| //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements the WebAssemblyTargetLowering class. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "WebAssemblyISelLowering.h" |
| #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" |
| #include "Utils/WebAssemblyTypeUtilities.h" |
| #include "Utils/WebAssemblyUtilities.h" |
| #include "WebAssemblyMachineFunctionInfo.h" |
| #include "WebAssemblySubtarget.h" |
| #include "WebAssemblyTargetMachine.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/DiagnosticPrinter.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "wasm-lower" |
| |
| WebAssemblyTargetLowering::WebAssemblyTargetLowering( |
| const TargetMachine &TM, const WebAssemblySubtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; |
| |
| // Booleans always contain 0 or 1. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| // Except in SIMD vectors |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| // We don't know the microarchitecture here, so just reduce register pressure. |
| setSchedulingPreference(Sched::RegPressure); |
| // Tell ISel that we have a stack pointer. |
| setStackPointerRegisterToSaveRestore( |
| Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); |
| addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); |
| addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); |
| addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); |
| if (Subtarget->hasSIMD128()) { |
| addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); |
| addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); |
| addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); |
| addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); |
| addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); |
| addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); |
| } |
| if (Subtarget->hasReferenceTypes()) { |
| addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass); |
| addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass); |
| } |
| // Compute derived properties from the register classes. |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // Transform loads and stores to pointers in address space 1 to loads and |
| // stores to WebAssembly global variables, outside linear memory. |
| for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) { |
| setOperationAction(ISD::LOAD, T, Custom); |
| setOperationAction(ISD::STORE, T, Custom); |
| } |
| if (Subtarget->hasSIMD128()) { |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, |
| MVT::v2f64}) { |
| setOperationAction(ISD::LOAD, T, Custom); |
| setOperationAction(ISD::STORE, T, Custom); |
| } |
| } |
| if (Subtarget->hasReferenceTypes()) { |
| // We need custom load and store lowering for both externref, funcref and |
| // Other. The MVT::Other here represents tables of reference types. |
| for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) { |
| setOperationAction(ISD::LOAD, T, Custom); |
| setOperationAction(ISD::STORE, T, Custom); |
| } |
| } |
| |
| setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom); |
| setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); |
| setOperationAction(ISD::JumpTable, MVTPtr, Custom); |
| setOperationAction(ISD::BlockAddress, MVTPtr, Custom); |
| setOperationAction(ISD::BRIND, MVT::Other, Custom); |
| |
| // Take the default expansion for va_arg, va_copy, and va_end. There is no |
| // default action for va_start, so we do that custom. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { |
| // Don't expand the floating-point types to constant pools. |
| setOperationAction(ISD::ConstantFP, T, Legal); |
| // Expand floating-point comparisons. |
| for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, |
| ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) |
| setCondCodeAction(CC, T, Expand); |
| // Expand floating-point library function operators. |
| for (auto Op : |
| {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) |
| setOperationAction(Op, T, Expand); |
| // Note supported floating-point library function operators that otherwise |
| // default to expand. |
| for (auto Op : |
| {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) |
| setOperationAction(Op, T, Legal); |
| // Support minimum and maximum, which otherwise default to expand. |
| setOperationAction(ISD::FMINIMUM, T, Legal); |
| setOperationAction(ISD::FMAXIMUM, T, Legal); |
| // WebAssembly currently has no builtin f16 support. |
| setOperationAction(ISD::FP16_TO_FP, T, Expand); |
| setOperationAction(ISD::FP_TO_FP16, T, Expand); |
| setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); |
| setTruncStoreAction(T, MVT::f16, Expand); |
| } |
| |
| // Expand unavailable integer operations. |
| for (auto Op : |
| {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, |
| ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, |
| ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { |
| for (auto T : {MVT::i32, MVT::i64}) |
| setOperationAction(Op, T, Expand); |
| if (Subtarget->hasSIMD128()) |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| setOperationAction(Op, T, Expand); |
| } |
| |
| if (Subtarget->hasNontrappingFPToInt()) |
| for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) |
| for (auto T : {MVT::i32, MVT::i64}) |
| setOperationAction(Op, T, Custom); |
| |
| // SIMD-specific configuration |
| if (Subtarget->hasSIMD128()) { |
| // Hoist bitcasts out of shuffles |
| setTargetDAGCombine(ISD::VECTOR_SHUFFLE); |
| |
| // Combine extends of extract_subvectors into widening ops |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| |
| // Combine int_to_fp or fp_extend of extract_vectors and vice versa into |
| // conversions ops |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::UINT_TO_FP); |
| setTargetDAGCombine(ISD::FP_EXTEND); |
| setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); |
| |
| // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa |
| // into conversion ops |
| setTargetDAGCombine(ISD::FP_TO_SINT_SAT); |
| setTargetDAGCombine(ISD::FP_TO_UINT_SAT); |
| setTargetDAGCombine(ISD::FP_ROUND); |
| setTargetDAGCombine(ISD::CONCAT_VECTORS); |
| |
| // Support saturating add for i8x16 and i16x8 |
| for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) |
| for (auto T : {MVT::v16i8, MVT::v8i16}) |
| setOperationAction(Op, T, Legal); |
| |
| // Support integer abs |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| setOperationAction(ISD::ABS, T, Legal); |
| |
| // Custom lower BUILD_VECTORs to minimize number of replace_lanes |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, |
| MVT::v2f64}) |
| setOperationAction(ISD::BUILD_VECTOR, T, Custom); |
| |
| // We have custom shuffle lowering to expose the shuffle mask |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, |
| MVT::v2f64}) |
| setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); |
| |
| // Custom lowering since wasm shifts must have a scalar shift amount |
| for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| setOperationAction(Op, T, Custom); |
| |
| // Custom lower lane accesses to expand out variable indices |
| for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, |
| MVT::v2f64}) |
| setOperationAction(Op, T, Custom); |
| |
| // There is no i8x16.mul instruction |
| setOperationAction(ISD::MUL, MVT::v16i8, Expand); |
| |
| // There is no vector conditional select instruction |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64, |
| MVT::v2f64}) |
| setOperationAction(ISD::SELECT_CC, T, Expand); |
| |
| // Expand integer operations supported for scalars but not SIMD |
| for (auto Op : |
| {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| setOperationAction(Op, T, Expand); |
| |
| // But we do have integer min and max operations |
| for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) |
| setOperationAction(Op, T, Legal); |
| |
| // And we have popcnt for i8x16. It can be used to expand ctlz/cttz. |
| setOperationAction(ISD::CTPOP, MVT::v16i8, Legal); |
| setOperationAction(ISD::CTLZ, MVT::v16i8, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); |
| |
| // Custom lower bit counting operations for other types to scalarize them. |
| for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}) |
| for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| setOperationAction(Op, T, Custom); |
| |
| // Expand float operations supported for scalars but not SIMD |
| for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, |
| ISD::FEXP, ISD::FEXP2, ISD::FRINT}) |
| for (auto T : {MVT::v4f32, MVT::v2f64}) |
| setOperationAction(Op, T, Expand); |
| |
| // Unsigned comparison operations are unavailable for i64x2 vectors. |
| for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE}) |
| setCondCodeAction(CC, MVT::v2i64, Custom); |
| |
| // 64x2 conversions are not in the spec |
| for (auto Op : |
| {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}) |
| for (auto T : {MVT::v2i64, MVT::v2f64}) |
| setOperationAction(Op, T, Expand); |
| |
| // But saturating fp_to_int converstions are |
| for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}) |
| setOperationAction(Op, MVT::v4i32, Custom); |
| } |
| |
| // As a special case, these operators use the type to mean the type to |
| // sign-extend from. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| if (!Subtarget->hasSignExt()) { |
| // Sign extends are legal only when extending a vector extract |
| auto Action = Subtarget->hasSIMD128() ? Custom : Expand; |
| for (auto T : {MVT::i8, MVT::i16, MVT::i32}) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); |
| } |
| for (auto T : MVT::integer_fixedlen_vector_valuetypes()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); |
| |
| // Dynamic stack allocation: use the default expansion. |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); |
| |
| setOperationAction(ISD::FrameIndex, MVT::i32, Custom); |
| setOperationAction(ISD::FrameIndex, MVT::i64, Custom); |
| setOperationAction(ISD::CopyToReg, MVT::Other, Custom); |
| |
| // Expand these forms; we pattern-match the forms that we can handle in isel. |
