) |
| .addDef(DstReg) |
| .addImm(0) |
| .addReg(SrcReg) |
| .addImm(getSubRegIndex(SrcRC)); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectCmp(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_ICMP) && "unexpected instruction"); |
| |
| X86::CondCode CC; |
| bool SwapArgs; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode( |
| (CmpInst::Predicate)I.getOperand(1).getPredicate()); |
| |
| Register LHS = I.getOperand(2).getReg(); |
| Register RHS = I.getOperand(3).getReg(); |
| |
| if (SwapArgs) |
| std::swap(LHS, RHS); |
| |
| unsigned OpCmp; |
| LLT Ty = MRI.getType(LHS); |
| |
| switch (Ty.getSizeInBits()) { |
| default: |
| return false; |
| case 8: |
| OpCmp = X86::CMP8rr; |
| break; |
| case 16: |
| OpCmp = X86::CMP16rr; |
| break; |
| case 32: |
| OpCmp = X86::CMP32rr; |
| break; |
| case 64: |
| OpCmp = X86::CMP64rr; |
| break; |
| } |
| |
| MachineInstr &CmpInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp)) |
| .addReg(LHS) |
| .addReg(RHS); |
| |
| MachineInstr &SetInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(X86::SETCCr), I.getOperand(0).getReg()).addImm(CC); |
| |
| constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(SetInst, TII, TRI, RBI); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectFCmp(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_FCMP) && "unexpected instruction"); |
| |
| Register LhsReg = I.getOperand(2).getReg(); |
| Register RhsReg = I.getOperand(3).getReg(); |
| CmpInst::Predicate Predicate = |
| (CmpInst::Predicate)I.getOperand(1).getPredicate(); |
| |
| // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
| static const uint16_t SETFOpcTable[2][3] = { |
| {X86::COND_E, X86::COND_NP, X86::AND8rr}, |
| {X86::COND_NE, X86::COND_P, X86::OR8rr}}; |
| const uint16_t *SETFOpc = nullptr; |
| switch (Predicate) { |
| default: |
| break; |
| case CmpInst::FCMP_OEQ: |
| SETFOpc = &SETFOpcTable[0][0]; |
| break; |
| case CmpInst::FCMP_UNE: |
| SETFOpc = &SETFOpcTable[1][0]; |
| break; |
| } |
| |
| // Compute the opcode for the CMP instruction. |
| unsigned OpCmp; |
| LLT Ty = MRI.getType(LhsReg); |
| switch (Ty.getSizeInBits()) { |
| default: |
| return false; |
| case 32: |
| OpCmp = X86::UCOMISSrr; |
| break; |
| case 64: |
| OpCmp = X86::UCOMISDrr; |
| break; |
| } |
| |
| Register ResultReg = I.getOperand(0).getReg(); |
| RBI.constrainGenericRegister( |
| ResultReg, |
| *getRegClass(LLT::scalar(8), *RBI.getRegBank(ResultReg, MRI, TRI)), MRI); |
| if (SETFOpc) { |
| MachineInstr &CmpInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp)) |
| .addReg(LhsReg) |
| .addReg(RhsReg); |
| |
| Register FlagReg1 = MRI.createVirtualRegister(&X86::GR8RegClass); |
| Register FlagReg2 = MRI.createVirtualRegister(&X86::GR8RegClass); |
| MachineInstr &Set1 = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(X86::SETCCr), FlagReg1).addImm(SETFOpc[0]); |
| MachineInstr &Set2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(X86::SETCCr), FlagReg2).addImm(SETFOpc[1]); |
| MachineInstr &Set3 = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(SETFOpc[2]), ResultReg) |
| .addReg(FlagReg1) |
| .addReg(FlagReg2); |
| constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(Set1, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(Set2, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(Set3, TII, TRI, RBI); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| X86::CondCode CC; |
| bool SwapArgs; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| if (SwapArgs) |
| std::swap(LhsReg, RhsReg); |
| |
| // Emit a compare of LHS/RHS. |
| MachineInstr &CmpInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp)) |
| .addReg(LhsReg) |
| .addReg(RhsReg); |
| |
| MachineInstr &Set = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SETCCr), ResultReg).addImm(CC); |
| constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI); |
| constrainSelectedInstRegOperands(Set, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectUadde(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_UADDE) && "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register CarryOutReg = I.getOperand(1).getReg(); |
