blob: 87c04a07cd13ebdb1e3a7b69f813cb952b7715ab [file] [log] [blame]
//===-- X86FastTileConfig.cpp - Fast Tile Register Configure---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to config the shape of AMX physical registers
/// AMX register need to be configured before use. Before FastRegAllocation pass
/// the ldtilecfg instruction is inserted, however at that time we don't
/// know the shape of each physical tile registers, because the register
/// allocation is not done yet. This pass runs after register allocation
/// pass. It collects the shape information of each physical tile register
/// and store the shape in the stack slot that is allocated for load config
/// to tile config register.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "fasttileconfig"
namespace {
class X86FastTileConfig : public MachineFunctionPass {
// context
MachineFunction *MF = nullptr;
const X86Subtarget *ST = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const TargetInstrInfo *TII = nullptr;
MachineRegisterInfo *MRI = nullptr;
X86MachineFunctionInfo *X86FI = nullptr;
MachineInstr *getTileConfigPoint();
void tileConfig();
public:
X86FastTileConfig() : MachineFunctionPass(ID) {}
bool fastTileConfig();
bool isTileLoad(MachineInstr &MI);
bool isTileStore(MachineInstr &MI);
bool isAMXInstr(MachineInstr &MI);
void getTileStoreShape(MachineInstr &MI,
SmallVector<MachineOperand *> &ShapedTiles);
MachineInstr *getKeyAMXInstr(MachineInstr *MI);
void getTileShapesCfg(MachineInstr *MI,
SmallVector<MachineOperand *> &ShapedTiles);
void getShapeCfgInstrs(MachineInstr *MI,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs);
/// Return the pass name.
StringRef getPassName() const override {
return "Fast Tile Register Configure";
}
void materializeTileCfg(MachineInstr *MI);
void rewriteTileCfg(SmallVector<MachineOperand *> &ShapedTiles,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs);
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &MFunc) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
static char ID;
};
} // end anonymous namespace
char X86FastTileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86FastTileConfig, DEBUG_TYPE,
"Fast Tile Register Configure", false, false)
INITIALIZE_PASS_END(X86FastTileConfig, DEBUG_TYPE,
"Fast Tile Register Configure", false, false)
static bool isTilePhysReg(MachineOperand &Op) {
if (!Op.isReg())
return false;
Register Reg = Op.getReg();
if (Reg >= X86::TMM0 && Reg <= X86::TMM7)
return true;
return false;
}
static unsigned getTilePhysRegIdx(MachineOperand *Op) {
assert(isTilePhysReg(*Op) && "Tile Operand is invalid");
return Op->getReg() - X86::TMM0;
}
static inline void adjustRowCfg(unsigned TIdx, MachineInstr *MI) {
unsigned Offset = 48 + TIdx;
MI->getOperand(3).ChangeToImmediate(Offset);
}
static inline void adjustColCfg(unsigned TIdx, MachineInstr *MI) {
unsigned Offset = 16 + TIdx * 2;
MI->getOperand(3).ChangeToImmediate(Offset);
}
bool X86FastTileConfig::isTileLoad(MachineInstr &MI) {
return MI.getOpcode() == X86::PTILELOADDV ||
MI.getOpcode() == X86::PTILELOADDT1V;
}
bool X86FastTileConfig::isTileStore(MachineInstr &MI) {
return MI.getOpcode() == X86::PTILESTOREDV;
}
bool X86FastTileConfig::isAMXInstr(MachineInstr &MI) {
// TODO: May need to handle some special nontile amx instrucion.
if (MI.getOpcode() == X86::PLDTILECFGV || MI.isDebugInstr())
return false;
for (MachineOperand &MO : MI.operands())
if (isTilePhysReg(MO))
return true;
return false;
}
MachineInstr *X86FastTileConfig::getKeyAMXInstr(MachineInstr *MI) {
auto Cfg = MachineBasicBlock::iterator(MI);
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *KeyMI = nullptr;
int KeyAMXNum = 0;
for (auto II = Cfg; II != MBB->end(); II++) {
if (isTileLoad(*II)) {
KeyMI = &*II;
continue;
}
if (isTileStore(*II)) {
assert(KeyMI && "Key AMX Should be found before!");
break;
}
if (isAMXInstr(*II)) {
assert((KeyAMXNum == 0) && "Too many Key AMX instruction!");
KeyAMXNum++;
KeyMI = &*II;
}
}
assert(KeyMI && "There must be an AMX instruction.");
return KeyMI;
}
// Orderly get the tiles in key amx instruction, uses before defs.
void X86FastTileConfig::getTileShapesCfg(
MachineInstr *CfgMI, SmallVector<MachineOperand *> &ShapedTiles) {
MachineInstr *KeyMI = getKeyAMXInstr(CfgMI);
SmallVector<MachineOperand *> DefTiles;
for (MachineOperand &MO : KeyMI->operands()) {
if (!isTilePhysReg(MO))
continue;
if (MO.isDef())
DefTiles.push_back(&MO);
else
ShapedTiles.push_back(&MO);
}
ShapedTiles.append(DefTiles);
}
// We pre-config the shapes at position named with "amx.tmm.N.shape.row* and
// amx.shape.N.col*" at pass "Pre AMX Tile Config".