| for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) |
| for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) |
| setOperationAction(Op, T, Expand); |
| |
| // We have custom switch handling. |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| |
| // WebAssembly doesn't have: |
| // - Floating-point extending loads. |
| // - Floating-point truncating stores. |
| // - i1 extending loads. |
| // - truncating SIMD stores and most extending loads |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| for (auto T : MVT::integer_valuetypes()) |
| for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) |
| setLoadExtAction(Ext, T, MVT::i1, Promote); |
| if (Subtarget->hasSIMD128()) { |
| for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, |
| MVT::v2f64}) { |
| for (auto MemT : MVT::fixedlen_vector_valuetypes()) { |
| if (MVT(T) != MemT) { |
| setTruncStoreAction(T, MemT, Expand); |
| for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) |
| setLoadExtAction(Ext, T, MemT, Expand); |
| } |
| } |
| } |
| // But some vector extending loads are legal |
| for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { |
| setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); |
| setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); |
| setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); |
| } |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal); |
| } |
| |
| // Don't do anything clever with build_pairs |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| |
| // Trap lowers to wasm unreachable |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); |
| |
| // Exception handling intrinsics |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| |
| setMaxAtomicSizeInBitsSupported(64); |
| |
| // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is |
| // consistent with the f64 and f128 names. |
| setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); |
| setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); |
| |
| // Define the emscripten name for return address helper. |
| // TODO: when implementing other Wasm backends, make this generic or only do |
| // this on emscripten depending on what they end up doing. |
| setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); |
| |
| // Always convert switches to br_tables unless there is only one case, which |
| // is equivalent to a simple branch. This reduces code size for wasm, and we |
| // defer possible jump table optimizations to the VM. |
| setMinimumJumpTableEntries(2); |
| } |
| |
| MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL, |
| uint32_t AS) const { |
| if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) |
| return MVT::externref; |
| if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) |
| return MVT::funcref; |
| return TargetLowering::getPointerTy(DL, AS); |
| } |
| |
| MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL, |
| uint32_t AS) const { |
| if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF) |
| return MVT::externref; |
| if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF) |
| return MVT::funcref; |
| return TargetLowering::getPointerMemTy(DL, AS); |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| // We have wasm instructions for these |
| switch (AI->getOperation()) { |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: |
| case AtomicRMWInst::Xchg: |
| return AtomicExpansionKind::None; |
| default: |
| break; |
| } |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { |
| // Implementation copied from X86TargetLowering. |
| unsigned Opc = VecOp.getOpcode(); |
| |
| // Assume target opcodes can't be scalarized. |
| // TODO - do we have any exceptions? |
| if (Opc >= ISD::BUILTIN_OP_END) |
| return false; |
| |
| // If the vector op is not supported, try to convert to scalar. |
| EVT VecVT = VecOp.getValueType(); |
| if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) |
| return true; |
| |
| // If the vector op is supported, but the scalar op is not, the transform may |
| // not be worthwhile. |
| EVT ScalarVT = VecVT.getScalarType(); |
| return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); |
| } |
| |
| FastISel *WebAssemblyTargetLowering::createFastISel( |
| FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { |
| return WebAssembly::createFastISel(FuncInfo, LibInfo); |
| } |
| |
| MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, |
| EVT VT) const { |
| unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); |
| if (BitWidth > 1 && BitWidth < 8) |
| BitWidth = 8; |
| |
| if (BitWidth > 64) { |
| // The shift will be lowered to a libcall, and compiler-rt libcalls expect |
| // the count to be an i32. |
| BitWidth = 32; |
| assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && |
| "32-bit shift counts ought to be enough for anyone"); |
| } |
| |
| MVT Result = MVT::getIntegerVT(BitWidth); |
| assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && |
| "Unable to represent scalar shift amount type"); |
| return Result; |
| } |
| |
| // Lower an fp-to-int conversion operator from the LLVM opcode, which has an |
| // undefined result on invalid/overflow, to the WebAssembly opcode, which |
| // traps on invalid/overflow. |
| static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, |
| MachineBasicBlock *BB, |
| const TargetInstrInfo &TII, |
| bool IsUnsigned, bool Int64, |
| bool Float64, unsigned LoweredOpcode) { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| |
| Register OutReg = MI.getOperand(0).getReg(); |
| Register InReg = MI.getOperand(1).getReg(); |
| |
| unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; |
| unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; |
| unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; |
| unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; |
| unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; |
| unsigned Eqz = WebAssembly::EQZ_I32; |
| unsigned And = WebAssembly::AND_I32; |
| int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; |
| int64_t Substitute = IsUnsigned ? 0 : Limit; |
| double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; |
| auto &Context = BB->getParent()->getFunction().getContext(); |
| Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); |
| |
| const BasicBlock *LLVMBB = BB->getBasicBlock(); |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); |
| MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); |
| MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); |
| |
| MachineFunction::iterator It = ++BB->getIterator(); |
| F->insert(It, FalseMBB); |
| F->insert(It, TrueMBB); |
| F->insert(It, DoneMBB); |
| |
| // Transfer the remainder of BB and its successor edges to DoneMBB. |
| DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); |
| DoneMBB->transferSuccessorsAndUpdatePHIs(BB); |
| |
| BB->addSuccessor(TrueMBB); |
| BB->addSuccessor(FalseMBB); |
| TrueMBB->addSuccessor(DoneMBB); |
| FalseMBB->addSuccessor(DoneMBB); |
| |
| unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; |
| Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); |
| Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); |
| CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); |
| EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); |
| FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); |
| TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); |
| |
| MI.eraseFromParent(); |
| // For signed numbers, we can do a single comparison to determine whether |
| // fabs(x) is within range. |
| if (IsUnsigned) { |
| Tmp0 = InReg; |
| } else { |
| BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); |
| } |
| BuildMI(BB, DL, TII.get(FConst), Tmp1) |
| .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); |
| BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); |
| |
| // For unsigned numbers, we have to do a separate comparison with zero. |
| if (IsUnsigned) { |
| Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); |
| Register SecondCmpReg = |
| MRI.createVirtualRegister(&WebAssembly::I32RegClass); |
| Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); |
| BuildMI(BB, DL, TII.get(FConst), Tmp1) |
| .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); |
| BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); |
| BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); |
| CmpReg = AndReg; |
| } |
| |
| BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); |
| |
| // Create the CFG diamond to select between doing the conversion or using |
| // the substitute value. |
| BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); |
| BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); |
| BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); |
| BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); |
| BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) |
| .addReg(FalseReg) |
| .addMBB(FalseMBB) |
| .addReg(TrueReg) |
| .addMBB(TrueMBB); |
| |
| return DoneMBB; |
| } |
| |
| static MachineBasicBlock * |
| LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, |
| const WebAssemblySubtarget *Subtarget, |
| const TargetInstrInfo &TII) { |
| MachineInstr &CallParams = *CallResults.getPrevNode(); |
| assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS); |
| assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS || |
| CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS); |
| |
| bool IsIndirect = CallParams.getOperand(0).isReg(); |
| bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS; |
| |
| bool IsFuncrefCall = false; |
| if (IsIndirect) { |
| Register Reg = CallParams.getOperand(0).getReg(); |
| const MachineFunction *MF = BB->getParent(); |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterClass *TRC = MRI.getRegClass(Reg); |
| IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass); |
| assert(!IsFuncrefCall || Subtarget->hasReferenceTypes()); |
| } |
| |
| unsigned CallOp; |
| if (IsIndirect && IsRetCall) { |
| CallOp = WebAssembly::RET_CALL_INDIRECT; |
| } else if (IsIndirect) { |
| CallOp = WebAssembly::CALL_INDIRECT; |
| } else if (IsRetCall) { |
