| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the X86-specific support for the FastISel class. Much |
| // of the target-specific code is generated by tablegen in the file |
| // X86GenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86CallingConv.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrInfo.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| class X86FastISel final : public FastISel { |
| /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const X86Subtarget *Subtarget; |
| |
| /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 |
| /// floating point ops. |
| /// When SSE is available, use it for f32 operations. |
| /// When SSE2 is available, use it for f64 operations. |
| bool X86ScalarSSEf64; |
| bool X86ScalarSSEf32; |
| bool X86ScalarSSEf16; |
| |
| public: |
| explicit X86FastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) |
| : FastISel(funcInfo, libInfo) { |
| Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); |
| X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| X86ScalarSSEf16 = Subtarget->hasFP16(); |
| } |
| |
| bool fastSelectInstruction(const Instruction *I) override; |
| |
| /// The specified machine instr operand is a vreg, and that |
| /// vreg is being provided by the specified load instruction. If possible, |
| /// try to fold the load as an operand to the instruction, returning true if |
| /// possible. |
| bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| const LoadInst *LI) override; |
| |
| bool fastLowerArguments() override; |
| bool fastLowerCall(CallLoweringInfo &CLI) override; |
| bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; |
| |
| #include "X86GenFastISel.inc" |
| |
| private: |
| bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, |
| const DebugLoc &DL); |
| |
| bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, |
| unsigned &ResultReg, unsigned Alignment = 1); |
| |
| bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, |
| MachineMemOperand *MMO = nullptr, bool Aligned = false); |
| bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, |
| MachineMemOperand *MMO = nullptr, bool Aligned = false); |
| |
| bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, |
| unsigned &ResultReg); |
| |
| bool X86SelectAddress(const Value *V, X86AddressMode &AM); |
| bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); |
| |
| bool X86SelectLoad(const Instruction *I); |
| |
| bool X86SelectStore(const Instruction *I); |
| |
| bool X86SelectRet(const Instruction *I); |
| |
| bool X86SelectCmp(const Instruction *I); |
| |
| bool X86SelectZExt(const Instruction *I); |
| |
| bool X86SelectSExt(const Instruction *I); |
| |
| bool X86SelectBranch(const Instruction *I); |
| |
| bool X86SelectShift(const Instruction *I); |
| |
| bool X86SelectDivRem(const Instruction *I); |
| |
| bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); |
| |
| bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); |
| |
| bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); |
| |
| bool X86SelectSelect(const Instruction *I); |
| |
| bool X86SelectTrunc(const Instruction *I); |
| |
| bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, |
| const TargetRegisterClass *RC); |
| |
| bool X86SelectFPExt(const Instruction *I); |
| bool X86SelectFPTrunc(const Instruction *I); |
| bool X86SelectSIToFP(const Instruction *I); |
| bool X86SelectUIToFP(const Instruction *I); |
| bool X86SelectIntToFP(const Instruction *I, bool IsSigned); |
| |
| const X86InstrInfo *getInstrInfo() const { |
| return Subtarget->getInstrInfo(); |
| } |
| const X86TargetMachine *getTargetMachine() const { |
| return static_cast<const X86TargetMachine *>(&TM); |
| } |
| |
| bool handleConstantAddresses(const Value *V, X86AddressMode &AM); |
| |
| unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); |
| unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); |
| unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); |
| unsigned fastMaterializeConstant(const Constant *C) override; |
| |
| unsigned fastMaterializeAlloca(const AllocaInst *C) override; |
| |
| unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; |
| |
| /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
| /// computed in an SSE register, not on the X87 floating point stack. |
| bool isScalarFPTypeInSSEReg(EVT VT) const { |
| return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 |
| (VT == MVT::f32 && X86ScalarSSEf32) || // f32 is when SSE1 |
| (VT == MVT::f16 && X86ScalarSSEf16); // f16 is when AVX512FP16 |
| } |
| |
| bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); |
| |
| bool IsMemcpySmall(uint64_t Len); |
| |
| bool TryEmitSmallMemcpy(X86AddressMode DestAM, |
| X86AddressMode SrcAM, uint64_t Len); |
| |
| bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
| const Value *Cond); |
| |
| const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, |
| X86AddressMode &AM); |
| |
| unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, unsigned Op0, |
| unsigned Op1, unsigned Op2, unsigned Op3); |
| }; |
| |
| } // end anonymous namespace. |
| |
| static std::pair<unsigned, bool> |
| getX86SSEConditionCode(CmpInst::Predicate Predicate) { |
| unsigned CC; |
| bool NeedSwap = false; |
| |
| // SSE Condition code mapping: |
| // 0 - EQ |
| // 1 - LT |
| // 2 - LE |
| // 3 - UNORD |
| // 4 - NEQ |
| // 5 - NLT |
| // 6 - NLE |
| // 7 - ORD |
| switch (Predicate) { |
| default: llvm_unreachable("Unexpected predicate"); |
| case CmpInst::FCMP_OEQ: CC = 0; break; |
| case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OLT: CC = 1; break; |
| case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OLE: CC = 2; break; |
| case CmpInst::FCMP_UNO: CC = 3; break; |
| case CmpInst::FCMP_UNE: CC = 4; break; |
| case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UGE: CC = 5; break; |
| case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UGT: CC = 6; break; |
| case CmpInst::FCMP_ORD: CC = 7; break; |
| case CmpInst::FCMP_UEQ: CC = 8; break; |
| case CmpInst::FCMP_ONE: CC = 12; break; |
| } |
| |
| return std::make_pair(CC, NeedSwap); |
| } |
| |
| /// Adds a complex addressing mode to the given machine instr builder. |
| /// Note, this will constrain the index register. If its not possible to |
| /// constrain the given index register, then a new one will be created. The |
| /// IndexReg field of the addressing mode will be updated to match in this case. |
| const MachineInstrBuilder & |
| X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, |
| X86AddressMode &AM) { |
| // First constrain the index register. It needs to be a GR64_NOSP. |
| AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, |
| MIB->getNumOperands() + |
| X86::AddrIndexReg); |
| return ::addFullAddress(MIB, AM); |
| } |
| |
| /// Check if it is possible to fold the condition from the XALU intrinsic |
| /// into the user. The condition code will only be updated on success. |
| bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
| const Value *Cond) { |
| if (!isa<ExtractValueInst>(Cond)) |
| return false; |
| |
| const auto *EV = cast<ExtractValueInst>(Cond); |
| if (!isa<IntrinsicInst>(EV->getAggregateOperand())) |
| return false; |
| |
| const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); |
| MVT RetVT; |
| const Function *Callee = II->getCalledFunction(); |
| Type *RetTy = |
| cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); |
| if (!isTypeLegal(RetTy, RetVT)) |
| return false; |
| |
| if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| return false; |
| |
| X86::CondCode TmpCC; |
| switch (II->getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; |
| } |
| |
| // Check if both instructions are in the same basic block. |
| if (II->getParent() != I->getParent()) |
| return false; |
| |
| // Make sure nothing is in the way |
| BasicBlock::const_iterator Start(I); |
| BasicBlock::const_iterator End(II); |
| for (auto Itr = std::prev(Start); Itr != End; --Itr) { |
| // We only expect extractvalue instructions between the intrinsic and the |
| // instruction to be selected. |
| if (!isa<ExtractValueInst>(Itr)) |
| return false; |
| |
| // Check that the extractvalue operand comes from the intrinsic. |
| const auto *EVI = cast<ExtractValueInst>(Itr); |
| if (EVI->getAggregateOperand() != II) |
| return false; |
| } |
| |
| // Make sure no potentially eflags clobbering phi moves can be inserted in |
| // between. |
| auto HasPhis = [](const BasicBlock *Succ) { |
| return !llvm::empty(Succ->phis()); |
| }; |
| if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) |
| return false; |
| |
| CC = TmpCC; |
| return true; |
| } |
| |
| bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { |
| EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); |
| if (evt == MVT::Other || !evt.isSimple()) |
| // Unhandled type. Halt "fast" selection and bail. |
| return false; |
| |
| VT = evt.getSimpleVT(); |
| // For now, require SSE/SSE2 for performing floating-point operations, |
| // since x87 requires additional work. |
| if (VT == MVT::f64 && !X86ScalarSSEf64) |
| return false; |
| if (VT == MVT::f32 && !X86ScalarSSEf32) |
| return false; |
| // Similarly, no f80 support yet. |
| if (VT == MVT::f80) |
| return false; |