| const Register Op0Reg = I.getOperand(2).getReg(); |
| const Register Op1Reg = I.getOperand(3).getReg(); |
| Register CarryInReg = I.getOperand(4).getReg(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| |
| if (DstTy != LLT::scalar(32)) |
| return false; |
| |
| // find CarryIn def instruction. |
| MachineInstr *Def = MRI.getVRegDef(CarryInReg); |
| while (Def->getOpcode() == TargetOpcode::G_TRUNC) { |
| CarryInReg = Def->getOperand(1).getReg(); |
| Def = MRI.getVRegDef(CarryInReg); |
| } |
| |
| unsigned Opcode; |
| if (Def->getOpcode() == TargetOpcode::G_UADDE) { |
| // carry set by prev ADD. |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), X86::EFLAGS) |
| .addReg(CarryInReg); |
| |
| if (!RBI.constrainGenericRegister(CarryInReg, X86::GR32RegClass, MRI)) |
| return false; |
| |
| Opcode = X86::ADC32rr; |
| } else if (auto val = getIConstantVRegVal(CarryInReg, MRI)) { |
| // carry is constant, support only 0. |
| if (*val != 0) |
| return false; |
| |
| Opcode = X86::ADD32rr; |
| } else |
| return false; |
| |
| MachineInstr &AddInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode), DstReg) |
| .addReg(Op0Reg) |
| .addReg(Op1Reg); |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), CarryOutReg) |
| .addReg(X86::EFLAGS); |
| |
| if (!constrainSelectedInstRegOperands(AddInst, TII, TRI, RBI) || |
| !RBI.constrainGenericRegister(CarryOutReg, X86::GR32RegClass, MRI)) |
| return false; |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectExtract(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_EXTRACT) && |
| "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| int64_t Index = I.getOperand(2).getImm(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| |
| // Meanwile handle vector type only. |
| if (!DstTy.isVector()) |
| return false; |
| |
| if (Index % DstTy.getSizeInBits() != 0) |
| return false; // Not extract subvector. |
| |
| if (Index == 0) { |
| // Replace by extract subreg copy. |
| if (!emitExtractSubreg(DstReg, SrcReg, I, MRI, MF)) |
| return false; |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool HasAVX = STI.hasAVX(); |
| bool HasAVX512 = STI.hasAVX512(); |
| bool HasVLX = STI.hasVLX(); |
| |
| if (SrcTy.getSizeInBits() == 256 && DstTy.getSizeInBits() == 128) { |
| if (HasVLX) |
| I.setDesc(TII.get(X86::VEXTRACTF32x4Z256rr)); |
| else if (HasAVX) |
| I.setDesc(TII.get(X86::VEXTRACTF128rr)); |
| else |
| return false; |
| } else if (SrcTy.getSizeInBits() == 512 && HasAVX512) { |
| if (DstTy.getSizeInBits() == 128) |
| I.setDesc(TII.get(X86::VEXTRACTF32x4Zrr)); |
| else if (DstTy.getSizeInBits() == 256) |
| I.setDesc(TII.get(X86::VEXTRACTF64x4Zrr)); |
| else |
| return false; |
| } else |
| return false; |
| |
| // Convert to X86 VEXTRACT immediate. |
| Index = Index / DstTy.getSizeInBits(); |
| I.getOperand(2).setImm(Index); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool X86InstructionSelector::emitExtractSubreg(unsigned DstReg, unsigned SrcReg, |
| MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| unsigned SubIdx = X86::NoSubRegister; |
| |
| if (!DstTy.isVector() || !SrcTy.isVector()) |
| return false; |
| |
| assert(SrcTy.getSizeInBits() > DstTy.getSizeInBits() && |
| "Incorrect Src/Dst register size"); |
| |
| if (DstTy.getSizeInBits() == 128) |
| SubIdx = X86::sub_xmm; |
| else if (DstTy.getSizeInBits() == 256) |
| SubIdx = X86::sub_ymm; |
| else |
| return false; |
| |
| const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI); |
| const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI); |
| |
| SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx); |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain EXTRACT_SUBREG\n"); |
| return false; |
| } |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), DstReg) |
| .addReg(SrcReg, 0, SubIdx); |
| |
| return true; |
| } |
| |
| bool X86InstructionSelector::emitInsertSubreg(unsigned DstReg, unsigned SrcReg, |
| MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg); |
| unsigned SubIdx = X86::NoSubRegister; |
| |
| // TODO: support scalar types |
| if (!DstTy.isVector() || !SrcTy.isVector()) |
| return false; |
| |
| assert(SrcTy.getSizeInBits() < DstTy.getSizeInBits() && |
