| //===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the integer arithmetic instructions in the X86 |
| // architecture. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // LEA - Load Effective Address |
| let SchedRW = [WriteLEA] in { |
| let hasSideEffects = 0 in |
| def LEA16r : I<0x8D, MRMSrcMem, |
| (outs GR16:$dst), (ins anymem:$src), |
| "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16; |
| let isReMaterializable = 1 in |
| def LEA32r : I<0x8D, MRMSrcMem, |
| (outs GR32:$dst), (ins anymem:$src), |
| "lea{l}\t{$src|$dst}, {$dst|$src}", |
| [(set GR32:$dst, lea32addr:$src)]>, |
| OpSize32, Requires<[Not64BitMode]>; |
| |
| def LEA64_32r : I<0x8D, MRMSrcMem, |
| (outs GR32:$dst), (ins lea64_32mem:$src), |
| "lea{l}\t{$src|$dst}, {$dst|$src}", |
| [(set GR32:$dst, lea64_32addr:$src)]>, |
| OpSize32, Requires<[In64BitMode]>; |
| |
| let isReMaterializable = 1 in |
| def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), |
| "lea{q}\t{$src|$dst}, {$dst|$src}", |
| [(set GR64:$dst, lea64addr:$src)]>; |
| } // SchedRW |
| |
| //===----------------------------------------------------------------------===// |
| // Fixed-Register Multiplication and Division Instructions. |
| // |
| |
| // SchedModel info for instruction that loads one value and gets the second |
| // (and possibly third) value from a register. |
| // This is used for instructions that put the memory operands before other |
| // uses. |
| class SchedLoadReg<X86FoldableSchedWrite Sched> : Sched<[Sched.Folded, |
| // Memory operand. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // Register reads (implicit or explicit). |
| Sched.ReadAfterFold, Sched.ReadAfterFold]>; |
| |
| // Extra precision multiplication |
| |
| // AL is really implied by AX, but the registers in Defs must match the |
| // SDNode results (i8, i32). |
| // AL,AH = AL*GR8 |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", |
| // FIXME: Used for 8-bit mul, ignore result upper 8 bits. |
| // This probably ought to be moved to a def : Pat<> if the |
| // syntax can be accepted. |
| [(set AL, (mul AL, GR8:$src)), |
| (implicit EFLAGS)]>, Sched<[WriteIMul8]>; |
| // AX,DX = AX*GR16 |
| let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in |
| def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), |
| "mul{w}\t$src", |
| []>, OpSize16, Sched<[WriteIMul16]>; |
| // EAX,EDX = EAX*GR32 |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in |
| def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), |
| "mul{l}\t$src", |
| [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>, |
| OpSize32, Sched<[WriteIMul32]>; |
| // RAX,RDX = RAX*GR64 |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in |
| def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), |
| "mul{q}\t$src", |
| [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>, |
| Sched<[WriteIMul64]>; |
| // AL,AH = AL*[mem8] |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), |
| "mul{b}\t$src", |
| // FIXME: Used for 8-bit mul, ignore result upper 8 bits. |
| // This probably ought to be moved to a def : Pat<> if the |
| // syntax can be accepted. |
| [(set AL, (mul AL, (loadi8 addr:$src))), |
| (implicit EFLAGS)]>, SchedLoadReg<WriteIMul8>; |
| // AX,DX = AX*[mem16] |
| let mayLoad = 1, hasSideEffects = 0 in { |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), |
| "mul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul16>; |
| // EAX,EDX = EAX*[mem32] |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), |
| "mul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul32>; |
| // RAX,RDX = RAX*[mem64] |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), |
| "mul{q}\t$src", []>, SchedLoadReg<WriteIMul64>, |
| Requires<[In64BitMode]>; |
| } |
| |
| let hasSideEffects = 0 in { |
| // AL,AH = AL*GR8 |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>, |
| Sched<[WriteIMul8]>; |
| // AX,DX = AX*GR16 |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>, |
| OpSize16, Sched<[WriteIMul16]>; |
| // EAX,EDX = EAX*GR32 |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>, |
| OpSize32, Sched<[WriteIMul32]>; |
| // RAX,RDX = RAX*GR64 |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>, |
| Sched<[WriteIMul64]>; |
| |
| let mayLoad = 1 in { |
| // AL,AH = AL*[mem8] |
| let Defs = [AL,EFLAGS,AX], Uses = [AL] in |
| def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), |
| "imul{b}\t$src", []>, SchedLoadReg<WriteIMul8>; |
| // AX,DX = AX*[mem16] |
| let Defs = [AX,DX,EFLAGS], Uses = [AX] in |
| def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), |
| "imul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul16>; |
| // EAX,EDX = EAX*[mem32] |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in |
| def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), |
| "imul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul32>; |
| // RAX,RDX = RAX*[mem64] |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in |
| def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), |
| "imul{q}\t$src", []>, SchedLoadReg<WriteIMul64>, |
| Requires<[In64BitMode]>; |
| } |
| } // hasSideEffects |
| |
| |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| |
| let isCommutable = 1 in { |
| // X = IMUL Y, Z --> X = IMUL Z, Y |
| // Register-Register Signed Integer Multiply |
| def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), |
| "imul{w}\t{$src2, $dst|$dst, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, GR16:$src2))]>, |
| Sched<[WriteIMul16Reg]>, TB, OpSize16; |
| def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), |
| "imul{l}\t{$src2, $dst|$dst, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, GR32:$src2))]>, |
| Sched<[WriteIMul32Reg]>, TB, OpSize32; |
| def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), |
| (ins GR64:$src1, GR64:$src2), |
| "imul{q}\t{$src2, $dst|$dst, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, GR64:$src2))]>, |
| Sched<[WriteIMul64Reg]>, TB; |
| } // isCommutable |
| |
| // Register-Memory Signed Integer Multiply |
| def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), |
| (ins GR16:$src1, i16mem:$src2), |
| "imul{w}\t{$src2, $dst|$dst, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, (loadi16 addr:$src2)))]>, |
| Sched<[WriteIMul16Reg.Folded, WriteIMul16Reg.ReadAfterFold]>, TB, OpSize16; |
| def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), |
| (ins GR32:$src1, i32mem:$src2), |
| "imul{l}\t{$src2, $dst|$dst, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, (loadi32 addr:$src2)))]>, |
| Sched<[WriteIMul32Reg.Folded, WriteIMul32Reg.ReadAfterFold]>, TB, OpSize32; |
| def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), |
| (ins GR64:$src1, i64mem:$src2), |
| "imul{q}\t{$src2, $dst|$dst, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, (loadi64 addr:$src2)))]>, |
| Sched<[WriteIMul64Reg.Folded, WriteIMul32Reg.ReadAfterFold]>, TB; |
| } // Constraints = "$src1 = $dst" |
| |
| } // Defs = [EFLAGS] |
| |
| // Surprisingly enough, these are not two address instructions! |
| let Defs = [EFLAGS] in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| |
| // Register-Integer Signed Integer Multiply |
| def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 |
| (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>, |
| Sched<[WriteIMul16Imm]>, OpSize16; |
| def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 |
| (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag GR16:$src1, imm:$src2))]>, |
| Sched<[WriteIMul16Imm]>, OpSize16; |