| // We only handle legal types. For example, on x86-32 the instruction |
| // selector contains all of the 64-bit instructions from x86-64, |
| // under the assumption that i64 won't be used if the target doesn't |
| // support it. |
| return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); |
| } |
| |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. |
| /// Return true and the result register by reference if it is possible. |
| bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, |
| MachineMemOperand *MMO, unsigned &ResultReg, |
| unsigned Alignment) { |
| bool HasSSE41 = Subtarget->hasSSE41(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool HasAVX2 = Subtarget->hasAVX2(); |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasVLX = Subtarget->hasVLX(); |
| bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
| |
| // Treat i1 loads the same as i8 loads. Masking will be done when storing. |
| if (VT == MVT::i1) |
| VT = MVT::i8; |
| |
| // Get opcode and regclass of the output for the given load instruction. |
| unsigned Opc = 0; |
| switch (VT.SimpleTy) { |
| default: return false; |
| case MVT::i8: |
| Opc = X86::MOV8rm; |
| break; |
| case MVT::i16: |
| Opc = X86::MOV16rm; |
| break; |
| case MVT::i32: |
| Opc = X86::MOV32rm; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = X86::MOV64rm; |
| break; |
| case MVT::f32: |
| if (X86ScalarSSEf32) |
| Opc = HasAVX512 ? X86::VMOVSSZrm_alt : |
| HasAVX ? X86::VMOVSSrm_alt : |
| X86::MOVSSrm_alt; |
| else |
| Opc = X86::LD_Fp32m; |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf64) |
| Opc = HasAVX512 ? X86::VMOVSDZrm_alt : |
| HasAVX ? X86::VMOVSDrm_alt : |
| X86::MOVSDrm_alt; |
| else |
| Opc = X86::LD_Fp64m; |
| break; |
| case MVT::f80: |
| // No f80 support yet. |
| return false; |
| case MVT::v4f32: |
| if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVAPSZ128rm : |
| HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPSZ128rm : |
| HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; |
| break; |
| case MVT::v2f64: |
| if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVAPDZ128rm : |
| HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPDZ128rm : |
| HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; |
| break; |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
| Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
| HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
| else if (Alignment >= 16) |
| Opc = HasVLX ? X86::VMOVDQA64Z128rm : |
| HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; |
| else |
| Opc = HasVLX ? X86::VMOVDQU64Z128rm : |
| HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; |
| break; |
| case MVT::v8f32: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; |
| break; |
| case MVT::v4f64: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; |
| else |
| Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; |
| break; |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v16i16: |
| case MVT::v32i8: |
| assert(HasAVX); |
| if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
| Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
| else if (IsNonTemporal && Alignment >= 16) |
| return false; // Force split for X86::VMOVNTDQArm |
| else if (Alignment >= 32) |
| Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; |
| else |
| Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; |
| break; |
| case MVT::v16f32: |
| assert(HasAVX512); |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; |
| break; |
| case MVT::v8f64: |
| assert(HasAVX512); |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; |
| break; |
| case MVT::v8i64: |
| case MVT::v16i32: |
| case MVT::v32i16: |
| case MVT::v64i8: |
| assert(HasAVX512); |
| // Note: There are a lot more choices based on type with AVX-512, but |
| // there's really no advantage when the load isn't masked. |
| if (IsNonTemporal && Alignment >= 64) |
| Opc = X86::VMOVNTDQAZrm; |
| else |
| Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; |
| break; |
| } |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
| |
| ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); |
| addFullAddress(MIB, AM); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| return true; |
| } |
| |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr |
| /// and a displacement offset, or a GlobalAddress, |
| /// i.e. V. Return true if it is possible. |
| bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, |
| MachineMemOperand *MMO, bool Aligned) { |
| bool HasSSE1 = Subtarget->hasSSE1(); |
| bool HasSSE2 = Subtarget->hasSSE2(); |
| bool HasSSE4A = Subtarget->hasSSE4A(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasVLX = Subtarget->hasVLX(); |
| bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
| |
| // Get opcode and regclass of the output for the given store instruction. |
| unsigned Opc = 0; |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f80: // No f80 support yet. |
| default: return false; |
| case MVT::i1: { |
| // Mask out all but lowest bit. |
| Register AndResult = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(X86::AND8ri), AndResult) |
| .addReg(ValReg).addImm(1); |
| ValReg = AndResult; |
| LLVM_FALLTHROUGH; // handle i1 as i8. |
| } |
| case MVT::i8: Opc = X86::MOV8mr; break; |
| case MVT::i16: Opc = X86::MOV16mr; break; |
| case MVT::i32: |
| Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; |
| break; |
| case MVT::i64: |
| // Must be in x86-64 mode. |
| Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; |
| break; |
| case MVT::f32: |
| if (X86ScalarSSEf32) { |
| if (IsNonTemporal && HasSSE4A) |
| Opc = X86::MOVNTSS; |
| else |
| Opc = HasAVX512 ? X86::VMOVSSZmr : |
| HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; |
| } else |
| Opc = X86::ST_Fp32m; |
| break; |
| case MVT::f64: |
| if (X86ScalarSSEf32) { |
| if (IsNonTemporal && HasSSE4A) |
| Opc = X86::MOVNTSD; |
| else |
| Opc = HasAVX512 ? X86::VMOVSDZmr : |
| HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; |
| } else |
| Opc = X86::ST_Fp64m; |
| break; |
| case MVT::x86mmx: |
| Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; |
| break; |
| case MVT::v4f32: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPSZ128mr : |
| HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPSZ128mr : |
| HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPSZ128mr : |
| HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; |
| break; |
| case MVT::v2f64: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPDZ128mr : |
| HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPDZ128mr : |
| HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPDZ128mr : |
| HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; |
| break; |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v8i16: |
| case MVT::v16i8: |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTDQZ128mr : |
| HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; |
| else |
| Opc = HasVLX ? X86::VMOVDQA64Z128mr : |
| HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; |
| } else |
| Opc = HasVLX ? X86::VMOVDQU64Z128mr : |
| HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; |
| break; |
| case MVT::v8f32: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; |
| break; |
| case MVT::v4f64: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; |
| else |
| Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; |
| break; |
| case MVT::v8i32: |
| case MVT::v4i64: |
| case MVT::v16i16: |
| case MVT::v32i8: |
| assert(HasAVX); |
| if (Aligned) { |
| if (IsNonTemporal) |
| Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; |
| else |
| Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; |
| } else |
| Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; |
| break; |
| case MVT::v16f32: |
| assert(HasAVX512); |
| if (Aligned) |
| Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; |
| else |
| Opc = X86::VMOVUPSZmr; |
| break; |
| case MVT::v8f64: |
| assert(HasAVX512); |
| if (Aligned) { |
| Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; |
| } else |
| Opc = X86::VMOVUPDZmr; |
| break; |
| case MVT::v8i64: |
| case MVT::v16i32: |
| case MVT::v32i16: |
| case MVT::v64i8: |
| assert(HasAVX512); |
| // Note: There are a lot more choices based on type with AVX-512, but |
| // there's really no advantage when the store isn't masked. |
| if (Aligned) |
| Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; |
| else |
| Opc = X86::VMOVDQU64Zmr; |
| break; |
| } |
| |
| const MCInstrDesc &Desc = TII.get(Opc); |
| // Some of the instructions in the previous switch use FR128 instead |
| // of FR32 for ValReg. Make sure the register we feed the instruction |
| // matches its register class constraints. |
| // Note: This is fine to do a copy from FR32 to FR128, this is the |
| // same registers behind the scene and actually why it did not trigger |
| // any bugs before. |
| ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); |
| addFullAddress(MIB, AM).addReg(ValReg); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, |
| X86AddressMode &AM, |
| MachineMemOperand *MMO, bool Aligned) { |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Val)) |
| Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); |
| |