| "Incorrect Src/Dst register size"); |
| |
| if (SrcTy.getSizeInBits() == 128) |
| SubIdx = X86::sub_xmm; |
| else if (SrcTy.getSizeInBits() == 256) |
| SubIdx = X86::sub_ymm; |
| else |
| return false; |
| |
| const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI); |
| const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI); |
| |
| if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain INSERT_SUBREG\n"); |
| return false; |
| } |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY)) |
| .addReg(DstReg, RegState::DefineNoRead, SubIdx) |
| .addReg(SrcReg); |
| |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectInsert(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_INSERT) && "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register SrcReg = I.getOperand(1).getReg(); |
| const Register InsertReg = I.getOperand(2).getReg(); |
| int64_t Index = I.getOperand(3).getImm(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT InsertRegTy = MRI.getType(InsertReg); |
| |
| // Meanwile handle vector type only. |
| if (!DstTy.isVector()) |
| return false; |
| |
| if (Index % InsertRegTy.getSizeInBits() != 0) |
| return false; // Not insert subvector. |
| |
| if (Index == 0 && MRI.getVRegDef(SrcReg)->isImplicitDef()) { |
| // Replace by subreg copy. |
| if (!emitInsertSubreg(DstReg, InsertReg, I, MRI, MF)) |
| return false; |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool HasAVX = STI.hasAVX(); |
| bool HasAVX512 = STI.hasAVX512(); |
| bool HasVLX = STI.hasVLX(); |
| |
| if (DstTy.getSizeInBits() == 256 && InsertRegTy.getSizeInBits() == 128) { |
| if (HasVLX) |
| I.setDesc(TII.get(X86::VINSERTF32x4Z256rr)); |
| else if (HasAVX) |
| I.setDesc(TII.get(X86::VINSERTF128rr)); |
| else |
| return false; |
| } else if (DstTy.getSizeInBits() == 512 && HasAVX512) { |
| if (InsertRegTy.getSizeInBits() == 128) |
| I.setDesc(TII.get(X86::VINSERTF32x4Zrr)); |
| else if (InsertRegTy.getSizeInBits() == 256) |
| I.setDesc(TII.get(X86::VINSERTF64x4Zrr)); |
| else |
| return false; |
| } else |
| return false; |
| |
| // Convert to X86 VINSERT immediate. |
| Index = Index / InsertRegTy.getSizeInBits(); |
| |
| I.getOperand(3).setImm(Index); |
| |
| return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| } |
| |
| bool X86InstructionSelector::selectUnmergeValues( |
| MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) { |
| assert((I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES) && |
| "unexpected instruction"); |
| |
| // Split to extracts. |
| unsigned NumDefs = I.getNumOperands() - 1; |
| Register SrcReg = I.getOperand(NumDefs).getReg(); |
| unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits(); |
| |
| for (unsigned Idx = 0; Idx < NumDefs; ++Idx) { |
| MachineInstr &ExtrInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::G_EXTRACT), I.getOperand(Idx).getReg()) |
| .addReg(SrcReg) |
| .addImm(Idx * DefSize); |
| |
| if (!select(ExtrInst)) |
| return false; |
| } |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectMergeValues( |
| MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) { |
| assert((I.getOpcode() == TargetOpcode::G_MERGE_VALUES || |
| I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS) && |
| "unexpected instruction"); |
| |
| // Split to inserts. |
| Register DstReg = I.getOperand(0).getReg(); |
| Register SrcReg0 = I.getOperand(1).getReg(); |
| |
| const LLT DstTy = MRI.getType(DstReg); |
| const LLT SrcTy = MRI.getType(SrcReg0); |
| unsigned SrcSize = SrcTy.getSizeInBits(); |
| |
| const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| |
| // For the first src use insertSubReg. |
| Register DefReg = MRI.createGenericVirtualRegister(DstTy); |
| MRI.setRegBank(DefReg, RegBank); |
| if (!emitInsertSubreg(DefReg, I.getOperand(1).getReg(), I, MRI, MF)) |
| return false; |
| |
| for (unsigned Idx = 2; Idx < I.getNumOperands(); ++Idx) { |
| Register Tmp = MRI.createGenericVirtualRegister(DstTy); |
| MRI.setRegBank(Tmp, RegBank); |
| |
| MachineInstr &InsertInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::G_INSERT), Tmp) |
| .addReg(DefReg) |
| .addReg(I.getOperand(Idx).getReg()) |