| def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 |
| (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, imm:$src2))]>, |
| Sched<[WriteIMul32Imm]>, OpSize32; |
| def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 |
| (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>, |
| Sched<[WriteIMul32Imm]>, OpSize32; |
| def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 |
| (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>, |
| Sched<[WriteIMul64Imm]>; |
| def IMUL64rri32 : RIi32S<0x69, MRMSrcReg, // GR64 = GR64*I32 |
| (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>, |
| Sched<[WriteIMul64Imm]>; |
| |
| // Memory-Integer Signed Integer Multiply |
| def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 |
| (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag (loadi16 addr:$src1), |
| i16immSExt8:$src2))]>, |
| Sched<[WriteIMul16Imm.Folded]>, OpSize16; |
| def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 |
| (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), |
| "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR16:$dst, EFLAGS, |
| (X86smul_flag (loadi16 addr:$src1), imm:$src2))]>, |
| Sched<[WriteIMul16Imm.Folded]>, OpSize16; |
| def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 |
| (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag (loadi32 addr:$src1), |
| i32immSExt8:$src2))]>, |
| Sched<[WriteIMul32Imm.Folded]>, OpSize32; |
| def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 |
| (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), |
| "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR32:$dst, EFLAGS, |
| (X86smul_flag (loadi32 addr:$src1), imm:$src2))]>, |
| Sched<[WriteIMul32Imm.Folded]>, OpSize32; |
| def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 |
| (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag (loadi64 addr:$src1), |
| i64immSExt8:$src2))]>, |
| Sched<[WriteIMul64Imm.Folded]>; |
| def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem, // GR64 = [mem64]*I32 |
| (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), |
| "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", |
| [(set GR64:$dst, EFLAGS, |
| (X86smul_flag (loadi64 addr:$src1), |
| i64immSExt32:$src2))]>, |
| Sched<[WriteIMul64Imm.Folded]>; |
| } // Defs = [EFLAGS] |
| |
| // unsigned division/remainder |
| let hasSideEffects = 1 in { // so that we don't speculatively execute |
| let Defs = [AL,AH,EFLAGS], Uses = [AX] in |
| def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH |
| "div{b}\t$src", []>, Sched<[WriteDiv8]>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX |
| "div{w}\t$src", []>, Sched<[WriteDiv16]>, OpSize16; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in |
| def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX |
| "div{l}\t$src", []>, Sched<[WriteDiv32]>, OpSize32; |
| // RDX:RAX/r64 = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), |
| "div{q}\t$src", []>, Sched<[WriteDiv64]>; |
| |
| let mayLoad = 1 in { |
| let Defs = [AL,AH,EFLAGS], Uses = [AX] in |
| def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH |
| "div{b}\t$src", []>, SchedLoadReg<WriteDiv8>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX |
| "div{w}\t$src", []>, OpSize16, SchedLoadReg<WriteDiv16>; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX |
| def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), |
| "div{l}\t$src", []>, SchedLoadReg<WriteDiv32>, OpSize32; |
| // RDX:RAX/[mem64] = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), |
| "div{q}\t$src", []>, SchedLoadReg<WriteDiv64>, |
| Requires<[In64BitMode]>; |
| } |
| |
| // Signed division/remainder. |
| let Defs = [AL,AH,EFLAGS], Uses = [AX] in |
| def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH |
| "idiv{b}\t$src", []>, Sched<[WriteIDiv8]>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX |
| "idiv{w}\t$src", []>, Sched<[WriteIDiv16]>, OpSize16; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in |
| def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX |
| "idiv{l}\t$src", []>, Sched<[WriteIDiv32]>, OpSize32; |
| // RDX:RAX/r64 = RAX,RDX |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in |
| def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), |
| "idiv{q}\t$src", []>, Sched<[WriteIDiv64]>; |
| |
| let mayLoad = 1 in { |
| let Defs = [AL,AH,EFLAGS], Uses = [AX] in |
| def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH |
| "idiv{b}\t$src", []>, SchedLoadReg<WriteIDiv8>; |
| let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in |
| def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX |
| "idiv{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIDiv16>; |
| let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX |
| def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), |
| "idiv{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIDiv32>; |
| let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX |
| def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), |
| "idiv{q}\t$src", []>, SchedLoadReg<WriteIDiv64>, |
| Requires<[In64BitMode]>; |
| } |
| } // hasSideEffects = 0 |
| |
| //===----------------------------------------------------------------------===// |
| // Two address Instructions. |
| // |
| |
| // unary instructions |
| let CodeSize = 2 in { |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "neg{b}\t$dst", |
| [(set GR8:$dst, (ineg GR8:$src1)), |
| (implicit EFLAGS)]>; |
| def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), |
| "neg{w}\t$dst", |
| [(set GR16:$dst, (ineg GR16:$src1)), |
| (implicit EFLAGS)]>, OpSize16; |
| def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), |
| "neg{l}\t$dst", |
| [(set GR32:$dst, (ineg GR32:$src1)), |
| (implicit EFLAGS)]>, OpSize32; |
| def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", |
| [(set GR64:$dst, (ineg GR64:$src1)), |
| (implicit EFLAGS)]>; |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| // Read-modify-write negate. |
| let SchedRW = [WriteALURMW] in { |
| def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), |
| "neg{b}\t$dst", |
| [(store (ineg (loadi8 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)]>; |
| def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), |
| "neg{w}\t$dst", |
| [(store (ineg (loadi16 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)]>, OpSize16; |
| def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), |
| "neg{l}\t$dst", |
| [(store (ineg (loadi32 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)]>, OpSize32; |
| def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", |
| [(store (ineg (loadi64 addr:$dst)), addr:$dst), |
| (implicit EFLAGS)]>, |
| Requires<[In64BitMode]>; |
| } // SchedRW |
| } // Defs = [EFLAGS] |
| |
| |
| // Note: NOT does not set EFLAGS! |
| |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "not{b}\t$dst", |
| [(set GR8:$dst, (not GR8:$src1))]>; |
| def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), |
| "not{w}\t$dst", |
| [(set GR16:$dst, (not GR16:$src1))]>, OpSize16; |
| def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), |
| "not{l}\t$dst", |
| [(set GR32:$dst, (not GR32:$src1))]>, OpSize32; |
| def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", |
| [(set GR64:$dst, (not GR64:$src1))]>; |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| let SchedRW = [WriteALURMW] in { |
| def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), |
| "not{b}\t$dst", |
| [(store (not (loadi8 addr:$dst)), addr:$dst)]>; |
| def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), |