| // If this is a store of a simple constant, fold the constant into the store. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| unsigned Opc = 0; |
| bool Signed = true; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: break; |
| case MVT::i1: |
| Signed = false; |
| LLVM_FALLTHROUGH; // Handle as i8. |
| case MVT::i8: Opc = X86::MOV8mi; break; |
| case MVT::i16: Opc = X86::MOV16mi; break; |
| case MVT::i32: Opc = X86::MOV32mi; break; |
| case MVT::i64: |
| // Must be a 32-bit sign extended value. |
| if (isInt<32>(CI->getSExtValue())) |
| Opc = X86::MOV64mi32; |
| break; |
| } |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); |
| addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() |
| : CI->getZExtValue()); |
| if (MMO) |
| MIB->addMemOperand(*FuncInfo.MF, MMO); |
| return true; |
| } |
| } |
| |
| Register ValReg = getRegForValue(Val); |
| if (ValReg == 0) |
| return false; |
| |
| return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); |
| } |
| |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. |
| /// ISD::SIGN_EXTEND). |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, |
| unsigned Src, EVT SrcVT, |
| unsigned &ResultReg) { |
| unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); |
| if (RR == 0) |
| return false; |
| |
| ResultReg = RR; |
| return true; |
| } |
| |
| bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // Can't handle TLS yet. |
| if (GV->isThreadLocal()) |
| return false; |
| |
| // Can't handle !absolute_symbol references yet. |
| if (GV->isAbsoluteSymbolRef()) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands, so if |
| // we've already folded stuff into the addressing mode, just force the |
| // global value into its own register, which we can use as the basereg. |
| if (!Subtarget->isPICStyleRIPRel() || |
| (AM.Base.Reg == 0 && AM.IndexReg == 0)) { |
| // Okay, we've committed to selecting this global. Set up the address. |
| AM.GV = GV; |
| |
| // Allow the subtarget to classify the global. |
| unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); |
| |
| // If this reference is relative to the pic base, set it now. |
| if (isGlobalRelativeToPICBase(GVFlags)) { |
| // FIXME: How do we know Base.Reg is free?? |
| AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); |
| } |
| |
| // Unless the ABI requires an extra load, return a direct reference to |
| // the global. |
| if (!isGlobalStubReference(GVFlags)) { |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } |
| AM.GVOpFlags = GVFlags; |
| return true; |
| } |
| |
| // Ok, we need to do a load from a stub. If we've already loaded from |
| // this stub, reuse the loaded pointer, otherwise emit the load now. |
| DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); |
| Register LoadReg; |
| if (I != LocalValueMap.end() && I->second) { |
| LoadReg = I->second; |
| } else { |
| // Issue load from stub. |
| unsigned Opc = 0; |
| const TargetRegisterClass *RC = nullptr; |
| X86AddressMode StubAM; |
| StubAM.Base.Reg = AM.Base.Reg; |
| StubAM.GV = GV; |
| StubAM.GVOpFlags = GVFlags; |
| |
| // Prepare for inserting code in the local-value area. |
| SavePoint SaveInsertPt = enterLocalValueArea(); |
| |
| if (TLI.getPointerTy(DL) == MVT::i64) { |
| Opc = X86::MOV64rm; |
| RC = &X86::GR64RegClass; |
| } else { |
| Opc = X86::MOV32rm; |
| RC = &X86::GR32RegClass; |
| } |
| |
| if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || |
| GVFlags == X86II::MO_GOTPCREL_NORELAX) |
| StubAM.Base.Reg = X86::RIP; |
| |
| LoadReg = createResultReg(RC); |
| MachineInstrBuilder LoadMI = |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); |
| addFullAddress(LoadMI, StubAM); |
| |
| // Ok, back to normal mode. |
| leaveLocalValueArea(SaveInsertPt); |
| |
| // Prevent loading GV stub multiple times in same MBB. |
| LocalValueMap[V] = LoadReg; |
| } |
| |
| // Now construct the final address. Note that the Disp, Scale, |
| // and Index values may already be set here. |
| AM.Base.Reg = LoadReg; |
| AM.GV = nullptr; |
| return true; |
| } |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = getRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = getRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// X86SelectAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { |
| SmallVector<const Value *, 32> GEPs; |
| redo_gep: |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| // Don't walk into other basic blocks; it's possible we haven't |
| // visited them yet, so the instructions may not yet be assigned |
| // virtual registers. |
| if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || |
| FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) |
| if (Ty->getAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts. |
| return X86SelectAddress(U->getOperand(0), AM); |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(DL, U->getOperand(0)->getType()) == |
| TLI.getPointerTy(DL)) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) |
| return X86SelectAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::Alloca: { |
| // Do static allocas. |
| const AllocaInst *A = cast<AllocaInst>(V); |
| DenseMap<const AllocaInst *, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(A); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = SI->second; |
| return true; |
| } |
| break; |
| } |
| |
| case Instruction::Add: { |
| // Adds of constants are common and easy enough. |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { |
| uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); |
| // They have to fit in the 32-bit signed displacement field though. |
| if (isInt<32>(Disp)) { |
| AM.Disp = (uint32_t)Disp; |
| return X86SelectAddress(U->getOperand(0), AM); |
| } |
| } |
| break; |
| } |
| |
| case Instruction::GetElementPtr: { |
| X86AddressMode SavedAM = AM; |
| |
| // Pattern-match simple GEPs. |
| uint64_t Disp = (int32_t)AM.Disp; |
| unsigned IndexReg = AM.IndexReg; |
| unsigned Scale = AM.Scale; |
| gep_type_iterator GTI = gep_type_begin(U); |
| // Iterate through the indices, folding what we can. Constants can be |
| // folded, and one dynamic index can be handled, if the scale is supported. |
| for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
| i != e; ++i, ++GTI) { |
| const Value *Op = *i; |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); |
| continue; |
| } |
| |
| // A array/variable index is always of the form i*S where S is the |
| // constant scale size. See if we can push the scale into immediates. |
| uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); |
| for (;;) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| Disp += CI->getSExtValue() * S; |
| break; |
| } |
| if (canFoldAddIntoGEP(U, Op)) { |
| // A compatible add with a constant operand. Fold the constant. |
| ConstantInt *CI = |
| cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| Disp += CI->getSExtValue() * S; |
| // Iterate on the other operand. |
| Op = cast<AddOperator>(Op)->getOperand(0); |
| continue; |
| } |
| if (IndexReg == 0 && |
| (!AM.GV || !Subtarget->isPICStyleRIPRel()) && |
| (S == 1 || S == 2 || S == 4 || S == 8)) { |
| // Scaled-index addressing. |
| Scale = S; |
| IndexReg = getRegForGEPIndex(Op); |
| if (IndexReg == 0) |
| return false; |
| break; |
| } |
| // Unsupported. |
| goto unsupported_gep; |
| } |
| } |
| |
| // Check for displacement overflow. |
| if (!isInt<32>(Disp)) |
| break; |
| |
| AM.IndexReg = IndexReg; |
| AM.Scale = Scale; |
| AM.Disp = (uint32_t)Disp; |
| GEPs.push_back(V); |
| |
| if (const GetElementPtrInst *GEP = |
| dyn_cast<GetElementPtrInst>(U->getOperand(0))) { |
| // Ok, the GEP indices were covered by constant-offset and scaled-index |
| // addressing. Update the address state and move on to examining the base. |
| V = GEP; |
| goto redo_gep; |
| } else if (X86SelectAddress(U->getOperand(0), AM)) { |
| return true; |
| } |
| |
| // If we couldn't merge the gep value into this addr mode, revert back to |
| // our address and just match the value instead of completely failing. |
| AM = SavedAM; |
| |
| for (const Value *I : reverse(GEPs)) |
| if (handleConstantAddresses(I, AM)) |
| return true; |
| |
| return false; |
| unsupported_gep: |
| // Ok, the GEP indices weren't all covered. |
| break; |
| } |
| } |
| |
| return handleConstantAddresses(V, AM); |
| } |
| |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value. |
| /// |
| bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| const Instruction *I = dyn_cast<Instruction>(V); |
| // Record if the value is defined in the same basic block. |
| // |
| // This information is crucial to know whether or not folding an |
| // operand is valid. |
| // Indeed, FastISel generates or reuses a virtual register for all |
| // operands of all instructions it selects. Obviously, the definition and |
| // its uses must use the same virtual register otherwise the produced |
| // code is incorrect. |
| // Before instruction selection, FunctionLoweringInfo::set sets the virtual |
| // registers for values that are alive across basic blocks. This ensures |
| // that the values are consistently set between across basic block, even |
| // if different instruction selection mechanisms are used (e.g., a mix of |
| // SDISel and FastISel). |