| .addImm((Idx - 1) * SrcSize); |
| |
| DefReg = Tmp; |
| |
| if (!select(InsertInst)) |
| return false; |
| } |
| |
| MachineInstr &CopyInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::COPY), DstReg) |
| .addReg(DefReg); |
| |
| if (!select(CopyInst)) |
| return false; |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectCondBranch(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_BRCOND) && "unexpected instruction"); |
| |
| const Register CondReg = I.getOperand(0).getReg(); |
| MachineBasicBlock *DestMBB = I.getOperand(1).getMBB(); |
| |
| MachineInstr &TestInst = |
| *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TEST8ri)) |
| .addReg(CondReg) |
| .addImm(1); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::JCC_1)) |
| .addMBB(DestMBB).addImm(X86::COND_NE); |
| |
| constrainSelectedInstRegOperands(TestInst, TII, TRI, RBI); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::materializeFP(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| assert((I.getOpcode() == TargetOpcode::G_FCONSTANT) && |
| "unexpected instruction"); |
| |
| // Can't handle alternate code models yet. |
| CodeModel::Model CM = TM.getCodeModel(); |
| if (CM != CodeModel::Small && CM != CodeModel::Large) |
| return false; |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const LLT DstTy = MRI.getType(DstReg); |
| const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI); |
| Align Alignment = Align(DstTy.getSizeInBytes()); |
| const DebugLoc &DbgLoc = I.getDebugLoc(); |
| |
| unsigned Opc = |
| getLoadStoreOp(DstTy, RegBank, TargetOpcode::G_LOAD, Alignment); |
| |
| // Create the load from the constant pool. |
| const ConstantFP *CFP = I.getOperand(1).getFPImm(); |
| unsigned CPI = MF.getConstantPool()->getConstantPoolIndex(CFP, Alignment); |
| MachineInstr *LoadInst = nullptr; |
| unsigned char OpFlag = STI.classifyLocalReference(nullptr); |
| |
| if (CM == CodeModel::Large && STI.is64Bit()) { |
| // Under X86-64 non-small code model, GV (and friends) are 64-bits, so |
| // they cannot be folded into immediate fields. |
| |
| Register AddrReg = MRI.createVirtualRegister(&X86::GR64RegClass); |
| BuildMI(*I.getParent(), I, DbgLoc, TII.get(X86::MOV64ri), AddrReg) |
| .addConstantPoolIndex(CPI, 0, OpFlag); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad, |
| MF.getDataLayout().getPointerSize(), Alignment); |
| |
| LoadInst = |
| addDirectMem(BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg), |
| AddrReg) |
| .addMemOperand(MMO); |
| |
| } else if (CM == CodeModel::Small || !STI.is64Bit()) { |
| // Handle the case when globals fit in our immediate field. |
| // This is true for X86-32 always and X86-64 when in -mcmodel=small mode. |
| |
| // x86-32 PIC requires a PIC base register for constant pools. |
| unsigned PICBase = 0; |
| if (OpFlag == X86II::MO_PIC_BASE_OFFSET || OpFlag == X86II::MO_GOTOFF) { |
| // PICBase can be allocated by TII.getGlobalBaseReg(&MF). |
| // In DAGISEL the code that initialize it generated by the CGBR pass. |
| return false; // TODO support the mode. |
| } else if (STI.is64Bit() && TM.getCodeModel() == CodeModel::Small) |
| PICBase = X86::RIP; |
| |
| LoadInst = addConstantPoolReference( |
| BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg), CPI, PICBase, |
| OpFlag); |
| } else |
| return false; |
| |
| constrainSelectedInstRegOperands(*LoadInst, TII, TRI, RBI); |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectImplicitDefOrPHI( |
| MachineInstr &I, MachineRegisterInfo &MRI) const { |
| assert((I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF || |
| I.getOpcode() == TargetOpcode::G_PHI) && |
| "unexpected instruction"); |
| |
| Register DstReg = I.getOperand(0).getReg(); |
| |
| if (!MRI.getRegClassOrNull(DstReg)) { |
| const LLT DstTy = MRI.getType(DstReg); |
| const TargetRegisterClass *RC = getRegClass(DstTy, DstReg, MRI); |
| |
| if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| } |
| |
| if (I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF) |
| I.setDesc(TII.get(X86::IMPLICIT_DEF)); |
| else |
| I.setDesc(TII.get(X86::PHI)); |
| |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectDivRem(MachineInstr &I, |