| "not{w}\t$dst", |
| [(store (not (loadi16 addr:$dst)), addr:$dst)]>, |
| OpSize16; |
| def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), |
| "not{l}\t$dst", |
| [(store (not (loadi32 addr:$dst)), addr:$dst)]>, |
| OpSize32; |
| def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", |
| [(store (not (loadi64 addr:$dst)), addr:$dst)]>, |
| Requires<[In64BitMode]>; |
| } // SchedRW |
| } // CodeSize |
| |
| def X86add_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86add_flag node:$lhs, node:$rhs), [{ |
| return hasNoCarryFlagUses(SDValue(N, 1)); |
| }]>; |
| |
| def X86sub_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86sub_flag node:$lhs, node:$rhs), [{ |
| // Only use DEC if the result is used. |
| return !SDValue(N, 0).use_empty() && hasNoCarryFlagUses(SDValue(N, 1)); |
| }]>; |
| |
| // TODO: inc/dec is slow for P4, but fast for Pentium-M. |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA. |
| def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "inc{b}\t$dst", |
| [(set GR8:$dst, EFLAGS, (X86add_flag_nocf GR8:$src1, 1))]>; |
| def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), |
| "inc{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86add_flag_nocf GR16:$src1, 1))]>, |
| OpSize16; |
| def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), |
| "inc{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86add_flag_nocf GR32:$src1, 1))]>, |
| OpSize32; |
| def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", |
| [(set GR64:$dst, EFLAGS, (X86add_flag_nocf GR64:$src1, 1))]>; |
| } // isConvertibleToThreeAddress = 1, CodeSize = 2 |
| |
| // Short forms only valid in 32-bit mode. Selected during MCInst lowering. |
| let CodeSize = 1, hasSideEffects = 0 in { |
| def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), |
| "inc{w}\t$dst", []>, |
| OpSize16, Requires<[Not64BitMode]>; |
| def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), |
| "inc{l}\t$dst", []>, |
| OpSize32, Requires<[Not64BitMode]>; |
| } // CodeSize = 1, hasSideEffects = 0 |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| let CodeSize = 2, SchedRW = [WriteALURMW] in { |
| let Predicates = [UseIncDec] in { |
| def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", |
| [(store (add (loadi8 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)]>; |
| def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)]>, OpSize16; |
| def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)]>, OpSize32; |
| } // Predicates |
| let Predicates = [UseIncDec, In64BitMode] in { |
| def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", |
| [(store (add (loadi64 addr:$dst), 1), addr:$dst), |
| (implicit EFLAGS)]>; |
| } // Predicates |
| } // CodeSize = 2, SchedRW |
| |
| let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { |
| let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA. |
| def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), |
| "dec{b}\t$dst", |
| [(set GR8:$dst, EFLAGS, (X86sub_flag_nocf GR8:$src1, 1))]>; |
| def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), |
| "dec{w}\t$dst", |
| [(set GR16:$dst, EFLAGS, (X86sub_flag_nocf GR16:$src1, 1))]>, |
| OpSize16; |
| def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), |
| "dec{l}\t$dst", |
| [(set GR32:$dst, EFLAGS, (X86sub_flag_nocf GR32:$src1, 1))]>, |
| OpSize32; |
| def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", |
| [(set GR64:$dst, EFLAGS, (X86sub_flag_nocf GR64:$src1, 1))]>; |
| } // isConvertibleToThreeAddress = 1, CodeSize = 2 |
| |
| // Short forms only valid in 32-bit mode. Selected during MCInst lowering. |
| let CodeSize = 1, hasSideEffects = 0 in { |
| def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), |
| "dec{w}\t$dst", []>, |
| OpSize16, Requires<[Not64BitMode]>; |
| def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), |
| "dec{l}\t$dst", []>, |
| OpSize32, Requires<[Not64BitMode]>; |
| } // CodeSize = 1, hasSideEffects = 0 |
| } // Constraints = "$src1 = $dst", SchedRW |
| |
| |
| let CodeSize = 2, SchedRW = [WriteALURMW] in { |
| let Predicates = [UseIncDec] in { |
| def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", |
| [(store (add (loadi8 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)]>; |
| def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", |
| [(store (add (loadi16 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)]>, OpSize16; |
| def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", |
| [(store (add (loadi32 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)]>, OpSize32; |
| } // Predicates |
| let Predicates = [UseIncDec, In64BitMode] in { |
| def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", |
| [(store (add (loadi64 addr:$dst), -1), addr:$dst), |
| (implicit EFLAGS)]>; |
| } // Predicates |
| } // CodeSize = 2, SchedRW |
| } // Defs = [EFLAGS] |
| |
| /// X86TypeInfo - This is a bunch of information that describes relevant X86 |
| /// information about value types. For example, it can tell you what the |
| /// register class and preferred load to use. |
| class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, |
| PatFrag loadnode, X86MemOperand memoperand, ImmType immkind, |
| Operand immoperand, SDPatternOperator immoperator, |
| Operand imm8operand, SDPatternOperator imm8operator, |
| bit hasOddOpcode, OperandSize opSize, |
| bit hasREX_WPrefix> { |
| /// VT - This is the value type itself. |
| ValueType VT = vt; |
| |
| /// InstrSuffix - This is the suffix used on instructions with this type. For |
| /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". |
| string InstrSuffix = instrsuffix; |
| |
| /// RegClass - This is the register class associated with this type. For |
| /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. |
| RegisterClass RegClass = regclass; |
| |
| /// LoadNode - This is the load node associated with this type. For |
| /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. |
| PatFrag LoadNode = loadnode; |
| |
| /// MemOperand - This is the memory operand associated with this type. For |
| /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. |
| X86MemOperand MemOperand = memoperand; |
| |
| /// ImmEncoding - This is the encoding of an immediate of this type. For |
| /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 |
| /// since the immediate fields of i64 instructions is a 32-bit sign extended |
| /// value. |
| ImmType ImmEncoding = immkind; |
| |
| /// ImmOperand - This is the operand kind of an immediate of this type. For |
| /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> |
| /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign |
| /// extended value. |
| Operand ImmOperand = immoperand; |
| |
| /// ImmOperator - This is the operator that should be used to match an |
| /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). |
| SDPatternOperator ImmOperator = immoperator; |
| |
| /// Imm8Operand - This is the operand kind to use for an imm8 of this type. |
| /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is |
| /// only used for instructions that have a sign-extended imm8 field form. |
| Operand Imm8Operand = imm8operand; |
| |
| /// Imm8Operator - This is the operator that should be used to match an 8-bit |
| /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). |
| SDPatternOperator Imm8Operator = imm8operator; |
| |
| /// HasOddOpcode - This bit is true if the instruction should have an odd (as |
| /// opposed to even) opcode. Operations on i8 are usually even, operations on |
| /// other datatypes are odd. |