| // For values local to a basic block, the instruction selection process |
| // generates these virtual registers with whatever method is appropriate |
| // for its needs. In particular, FastISel and SDISel do not share the way |
| // local virtual registers are set. |
| // Therefore, this is impossible (or at least unsafe) to share values |
| // between basic blocks unless they use the same instruction selection |
| // method, which is not guarantee for X86. |
| // Moreover, things like hasOneUse could not be used accurately, if we |
| // allow to reference values across basic blocks whereas they are not |
| // alive across basic blocks initially. |
| bool InMBB = true; |
| if (I) { |
| Opcode = I->getOpcode(); |
| U = I; |
| InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case Instruction::BitCast: |
| // Look past bitcasts if its operand is in the same BB. |
| if (InMBB) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs if its operand is in the same BB. |
| if (InMBB && |
| TLI.getValueType(DL, U->getOperand(0)->getType()) == |
| TLI.getPointerTy(DL)) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints if its operand is in the same BB. |
| if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) |
| return X86SelectCallAddress(U->getOperand(0), AM); |
| break; |
| } |
| |
| // Handle constant address. |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // Can't handle alternate code models yet. |
| if (TM.getCodeModel() != CodeModel::Small) |
| return false; |
| |
| // RIP-relative addresses can't have additional register operands. |
| if (Subtarget->isPICStyleRIPRel() && |
| (AM.Base.Reg != 0 || AM.IndexReg != 0)) |
| return false; |
| |
| // Can't handle TLS. |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| if (GVar->isThreadLocal()) |
| return false; |
| |
| // Okay, we've committed to selecting this global. Set up the basic address. |
| AM.GV = GV; |
| |
| // Return a direct reference to the global. Fastisel can handle calls to |
| // functions that require loads, such as dllimport and nonlazybind |
| // functions. |
| if (Subtarget->isPICStyleRIPRel()) { |
| // Use rip-relative addressing if we can. Above we verified that the |
| // base and index registers are unused. |
| assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
| AM.Base.Reg = X86::RIP; |
| } else { |
| AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); |
| } |
| |
| return true; |
| } |
| |
| // If all else fails, try to materialize the value in a register. |
| if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
| auto GetCallRegForValue = [this](const Value *V) { |
| Register Reg = getRegForValue(V); |
| |
| // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. |
| if (Reg && Subtarget->isTarget64BitILP32()) { |
| Register CopyReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32rr), |
| CopyReg) |
| .addReg(Reg); |
| |
| Register ExtReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) |
| .addImm(0) |
| .addReg(CopyReg) |
| .addImm(X86::sub_32bit); |
| Reg = ExtReg; |
| } |
| |
| return Reg; |
| }; |
| |
| if (AM.Base.Reg == 0) { |
| AM.Base.Reg = GetCallRegForValue(V); |
| return AM.Base.Reg != 0; |
| } |
| if (AM.IndexReg == 0) { |
| assert(AM.Scale == 1 && "Scale with no index!"); |
| AM.IndexReg = GetCallRegForValue(V); |
| return AM.IndexReg != 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /// X86SelectStore - Select and emit code to implement store instructions. |
| bool X86FastISel::X86SelectStore(const Instruction *I) { |
| // Atomic stores need special handling. |
| const StoreInst *S = cast<StoreInst>(I); |
| |
| if (S->isAtomic()) |
| return false; |
| |
| const Value *PtrV = I->getOperand(1); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| const Value *Val = S->getValueOperand(); |
| const Value *Ptr = S->getPointerOperand(); |
| |
| MVT VT; |
| if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| Align Alignment = S->getAlign(); |
| Align ABIAlignment = DL.getABITypeAlign(Val->getType()); |
| bool Aligned = Alignment >= ABIAlignment; |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(Ptr, AM)) |
| return false; |
| |
| return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); |
| } |
| |
| /// X86SelectRet - Select and emit code to implement ret instructions. |
| bool X86FastISel::X86SelectRet(const Instruction *I) { |
| const ReturnInst *Ret = cast<ReturnInst>(I); |
| const Function &F = *I->getParent()->getParent(); |
| const X86MachineFunctionInfo *X86MFInfo = |
| FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); |
| |
| if (!FuncInfo.CanLowerReturn) |
| return false; |
| |
| if (TLI.supportSwiftError() && |
| F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| return false; |
| |
| if (TLI.supportSplitCSR(FuncInfo.MF)) |
| return false; |
| |
| CallingConv::ID CC = F.getCallingConv(); |
| if (CC != CallingConv::C && |
| CC != CallingConv::Fast && |
| CC != CallingConv::Tail && |
| CC != CallingConv::SwiftTail && |
| CC != CallingConv::X86_FastCall && |
| CC != CallingConv::X86_StdCall && |
| CC != CallingConv::X86_ThisCall && |
| CC != CallingConv::X86_64_SysV && |
| CC != CallingConv::Win64) |
| return false; |
| |
| // Don't handle popping bytes if they don't fit the ret's immediate. |
| if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) |
| return false; |
| |
| // fastcc with -tailcallopt is intended to provide a guaranteed |
| // tail call optimization. Fastisel doesn't know how to do that. |
| if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || |
| CC == CallingConv::Tail || CC == CallingConv::SwiftTail) |
| return false; |
| |
| // Let SDISel handle vararg functions. |
| if (F.isVarArg()) |
| return false; |
| |
| // Build a list of return value registers. |
| SmallVector<unsigned, 4> RetRegs; |
| |
| if (Ret->getNumOperands() > 0) { |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ValLocs; |
| CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC_X86); |
| |
| const Value *RV = Ret->getOperand(0); |
| Register Reg = getRegForValue(RV); |
| if (Reg == 0) |
| return false; |
| |
| // Only handle a single return value for now. |
| if (ValLocs.size() != 1) |
| return false; |
| |
| CCValAssign &VA = ValLocs[0]; |
| |
| // Don't bother handling odd stuff for now. |
| if (VA.getLocInfo() != CCValAssign::Full) |
| return false; |
| // Only handle register returns for now. |
| if (!VA.isRegLoc()) |
| return false; |
| |
| // The calling-convention tables for x87 returns don't tell |
| // the whole story. |
| if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) |
| return false; |
| |
| unsigned SrcReg = Reg + VA.getValNo(); |
| EVT SrcVT = TLI.getValueType(DL, RV->getType()); |
| EVT DstVT = VA.getValVT(); |
| // Special handling for extended integers. |
| if (SrcVT != DstVT) { |
| if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) |
| return false; |
| |
| if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
| return false; |
| |
| assert(DstVT == MVT::i32 && "X86 should always ext to i32"); |
| |
| if (SrcVT == MVT::i1) { |
| if (Outs[0].Flags.isSExt()) |
| return false; |
| // TODO |
| SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); |
| SrcVT = MVT::i8; |
| } |
| unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : |
| ISD::SIGN_EXTEND; |
| // TODO |
| SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); |
| } |
| |
| // Make the copy. |
| Register DstReg = VA.getLocReg(); |
| const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); |
| // Avoid a cross-class copy. This is very unlikely. |
| if (!SrcRC->contains(DstReg)) |
| return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); |
| |
| // Add register to return instruction. |
| RetRegs.push_back(VA.getLocReg()); |
| } |
| |
| // Swift calling convention does not require we copy the sret argument |
| // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. |
| |
| // All x86 ABIs require that for returning structs by value we copy |
| // the sret argument into %rax/%eax (depending on ABI) for the return. |
| // We saved the argument into a virtual register in the entry block, |
| // so now we copy the value out and into %rax/%eax. |
| if (F.hasStructRetAttr() && CC != CallingConv::Swift && |
| CC != CallingConv::SwiftTail) { |
| Register Reg = X86MFInfo->getSRetReturnReg(); |
| assert(Reg && |
| "SRetReturnReg should have been set in LowerFormalArguments()!"); |
| unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); |
| RetRegs.push_back(RetReg); |
| } |
| |
| // Now emit the RET. |
| MachineInstrBuilder MIB; |
| if (X86MFInfo->getBytesToPopOnReturn()) { |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) |
| .addImm(X86MFInfo->getBytesToPopOnReturn()); |
| } else { |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); |
| } |
| for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) |
| MIB.addReg(RetRegs[i], RegState::Implicit); |
| return true; |
| } |
| |
| /// X86SelectLoad - Select and emit code to implement load instructions. |
| /// |
| bool X86FastISel::X86SelectLoad(const Instruction *I) { |
| const LoadInst *LI = cast<LoadInst>(I); |
| |
| // Atomic loads need special handling. |
| if (LI->isAtomic()) |
| return false; |
| |