| CallOp = WebAssembly::RET_CALL; |
| } else { |
| CallOp = WebAssembly::CALL; |
| } |
| |
| MachineFunction &MF = *BB->getParent(); |
| const MCInstrDesc &MCID = TII.get(CallOp); |
| MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL)); |
| |
| // See if we must truncate the function pointer. |
| // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers |
| // as 64-bit for uniformity with other pointer types. |
| // See also: WebAssemblyFastISel::selectCall |
| if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) { |
| Register Reg32 = |
| MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); |
| auto &FnPtr = CallParams.getOperand(0); |
| BuildMI(*BB, CallResults.getIterator(), DL, |
| TII.get(WebAssembly::I32_WRAP_I64), Reg32) |
| .addReg(FnPtr.getReg()); |
| FnPtr.setReg(Reg32); |
| } |
| |
| // Move the function pointer to the end of the arguments for indirect calls |
| if (IsIndirect) { |
| auto FnPtr = CallParams.getOperand(0); |
| CallParams.RemoveOperand(0); |
| |
| // For funcrefs, call_indirect is done through __funcref_call_table and the |
| // funcref is always installed in slot 0 of the table, therefore instead of having |
| // the function pointer added at the end of the params list, a zero (the index in |
| // __funcref_call_table is added). |
| if (IsFuncrefCall) { |
| Register RegZero = |
| MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); |
| MachineInstrBuilder MIBC0 = |
| BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); |
| |
| BB->insert(CallResults.getIterator(), MIBC0); |
| MachineInstrBuilder(MF, CallParams).addReg(RegZero); |
| } else |
| CallParams.addOperand(FnPtr); |
| } |
| |
| for (auto Def : CallResults.defs()) |
| MIB.add(Def); |
| |
| if (IsIndirect) { |
| // Placeholder for the type index. |
| MIB.addImm(0); |
| // The table into which this call_indirect indexes. |
| MCSymbolWasm *Table = IsFuncrefCall |
| ? WebAssembly::getOrCreateFuncrefCallTableSymbol( |
| MF.getContext(), Subtarget) |
| : WebAssembly::getOrCreateFunctionTableSymbol( |
| MF.getContext(), Subtarget); |
| if (Subtarget->hasReferenceTypes()) { |
| MIB.addSym(Table); |
| } else { |
| // For the MVP there is at most one table whose number is 0, but we can't |
| // write a table symbol or issue relocations. Instead we just ensure the |
| // table is live and write a zero. |
| Table->setNoStrip(); |
| MIB.addImm(0); |
| } |
| } |
| |
| for (auto Use : CallParams.uses()) |
| MIB.add(Use); |
| |
| BB->insert(CallResults.getIterator(), MIB); |
| CallParams.eraseFromParent(); |
| CallResults.eraseFromParent(); |
| |
| // If this is a funcref call, to avoid hidden GC roots, we need to clear the |
| // table slot with ref.null upon call_indirect return. |
| // |
| // This generates the following code, which comes right after a call_indirect |
| // of a funcref: |
| // |
| // i32.const 0 |
| // ref.null func |
| // table.set __funcref_call_table |
| if (IsIndirect && IsFuncrefCall) { |
| MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( |
| MF.getContext(), Subtarget); |
| Register RegZero = |
| MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass); |
| MachineInstr *Const0 = |
| BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0); |
| BB->insertAfter(MIB.getInstr()->getIterator(), Const0); |
| |
| Register RegFuncref = |
| MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass); |
| MachineInstr *RefNull = |
| BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref) |
| .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref)); |
| BB->insertAfter(Const0->getIterator(), RefNull); |
| |
| MachineInstr *TableSet = |
| BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF)) |
| .addSym(Table) |
| .addReg(RegZero) |
| .addReg(RegFuncref); |
| BB->insertAfter(RefNull->getIterator(), TableSet); |
| } |
| |
| return BB; |
| } |
| |
| MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *BB) const { |
| const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
| DebugLoc DL = MI.getDebugLoc(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected instr type to insert"); |
| case WebAssembly::FP_TO_SINT_I32_F32: |
| return LowerFPToInt(MI, DL, BB, TII, false, false, false, |
| WebAssembly::I32_TRUNC_S_F32); |
| case WebAssembly::FP_TO_UINT_I32_F32: |
| return LowerFPToInt(MI, DL, BB, TII, true, false, false, |
| WebAssembly::I32_TRUNC_U_F32); |
| case WebAssembly::FP_TO_SINT_I64_F32: |
| return LowerFPToInt(MI, DL, BB, TII, false, true, false, |
| WebAssembly::I64_TRUNC_S_F32); |
| case WebAssembly::FP_TO_UINT_I64_F32: |
| return LowerFPToInt(MI, DL, BB, TII, true, true, false, |
| WebAssembly::I64_TRUNC_U_F32); |
| case WebAssembly::FP_TO_SINT_I32_F64: |
| return LowerFPToInt(MI, DL, BB, TII, false, false, true, |
| WebAssembly::I32_TRUNC_S_F64); |
| case WebAssembly::FP_TO_UINT_I32_F64: |
| return LowerFPToInt(MI, DL, BB, TII, true, false, true, |
| WebAssembly::I32_TRUNC_U_F64); |
| case WebAssembly::FP_TO_SINT_I64_F64: |
| return LowerFPToInt(MI, DL, BB, TII, false, true, true, |
| WebAssembly::I64_TRUNC_S_F64); |
| case WebAssembly::FP_TO_UINT_I64_F64: |
| return LowerFPToInt(MI, DL, BB, TII, true, true, true, |
| WebAssembly::I64_TRUNC_U_F64); |
| case WebAssembly::CALL_RESULTS: |
| case WebAssembly::RET_CALL_RESULTS: |
| return LowerCallResults(MI, DL, BB, Subtarget, TII); |
| } |
| } |
| |
| const char * |
| WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { |
| case WebAssemblyISD::FIRST_NUMBER: |
| case WebAssemblyISD::FIRST_MEM_OPCODE: |
| break; |
| #define HANDLE_NODETYPE(NODE) \ |
| case WebAssemblyISD::NODE: \ |
| return "WebAssemblyISD::" #NODE; |
| #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE) |
| #include "WebAssemblyISD.def" |
| #undef HANDLE_MEM_NODETYPE |
| #undef HANDLE_NODETYPE |
| } |
| return nullptr; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| WebAssemblyTargetLowering::getRegForInlineAsmConstraint( |
| const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| // First, see if this is a constraint that directly corresponds to a |
| // WebAssembly register class. |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| assert(VT != MVT::iPTR && "Pointer MVT not expected here"); |
| if (Subtarget->hasSIMD128() && VT.isVector()) { |
| if (VT.getSizeInBits() == 128) |
| return std::make_pair(0U, &WebAssembly::V128RegClass); |
| } |
| if (VT.isInteger() && !VT.isVector()) { |
| if (VT.getSizeInBits() <= 32) |
| return std::make_pair(0U, &WebAssembly::I32RegClass); |
| if (VT.getSizeInBits() <= 64) |
| return std::make_pair(0U, &WebAssembly::I64RegClass); |
| } |
| if (VT.isFloatingPoint() && !VT.isVector()) { |
| switch (VT.getSizeInBits()) { |
| case 32: |
| return std::make_pair(0U, &WebAssembly::F32RegClass); |
| case 64: |
| return std::make_pair(0U, &WebAssembly::F64RegClass); |
| default: |
| break; |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| } |
| |
| bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { |
| // Assume ctz is a relatively cheap operation. |
| return true; |
| } |
| |
| bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { |
| // Assume clz is a relatively cheap operation. |
| return true; |
| } |
| |
| bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, |
| Type *Ty, unsigned AS, |
| Instruction *I) const { |
| // WebAssembly offsets are added as unsigned without wrapping. The |
| // isLegalAddressingMode gives us no way to determine if wrapping could be |
| // happening, so we approximate this by accepting only non-negative offsets. |
| if (AM.BaseOffs < 0) |
| return false; |
| |
| // WebAssembly has no scale register operands. |
| if (AM.Scale != 0) |
| return false; |
| |
| // Everything else is legal. |
| return true; |
| } |
| |
| bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( |
| EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/, |
| MachineMemOperand::Flags /*Flags*/, bool *Fast) const { |
| // WebAssembly supports unaligned accesses, though it should be declared |
| // with the p2align attribute on loads and stores which do so, and there |
| // may be a performance impact. We tell LLVM they're "fast" because |
| // for the kinds of things that LLVM uses this for (merging adjacent stores |
| // of constants, etc.), WebAssembly implementations will either want the |
| // unaligned access or they'll split anyway. |
| if (Fast) |
| *Fast = true; |
| return true; |
| } |
| |
| bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, |
| AttributeList Attr) const { |
| // The current thinking is that wasm engines will perform this optimization, |
| // so we can save on code size. |
| return true; |
| } |
| |
| bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { |
| EVT ExtT = ExtVal.getValueType(); |
| EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0); |
| return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || |
| (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || |
| (ExtT == MVT::v2i64 && MemT == MVT::v2i32); |
| } |
| |
| bool WebAssemblyTargetLowering::isOffsetFoldingLegal( |
| const GlobalAddressSDNode *GA) const { |
| // Wasm doesn't support function addresses with offsets |
| const GlobalValue *GV = GA->getGlobal(); |
| return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA); |
| } |
| |
| EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, |
| LLVMContext &C, |
| EVT VT) const { |
| if (VT.isVector()) |
| return VT.changeVectorElementTypeToInteger(); |
| |
| // So far, all branch instructions in Wasm take an I32 condition. |
| // The default TargetLowering::getSetCCResultType returns the pointer size, |
| // which would be useful to reduce instruction counts when testing |
| // against 64-bit pointers/values if at some point Wasm supports that. |
| return EVT::getIntegerVT(C, 32); |
| } |
| |
| bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| switch (Intrinsic) { |
| case Intrinsic::wasm_memory_atomic_notify: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(4); |
| // atomic.notify instruction does not really load the memory specified with |
| // this argument, but MachineMemOperand should either be load or store, so |