| MachineRegisterInfo &MRI, |
| MachineFunction &MF) const { |
| // The implementation of this function is taken from X86FastISel. |
| assert((I.getOpcode() == TargetOpcode::G_SDIV || |
| I.getOpcode() == TargetOpcode::G_SREM || |
| I.getOpcode() == TargetOpcode::G_UDIV || |
| I.getOpcode() == TargetOpcode::G_UREM) && |
| "unexpected instruction"); |
| |
| const Register DstReg = I.getOperand(0).getReg(); |
| const Register Op1Reg = I.getOperand(1).getReg(); |
| const Register Op2Reg = I.getOperand(2).getReg(); |
| |
| const LLT RegTy = MRI.getType(DstReg); |
| assert(RegTy == MRI.getType(Op1Reg) && RegTy == MRI.getType(Op2Reg) && |
| "Arguments and return value types must match"); |
| |
| const RegisterBank *RegRB = RBI.getRegBank(DstReg, MRI, TRI); |
| if (!RegRB || RegRB->getID() != X86::GPRRegBankID) |
| return false; |
| |
| const static unsigned NumTypes = 4; // i8, i16, i32, i64 |
| const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem |
| const static bool S = true; // IsSigned |
| const static bool U = false; // !IsSigned |
| const static unsigned Copy = TargetOpcode::COPY; |
| // For the X86 IDIV instruction, in most cases the dividend |
| // (numerator) must be in a specific register pair highreg:lowreg, |
| // producing the quotient in lowreg and the remainder in highreg. |
| // For most data types, to set up the instruction, the dividend is |
| // copied into lowreg, and lowreg is sign-extended into highreg. The |
| // exception is i8, where the dividend is defined as a single register rather |
| // than a register pair, and we therefore directly sign-extend the dividend |
| // into lowreg, instead of copying, and ignore the highreg. |
| const static struct DivRemEntry { |
| // The following portion depends only on the data type. |
| unsigned SizeInBits; |
| unsigned LowInReg; // low part of the register pair |
| unsigned HighInReg; // high part of the register pair |
| // The following portion depends on both the data type and the operation. |
| struct DivRemResult { |
| unsigned OpDivRem; // The specific DIV/IDIV opcode to use. |
| unsigned OpSignExtend; // Opcode for sign-extending lowreg into |
| // highreg, or copying a zero into highreg. |
| unsigned OpCopy; // Opcode for copying dividend into lowreg, or |
| // zero/sign-extending into lowreg for i8. |
| unsigned DivRemResultReg; // Register containing the desired result. |
| bool IsOpSigned; // Whether to use signed or unsigned form. |
| } ResultTable[NumOps]; |
| } OpTable[NumTypes] = { |
| {8, |
| X86::AX, |
| 0, |
| { |
| {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S}, // SDiv |
| {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S}, // SRem |
| {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U}, // UDiv |
| {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U}, // URem |
| }}, // i8 |
| {16, |
| X86::AX, |
| X86::DX, |
| { |
| {X86::IDIV16r, X86::CWD, Copy, X86::AX, S}, // SDiv |
| {X86::IDIV16r, X86::CWD, Copy, X86::DX, S}, // SRem |
| {X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U}, // UDiv |
| {X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U}, // URem |
| }}, // i16 |
| {32, |
| X86::EAX, |
| X86::EDX, |
| { |
| {X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S}, // SDiv |
| {X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S}, // SRem |
| {X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U}, // UDiv |
| {X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U}, // URem |
| }}, // i32 |
| {64, |
| X86::RAX, |
| X86::RDX, |
| { |
| {X86::IDIV64r, X86::CQO, Copy, X86::RAX, S}, // SDiv |
| {X86::IDIV64r, X86::CQO, Copy, X86::RDX, S}, // SRem |
| {X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U}, // UDiv |
| {X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U}, // URem |
| }}, // i64 |
| }; |
| |
| auto OpEntryIt = llvm::find_if(OpTable, [RegTy](const DivRemEntry &El) { |
| return El.SizeInBits == RegTy.getSizeInBits(); |
| }); |
| if (OpEntryIt == std::end(OpTable)) |
| return false; |
| |
| unsigned OpIndex; |
| switch (I.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected div/rem opcode"); |
| case TargetOpcode::G_SDIV: |