// The 'N' implies the order of tiles in key amx intrinsic.
void X86FastTileConfig::getShapeCfgInstrs(
MachineInstr *MI, std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs) {
auto Cfg = MachineBasicBlock::iterator(MI);
MachineBasicBlock *MBB = MI->getParent();
for (auto II = Cfg; II != MBB->begin(); II--) {
if (isAMXInstr(*II) || II->isTerminator() || II->isCall())
break;
if (!II->mayStore() || !II->hasOneMemOperand())
continue;
const Value *MemPtr = II->memoperands()[0]->getValue();
if (!MemPtr)
continue;
StringRef Name = MemPtr->getName();
if (!Name.startswith("amx.tmm."))
continue;
// Get the 'N'th tile shape config in key amx instruction.
auto N = Name.find(".shape");
StringRef STileIdx = Name.slice(8, N);
unsigned Idx;
STileIdx.getAsInteger(10, Idx);
// And related them with their store instructions.
if (Name.contains("row"))
RowCfgs[Idx] = &*II;
else if (Name.contains("col"))
ColCfgs[Idx] = &*II;
else
llvm_unreachable("Invalid tile shape info!");
}
assert((RowCfgs.size() == ColCfgs.size()) &&
"The number of tile row and col must be equal!");
}
// Here is the data format for the tile config.
// 0 palette = 1 now.
// 1 start_row = 0 now.
// 2-15 reserved, must be zero
// 16-17 tile0.colsb Tile 0 bytes per row.
// 18-19 tile1.colsb Tile 1 bytes per row.
// 20-21 tile2.colsb Tile 2 bytes per row.
// ... (sequence continues)
// 30-31 tile7.colsb Tile 7 bytes per row.
// 32-47 reserved, must be zero
// 48 tile0.rows Tile 0 rows.
// 49 tile1.rows Tile 1 rows.
// 50 tile2.rows Tile 2 rows.
// ... (sequence continues)
// 55 tile7.rows Tile 7 rows.
// 56-63 reserved, must be zero
void X86FastTileConfig::rewriteTileCfg(
SmallVector<MachineOperand *> &ShapedTiles,
std::map<unsigned, MachineInstr *> &RowCfgs,
std::map<unsigned, MachineInstr *> &ColCfgs) {
assert((RowCfgs.size() == ShapedTiles.size()) &&
"The number of tile shapes not equal with the number of tiles!");
// Orderly get the tiles and adjust the shape config.
for (unsigned I = 0, E = ShapedTiles.size(); I < E; I++) {
MachineOperand *MO = ShapedTiles[I];
unsigned TmmIdx = getTilePhysRegIdx(MO);
if (I == TmmIdx)
continue;
adjustRowCfg(TmmIdx, RowCfgs[I]);
adjustColCfg(TmmIdx, ColCfgs[I]);
}
}
// We have already preconfig the shapes before fast register allocation at
// X86PreAMXConfig::preWriteTileCfg(). Now, we have done fast register
// allocation, the shapes pre-written before may not rightly corresponding
// to the correct tmm registers, so we need adjust them.
void X86FastTileConfig::materializeTileCfg(MachineInstr *CfgMI) {
SmallVector<MachineOperand *> ShapedTiles;
std::map<unsigned, MachineInstr *> RowCfgs;
std::map<unsigned, MachineInstr *> ColCfgs;
// Orderly keep the tile uses and def in ShapedTiles;
getTileShapesCfg(CfgMI, ShapedTiles);
assert(ShapedTiles.size() && "Not find shapes config!");
getShapeCfgInstrs(CfgMI, RowCfgs, ColCfgs);
rewriteTileCfg(ShapedTiles, RowCfgs, ColCfgs);
}
bool X86FastTileConfig::fastTileConfig() {
bool Changed = false;
for (MachineBasicBlock &MBB : *MF) {
SmallVector<MachineInstr *, 2> CFGs;
for (MachineInstr &MI : MBB)
if (MI.getOpcode() == X86::PLDTILECFGV)
CFGs.push_back(&MI);
for (auto *MI : CFGs)
materializeTileCfg(MI);
if (!CFGs.empty())
Changed = true;
}
if (Changed)
X86FI->setHasVirtualTileReg(true);
return Changed;
}
bool X86FastTileConfig::runOnMachineFunction(MachineFunction &MFunc) {
MF = &MFunc;
MRI = &MFunc.getRegInfo();
ST = &MFunc.getSubtarget<X86Subtarget>();
TRI = ST->getRegisterInfo();
TII = MFunc.getSubtarget().getInstrInfo();
X86FI = MFunc.getInfo<X86MachineFunctionInfo>();
return fastTileConfig();
}
FunctionPass *llvm::createX86FastTileConfigPass() {
return new X86FastTileConfig();
}