| // we set this to a load. |
| // FIXME Volatile isn't really correct, but currently all LLVM atomic |
| // instructions are treated as volatiles in the backend, so we should be |
| // consistent. The same applies for wasm_atomic_wait intrinsics too. |
| Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; |
| return true; |
| case Intrinsic::wasm_memory_atomic_wait32: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i32; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(4); |
| Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; |
| return true; |
| case Intrinsic::wasm_memory_atomic_wait64: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i64; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = Align(8); |
| Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| void WebAssemblyTargetLowering::computeKnownBitsForTargetNode( |
| const SDValue Op, KnownBits &Known, const APInt &DemandedElts, |
| const SelectionDAG &DAG, unsigned Depth) const { |
| switch (Op.getOpcode()) { |
| default: |
| break; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = Op.getConstantOperandVal(0); |
| switch (IntNo) { |
| default: |
| break; |
| case Intrinsic::wasm_bitmask: { |
| unsigned BitWidth = Known.getBitWidth(); |
| EVT VT = Op.getOperand(1).getSimpleValueType(); |
| unsigned PossibleBits = VT.getVectorNumElements(); |
| APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits); |
| Known.Zero |= ZeroMask; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (VT.isFixedLengthVector()) { |
| MVT EltVT = VT.getVectorElementType(); |
| // We have legal vector types with these lane types, so widening the |
| // vector would let us use some of the lanes directly without having to |
| // extend or truncate values. |
| if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || |
| EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64) |
| return TypeWidenVector; |
| } |
| |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // WebAssembly Lowering private implementation. |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| DAG.getContext()->diagnose( |
| DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); |
| } |
| |
| // Test whether the given calling convention is supported. |
| static bool callingConvSupported(CallingConv::ID CallConv) { |
| // We currently support the language-independent target-independent |
| // conventions. We don't yet have a way to annotate calls with properties like |
| // "cold", and we don't have any call-clobbered registers, so these are mostly |
| // all handled the same. |
| return CallConv == CallingConv::C || CallConv == CallingConv::Fast || |
| CallConv == CallingConv::Cold || |
| CallConv == CallingConv::PreserveMost || |
| CallConv == CallingConv::PreserveAll || |
| CallConv == CallingConv::CXX_FAST_TLS || |
| CallConv == CallingConv::WASM_EmscriptenInvoke || |
| CallConv == CallingConv::Swift; |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc DL = CLI.DL; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto Layout = MF.getDataLayout(); |
| |
| CallingConv::ID CallConv = CLI.CallConv; |
| if (!callingConvSupported(CallConv)) |
| fail(DL, DAG, |
| "WebAssembly doesn't support language-specific or target-specific " |
| "calling conventions yet"); |
| if (CLI.IsPatchPoint) |
| fail(DL, DAG, "WebAssembly doesn't support patch point yet"); |
| |
| if (CLI.IsTailCall) { |
| auto NoTail = [&](const char *Msg) { |
| if (CLI.CB && CLI.CB->isMustTailCall()) |
| fail(DL, DAG, Msg); |
| CLI.IsTailCall = false; |
| }; |
| |
| if (!Subtarget->hasTailCall()) |
| NoTail("WebAssembly 'tail-call' feature not enabled"); |
| |
| // Varargs calls cannot be tail calls because the buffer is on the stack |
| if (CLI.IsVarArg) |
| NoTail("WebAssembly does not support varargs tail calls"); |
| |
| // Do not tail call unless caller and callee return types match |
| const Function &F = MF.getFunction(); |
| const TargetMachine &TM = getTargetMachine(); |
| Type *RetTy = F.getReturnType(); |
| SmallVector<MVT, 4> CallerRetTys; |
| SmallVector<MVT, 4> CalleeRetTys; |
| computeLegalValueVTs(F, TM, RetTy, CallerRetTys); |
| computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); |
| bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && |
| std::equal(CallerRetTys.begin(), CallerRetTys.end(), |
| CalleeRetTys.begin()); |
| if (!TypesMatch) |
| NoTail("WebAssembly tail call requires caller and callee return types to " |
| "match"); |
| |
| // If pointers to local stack values are passed, we cannot tail call |
| if (CLI.CB) { |
| for (auto &Arg : CLI.CB->args()) { |
| Value *Val = Arg.get(); |
| // Trace the value back through pointer operations |
| while (true) { |
| Value *Src = Val->stripPointerCastsAndAliases(); |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(Src)) |
| Src = GEP->getPointerOperand(); |
| if (Val == Src) |
| break; |
| Val = Src; |
| } |
| if (isa<AllocaInst>(Val)) { |
| NoTail( |
| "WebAssembly does not support tail calling with stack arguments"); |
| break; |
| } |
| } |
| } |
| } |
| |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| |
| // The generic code may have added an sret argument. If we're lowering an |
| // invoke function, the ABI requires that the function pointer be the first |
| // argument, so we may have to swap the arguments. |
| if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && |
| Outs[0].Flags.isSRet()) { |
| std::swap(Outs[0], Outs[1]); |
| std::swap(OutVals[0], OutVals[1]); |
| } |
| |
| bool HasSwiftSelfArg = false; |
| bool HasSwiftErrorArg = false; |
| unsigned NumFixedArgs = 0; |
| for (unsigned I = 0; I < Outs.size(); ++I) { |
| const ISD::OutputArg &Out = Outs[I]; |
| SDValue &OutVal = OutVals[I]; |
| HasSwiftSelfArg |= Out.Flags.isSwiftSelf(); |
| HasSwiftErrorArg |= Out.Flags.isSwiftError(); |
| if (Out.Flags.isNest()) |
| fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); |
| if (Out.Flags.isInAlloca()) |
| fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); |
| if (Out.Flags.isInConsecutiveRegs()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); |
| if (Out.Flags.isInConsecutiveRegsLast()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); |
| if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { |
| auto &MFI = MF.getFrameInfo(); |
| int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), |
| Out.Flags.getNonZeroByValAlign(), |
| /*isSS=*/false); |
| SDValue SizeNode = |
| DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); |
| SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); |
| Chain = DAG.getMemcpy( |
| Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(), |
| /*isVolatile*/ false, /*AlwaysInline=*/false, |
| /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); |
| OutVal = FINode; |
| } |
| // Count the number of fixed args *after* legalization. |
| NumFixedArgs += Out.IsFixed; |
| } |
| |
| bool IsVarArg = CLI.IsVarArg; |
| auto PtrVT = getPointerTy(Layout); |
| |
| // For swiftcc, emit additional swiftself and swifterror arguments |
| // if there aren't. These additional arguments are also added for callee |
| // signature They are necessary to match callee and caller signature for |
| // indirect call. |
| if (CallConv == CallingConv::Swift) { |
| if (!HasSwiftSelfArg) { |
| NumFixedArgs++; |
| ISD::OutputArg Arg; |
| Arg.Flags.setSwiftSelf(); |
| CLI.Outs.push_back(Arg); |
| SDValue ArgVal = DAG.getUNDEF(PtrVT); |
| CLI.OutVals.push_back(ArgVal); |
| } |
| if (!HasSwiftErrorArg) { |
| NumFixedArgs++; |
| ISD::OutputArg Arg; |
| Arg.Flags.setSwiftError(); |
| CLI.Outs.push_back(Arg); |
| SDValue ArgVal = DAG.getUNDEF(PtrVT); |
| CLI.OutVals.push_back(ArgVal); |
| } |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| |
| if (IsVarArg) { |
| // Outgoing non-fixed arguments are placed in a buffer. First |
| // compute their offsets and the total amount of buffer space needed. |
| for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { |
| const ISD::OutputArg &Out = Outs[I]; |
| SDValue &Arg = OutVals[I]; |
| EVT VT = Arg.getValueType(); |
| assert(VT != MVT::iPTR && "Legalized args should be concrete"); |
| Type *Ty = VT.getTypeForEVT(*DAG.getContext()); |
| Align Alignment = |
| std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty)); |
| unsigned Offset = |
| CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment); |
| CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), |
| Offset, VT.getSimpleVT(), |
| CCValAssign::Full)); |
| } |
| } |
| |
| unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); |
| |
| SDValue FINode; |
| if (IsVarArg && NumBytes) { |
| // For non-fixed arguments, next emit stores to store the argument values |
| // to the stack buffer at the offsets computed above. |
| int FI = MF.getFrameInfo().CreateStackObject(NumBytes, |
| Layout.getStackAlignment(), |
| /*isSS=*/false); |
| unsigned ValNo = 0; |
| SmallVector<SDValue, 8> Chains; |
| for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) { |
| assert(ArgLocs[ValNo].getValNo() == ValNo && |
| "ArgLocs should remain in order and only hold varargs args"); |
| unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); |
| FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, |
| DAG.getConstant(Offset, DL, PtrVT)); |
| Chains.push_back( |
| DAG.getStore(Chain, DL, Arg, Add, |
| MachinePointerInfo::getFixedStack(MF, FI, Offset))); |
| } |
| if (!Chains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| } else if (IsVarArg) { |
| FINode = DAG.getIntPtrConstant(0, DL); |
| } |
| |
| if (Callee->getOpcode() == ISD::GlobalAddress) { |
| // If the callee is a GlobalAddress node (quite common, every direct call |
| // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress |
| // doesn't at MO_GOT which is not needed for direct calls. |
| GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); |
| Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, |
| getPointerTy(DAG.getDataLayout()), |
| GA->getOffset()); |
| Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, |
| getPointerTy(DAG.getDataLayout()), Callee); |
| } |