| OpIndex = 0; |
| break; |
| case TargetOpcode::G_SREM: |
| OpIndex = 1; |
| break; |
| case TargetOpcode::G_UDIV: |
| OpIndex = 2; |
| break; |
| case TargetOpcode::G_UREM: |
| OpIndex = 3; |
| break; |
| } |
| |
| const DivRemEntry &TypeEntry = *OpEntryIt; |
| const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; |
| |
| const TargetRegisterClass *RegRC = getRegClass(RegTy, *RegRB); |
| if (!RBI.constrainGenericRegister(Op1Reg, *RegRC, MRI) || |
| !RBI.constrainGenericRegister(Op2Reg, *RegRC, MRI) || |
| !RBI.constrainGenericRegister(DstReg, *RegRC, MRI)) { |
| LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| << " operand\n"); |
| return false; |
| } |
| |
| // Move op1 into low-order input register. |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpCopy), |
| TypeEntry.LowInReg) |
| .addReg(Op1Reg); |
| // Zero-extend or sign-extend into high-order input register. |
| if (OpEntry.OpSignExtend) { |
| if (OpEntry.IsOpSigned) |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(OpEntry.OpSignExtend)); |
| else { |
| Register Zero32 = MRI.createVirtualRegister(&X86::GR32RegClass); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::MOV32r0), |
| Zero32); |
| |
| // Copy the zero into the appropriate sub/super/identical physical |
| // register. Unfortunately the operations needed are not uniform enough |
| // to fit neatly into the table above. |
| if (RegTy.getSizeInBits() == 16) { |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy), |
| TypeEntry.HighInReg) |
| .addReg(Zero32, 0, X86::sub_16bit); |
| } else if (RegTy.getSizeInBits() == 32) { |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy), |
| TypeEntry.HighInReg) |
| .addReg(Zero32); |
| } else if (RegTy.getSizeInBits() == 64) { |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) |
| .addImm(0) |
| .addReg(Zero32) |
| .addImm(X86::sub_32bit); |
| } |
| } |
| } |
| // Generate the DIV/IDIV instruction. |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpDivRem)) |
| .addReg(Op2Reg); |
| // For i8 remainder, we can't reference ah directly, as we'll end |
| // up with bogus copies like %r9b = COPY %ah. Reference ax |
| // instead to prevent ah references in a rex instruction. |
| // |
| // The current assumption of the fast register allocator is that isel |
| // won't generate explicit references to the GR8_NOREX registers. If |
| // the allocator and/or the backend get enhanced to be more robust in |
| // that regard, this can be, and should be, removed. |
| if ((I.getOpcode() == Instruction::SRem || |
| I.getOpcode() == Instruction::URem) && |
| OpEntry.DivRemResultReg == X86::AH && STI.is64Bit()) { |
| Register SourceSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass); |
| Register ResultSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass); |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy), SourceSuperReg) |
| .addReg(X86::AX); |
| |
| // Shift AX right by 8 bits instead of using AH. |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SHR16ri), |
| ResultSuperReg) |
| .addReg(SourceSuperReg) |
| .addImm(8); |
| |
| // Now reference the 8-bit subreg of the result. |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII.get(TargetOpcode::SUBREG_TO_REG)) |
| .addDef(DstReg) |
| .addImm(0) |
| .addReg(ResultSuperReg) |
| .addImm(X86::sub_8bit); |
| } else { |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY), |
| DstReg) |
| .addReg(OpEntry.DivRemResultReg); |
| } |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| bool X86InstructionSelector::selectIntrinsicWSideEffects( |
| MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) const { |
| |
| assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS && |
| "unexpected instruction"); |
| |
| if (I.getOperand(0).getIntrinsicID() != Intrinsic::trap) |
| return false; |
| |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TRAP)); |
| |
| I.eraseFromParent(); |
| return true; |
| } |
| |
| InstructionSelector * |
| llvm::createX86InstructionSelector(const X86TargetMachine &TM, |
| X86Subtarget &Subtarget, |
| X86RegisterBankInfo &RBI) { |
| return new X86InstructionSelector(TM, Subtarget, RBI); |
| } |