| const Value *SV = I->getOperand(0); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(SV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| MVT VT; |
| if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) |
| return false; |
| |
| const Value *Ptr = LI->getPointerOperand(); |
| |
| X86AddressMode AM; |
| if (!X86SelectAddress(Ptr, AM)) |
| return false; |
| |
| unsigned ResultReg = 0; |
| if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, |
| LI->getAlign().value())) |
| return false; |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| bool HasAVX = Subtarget->hasAVX(); |
| bool X86ScalarSSEf32 = Subtarget->hasSSE1(); |
| bool X86ScalarSSEf64 = Subtarget->hasSSE2(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return 0; |
| case MVT::i8: return X86::CMP8rr; |
| case MVT::i16: return X86::CMP16rr; |
| case MVT::i32: return X86::CMP32rr; |
| case MVT::i64: return X86::CMP64rr; |
| case MVT::f32: |
| return X86ScalarSSEf32 |
| ? (HasAVX512 ? X86::VUCOMISSZrr |
| : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) |
| : 0; |
| case MVT::f64: |
| return X86ScalarSSEf64 |
| ? (HasAVX512 ? X86::VUCOMISDZrr |
| : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) |
| : 0; |
| } |
| } |
| |
| /// If we have a comparison with RHS as the RHS of the comparison, return an |
| /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { |
| int64_t Val = RHSC->getSExtValue(); |
| switch (VT.getSimpleVT().SimpleTy) { |
| // Otherwise, we can't fold the immediate into this comparison. |
| default: |
| return 0; |
| case MVT::i8: |
| return X86::CMP8ri; |
| case MVT::i16: |
| if (isInt<8>(Val)) |
| return X86::CMP16ri8; |
| return X86::CMP16ri; |
| case MVT::i32: |
| if (isInt<8>(Val)) |
| return X86::CMP32ri8; |
| return X86::CMP32ri; |
| case MVT::i64: |
| if (isInt<8>(Val)) |
| return X86::CMP64ri8; |
| // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext |
| // field. |
| if (isInt<32>(Val)) |
| return X86::CMP64ri32; |
| return 0; |
| } |
| } |
| |
| bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, |
| const DebugLoc &CurDbgLoc) { |
| Register Op0Reg = getRegForValue(Op0); |
| if (Op0Reg == 0) return false; |
| |
| // Handle 'null' like i32/i64 0. |
| if (isa<ConstantPointerNull>(Op1)) |
| Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); |
| |
| // We have two options: compare with register or immediate. If the RHS of |
| // the compare is an immediate that we can fold into this compare, use |
| // CMPri, otherwise use CMPrr. |
| if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) |
| .addReg(Op0Reg) |
| .addImm(Op1C->getSExtValue()); |
| return true; |
| } |
| } |
| |
| unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); |
| if (CompareOpc == 0) return false; |
| |
| Register Op1Reg = getRegForValue(Op1); |
| if (Op1Reg == 0) return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) |
| .addReg(Op0Reg) |
| .addReg(Op1Reg); |
| |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectCmp(const Instruction *I) { |
| const CmpInst *CI = cast<CmpInst>(I); |
| |
| MVT VT; |
| if (!isTypeLegal(I->getOperand(0)->getType(), VT)) |
| return false; |
| |
| // Below code only works for scalars. |
| if (VT.isVector()) |
| return false; |
| |
| // Try to optimize or fold the cmp. |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| unsigned ResultReg = 0; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: { |
| ResultReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), |
| ResultReg); |
| ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); |
| if (!ResultReg) |
| return false; |
| break; |
| } |
| case CmpInst::FCMP_TRUE: { |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), |
| ResultReg).addImm(1); |
| break; |
| } |
| } |
| |
| if (ResultReg) { |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| const Value *LHS = CI->getOperand(0); |
| const Value *RHS = CI->getOperand(1); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
| // We don't have to materialize a zero constant for this case and can just use |
| // %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *RHSC = dyn_cast<ConstantFP>(RHS); |
| if (RHSC && RHSC->isNullValue()) |
| RHS = LHS; |
| } |
| |
| // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
| static const uint16_t SETFOpcTable[2][3] = { |
| { X86::COND_E, X86::COND_NP, X86::AND8rr }, |
| { X86::COND_NE, X86::COND_P, X86::OR8rr } |
| }; |
| const uint16_t *SETFOpc = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; |
| case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; |
| } |
| |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| if (SETFOpc) { |
| if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) |
| return false; |
| |
| Register FlagReg1 = createResultReg(&X86::GR8RegClass); |
| Register FlagReg2 = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), |
| FlagReg1).addImm(SETFOpc[0]); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), |
| FlagReg2).addImm(SETFOpc[1]); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), |
| ResultReg).addReg(FlagReg1).addReg(FlagReg2); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| X86::CondCode CC; |
| bool SwapArgs; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| if (SwapArgs) |
| std::swap(LHS, RHS); |
| |
| // Emit a compare of LHS/RHS. |
| if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), |
| ResultReg).addImm(CC); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectZExt(const Instruction *I) { |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| if (!TLI.isTypeLegal(DstVT)) |
| return false; |
| |
| Register ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) |
| return false; |
| |
| // Handle zero-extension from i1 to i8, which is common. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT == MVT::i1) { |
| // Set the high bits to zero. |
| ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); |
| SrcVT = MVT::i8; |
| |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| if (DstVT == MVT::i64) { |
| // Handle extension to 64-bits via sub-register shenanigans. |
| unsigned MovInst; |
| |
| switch (SrcVT.SimpleTy) { |
| case MVT::i8: MovInst = X86::MOVZX32rr8; break; |
| case MVT::i16: MovInst = X86::MOVZX32rr16; break; |
| case MVT::i32: MovInst = X86::MOV32rr; break; |
| default: llvm_unreachable("Unexpected zext to i64 source type"); |
| } |
| |
| Register Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) |
| .addReg(ResultReg); |
| |
| ResultReg = createResultReg(&X86::GR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), |
| ResultReg) |
| .addImm(0).addReg(Result32).addImm(X86::sub_32bit); |
| } else if (DstVT == MVT::i16) { |
| // i8->i16 doesn't exist in the autogenerated isel table. Need to zero |
| // extend to 32-bits and then extract down to 16-bits. |
| Register Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), |
| Result32).addReg(ResultReg); |
| |
| ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); |
| } else if (DstVT != MVT::i8) { |
| ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, |
| ResultReg); |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSExt(const Instruction *I) { |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| if (!TLI.isTypeLegal(DstVT)) |
| return false; |
| |
| Register ResultReg = getRegForValue(I->getOperand(0)); |
| if (ResultReg == 0) |
| return false; |
| |
| // Handle sign-extension from i1 to i8. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT == MVT::i1) { |
| // Set the high bits to zero. |
| Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); |
| if (ZExtReg == 0) |
| return false; |
| |
| // Negate the result to make an 8-bit sign extended value. |
| ResultReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), |
| ResultReg).addReg(ZExtReg); |
| |
| SrcVT = MVT::i8; |
| } |
| |
| if (DstVT == MVT::i16) { |
| // i8->i16 doesn't exist in the autogenerated isel table. Need to sign |
| // extend to 32-bits and then extract down to 16-bits. |
| Register Result32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), |
| Result32).addReg(ResultReg); |
| |
| ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); |
| } else if (DstVT != MVT::i8) { |
| ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, |
| ResultReg); |
| if (ResultReg == 0) |
| return false; |
| } |
| |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectBranch(const Instruction *I) { |
| // Unconditional branches are selected by tablegen-generated code. |
| // Handle a conditional branch. |
| const BranchInst *BI = cast<BranchInst>(I); |
| MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| |
| // Fold the common case of a conditional branch with a comparison |
| // in the same block (values defined on other blocks may not have |
| // initialized registers). |
| X86::CondCode CC; |
| if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| if (CI->hasOneUse() && CI->getParent() == I->getParent()) { |
| EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); |
| |
| // Try to optimize or fold the cmp. |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; |
| case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; |
| } |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, |
| // 0.0. |
| // We don't have to materialize a zero constant for this case and can just |