| bit HasOddOpcode = hasOddOpcode; |
| |
| /// OpSize - Selects whether the instruction needs a 0x66 prefix based on |
| /// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this |
| /// to Opsize16. i32 sets this to OpSize32. |
| OperandSize OpSize = opSize; |
| |
| /// HasREX_WPrefix - This bit is set to true if the instruction should have |
| /// the 0x40 REX prefix. This is set for i64 types. |
| bit HasREX_WPrefix = hasREX_WPrefix; |
| } |
| |
| def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">; |
| |
| |
| def Xi8 : X86TypeInfo<i8, "b", GR8, loadi8, i8mem, |
| Imm8, i8imm, imm_su, i8imm, invalid_node, |
| 0, OpSizeFixed, 0>; |
| def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, |
| Imm16, i16imm, imm_su, i16i8imm, i16immSExt8_su, |
| 1, OpSize16, 0>; |
| def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, |
| Imm32, i32imm, imm_su, i32i8imm, i32immSExt8_su, |
| 1, OpSize32, 0>; |
| def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, |
| Imm32S, i64i32imm, i64immSExt32_su, i64i8imm, i64immSExt8_su, |
| 1, OpSizeFixed, 1>; |
| |
| /// ITy - This instruction base class takes the type info for the instruction. |
| /// Using this, it: |
| /// 1. Concatenates together the instruction mnemonic with the appropriate |
| /// suffix letter, a tab, and the arguments. |
| /// 2. Infers whether the instruction should have a 0x66 prefix byte. |
| /// 3. Infers whether the instruction should have a 0x40 REX_W prefix. |
| /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) |
| /// or 1 (for i16,i32,i64 operations). |
| class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, |
| string mnemonic, string args, list<dag> pattern> |
| : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, |
| opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, |
| f, outs, ins, |
| !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> { |
| |
| // Infer instruction prefixes from type info. |
| let OpSize = typeinfo.OpSize; |
| let hasREX_WPrefix = typeinfo.HasREX_WPrefix; |
| } |
| |
| // BinOpRR - Instructions like "add reg, reg, reg". |
| class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> |
| : ITy<opcode, MRMDestReg, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, |
| Sched<[sched]>; |
| |
| // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has |
| // just a EFLAGS as a result. |
| class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU, |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; |
| |
| // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has |
| // both a regclass and EFLAGS as a result. |
| class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; |
| |
| // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has |
| // both a regclass and EFLAGS as a result, and has EFLAGS as input. |
| class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2, |
| EFLAGS))]>; |
| |
| // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). |
| class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| X86FoldableSchedWrite sched = WriteALU> |
| : ITy<opcode, MRMSrcReg, typeinfo, |
| (outs typeinfo.RegClass:$dst), |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $dst|$dst, $src2}", []>, |
| Sched<[sched]> { |
| // The disassembler should know about this, but not the asmparser. |
| let isCodeGenOnly = 1; |
| let ForceDisassemble = 1; |
| let hasSideEffects = 0; |
| } |
| |
| // BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding). |
| class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> |
| : BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>; |
| |
| // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). |
| class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> |
| : ITy<opcode, MRMSrcReg, typeinfo, (outs), |
| (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", []>, |
| Sched<[WriteALU]> { |
| // The disassembler should know about this, but not the asmparser. |
| let isCodeGenOnly = 1; |
| let ForceDisassemble = 1; |
| let hasSideEffects = 0; |
| } |
| |
| // BinOpRM - Instructions like "add reg, reg, [mem]". |
| class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> |
| : ITy<opcode, MRMSrcMem, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, |
| Sched<[sched.Folded, sched.ReadAfterFold]>; |
| |
| // BinOpRM - Instructions like "adc reg, reg, [mem]". |
| // There is an implicit register read at the end of the operand sequence. |
| class BinOpRM_ImplicitUse<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> |
| : ITy<opcode, MRMSrcMem, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, |
| Sched<[sched.Folded, sched.ReadAfterFold, |
| // base, scale, index, offset, segment. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // implicit register read. |
| sched.ReadAfterFold]>; |
| |
| // BinOpRM_F - Instructions like "cmp reg, [mem]". |
| class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU, |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; |
| |
| // BinOpRM_RF - Instructions like "add reg, reg, [mem]". |
| class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; |
| |
| // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". |
| class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpRM_ImplicitUse<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2), |
| EFLAGS))]>; |
| |
| // BinOpRI - Instructions like "add reg, reg, imm". |
| class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> |
| : ITy<opcode, f, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, |
| Sched<[sched]> { |
| let ImmT = typeinfo.ImmEncoding; |
| } |
| |
| // BinOpRI_F - Instructions like "cmp reg, imm". |
| class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU, |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; |
| |
| // BinOpRI_RF - Instructions like "add reg, reg, imm". |
| class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; |
| // BinOpRI_RFF - Instructions like "adc reg, reg, imm". |
| class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, |
| EFLAGS))]>; |
| |
| // BinOpRI8 - Instructions like "add reg, reg, imm8". |
| class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> |
| : ITy<opcode, f, typeinfo, outlist, |
| (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), |
| mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, |
| Sched<[sched]> { |
| let ImmT = Imm8; // Always 8-bit immediate. |
| } |
| |
| // BinOpRI8_F - Instructions like "cmp reg, imm8". |
| class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU, |
| [(set EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; |
| |
| // BinOpRI8_RF - Instructions like "add reg, reg, imm8". |
| class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; |
| |
| // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". |
| class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, |
| [(set typeinfo.RegClass:$dst, EFLAGS, |
| (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2, |
| EFLAGS))]>; |
| |
| // BinOpMR - Instructions like "add [mem], reg". |
| class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| list<dag> pattern> |
| : ITy<opcode, MRMDestMem, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern>; |
| |
| // BinOpMR_RMW - Instructions like "add [mem], reg". |
| class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteALURMW, |
| // base, scale, index, offset, segment |
| ReadDefault, ReadDefault, ReadDefault, |
| ReadDefault, ReadDefault, |
| WriteALU.ReadAfterFold]>; // reg |
| |
| // BinOpMR_RMW_FF - Instructions like "adc [mem], reg". |
| class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS), |
| addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteADCRMW, |
| // base, scale, index, offset, segment |
| ReadDefault, ReadDefault, ReadDefault, |
| ReadDefault, ReadDefault, |
| WriteALU.ReadAfterFold, // reg |
| WriteALU.ReadAfterFold]>; // EFLAGS |
| |
| // BinOpMR_F - Instructions like "cmp [mem], reg". |
| class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode> |
| : BinOpMR<opcode, mnemonic, typeinfo, |
| [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), |
| typeinfo.RegClass:$src))]>, |
| Sched<[WriteALU.Folded, ReadDefault, ReadDefault, ReadDefault, |
| ReadDefault, ReadDefault, WriteALU.ReadAfterFold]>; |
| |
| // BinOpMI - Instructions like "add [mem], imm". |
| class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Format f, list<dag> pattern> |
| : ITy<opcode, f, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern> { |
| let ImmT = typeinfo.ImmEncoding; |
| } |
| |
| // BinOpMI_RMW - Instructions like "add [mem], imm". |
| class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI<opcode, mnemonic, typeinfo, f, |
| [(store (opnode (typeinfo.VT (load addr:$dst)), |
| typeinfo.ImmOperator:$src), addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteALURMW]>; |
| // BinOpMI_RMW_FF - Instructions like "adc [mem], imm". |
| class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDNode opnode, Format f> |
| : BinOpMI<opcode, mnemonic, typeinfo, f, |
| [(store (opnode (typeinfo.VT (load addr:$dst)), |
| typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteADCRMW]>; |
| |
| // BinOpMI_F - Instructions like "cmp [mem], imm". |
| class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpMI<opcode, mnemonic, typeinfo, f, |
| [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), |
| typeinfo.ImmOperator:$src))]>, |
| Sched<[WriteALU.Folded]>; |
| |
| // BinOpMI8 - Instructions like "add [mem], imm8". |
| class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, |
| Format f, list<dag> pattern> |
| : ITy<0x82, f, typeinfo, |
| (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), |
| mnemonic, "{$src, $dst|$dst, $src}", pattern> { |
| let ImmT = Imm8; // Always 8-bit immediate. |
| } |
| |
| // BinOpMI8_RMW - Instructions like "add [mem], imm8". |
| class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(store (opnode (load addr:$dst), |
| typeinfo.Imm8Operator:$src), addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteALURMW]>; |
| |
| // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". |
| class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(store (opnode (load addr:$dst), |
| typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst), |
| (implicit EFLAGS)]>, Sched<[WriteADCRMW]>; |
| |
| // BinOpMI8_F - Instructions like "cmp [mem], imm8". |
| class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, |
| SDPatternOperator opnode, Format f> |
| : BinOpMI8<mnemonic, typeinfo, f, |
| [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), |
| typeinfo.Imm8Operator:$src))]>, |
| Sched<[WriteALU.Folded]>; |
| |
| // BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS. |
| class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Register areg, string operands, X86FoldableSchedWrite sched = WriteALU> |
| : ITy<opcode, RawFrm, typeinfo, |
| (outs), (ins typeinfo.ImmOperand:$src), |
| mnemonic, operands, []>, Sched<[sched]> { |
| let ImmT = typeinfo.ImmEncoding; |
| let Uses = [areg]; |
| let Defs = [areg, EFLAGS]; |
| let hasSideEffects = 0; |
| } |
| |
| // BinOpAI_RFF - Instructions like "adc %eax, %eax, imm", that implicitly define |
| // and use EFLAGS. |
| class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Register areg, string operands> |
| : BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> { |
| let Uses = [areg, EFLAGS]; |
| } |
| |
| // BinOpAI_F - Instructions like "cmp %eax, %eax, imm", that imp-def EFLAGS. |
| class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, |
| Register areg, string operands> |
| : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> { |
| let Defs = [EFLAGS]; |
| } |
| |
| /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set GPR:$dst, EFLAGS, (...". |
| /// |
| /// It would be nice to get rid of the second and third argument here, but |
| /// tblgen can't handle dependent type references aggressively enough: PR8330 |
| multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnodeflag, SDNode opnode, |
| bit CommutableRR, bit ConvertibleToThreeAddress, |
| bit ConvertibleToThreeAddressRR> { |
| let Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| let isCommutable = CommutableRR in { |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddressRR in { |
| def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; |
| def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; |
| def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; |
| def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; |
| } // isConvertibleToThreeAddress |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; |
| def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; |
| def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; |
| def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; |
| |
| def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; |
| def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; |
| def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; |
| def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; |
| |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; |
| |
| def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; |
| def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; |
| def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; |
| } |
| } // Constraints = "$src1 = $dst" |
| |
| let mayLoad = 1, mayStore = 1 in { |
| def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; |
| } |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>; |
| |
| // These are for the disassembler since 0x82 opcode behaves like 0x80, but |
| // not in 64-bit mode. |
| let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, |
| hasSideEffects = 0 in { |
| let Constraints = "$src1 = $dst" in |
| def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>; |
| let mayLoad = 1, mayStore = 1 in |
| def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>; |
| } |
| } // Defs = [EFLAGS] |
| |
| def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|al, $src}">; |
| def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|ax, $src}">; |
| def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|eax, $src}">; |
| def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|rax, $src}">; |
| } |
| |
| /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and |
| /// SBB. |
| /// |
| /// It would be nice to get rid of the second and third argument here, but |
| /// tblgen can't handle dependent type references aggressively enough: PR8330 |
| multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnode, bit CommutableRR, |
| bit ConvertibleToThreeAddress> { |
| let Uses = [EFLAGS], Defs = [EFLAGS] in { |
| let Constraints = "$src1 = $dst" in { |
| let isCommutable = CommutableRR in { |
| def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; |
| } // isConvertibleToThreeAddress |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; |
| def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; |
| def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; |
| def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; |
| |