| |
| // Compute the operands for the CALLn node. |
| SmallVector<SDValue, 16> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs |
| // isn't reliable. |
| Ops.append(OutVals.begin(), |
| IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); |
| // Add a pointer to the vararg buffer. |
| if (IsVarArg) |
| Ops.push_back(FINode); |
| |
| SmallVector<EVT, 8> InTys; |
| for (const auto &In : Ins) { |
| assert(!In.Flags.isByVal() && "byval is not valid for return values"); |
| assert(!In.Flags.isNest() && "nest is not valid for return values"); |
| if (In.Flags.isInAlloca()) |
| fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); |
| if (In.Flags.isInConsecutiveRegs()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); |
| if (In.Flags.isInConsecutiveRegsLast()) |
| fail(DL, DAG, |
| "WebAssembly hasn't implemented cons regs last return values"); |
| // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in |
| // registers. |
| InTys.push_back(In.VT); |
| } |
| |
| // Lastly, if this is a call to a funcref we need to add an instruction |
| // table.set to the chain and transform the call. |
| if (CLI.CB && |
| WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) { |
| // In the absence of function references proposal where a funcref call is |
| // lowered to call_ref, using reference types we generate a table.set to set |
| // the funcref to a special table used solely for this purpose, followed by |
| // a call_indirect. Here we just generate the table set, and return the |
| // SDValue of the table.set so that LowerCall can finalize the lowering by |
| // generating the call_indirect. |
| SDValue Chain = Ops[0]; |
| |
| MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol( |
| MF.getContext(), Subtarget); |
| SDValue Sym = DAG.getMCSymbol(Table, PtrVT); |
| SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32); |
| SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee}; |
| SDValue TableSet = DAG.getMemIntrinsicNode( |
| WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps, |
| MVT::funcref, |
| // Machine Mem Operand args |
| MachinePointerInfo( |
| WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF), |
| CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()), |
| MachineMemOperand::MOStore); |
| |
| Ops[0] = TableSet; // The new chain is the TableSet itself |
| } |
| |
| if (CLI.IsTailCall) { |
| // ret_calls do not return values to the current frame |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); |
| } |
| |
| InTys.push_back(MVT::Other); |
| SDVTList InTyList = DAG.getVTList(InTys); |
| SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops); |
| |
| for (size_t I = 0; I < Ins.size(); ++I) |
| InVals.push_back(Res.getValue(I)); |
| |
| // Return the chain |
| return Res.getValue(Ins.size()); |
| } |
| |
| bool WebAssemblyTargetLowering::CanLowerReturn( |
| CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext & /*Context*/) const { |
| // WebAssembly can only handle returning tuples with multivalue enabled |
| return Subtarget->hasMultivalue() || Outs.size() <= 1; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerReturn( |
| SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && |
| "MVP WebAssembly can only return up to one value"); |
| if (!callingConvSupported(CallConv)) |
| fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); |
| |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| RetOps.append(OutVals.begin(), OutVals.end()); |
| Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); |
| |
| // Record the number and types of the return values. |
| for (const ISD::OutputArg &Out : Outs) { |
| assert(!Out.Flags.isByVal() && "byval is not valid for return values"); |
| assert(!Out.Flags.isNest() && "nest is not valid for return values"); |
| assert(Out.IsFixed && "non-fixed return value is not valid"); |
| if (Out.Flags.isInAlloca()) |
| fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); |
| if (Out.Flags.isInConsecutiveRegs()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); |
| if (Out.Flags.isInConsecutiveRegsLast()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); |
| } |
| |
| return Chain; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| if (!callingConvSupported(CallConv)) |
| fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); |
| |
| // Set up the incoming ARGUMENTS value, which serves to represent the liveness |
| // of the incoming values before they're represented by virtual registers. |
| MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); |
| |
| bool HasSwiftErrorArg = false; |
| bool HasSwiftSelfArg = false; |
| for (const ISD::InputArg &In : Ins) { |
| HasSwiftSelfArg |= In.Flags.isSwiftSelf(); |
| HasSwiftErrorArg |= In.Flags.isSwiftError(); |
| if (In.Flags.isInAlloca()) |
| fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); |
| if (In.Flags.isNest()) |
| fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); |
| if (In.Flags.isInConsecutiveRegs()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); |
| if (In.Flags.isInConsecutiveRegsLast()) |
| fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); |
| // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in |
| // registers. |
| InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, |
| DAG.getTargetConstant(InVals.size(), |
| DL, MVT::i32)) |
| : DAG.getUNDEF(In.VT)); |
| |
| // Record the number and types of arguments. |
| MFI->addParam(In.VT); |
| } |
| |
| // For swiftcc, emit additional swiftself and swifterror arguments |
| // if there aren't. These additional arguments are also added for callee |
| // signature They are necessary to match callee and caller signature for |
| // indirect call. |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| if (CallConv == CallingConv::Swift) { |
| if (!HasSwiftSelfArg) { |
| MFI->addParam(PtrVT); |
| } |
| if (!HasSwiftErrorArg) { |
| MFI->addParam(PtrVT); |
| } |
| } |
| // Varargs are copied into a buffer allocated by the caller, and a pointer to |
| // the buffer is passed as an argument. |
| if (IsVarArg) { |
| MVT PtrVT = getPointerTy(MF.getDataLayout()); |
| Register VarargVreg = |
| MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); |
| MFI->setVarargBufferVreg(VarargVreg); |
| Chain = DAG.getCopyToReg( |
| Chain, DL, VarargVreg, |
| DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, |
| DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); |
| MFI->addParam(PtrVT); |
| } |
| |
| // Record the number and types of arguments and results. |
| SmallVector<MVT, 4> Params; |
| SmallVector<MVT, 4> Results; |
| computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(), |
| MF.getFunction(), DAG.getTarget(), Params, Results); |
| for (MVT VT : Results) |
| MFI->addResult(VT); |
| // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify |
| // the param logic here with ComputeSignatureVTs |
| assert(MFI->getParams().size() == Params.size() && |
| std::equal(MFI->getParams().begin(), MFI->getParams().end(), |
| Params.begin())); |
| |
| return Chain; |
| } |
| |
| void WebAssemblyTargetLowering::ReplaceNodeResults( |
| SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::SIGN_EXTEND_INREG: |
| // Do not add any results, signifying that N should not be custom lowered |
| // after all. This happens because simd128 turns on custom lowering for |
| // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an |
| // illegal type. |
| break; |
| default: |
| llvm_unreachable( |
| "ReplaceNodeResults not implemented for this op for WebAssembly!"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom lowering hooks. |
| //===----------------------------------------------------------------------===// |
| |
| SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("unimplemented operation lowering"); |
| return SDValue(); |
| case ISD::FrameIndex: |
| return LowerFrameIndex(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: |
| return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::ExternalSymbol: |
| return LowerExternalSymbol(Op, DAG); |
| case ISD::JumpTable: |
| return LowerJumpTable(Op, DAG); |
| case ISD::BR_JT: |
| return LowerBR_JT(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::BlockAddress: |
| case ISD::BRIND: |
| fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); |
| return SDValue(); |
| case ISD::RETURNADDR: |
| return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: |
| return LowerFRAMEADDR(Op, DAG); |
| case ISD::CopyToReg: |
| return LowerCopyToReg(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::INSERT_VECTOR_ELT: |
| return LowerAccessVectorElement(Op, DAG); |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_W_CHAIN: |
| return LowerIntrinsic(Op, DAG); |
| case ISD::SIGN_EXTEND_INREG: |
| return LowerSIGN_EXTEND_INREG(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::SETCC: |
| return LowerSETCC(Op, DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| return LowerShift(Op, DAG); |
| case ISD::FP_TO_SINT_SAT: |
| case ISD::FP_TO_UINT_SAT: |
| return LowerFP_TO_INT_SAT(Op, DAG); |
| case ISD::LOAD: |
| return LowerLoad(Op, DAG); |
| case ISD::STORE: |
| return LowerStore(Op, DAG); |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| case ISD::CTTZ: |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| } |
| |
| static bool IsWebAssemblyGlobal(SDValue Op) { |
| if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) |
| return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace()); |
| |
| return false; |
| } |
| |
| static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) { |
| const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op); |
| if (!FI) |
| return None; |
| |
| auto &MF = DAG.getMachineFunction(); |
| return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex()); |
| } |
| |
| static bool IsWebAssemblyTable(SDValue Op) { |
| const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); |
| if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) { |
| const GlobalValue *Value = GA->getGlobal(); |
| const Type *Ty = Value->getValueType(); |
| |