| // use %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); |
| if (CmpRHSC && CmpRHSC->isNullValue()) |
| CmpRHS = CmpLHS; |
| } |
| |
| // Try to take advantage of fallthrough opportunities. |
| if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { |
| std::swap(TrueMBB, FalseMBB); |
| Predicate = CmpInst::getInversePredicate(Predicate); |
| } |
| |
| // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition |
| // code check. Instead two branch instructions are required to check all |
| // the flags. First we change the predicate to a supported condition code, |
| // which will be the first branch. Later one we will emit the second |
| // branch. |
| bool NeedExtraBranch = false; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: |
| std::swap(TrueMBB, FalseMBB); |
| LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UNE: |
| NeedExtraBranch = true; |
| Predicate = CmpInst::FCMP_ONE; |
| break; |
| } |
| |
| bool SwapArgs; |
| std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| if (SwapArgs) |
| std::swap(CmpLHS, CmpRHS); |
| |
| // Emit a compare of the LHS and RHS, setting the flags. |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) |
| .addMBB(TrueMBB).addImm(CC); |
| |
| // X86 requires a second branch to handle UNE (and OEQ, which is mapped |
| // to UNE above). |
| if (NeedExtraBranch) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) |
| .addMBB(TrueMBB).addImm(X86::COND_P); |
| } |
| |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { |
| // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which |
| // typically happen for _Bool and C++ bools. |
| MVT SourceVT; |
| if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
| isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { |
| unsigned TestOpc = 0; |
| switch (SourceVT.SimpleTy) { |
| default: break; |
| case MVT::i8: TestOpc = X86::TEST8ri; break; |
| case MVT::i16: TestOpc = X86::TEST16ri; break; |
| case MVT::i32: TestOpc = X86::TEST32ri; break; |
| case MVT::i64: TestOpc = X86::TEST64ri32; break; |
| } |
| if (TestOpc) { |
| Register OpReg = getRegForValue(TI->getOperand(0)); |
| if (OpReg == 0) return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) |
| .addReg(OpReg).addImm(1); |
| |
| unsigned JmpCond = X86::COND_NE; |
| if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { |
| std::swap(TrueMBB, FalseMBB); |
| JmpCond = X86::COND_E; |
| } |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) |
| .addMBB(TrueMBB).addImm(JmpCond); |
| |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| } |
| } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { |
| // Fake request the condition, otherwise the intrinsic might be completely |
| // optimized away. |
| Register TmpReg = getRegForValue(BI->getCondition()); |
| if (TmpReg == 0) |
| return false; |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) |
| .addMBB(TrueMBB).addImm(CC); |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| |
| // Otherwise do a clumsy setcc and re-test it. |
| // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used |
| // in an explicit cast, so make sure to handle that correctly. |
| Register OpReg = getRegForValue(BI->getCondition()); |
| if (OpReg == 0) return false; |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { |
| unsigned KOpReg = OpReg; |
| OpReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), OpReg) |
| .addReg(KOpReg); |
| OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(OpReg) |
| .addImm(1); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) |
| .addMBB(TrueMBB).addImm(X86::COND_NE); |
| finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectShift(const Instruction *I) { |
| unsigned CReg = 0, OpReg = 0; |
| const TargetRegisterClass *RC = nullptr; |
| if (I->getType()->isIntegerTy(8)) { |
| CReg = X86::CL; |
| RC = &X86::GR8RegClass; |
| switch (I->getOpcode()) { |
| case Instruction::LShr: OpReg = X86::SHR8rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR8rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL8rCL; break; |
| default: return false; |
| } |
| } else if (I->getType()->isIntegerTy(16)) { |
| CReg = X86::CX; |
| RC = &X86::GR16RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR16rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR16rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL16rCL; break; |
| } |
| } else if (I->getType()->isIntegerTy(32)) { |
| CReg = X86::ECX; |
| RC = &X86::GR32RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR32rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR32rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL32rCL; break; |
| } |
| } else if (I->getType()->isIntegerTy(64)) { |
| CReg = X86::RCX; |
| RC = &X86::GR64RegClass; |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected shift opcode"); |
| case Instruction::LShr: OpReg = X86::SHR64rCL; break; |
| case Instruction::AShr: OpReg = X86::SAR64rCL; break; |
| case Instruction::Shl: OpReg = X86::SHL64rCL; break; |
| } |
| } else { |
| return false; |
| } |
| |
| MVT VT; |
| if (!isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| Register Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) return false; |
| |
| Register Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), |
| CReg).addReg(Op1Reg); |
| |
| // The shift instruction uses X86::CL. If we defined a super-register |
| // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. |
| if (CReg != X86::CL) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::KILL), X86::CL) |
| .addReg(CReg, RegState::Kill); |
| |
| Register ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) |
| .addReg(Op0Reg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectDivRem(const Instruction *I) { |
| const static unsigned NumTypes = 4; // i8, i16, i32, i64 |
| const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem |
| const static bool S = true; // IsSigned |
| const static bool U = false; // !IsSigned |
| const static unsigned Copy = TargetOpcode::COPY; |
| // For the X86 DIV/IDIV instruction, in most cases the dividend |
| // (numerator) must be in a specific register pair highreg:lowreg, |
| // producing the quotient in lowreg and the remainder in highreg. |
| // For most data types, to set up the instruction, the dividend is |
| // copied into lowreg, and lowreg is sign-extended or zero-extended |
| // into highreg. The exception is i8, where the dividend is defined |
| // as a single register rather than a register pair, and we |
| // therefore directly sign-extend or zero-extend the dividend into |
| // lowreg, instead of copying, and ignore the highreg. |
| const static struct DivRemEntry { |
| // The following portion depends only on the data type. |
| const TargetRegisterClass *RC; |
| unsigned LowInReg; // low part of the register pair |
| unsigned HighInReg; // high part of the register pair |
| // The following portion depends on both the data type and the operation. |
| struct DivRemResult { |
| unsigned OpDivRem; // The specific DIV/IDIV opcode to use. |
| unsigned OpSignExtend; // Opcode for sign-extending lowreg into |
| // highreg, or copying a zero into highreg. |
| unsigned OpCopy; // Opcode for copying dividend into lowreg, or |
| // zero/sign-extending into lowreg for i8. |
| unsigned DivRemResultReg; // Register containing the desired result. |
| bool IsOpSigned; // Whether to use signed or unsigned form. |
| } ResultTable[NumOps]; |
| } OpTable[NumTypes] = { |
| { &X86::GR8RegClass, X86::AX, 0, { |
| { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv |
| { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem |
| { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv |
| { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem |
| } |
| }, // i8 |
| { &X86::GR16RegClass, X86::AX, X86::DX, { |
| { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv |
| { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem |
| { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv |
| { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem |
| } |
| }, // i16 |
| { &X86::GR32RegClass, X86::EAX, X86::EDX, { |
| { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv |
| { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem |
| { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv |
| { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem |
| } |
| }, // i32 |
| { &X86::GR64RegClass, X86::RAX, X86::RDX, { |
| { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv |
| { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem |
| { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv |
| { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem |
| } |
| }, // i64 |
| }; |
| |
| MVT VT; |
| if (!isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| unsigned TypeIndex, OpIndex; |
| switch (VT.SimpleTy) { |
| default: return false; |
| case MVT::i8: TypeIndex = 0; break; |
| case MVT::i16: TypeIndex = 1; break; |
| case MVT::i32: TypeIndex = 2; break; |
| case MVT::i64: TypeIndex = 3; |
| if (!Subtarget->is64Bit()) |
| return false; |
| break; |
| } |
| |
| switch (I->getOpcode()) { |
| default: llvm_unreachable("Unexpected div/rem opcode"); |
| case Instruction::SDiv: OpIndex = 0; break; |