| def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; |
| def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; |
| def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; |
| def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; |
| |
| def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; |
| |
| def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; |
| } |
| } // Constraints = "$src1 = $dst" |
| |
| def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>; |
| |
| // These are for the disassembler since 0x82 opcode behaves like 0x80, but |
| // not in 64-bit mode. |
| let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, |
| hasSideEffects = 0 in { |
| let Constraints = "$src1 = $dst" in |
| def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>; |
| let mayLoad = 1, mayStore = 1 in |
| def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>; |
| } |
| } // Uses = [EFLAGS], Defs = [EFLAGS] |
| |
| def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|al, $src}">; |
| def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|ax, $src}">; |
| def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|eax, $src}">; |
| def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|rax, $src}">; |
| } |
| |
| /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is |
| /// defined with "(set EFLAGS, (...". It would be really nice to find a way |
| /// to factor this with the other ArithBinOp_*. |
| /// |
| multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, |
| string mnemonic, Format RegMRM, Format MemMRM, |
| SDNode opnode, |
| bit CommutableRR, bit ConvertibleToThreeAddress> { |
| let Defs = [EFLAGS] in { |
| let isCommutable = CommutableRR in { |
| def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; |
| } |
| } // isCommutable |
| |
| def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; |
| def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; |
| def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; |
| def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; |
| |
| def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; |
| def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; |
| def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; |
| def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; |
| |
| def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; |
| |
| let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { |
| // NOTE: These are order specific, we want the ri8 forms to be listed |
| // first so that they are slightly preferred to the ri forms. |
| def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; |
| |
| def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; |
| def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; |
| def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; |
| } |
| |
| def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; |
| def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; |
| def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; |
| def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; |
| |
| // NOTE: These are order specific, we want the mi8 forms to be listed |
| // first so that they are slightly preferred to the mi forms. |
| def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; |
| |
| def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>; |
| def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>; |
| def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>; |
| let Predicates = [In64BitMode] in |
| def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>; |
| |
| // These are for the disassembler since 0x82 opcode behaves like 0x80, but |
| // not in 64-bit mode. |
| let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, |
| hasSideEffects = 0 in { |
| def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>; |
| let mayLoad = 1 in |
| def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>; |
| } |
| } // Defs = [EFLAGS] |
| |
| def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL, |
| "{$src, %al|al, $src}">; |
| def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX, |
| "{$src, %ax|ax, $src}">; |
| def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX, |
| "{$src, %eax|eax, $src}">; |
| def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX, |
| "{$src, %rax|rax, $src}">; |
| } |
| |
| |
| defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m, |
| X86and_flag, and, 1, 0, 0>; |
| defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m, |
| X86or_flag, or, 1, 0, 0>; |
| defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m, |
| X86xor_flag, xor, 1, 0, 0>; |
| defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m, |
| X86add_flag, add, 1, 1, 1>; |
| let isCompare = 1 in { |
| defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m, |
| X86sub_flag, sub, 0, 1, 0>; |
| } |
| |
| // Version of XOR8rr_NOREX that use GR8_NOREX. This is used by the handling of |
| // __builtin_parity where the last step xors an h-register with an l-register. |
| let isCodeGenOnly = 1, hasSideEffects = 0, Constraints = "$src1 = $dst", |
| Defs = [EFLAGS], isCommutable = 1 in |
| def XOR8rr_NOREX : I<0x30, MRMDestReg, (outs GR8_NOREX:$dst), |
| (ins GR8_NOREX:$src1, GR8_NOREX:$src2), |
| "xor{b}\t{$src2, $dst|$dst, $src2}", []>, |
| Sched<[WriteALU]>; |
| |
| // Arithmetic. |
| defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag, |
| 1, 0>; |
| defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag, |
| 0, 0>; |
| |
| let isCompare = 1 in { |
| defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>; |
| } |
| |
| // Patterns to recognize loads on the LHS of an ADC. We can't make X86adc_flag |
| // commutable since it has EFLAGs as an input. |
| def : Pat<(X86adc_flag (loadi8 addr:$src2), GR8:$src1, EFLAGS), |
| (ADC8rm GR8:$src1, addr:$src2)>; |
| def : Pat<(X86adc_flag (loadi16 addr:$src2), GR16:$src1, EFLAGS), |
| (ADC16rm GR16:$src1, addr:$src2)>; |
| def : Pat<(X86adc_flag (loadi32 addr:$src2), GR32:$src1, EFLAGS), |
| (ADC32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(X86adc_flag (loadi64 addr:$src2), GR64:$src1, EFLAGS), |
| (ADC64rm GR64:$src1, addr:$src2)>; |
| |
| // Patterns to recognize RMW ADC with loads in operand 1. |
| def : Pat<(store (X86adc_flag GR8:$src, (loadi8 addr:$dst), EFLAGS), |
| addr:$dst), |
| (ADC8mr addr:$dst, GR8:$src)>; |
| def : Pat<(store (X86adc_flag GR16:$src, (loadi16 addr:$dst), EFLAGS), |
| addr:$dst), |
| (ADC16mr addr:$dst, GR16:$src)>; |
| def : Pat<(store (X86adc_flag GR32:$src, (loadi32 addr:$dst), EFLAGS), |
| addr:$dst), |
| (ADC32mr addr:$dst, GR32:$src)>; |
| def : Pat<(store (X86adc_flag GR64:$src, (loadi64 addr:$dst), EFLAGS), |
| addr:$dst), |
| (ADC64mr addr:$dst, GR64:$src)>; |
| |
| // Patterns for basic arithmetic ops with relocImm for the immediate field. |
| multiclass ArithBinOp_RF_relocImm_Pats<SDNode OpNodeFlag, SDNode OpNode> { |
| def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2), |
| (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, i16relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"16ri8") GR16:$src1, i16relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2), |
| (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, i32relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"32ri8") GR32:$src1, i32relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2), |
| (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"64ri8") GR64:$src1, i64relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2), |