| if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType())) |
| return true; |
| } |
| return false; |
| } |
| |
| // This function will accept as Op any access to a table, so Op can |
| // be the actual table or an offset into the table. |
| static bool IsWebAssemblyTableWithOffset(SDValue Op) { |
| if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2) |
| return (Op->getOperand(1).getSimpleValueType() == MVT::i32 && |
| IsWebAssemblyTableWithOffset(Op->getOperand(0))) || |
| (Op->getOperand(0).getSimpleValueType() == MVT::i32 && |
| IsWebAssemblyTableWithOffset(Op->getOperand(1))); |
| |
| return IsWebAssemblyTable(Op); |
| } |
| |
| // Helper for table pattern matching used in LowerStore and LowerLoad |
| bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG, |
| const SDLoc &DL, |
| const SDValue &Base, |
| GlobalAddressSDNode *&GA, |
| SDValue &Idx) const { |
| // We expect the following graph for a load of the form: |
| // table[<var> + <constant offset>] |
| // |
| // Case 1: |
| // externref = load t1 |
| // t1: i32 = add t2, i32:<constant offset> |
| // t2: i32 = add tX, table |
| // |
| // This is in some cases simplified to just: |
| // Case 2: |
| // externref = load t1 |
| // t1: i32 = add t2, i32:tX |
| // |
| // So, unfortunately we need to check for both cases and if we are in the |
| // first case extract the table GlobalAddressNode and build a new node tY |
| // that's tY: i32 = add i32:<constant offset>, i32:tX |
| // |
| if (IsWebAssemblyTable(Base)) { |
| GA = cast<GlobalAddressSDNode>(Base); |
| Idx = DAG.getConstant(0, DL, MVT::i32); |
| } else { |
| GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0)); |
| if (GA) { |
| // We are in Case 2 above. |
| Idx = Base->getOperand(1); |
| if (!Idx || GA->getNumValues() != 1 || Idx->getNumValues() != 1) |
| return false; |
| } else { |
| // This might be Case 1 above (or an error) |
| SDValue V = Base->getOperand(0); |
| GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1)); |
| |
| if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA) |
| return false; |
| |
| SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1), |
| V->getOperand(0)); |
| Idx = IdxV; |
| } |
| } |
| |
| return true; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); |
| const SDValue &Value = SN->getValue(); |
| const SDValue &Base = SN->getBasePtr(); |
| const SDValue &Offset = SN->getOffset(); |
| |
| if (IsWebAssemblyTableWithOffset(Base)) { |
| if (!Offset->isUndef()) |
| report_fatal_error( |
| "unexpected offset when loading from webassembly table", false); |
| |
| SDValue Idx; |
| GlobalAddressSDNode *GA; |
| |
| if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) |
| report_fatal_error("failed pattern matching for lowering table store", |
| false); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other); |
| SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value}; |
| SDValue TableSet = |
| DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps, |
| SN->getMemoryVT(), SN->getMemOperand()); |
| return TableSet; |
| } |
| |
| if (IsWebAssemblyGlobal(Base)) { |
| if (!Offset->isUndef()) |
| report_fatal_error("unexpected offset when storing to webassembly global", |
| false); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other); |
| SDValue Ops[] = {SN->getChain(), Value, Base}; |
| return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops, |
| SN->getMemoryVT(), SN->getMemOperand()); |
| } |
| |
| if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { |
| if (!Offset->isUndef()) |
| report_fatal_error("unexpected offset when storing to webassembly local", |
| false); |
| |
| SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); |
| SDVTList Tys = DAG.getVTList(MVT::Other); // The chain. |
| SDValue Ops[] = {SN->getChain(), Idx, Value}; |
| return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops); |
| } |
| |
| return Op; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); |
| const SDValue &Base = LN->getBasePtr(); |
| const SDValue &Offset = LN->getOffset(); |
| |
| if (IsWebAssemblyTableWithOffset(Base)) { |
| if (!Offset->isUndef()) |
| report_fatal_error( |
| "unexpected offset when loading from webassembly table", false); |
| |
| GlobalAddressSDNode *GA; |
| SDValue Idx; |
| |
| if (!MatchTableForLowering(DAG, DL, Base, GA, Idx)) |
| report_fatal_error("failed pattern matching for lowering table load", |
| false); |
| |
| SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); |
| SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx}; |
| SDValue TableGet = |
| DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps, |
| LN->getMemoryVT(), LN->getMemOperand()); |
| return TableGet; |
| } |
| |
| if (IsWebAssemblyGlobal(Base)) { |
| if (!Offset->isUndef()) |
| report_fatal_error( |
| "unexpected offset when loading from webassembly global", false); |
| |
| SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other); |
| SDValue Ops[] = {LN->getChain(), Base}; |
| return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops, |
| LN->getMemoryVT(), LN->getMemOperand()); |
| } |
| |
| if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) { |
| if (!Offset->isUndef()) |
| report_fatal_error( |
| "unexpected offset when loading from webassembly local", false); |
| |
| SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32); |
| EVT LocalVT = LN->getValueType(0); |
| SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT, |
| {LN->getChain(), Idx}); |
| SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL); |
| assert(Result->getNumValues() == 2 && "Loads must carry a chain!"); |
| return Result; |
| } |
| |
| return Op; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Src = Op.getOperand(2); |
| if (isa<FrameIndexSDNode>(Src.getNode())) { |
| // CopyToReg nodes don't support FrameIndex operands. Other targets select |
| // the FI to some LEA-like instruction, but since we don't have that, we |
| // need to insert some kind of instruction that can take an FI operand and |
| // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy |
| // local.copy between Op and its FI operand. |
| SDValue Chain = Op.getOperand(0); |
| SDLoc DL(Op); |
| unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); |
| EVT VT = Src.getValueType(); |
| SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 |
| : WebAssembly::COPY_I64, |
| DL, VT, Src), |
| 0); |
| return Op.getNode()->getNumValues() == 1 |
| ? DAG.getCopyToReg(Chain, DL, Reg, Copy) |
| : DAG.getCopyToReg(Chain, DL, Reg, Copy, |
| Op.getNumOperands() == 4 ? Op.getOperand(3) |
| : SDValue()); |
| } |
| return SDValue(); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, |
| SelectionDAG &DAG) const { |
| int FI = cast<FrameIndexSDNode>(Op)->getIndex(); |
| return DAG.getTargetFrameIndex(FI, Op.getValueType()); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| |
| if (!Subtarget->getTargetTriple().isOSEmscripten()) { |
| fail(DL, DAG, |
| "Non-Emscripten WebAssembly hasn't implemented " |
| "__builtin_return_address"); |
| return SDValue(); |
| } |
| |
| if (verifyReturnAddressArgumentIsConstant(Op, DAG)) |
| return SDValue(); |
| |
| unsigned Depth = Op.getConstantOperandVal(0); |
| MakeLibCallOptions CallOptions; |
| return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), |
| {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) |
| .first; |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Non-zero depths are not supported by WebAssembly currently. Use the |
| // legalizer's default expansion, which is to return 0 (what this function is |
| // documented to do). |
| if (Op.getConstantOperandVal(0) > 0) |
| return SDValue(); |
| |
| DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); |
| EVT VT = Op.getValueType(); |
| Register FP = |
| Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const auto *GA = cast<GlobalAddressSDNode>(Op); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory()) |
| report_fatal_error("cannot use thread-local storage without bulk memory", |
| false); |
| |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| // Currently Emscripten does not support dynamic linking with threads. |
| // Therefore, if we have thread-local storage, only the local-exec model |
| // is possible. |
| // TODO: remove this and implement proper TLS models once Emscripten |
| // supports dynamic linking with threads. |
| if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel && |
| !Subtarget->getTargetTriple().isOSEmscripten()) { |
| report_fatal_error("only -ftls-model=local-exec is supported for now on " |
| "non-Emscripten OSes: variable " + |
| GV->getName(), |
| false); |
| } |
| |
| auto model = GV->getThreadLocalMode(); |
| |
| // Unsupported TLS modes |
| assert(model != GlobalValue::NotThreadLocal); |
| assert(model != GlobalValue::InitialExecTLSModel); |
| |
| if (model == GlobalValue::LocalExecTLSModel || |
| model == GlobalValue::LocalDynamicTLSModel || |
| (model == GlobalValue::GeneralDynamicTLSModel && |
| getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) { |
| // For DSO-local TLS variables we use offset from __tls_base |
| |
| MVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64 |
| : WebAssembly::GLOBAL_GET_I32; |
| const char *BaseName = MF.createExternalSymbolName("__tls_base"); |
| |
| SDValue BaseAddr( |
| DAG.getMachineNode(GlobalGet, DL, PtrVT, |
| DAG.getTargetExternalSymbol(BaseName, PtrVT)), |
| 0); |
| |
| SDValue TLSOffset = DAG.getTargetGlobalAddress( |
| GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL); |
| SDValue SymOffset = |
| DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset); |
| |
| return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset); |
| } |
| |
| assert(model == GlobalValue::GeneralDynamicTLSModel); |
| |
| EVT VT = Op.getValueType(); |
| return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, |
| DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, |
| GA->getOffset(), |
| WebAssemblyII::MO_GOT_TLS)); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const auto *GA = cast<GlobalAddressSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| assert(GA->getTargetFlags() == 0 && |