| case Instruction::SRem: OpIndex = 1; break; |
| case Instruction::UDiv: OpIndex = 2; break; |
| case Instruction::URem: OpIndex = 3; break; |
| } |
| |
| const DivRemEntry &TypeEntry = OpTable[TypeIndex]; |
| const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; |
| Register Op0Reg = getRegForValue(I->getOperand(0)); |
| if (Op0Reg == 0) |
| return false; |
| Register Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) |
| return false; |
| |
| // Move op0 into low-order input register. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); |
| // Zero-extend or sign-extend into high-order input register. |
| if (OpEntry.OpSignExtend) { |
| if (OpEntry.IsOpSigned) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpSignExtend)); |
| else { |
| Register Zero32 = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(X86::MOV32r0), Zero32); |
| |
| // Copy the zero into the appropriate sub/super/identical physical |
| // register. Unfortunately the operations needed are not uniform enough |
| // to fit neatly into the table above. |
| if (VT == MVT::i16) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), TypeEntry.HighInReg) |
| .addReg(Zero32, 0, X86::sub_16bit); |
| } else if (VT == MVT::i32) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), TypeEntry.HighInReg) |
| .addReg(Zero32); |
| } else if (VT == MVT::i64) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) |
| .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); |
| } |
| } |
| } |
| // Generate the DIV/IDIV instruction. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); |
| // For i8 remainder, we can't reference ah directly, as we'll end |
| // up with bogus copies like %r9b = COPY %ah. Reference ax |
| // instead to prevent ah references in a rex instruction. |
| // |
| // The current assumption of the fast register allocator is that isel |
| // won't generate explicit references to the GR8_NOREX registers. If |
| // the allocator and/or the backend get enhanced to be more robust in |
| // that regard, this can be, and should be, removed. |
| unsigned ResultReg = 0; |
| if ((I->getOpcode() == Instruction::SRem || |
| I->getOpcode() == Instruction::URem) && |
| OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { |
| Register SourceSuperReg = createResultReg(&X86::GR16RegClass); |
| Register ResultSuperReg = createResultReg(&X86::GR16RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Copy), SourceSuperReg).addReg(X86::AX); |
| |
| // Shift AX right by 8 bits instead of using AH. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), |
| ResultSuperReg).addReg(SourceSuperReg).addImm(8); |
| |
| // Now reference the 8-bit subreg of the result. |
| ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, |
| X86::sub_8bit); |
| } |
| // Copy the result out of the physreg if we haven't already. |
| if (!ResultReg) { |
| ResultReg = createResultReg(TypeEntry.RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) |
| .addReg(OpEntry.DivRemResultReg); |
| } |
| updateValueMap(I, ResultReg); |
| |
| return true; |
| } |
| |
| /// Emit a conditional move instruction (if the are supported) to lower |
| /// the select. |
| bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { |
| // Check if the subtarget supports these instructions. |
| if (!Subtarget->hasCMov()) |
| return false; |
| |
| // FIXME: Add support for i8. |
| if (RetVT < MVT::i16 || RetVT > MVT::i64) |
| return false; |
| |
| const Value *Cond = I->getOperand(0); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| bool NeedTest = true; |
| X86::CondCode CC = X86::COND_NE; |
| |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<CmpInst>(Cond); |
| if (CI && (CI->getParent() == I->getParent())) { |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| |
| // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
| static const uint16_t SETFOpcTable[2][3] = { |
| { X86::COND_NP, X86::COND_E, X86::TEST8rr }, |
| { X86::COND_P, X86::COND_NE, X86::OR8rr } |
| }; |
| const uint16_t *SETFOpc = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_OEQ: |
| SETFOpc = &SETFOpcTable[0][0]; |
| Predicate = CmpInst::ICMP_NE; |
| break; |
| case CmpInst::FCMP_UNE: |
| SETFOpc = &SETFOpcTable[1][0]; |
| Predicate = CmpInst::ICMP_NE; |
| break; |
| } |
| |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); |
| assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); |
| // Emit a compare of the LHS and RHS, setting the flags. |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) |
| return false; |
| |
| if (SETFOpc) { |
| Register FlagReg1 = createResultReg(&X86::GR8RegClass); |
| Register FlagReg2 = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), |
| FlagReg1).addImm(SETFOpc[0]); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), |
| FlagReg2).addImm(SETFOpc[1]); |
| auto const &II = TII.get(SETFOpc[2]); |
| if (II.getNumDefs()) { |
| Register TmpReg = createResultReg(&X86::GR8RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) |
| .addReg(FlagReg2).addReg(FlagReg1); |
| } else { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(FlagReg2).addReg(FlagReg1); |
| } |
| } |
| NeedTest = false; |
| } else if (foldX86XALUIntrinsic(CC, I, Cond)) { |
| // Fake request the condition, otherwise the intrinsic might be completely |
| // optimized away. |
| Register TmpReg = getRegForValue(Cond); |
| if (TmpReg == 0) |
| return false; |
| |
| NeedTest = false; |
| } |
| |
| if (NeedTest) { |
| // Selects operate on i1, however, CondReg is 8 bits width and may contain |
| // garbage. Indeed, only the less significant bit is supposed to be |
| // accurate. If we read more than the lsb, we may see non-zero values |
| // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for |
| // the select. This is achieved by performing TEST against 1. |
| Register CondReg = getRegForValue(Cond); |
| if (CondReg == 0) |
| return false; |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { |
| unsigned KCondReg = CondReg; |
| CondReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), CondReg) |
| .addReg(KCondReg); |
| CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(CondReg) |
| .addImm(1); |
| } |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| Register RHSReg = getRegForValue(RHS); |
| Register LHSReg = getRegForValue(LHS); |
| if (!LHSReg || !RHSReg) |
| return false; |
| |
| const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); |
| unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); |
| Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| /// Emit SSE or AVX instructions to lower the select. |
| /// |
| /// Try to use SSE1/SSE2 instructions to simulate a select without branches. |
| /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary |
| /// SSE instructions are available. If AVX is available, try to use a VBLENDV. |
| bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); |
| if (!CI || (CI->getParent() != I->getParent())) |
| return false; |
| |
| if (I->getType() != CI->getOperand(0)->getType() || |
| !((Subtarget->hasSSE1() && RetVT == MVT::f32) || |
| (Subtarget->hasSSE2() && RetVT == MVT::f64))) |
| return false; |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| |
| // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
| // We don't have to materialize a zero constant for this case and can just use |
| // %x again on the RHS. |
| if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
| const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); |
| if (CmpRHSC && CmpRHSC->isNullValue()) |
| CmpRHS = CmpLHS; |
| } |
| |
| unsigned CC; |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); |
| if (CC > 7 && !Subtarget->hasAVX()) |
| return false; |
| |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| Register LHSReg = getRegForValue(LHS); |
| Register RHSReg = getRegForValue(RHS); |
| Register CmpLHSReg = getRegForValue(CmpLHS); |
| Register CmpRHSReg = getRegForValue(CmpRHS); |
| if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) |
| return false; |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| unsigned ResultReg; |
| |
| if (Subtarget->hasAVX512()) { |
| // If we have AVX512 we can use a mask compare and masked movss/sd. |
| const TargetRegisterClass *VR128X = &X86::VR128XRegClass; |
| const TargetRegisterClass *VK1 = &X86::VK1RegClass; |
| |
| unsigned CmpOpcode = |
| (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; |
| Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, |
| CC); |
| |
| // Need an IMPLICIT_DEF for the input that is used to generate the upper |
| // bits of the result register since its not based on any of the inputs. |
| Register ImplicitDefReg = createResultReg(VR128X); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| |
| // Place RHSReg is the passthru of the masked movss/sd operation and put |
| // LHS in the input. The mask input comes from the compare. |
| unsigned MovOpcode = |
| (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; |
| unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, |
| ImplicitDefReg, LHSReg); |
| |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); |
| |
| } else if (Subtarget->hasAVX()) { |
| const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
| |
| // If we have AVX, create 1 blendv instead of 3 logic instructions. |