| (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| def : Pat<(store (OpNode (load addr:$dst), relocImm8_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), i16relocImmSExt8_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"16mi8") addr:$dst, i16relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), relocImm16_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), i32relocImmSExt8_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"32mi8") addr:$dst, i32relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), relocImm32_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), i64relocImmSExt8_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"64mi8") addr:$dst, i64relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNode (load addr:$dst), i64relocImmSExt32_su:$src), addr:$dst), |
| (!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>; |
| } |
| |
| multiclass ArithBinOp_RFF_relocImm_Pats<SDNode OpNodeFlag> { |
| def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, i16relocImmSExt8_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"16ri8") GR16:$src1, i16relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, i32relocImmSExt8_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"32ri8") GR32:$src1, i32relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt8_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"64ri8") GR64:$src1, i64relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2, EFLAGS), |
| (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm8_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"8mi") addr:$dst, relocImm8_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), i16relocImmSExt8_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"16mi8") addr:$dst, i16relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm16_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"16mi") addr:$dst, relocImm16_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), i32relocImmSExt8_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"32mi8") addr:$dst, i32relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), relocImm32_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"32mi") addr:$dst, relocImm32_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), i64relocImmSExt8_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"64mi8") addr:$dst, i64relocImmSExt8_su:$src)>; |
| def : Pat<(store (OpNodeFlag (load addr:$dst), i64relocImmSExt32_su:$src, EFLAGS), addr:$dst), |
| (!cast<Instruction>(NAME#"64mi32") addr:$dst, i64relocImmSExt32_su:$src)>; |
| } |
| |
| multiclass ArithBinOp_F_relocImm_Pats<SDNode OpNodeFlag> { |
| def : Pat<(OpNodeFlag GR8:$src1, relocImm8_su:$src2), |
| (!cast<Instruction>(NAME#"8ri") GR8:$src1, relocImm8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, i16relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"16ri8") GR16:$src1, i16relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR16:$src1, relocImm16_su:$src2), |
| (!cast<Instruction>(NAME#"16ri") GR16:$src1, relocImm16_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, i32relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"32ri8") GR32:$src1, i32relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR32:$src1, relocImm32_su:$src2), |
| (!cast<Instruction>(NAME#"32ri") GR32:$src1, relocImm32_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"64ri8") GR64:$src1, i64relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag GR64:$src1, i64relocImmSExt32_su:$src2), |
| (!cast<Instruction>(NAME#"64ri32") GR64:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| def : Pat<(OpNodeFlag (loadi8 addr:$src1), relocImm8_su:$src2), |
| (!cast<Instruction>(NAME#"8mi") addr:$src1, relocImm8_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi16 addr:$src1), i16relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"16mi8") addr:$src1, i16relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi16 addr:$src1), relocImm16_su:$src2), |
| (!cast<Instruction>(NAME#"16mi") addr:$src1, relocImm16_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi32 addr:$src1), i32relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"32mi8") addr:$src1, i32relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi32 addr:$src1), relocImm32_su:$src2), |
| (!cast<Instruction>(NAME#"32mi") addr:$src1, relocImm32_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi64 addr:$src1), i64relocImmSExt8_su:$src2), |
| (!cast<Instruction>(NAME#"64mi8") addr:$src1, i64relocImmSExt8_su:$src2)>; |
| def : Pat<(OpNodeFlag (loadi64 addr:$src1), i64relocImmSExt32_su:$src2), |
| (!cast<Instruction>(NAME#"64mi32") addr:$src1, i64relocImmSExt32_su:$src2)>; |
| } |
| |
| defm AND : ArithBinOp_RF_relocImm_Pats<X86and_flag, and>; |
| defm OR : ArithBinOp_RF_relocImm_Pats<X86or_flag, or>; |
| defm XOR : ArithBinOp_RF_relocImm_Pats<X86xor_flag, xor>; |
| defm ADD : ArithBinOp_RF_relocImm_Pats<X86add_flag, add>; |
| defm SUB : ArithBinOp_RF_relocImm_Pats<X86sub_flag, sub>; |
| |
| defm ADC : ArithBinOp_RFF_relocImm_Pats<X86adc_flag>; |
| defm SBB : ArithBinOp_RFF_relocImm_Pats<X86sbb_flag>; |
| |
| defm CMP : ArithBinOp_F_relocImm_Pats<X86cmp>; |
| |
| // ADC is commutable, but we can't indicate that to tablegen. So manually |
| // reverse the operands. |
| def : Pat<(X86adc_flag GR8:$src1, relocImm8_su:$src2, EFLAGS), |
| (ADC8ri relocImm8_su:$src2, GR8:$src1)>; |
| def : Pat<(X86adc_flag i16relocImmSExt8_su:$src2, GR16:$src1, EFLAGS), |
| (ADC16ri8 GR16:$src1, i16relocImmSExt8_su:$src2)>; |
| def : Pat<(X86adc_flag relocImm16_su:$src2, GR16:$src1, EFLAGS), |
| (ADC16ri GR16:$src1, relocImm16_su:$src2)>; |
| def : Pat<(X86adc_flag i32relocImmSExt8_su:$src2, GR32:$src1, EFLAGS), |
| (ADC32ri8 GR32:$src1, i32relocImmSExt8_su:$src2)>; |
| def : Pat<(X86adc_flag relocImm32_su:$src2, GR32:$src1, EFLAGS), |
| (ADC32ri GR32:$src1, relocImm32_su:$src2)>; |
| def : Pat<(X86adc_flag i64relocImmSExt8_su:$src2, GR64:$src1, EFLAGS), |
| (ADC64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>; |
| def : Pat<(X86adc_flag i64relocImmSExt32_su:$src2, GR64:$src1, EFLAGS), |
| (ADC64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| def : Pat<(store (X86adc_flag relocImm8_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC8mi addr:$dst, relocImm8_su:$src)>; |
| def : Pat<(store (X86adc_flag i16relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC16mi8 addr:$dst, i16relocImmSExt8_su:$src)>; |
| def : Pat<(store (X86adc_flag relocImm16_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC16mi addr:$dst, relocImm16_su:$src)>; |
| def : Pat<(store (X86adc_flag i32relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC32mi8 addr:$dst, i32relocImmSExt8_su:$src)>; |
| def : Pat<(store (X86adc_flag relocImm32_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC32mi addr:$dst, relocImm32_su:$src)>; |
| def : Pat<(store (X86adc_flag i64relocImmSExt8_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC64mi8 addr:$dst, i64relocImmSExt8_su:$src)>; |
| def : Pat<(store (X86adc_flag i64relocImmSExt32_su:$src, (load addr:$dst), EFLAGS), addr:$dst), |
| (ADC64mi32 addr:$dst, i64relocImmSExt32_su:$src)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Semantically, test instructions are similar like AND, except they don't |
| // generate a result. From an encoding perspective, they are very different: |
| // they don't have all the usual imm8 and REV forms, and are encoded into a |
| // different space. |
| def X86testpat : PatFrag<(ops node:$lhs, node:$rhs), |
| (X86cmp (and_su node:$lhs, node:$rhs), 0)>; |
| |