| "Unexpected target flags on generic GlobalAddressSDNode"); |
| if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace())) |
| fail(DL, DAG, "Invalid address space for WebAssembly target"); |
| |
| unsigned OperandFlags = 0; |
| if (isPositionIndependent()) { |
| const GlobalValue *GV = GA->getGlobal(); |
| if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MVT PtrVT = getPointerTy(MF.getDataLayout()); |
| const char *BaseName; |
| if (GV->getValueType()->isFunctionTy()) { |
| BaseName = MF.createExternalSymbolName("__table_base"); |
| OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; |
| } |
| else { |
| BaseName = MF.createExternalSymbolName("__memory_base"); |
| OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; |
| } |
| SDValue BaseAddr = |
| DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, |
| DAG.getTargetExternalSymbol(BaseName, PtrVT)); |
| |
| SDValue SymAddr = DAG.getNode( |
| WebAssemblyISD::WrapperREL, DL, VT, |
| DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), |
| OperandFlags)); |
| |
| return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); |
| } |
| OperandFlags = WebAssemblyII::MO_GOT; |
| } |
| |
| return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, |
| DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, |
| GA->getOffset(), OperandFlags)); |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| const auto *ES = cast<ExternalSymbolSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| assert(ES->getTargetFlags() == 0 && |
| "Unexpected target flags on generic ExternalSymbolSDNode"); |
| return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, |
| DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, |
| SelectionDAG &DAG) const { |
| // There's no need for a Wrapper node because we always incorporate a jump |
| // table operand into a BR_TABLE instruction, rather than ever |
| // materializing it in a register. |
| const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), |
| JT->getTargetFlags()); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); |
| SDValue Index = Op.getOperand(2); |
| assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Index); |
| |
| MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); |
| const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; |
| |
| // Add an operand for each case. |
| for (auto MBB : MBBs) |
| Ops.push_back(DAG.getBasicBlock(MBB)); |
| |
| // Add the first MBB as a dummy default target for now. This will be replaced |
| // with the proper default target (and the preceding range check eliminated) |
| // if possible by WebAssemblyFixBrTableDefaults. |
| Ops.push_back(DAG.getBasicBlock(*MBBs.begin())); |
| return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); |
| |
| auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| |
| SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, |
| MFI->getVarargBufferVreg(), PtrVT); |
| return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned IntNo; |
| switch (Op.getOpcode()) { |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: |
| IntNo = Op.getConstantOperandVal(1); |
| break; |
| case ISD::INTRINSIC_WO_CHAIN: |
| IntNo = Op.getConstantOperandVal(0); |
| break; |
| default: |
| llvm_unreachable("Invalid intrinsic"); |
| } |
| SDLoc DL(Op); |
| |
| switch (IntNo) { |
| default: |
| return SDValue(); // Don't custom lower most intrinsics. |
| |
| case Intrinsic::wasm_lsda: { |
| auto PtrVT = getPointerTy(MF.getDataLayout()); |
| const char *SymName = MF.createExternalSymbolName( |
| "GCC_except_table" + std::to_string(MF.getFunctionNumber())); |
| if (isPositionIndependent()) { |
| SDValue Node = DAG.getTargetExternalSymbol( |
| SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL); |
| const char *BaseName = MF.createExternalSymbolName("__memory_base"); |
| SDValue BaseAddr = |
| DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, |
| DAG.getTargetExternalSymbol(BaseName, PtrVT)); |
| SDValue SymAddr = |
| DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node); |
| return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr); |
| } |
| SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT); |
| return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node); |
| } |
| |
| case Intrinsic::wasm_shuffle: { |
| // Drop in-chain and replace undefs, but otherwise pass through unchanged |
| SDValue Ops[18]; |
| size_t OpIdx = 0; |
| Ops[OpIdx++] = Op.getOperand(1); |
| Ops[OpIdx++] = Op.getOperand(2); |
| while (OpIdx < 18) { |
| const SDValue &MaskIdx = Op.getOperand(OpIdx + 1); |
| if (MaskIdx.isUndef() || |
| cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) { |
| Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32); |
| } else { |
| Ops[OpIdx++] = MaskIdx; |
| } |
| } |
| return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); |
| } |
| } |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| // If sign extension operations are disabled, allow sext_inreg only if operand |
| // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign |
| // extension operations, but allowing sext_inreg in this context lets us have |
| // simple patterns to select extract_lane_s instructions. Expanding sext_inreg |
| // everywhere would be simpler in this file, but would necessitate large and |
| // brittle patterns to undo the expansion and select extract_lane_s |
| // instructions. |
| assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); |
| if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| const SDValue &Extract = Op.getOperand(0); |
| MVT VecT = Extract.getOperand(0).getSimpleValueType(); |
| if (VecT.getVectorElementType().getSizeInBits() > 32) |
| return SDValue(); |
| MVT ExtractedLaneT = |
| cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT(); |
| MVT ExtractedVecT = |
| MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); |
| if (ExtractedVecT == VecT) |
| return Op; |
| |
| // Bitcast vector to appropriate type to ensure ISel pattern coverage |
| const SDNode *Index = Extract.getOperand(1).getNode(); |
| if (!isa<ConstantSDNode>(Index)) |
| return SDValue(); |
| unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue(); |
| unsigned Scale = |
| ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); |
| assert(Scale > 1); |
| SDValue NewIndex = |
| DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0)); |
| SDValue NewExtract = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), |
| DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract, |
| Op.getOperand(1)); |
| } |
| |
| static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| if (Op.getValueType() != MVT::v2f64) |
| return SDValue(); |
| |
| auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec, |
| unsigned &Index) -> bool { |
| switch (Op.getOpcode()) { |
| case ISD::SINT_TO_FP: |
| Opcode = WebAssemblyISD::CONVERT_LOW_S; |
| break; |
| case ISD::UINT_TO_FP: |
| Opcode = WebAssemblyISD::CONVERT_LOW_U; |
| break; |
| case ISD::FP_EXTEND: |
| Opcode = WebAssemblyISD::PROMOTE_LOW; |
| break; |
| default: |
| return false; |
| } |
| |
| auto ExtractVector = Op.getOperand(0); |
| if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return false; |
| |
| if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode())) |
| return false; |
| |
| SrcVec = ExtractVector.getOperand(0); |
| Index = ExtractVector.getConstantOperandVal(1); |
| return true; |
| }; |
| |
| unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex; |
| SDValue LHSSrcVec, RHSSrcVec; |
| if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) || |
| !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex)) |
| return SDValue(); |
| |
| if (LHSOpcode != RHSOpcode) |
| return SDValue(); |
| |
| MVT ExpectedSrcVT; |
| switch (LHSOpcode) { |
| case WebAssemblyISD::CONVERT_LOW_S: |
| case WebAssemblyISD::CONVERT_LOW_U: |
| ExpectedSrcVT = MVT::v4i32; |
| break; |
| case WebAssemblyISD::PROMOTE_LOW: |
| ExpectedSrcVT = MVT::v4f32; |
| break; |
| } |
| if (LHSSrcVec.getValueType() != ExpectedSrcVT) |
| return SDValue(); |
| |
| auto Src = LHSSrcVec; |
| if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) { |
| // Shuffle the source vector so that the converted lanes are the low lanes. |
| Src = DAG.getVectorShuffle( |
| ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec, |
| {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1}); |
| } |
| return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (auto ConvertLow = LowerConvertLow(Op, DAG)) |
| return ConvertLow; |
| |
| SDLoc DL(Op); |
| const EVT VecT = Op.getValueType(); |
| const EVT LaneT = Op.getOperand(0).getValueType(); |
| const size_t Lanes = Op.getNumOperands(); |
| bool CanSwizzle = VecT == MVT::v16i8; |
| |
| // BUILD_VECTORs are lowered to the instruction that initializes the highest |
| // possible number of lanes at once followed by a sequence of replace_lane |
| // instructions to individually initialize any remaining lanes. |
| |
| // TODO: Tune this. For example, lanewise swizzling is very expensive, so |
| // swizzled lanes should be given greater weight. |
| |
| // TODO: Investigate looping rather than always extracting/replacing specific |
| // lanes to fill gaps. |
| |
| auto IsConstant = [](const SDValue &V) { |
| return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; |
| }; |
| |
| // Returns the source vector and index vector pair if they exist. Checks for: |
| // (extract_vector_elt |
| // $src, |
| // (sign_extend_inreg (extract_vector_elt $indices, $i)) |
| // ) |
| auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { |
| auto Bail = std::make_pair(SDValue(), SDValue()); |
| if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return Bail; |
| const SDValue &SwizzleSrc = Lane->getOperand(0); |
| const SDValue &IndexExt = Lane->getOperand(1); |
| if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) |
| return Bail; |
| const SDValue &Index = IndexExt->getOperand(0); |
| if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return Bail; |