| // Blendv was introduced with SSE 4.1, but the 2 register form implicitly |
| // uses XMM0 as the selection register. That may need just as many |
| // instructions as the AND/ANDN/OR sequence due to register moves, so |
| // don't bother. |
| unsigned CmpOpcode = |
| (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; |
| unsigned BlendOpcode = |
| (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; |
| |
| Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, |
| CC); |
| Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, |
| CmpReg); |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); |
| } else { |
| // Choose the SSE instruction sequence based on data type (float or double). |
| static const uint16_t OpcTable[2][4] = { |
| { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, |
| { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } |
| }; |
| |
| const uint16_t *Opc = nullptr; |
| switch (RetVT.SimpleTy) { |
| default: return false; |
| case MVT::f32: Opc = &OpcTable[0][0]; break; |
| case MVT::f64: Opc = &OpcTable[1][0]; break; |
| } |
| |
| const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
| Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); |
| Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); |
| Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); |
| Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); |
| ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); |
| } |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { |
| // These are pseudo CMOV instructions and will be later expanded into control- |
| // flow. |
| unsigned Opc; |
| switch (RetVT.SimpleTy) { |
| default: return false; |
| case MVT::i8: Opc = X86::CMOV_GR8; break; |
| case MVT::i16: Opc = X86::CMOV_GR16; break; |
| case MVT::f16: Opc = X86::CMOV_FR16X; break; |
| case MVT::i32: Opc = X86::CMOV_GR32; break; |
| case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X |
| : X86::CMOV_FR32; break; |
| case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X |
| : X86::CMOV_FR64; break; |
| } |
| |
| const Value *Cond = I->getOperand(0); |
| X86::CondCode CC = X86::COND_NE; |
| |
| // Optimize conditions coming from a compare if both instructions are in the |
| // same basic block (values defined in other basic blocks may not have |
| // initialized registers). |
| const auto *CI = dyn_cast<CmpInst>(Cond); |
| if (CI && (CI->getParent() == I->getParent())) { |
| bool NeedSwap; |
| std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); |
| if (CC > X86::LAST_VALID_COND) |
| return false; |
| |
| const Value *CmpLHS = CI->getOperand(0); |
| const Value *CmpRHS = CI->getOperand(1); |
| |
| if (NeedSwap) |
| std::swap(CmpLHS, CmpRHS); |
| |
| EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); |
| if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) |
| return false; |
| } else { |
| Register CondReg = getRegForValue(Cond); |
| if (CondReg == 0) |
| return false; |
| |
| // In case OpReg is a K register, COPY to a GPR |
| if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { |
| unsigned KCondReg = CondReg; |
| CondReg = createResultReg(&X86::GR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), CondReg) |
| .addReg(KCondReg); |
| CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) |
| .addReg(CondReg) |
| .addImm(1); |
| } |
| |
| const Value *LHS = I->getOperand(1); |
| const Value *RHS = I->getOperand(2); |
| |
| Register LHSReg = getRegForValue(LHS); |
| Register RHSReg = getRegForValue(RHS); |
| if (!LHSReg || !RHSReg) |
| return false; |
| |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| |
| Register ResultReg = |
| fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSelect(const Instruction *I) { |
| MVT RetVT; |
| if (!isTypeLegal(I->getType(), RetVT)) |
| return false; |
| |
| // Check if we can fold the select. |
| if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { |
| CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| const Value *Opnd = nullptr; |
| switch (Predicate) { |
| default: break; |
| case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; |
| case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; |
| } |
| // No need for a select anymore - this is an unconditional move. |
| if (Opnd) { |
| Register OpReg = getRegForValue(Opnd); |
| if (OpReg == 0) |
| return false; |
| const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); |
| Register ResultReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(OpReg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| } |
| |
| // First try to use real conditional move instructions. |
| if (X86FastEmitCMoveSelect(RetVT, I)) |
| return true; |
| |
| // Try to use a sequence of SSE instructions to simulate a conditional move. |
| if (X86FastEmitSSESelect(RetVT, I)) |
| return true; |
| |
| // Fall-back to pseudo conditional move instructions, which will be later |
| // converted to control-flow. |
| if (X86FastEmitPseudoSelect(RetVT, I)) |
| return true; |
| |
| return false; |
| } |
| |
| // Common code for X86SelectSIToFP and X86SelectUIToFP. |
| bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { |
| // The target-independent selection algorithm in FastISel already knows how |
| // to select a SINT_TO_FP if the target is SSE but not AVX. |
| // Early exit if the subtarget doesn't have AVX. |
| // Unsigned conversion requires avx512. |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) |
| return false; |
| |
| // TODO: We could sign extend narrower types. |
| MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); |
| if (SrcVT != MVT::i32 && SrcVT != MVT::i64) |
| return false; |
| |
| // Select integer to float/double conversion. |
| Register OpReg = getRegForValue(I->getOperand(0)); |
| if (OpReg == 0) |
| return false; |
| |
| unsigned Opcode; |
| |
| static const uint16_t SCvtOpc[2][2][2] = { |
| { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, |
| { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, |
| { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, |
| { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, |
| }; |
| static const uint16_t UCvtOpc[2][2] = { |
| { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, |
| { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, |
| }; |
| bool Is64Bit = SrcVT == MVT::i64; |
| |
| if (I->getType()->isDoubleTy()) { |
| // s/uitofp int -> double |
| Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; |
| } else if (I->getType()->isFloatTy()) { |
| // s/uitofp int -> float |
| Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; |
| } else |
| return false; |
| |
| MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); |
| const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); |
| Register ImplicitDefReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectSIToFP(const Instruction *I) { |
| return X86SelectIntToFP(I, /*IsSigned*/true); |
| } |
| |
| bool X86FastISel::X86SelectUIToFP(const Instruction *I) { |
| return X86SelectIntToFP(I, /*IsSigned*/false); |
| } |
| |
| // Helper method used by X86SelectFPExt and X86SelectFPTrunc. |
| bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, |
| unsigned TargetOpc, |
| const TargetRegisterClass *RC) { |
| assert((I->getOpcode() == Instruction::FPExt || |
| I->getOpcode() == Instruction::FPTrunc) && |
| "Instruction must be an FPExt or FPTrunc!"); |
| bool HasAVX = Subtarget->hasAVX(); |
| |
| Register OpReg = getRegForValue(I->getOperand(0)); |
| if (OpReg == 0) |
| return false; |
| |
| unsigned ImplicitDefReg; |
| if (HasAVX) { |
| ImplicitDefReg = createResultReg(RC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); |
| |
| } |
| |
| Register ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), |
| ResultReg); |
| |
| if (HasAVX) |
| MIB.addReg(ImplicitDefReg); |
| |
| MIB.addReg(OpReg); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool X86FastISel::X86SelectFPExt(const Instruction *I) { |
| if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && |
| I->getOperand(0)->getType()->isFloatTy()) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| // fpext from float to double. |
| unsigned Opc = |
| HasAVX512 ? X86::VCVTSS2SDZrr |
| : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; |
| return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { |
| if (X86ScalarSSEf64 && I->getType()->isFloatTy() && |
| I->getOperand(0)->getType()->isDoubleTy()) { |
| bool HasAVX512 = Subtarget->hasAVX512(); |
| // fptrunc from double to float. |
| unsigned Opc = |
| HasAVX512 ? X86::VCVTSD2SSZrr |
| : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; |
| return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); |
| } |
| |
| return false; |
| } |
| |
| bool X86FastISel::X86SelectTrunc(const Instruction *I) { |
| EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); |
| EVT DstVT = TLI.getValueType(DL, I->getType()); |
| |
| // This code only handles truncation to byte. |
| if (DstVT != MVT::i8 && DstVT != MVT::i1) |
| return false; |
| if (!TLI.isTypeLegal(SrcVT)) |
| return false; |
| |
| Register InputReg = getRegForValue(I->getOperand(0)); |
| if (!InputReg) |
| // Unhandled operand. Halt "fast" selection and bail. |
| return false; |
| |
| if (SrcVT == MVT::i8) { |
|