| let isCompare = 1 in { |
| let Defs = [EFLAGS] in { |
| let isCommutable = 1 in { |
| // Avoid selecting these and instead use a test+and. Post processing will |
| // combine them. This gives bunch of other patterns that start with |
| // and a chance to match. |
| def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , null_frag>; |
| def TEST16rr : BinOpRR_F<0x84, "test", Xi16, null_frag>; |
| def TEST32rr : BinOpRR_F<0x84, "test", Xi32, null_frag>; |
| def TEST64rr : BinOpRR_F<0x84, "test", Xi64, null_frag>; |
| } // isCommutable |
| |
| let hasSideEffects = 0, mayLoad = 1 in { |
| def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , null_frag>; |
| def TEST16mr : BinOpMR_F<0x84, "test", Xi16, null_frag>; |
| def TEST32mr : BinOpMR_F<0x84, "test", Xi32, null_frag>; |
| def TEST64mr : BinOpMR_F<0x84, "test", Xi64, null_frag>; |
| } |
| |
| def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>; |
| def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>; |
| def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>; |
| def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>; |
| |
| def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>; |
| def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>; |
| def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>; |
| let Predicates = [In64BitMode] in |
| def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>; |
| } // Defs = [EFLAGS] |
| |
| def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL, |
| "{$src, %al|al, $src}">; |
| def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX, |
| "{$src, %ax|ax, $src}">; |
| def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX, |
| "{$src, %eax|eax, $src}">; |
| def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX, |
| "{$src, %rax|rax, $src}">; |
| } // isCompare |
| |
| // Patterns to match a relocImm into the immediate field. |
| def : Pat<(X86testpat GR8:$src1, relocImm8_su:$src2), |
| (TEST8ri GR8:$src1, relocImm8_su:$src2)>; |
| def : Pat<(X86testpat GR16:$src1, relocImm16_su:$src2), |
| (TEST16ri GR16:$src1, relocImm16_su:$src2)>; |
| def : Pat<(X86testpat GR32:$src1, relocImm32_su:$src2), |
| (TEST32ri GR32:$src1, relocImm32_su:$src2)>; |
| def : Pat<(X86testpat GR64:$src1, i64relocImmSExt32_su:$src2), |
| (TEST64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| def : Pat<(X86testpat (loadi8 addr:$src1), relocImm8_su:$src2), |
| (TEST8mi addr:$src1, relocImm8_su:$src2)>; |
| def : Pat<(X86testpat (loadi16 addr:$src1), relocImm16_su:$src2), |
| (TEST16mi addr:$src1, relocImm16_su:$src2)>; |
| def : Pat<(X86testpat (loadi32 addr:$src1), relocImm32_su:$src2), |
| (TEST32mi addr:$src1, relocImm32_su:$src2)>; |
| def : Pat<(X86testpat (loadi64 addr:$src1), i64relocImmSExt32_su:$src2), |
| (TEST64mi32 addr:$src1, i64relocImmSExt32_su:$src2)>; |
| |
| //===----------------------------------------------------------------------===// |
| // ANDN Instruction |
| // |
| multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop, |
| PatFrag ld_frag, X86FoldableSchedWrite sched> { |
| def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), |
| !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), |
| [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>, |
| Sched<[sched]>; |
| def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), |
| !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), |
| [(set RC:$dst, EFLAGS, |
| (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>, |
| Sched<[sched.Folded, sched.ReadAfterFold]>; |
| } |
| |
| // Complexity is reduced to give and with immediate a chance to match first. |
| let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in { |
| defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32, WriteALU>, T8PS, VEX_4V; |
| defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64, WriteALU>, T8PS, VEX_4V, VEX_W; |
| } |
| |
| let Predicates = [HasBMI], AddedComplexity = -6 in { |
| def : Pat<(and (not GR32:$src1), GR32:$src2), |
| (ANDN32rr GR32:$src1, GR32:$src2)>; |
| def : Pat<(and (not GR64:$src1), GR64:$src2), |
| (ANDN64rr GR64:$src1, GR64:$src2)>; |
| def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)), |
| (ANDN32rm GR32:$src1, addr:$src2)>; |
| def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)), |
| (ANDN64rm GR64:$src1, addr:$src2)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MULX Instruction |
| // |
| multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop, |
| X86FoldableSchedWrite sched> { |
| let hasSideEffects = 0 in { |
| def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src), |
| !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), |
| []>, T8XD, VEX_4V, Sched<[WriteIMulH, sched]>; |
| |
| let mayLoad = 1 in |
| def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src), |
| !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), |
| []>, T8XD, VEX_4V, |
| Sched<[WriteIMulHLd, sched.Folded, |
| // Memory operand. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // Implicit read of EDX/RDX |
| sched.ReadAfterFold]>; |
| |
| // Pseudo instructions to be used when the low result isn't used. The |
| // instruction is defined to keep the high if both destinations are the same. |
| def Hrr : PseudoI<(outs RC:$dst), (ins RC:$src), |
| []>, Sched<[sched]>; |
| |
| let mayLoad = 1 in |
| def Hrm : PseudoI<(outs RC:$dst), (ins x86memop:$src), |
| []>, Sched<[sched.Folded]>; |
| } |
| } |
| |
| let Predicates = [HasBMI2] in { |
| let Uses = [EDX] in |
| defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteMULX32>; |
| let Uses = [RDX] in |
| defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteMULX64>, VEX_W; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ADCX and ADOX Instructions |
| // |
| // We don't have patterns for these as there is no advantage over ADC for |
| // most code. |
| let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS], |
| Constraints = "$src1 = $dst", hasSideEffects = 0 in { |
| let SchedRW = [WriteADC], isCommutable = 1 in { |
| def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), |
| (ins GR32:$src1, GR32:$src2), |
| "adcx{l}\t{$src2, $dst|$dst, $src2}", []>, T8PD; |
| def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), |
| (ins GR64:$src1, GR64:$src2), |
| "adcx{q}\t{$src2, $dst|$dst, $src2}", []>, T8PD; |
| |
| def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), |
| (ins GR32:$src1, GR32:$src2), |
| "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS; |
| |
| def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), |
| (ins GR64:$src1, GR64:$src2), |
| "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS; |
| } // SchedRW |
| |
| let mayLoad = 1, |
| SchedRW = [WriteADC.Folded, WriteADC.ReadAfterFold, |
| // Memory operand. |
| ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, |
| // Implicit read of EFLAGS |
| WriteADC.ReadAfterFold] in { |
| def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), |
| (ins GR32:$src1, i32mem:$src2), |
| "adcx{l}\t{$src2, $dst|$dst, $src2}", []>, T8PD; |
| |
| def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), |
| (ins GR64:$src1, i64mem:$src2), |
| "adcx{q}\t{$src2, $dst|$dst, $src2}", []>, T8PD; |
| |
| def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), |
| (ins GR32:$src1, i32mem:$src2), |
| "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS; |
| |
| def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), |
| (ins GR64:$src1, i64mem:$src2), |
| "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS; |
| } // mayLoad, SchedRW |
| } |