| const SDValue &SwizzleIndices = Index->getOperand(0); |
| if (SwizzleSrc.getValueType() != MVT::v16i8 || |
| SwizzleIndices.getValueType() != MVT::v16i8 || |
| Index->getOperand(1)->getOpcode() != ISD::Constant || |
| Index->getConstantOperandVal(1) != I) |
| return Bail; |
| return std::make_pair(SwizzleSrc, SwizzleIndices); |
| }; |
| |
| // If the lane is extracted from another vector at a constant index, return |
| // that vector. The source vector must not have more lanes than the dest |
| // because the shufflevector indices are in terms of the destination lanes and |
| // would not be able to address the smaller individual source lanes. |
| auto GetShuffleSrc = [&](const SDValue &Lane) { |
| if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode())) |
| return SDValue(); |
| if (Lane->getOperand(0).getValueType().getVectorNumElements() > |
| VecT.getVectorNumElements()) |
| return SDValue(); |
| return Lane->getOperand(0); |
| }; |
| |
| using ValueEntry = std::pair<SDValue, size_t>; |
| SmallVector<ValueEntry, 16> SplatValueCounts; |
| |
| using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; |
| SmallVector<SwizzleEntry, 16> SwizzleCounts; |
| |
| using ShuffleEntry = std::pair<SDValue, size_t>; |
| SmallVector<ShuffleEntry, 16> ShuffleCounts; |
| |
| auto AddCount = [](auto &Counts, const auto &Val) { |
| auto CountIt = |
| llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; }); |
| if (CountIt == Counts.end()) { |
| Counts.emplace_back(Val, 1); |
| } else { |
| CountIt->second++; |
| } |
| }; |
| |
| auto GetMostCommon = [](auto &Counts) { |
| auto CommonIt = |
| std::max_element(Counts.begin(), Counts.end(), |
| [](auto A, auto B) { return A.second < B.second; }); |
| assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); |
| return *CommonIt; |
| }; |
| |
| size_t NumConstantLanes = 0; |
| |
| // Count eligible lanes for each type of vector creation op |
| for (size_t I = 0; I < Lanes; ++I) { |
| const SDValue &Lane = Op->getOperand(I); |
| if (Lane.isUndef()) |
| continue; |
| |
| AddCount(SplatValueCounts, Lane); |
| |
| if (IsConstant(Lane)) |
| NumConstantLanes++; |
| if (auto ShuffleSrc = GetShuffleSrc(Lane)) |
| AddCount(ShuffleCounts, ShuffleSrc); |
| if (CanSwizzle) { |
| auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); |
| if (SwizzleSrcs.first) |
| AddCount(SwizzleCounts, SwizzleSrcs); |
| } |
| } |
| |
| SDValue SplatValue; |
| size_t NumSplatLanes; |
| std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); |
| |
| SDValue SwizzleSrc; |
| SDValue SwizzleIndices; |
| size_t NumSwizzleLanes = 0; |
| if (SwizzleCounts.size()) |
| std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), |
| NumSwizzleLanes) = GetMostCommon(SwizzleCounts); |
| |
| // Shuffles can draw from up to two vectors, so find the two most common |
| // sources. |
| SDValue ShuffleSrc1, ShuffleSrc2; |
| size_t NumShuffleLanes = 0; |
| if (ShuffleCounts.size()) { |
| std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts); |
| llvm::erase_if(ShuffleCounts, |
| [&](const auto &Pair) { return Pair.first == ShuffleSrc1; }); |
| } |
| if (ShuffleCounts.size()) { |
| size_t AdditionalShuffleLanes; |
| std::tie(ShuffleSrc2, AdditionalShuffleLanes) = |
| GetMostCommon(ShuffleCounts); |
| NumShuffleLanes += AdditionalShuffleLanes; |
| } |
| |
| // Predicate returning true if the lane is properly initialized by the |
| // original instruction |
| std::function<bool(size_t, const SDValue &)> IsLaneConstructed; |
| SDValue Result; |
| // Prefer swizzles over shuffles over vector consts over splats |
| if (NumSwizzleLanes >= NumShuffleLanes && |
| NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) { |
| Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, |
| SwizzleIndices); |
| auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); |
| IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { |
| return Swizzled == GetSwizzleSrcs(I, Lane); |
| }; |
| } else if (NumShuffleLanes >= NumConstantLanes && |
| NumShuffleLanes >= NumSplatLanes) { |
| size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8; |
| size_t DestLaneCount = VecT.getVectorNumElements(); |
| size_t Scale1 = 1; |
| size_t Scale2 = 1; |
| SDValue Src1 = ShuffleSrc1; |
| SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT); |
| if (Src1.getValueType() != VecT) { |
| size_t LaneSize = |
| Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8; |
| assert(LaneSize > DestLaneSize); |
| Scale1 = LaneSize / DestLaneSize; |
| Src1 = DAG.getBitcast(VecT, Src1); |
| } |
| if (Src2.getValueType() != VecT) { |
| size_t LaneSize = |
| Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8; |
| assert(LaneSize > DestLaneSize); |
| Scale2 = LaneSize / DestLaneSize; |
| Src2 = DAG.getBitcast(VecT, Src2); |
| } |
| |
| int Mask[16]; |
| assert(DestLaneCount <= 16); |
| for (size_t I = 0; I < DestLaneCount; ++I) { |
| const SDValue &Lane = Op->getOperand(I); |
| SDValue Src = GetShuffleSrc(Lane); |
| if (Src == ShuffleSrc1) { |
| Mask[I] = Lane->getConstantOperandVal(1) * Scale1; |
| } else if (Src && Src == ShuffleSrc2) { |
| Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2; |
| } else { |
| Mask[I] = -1; |
| } |
| } |
| ArrayRef<int> MaskRef(Mask, DestLaneCount); |
| Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef); |
| IsLaneConstructed = [&](size_t, const SDValue &Lane) { |
| auto Src = GetShuffleSrc(Lane); |
| return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2); |
| }; |
| } else if (NumConstantLanes >= NumSplatLanes) { |
| SmallVector<SDValue, 16> ConstLanes; |
| for (const SDValue &Lane : Op->op_values()) { |
| if (IsConstant(Lane)) { |
| // Values may need to be fixed so that they will sign extend to be |
| // within the expected range during ISel. Check whether the value is in |
| // bounds based on the lane bit width and if it is out of bounds, lop |
| // off the extra bits and subtract 2^n to reflect giving the high bit |
| // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it |
| // cannot possibly be out of range. |
| auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode()); |
| int64_t Val = Const ? Const->getSExtValue() : 0; |
| uint64_t LaneBits = 128 / Lanes; |
| assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) && |
| "Unexpected out of bounds negative value"); |
| if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) { |
| auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits); |
| ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT)); |
| } else { |
| ConstLanes.push_back(Lane); |
| } |
| } else if (LaneT.isFloatingPoint()) { |
| ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); |
| } else { |
| ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); |
| } |
| } |
| Result = DAG.getBuildVector(VecT, DL, ConstLanes); |
| IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) { |
| return IsConstant(Lane); |
| }; |
| } else { |
| // Use a splat, but possibly a load_splat |
| LoadSDNode *SplattedLoad; |
| if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && |
| SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { |
| Result = DAG.getMemIntrinsicNode( |
| WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT), |
| {SplattedLoad->getChain(), SplattedLoad->getBasePtr(), |
| SplattedLoad->getOffset()}, |
| SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand()); |
| } else { |
| Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); |
| } |
| IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) { |
| return Lane == SplatValue; |
| }; |
| } |
| |
| assert(Result); |
| assert(IsLaneConstructed); |
| |
| // Add replace_lane instructions for any unhandled values |
| for (size_t I = 0; I < Lanes; ++I) { |
| const SDValue &Lane = Op->getOperand(I); |
| if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) |
| Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, |
| DAG.getConstant(I, DL, MVT::i32)); |
| } |
| |
| return Result; |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); |
| MVT VecType = Op.getOperand(0).getSimpleValueType(); |
| assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); |
| size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; |
| |
| // Space for two vector args and sixteen mask indices |
| SDValue Ops[18]; |
| size_t OpIdx = 0; |
| Ops[OpIdx++] = Op.getOperand(0); |
| Ops[OpIdx++] = Op.getOperand(1); |
| |
| // Expand mask indices to byte indices and materialize them as operands |
| for (int M : Mask) { |
| for (size_t J = 0; J < LaneBytes; ++J) { |
| // Lower undefs (represented by -1 in mask) to zero |
| uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; |
| Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); |
| } |
| } |
| |
| return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| // The legalizer does not know how to expand the unsupported comparison modes |
| // of i64x2 vectors, so we manually unroll them here. |
| assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64); |
| SmallVector<SDValue, 2> LHS, RHS; |
| DAG.ExtractVectorElements(Op->getOperand(0), LHS); |
| DAG.ExtractVectorElements(Op->getOperand(1), RHS); |
| const SDValue &CC = Op->getOperand(2); |
| auto MakeLane = [&](unsigned I) { |
| return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I], |
| DAG.getConstant(uint64_t(-1), DL, MVT::i64), |
| DAG.getConstant(uint64_t(0), DL, MVT::i64), CC); |
| }; |
| return DAG.getBuildVector(Op->getValueType(0), DL, |
| {MakeLane(0), MakeLane(1)}); |
| } |
| |
| SDValue |
| WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Allow constant lane indices, expand variable lane indices |
| SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); |
| if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) |
| return Op; |
| else |
| // Perform default expansion |
| return SDValue(); |
| } |
| |
| static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { |
| EVT LaneT = Op.getSimpleValueType().getVectorElementType(); |
| // 32-bit and 64-bit unrolled shifts will have proper semantics |
| if (LaneT.bitsGE(MVT::i32)) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| // Otherwise mask the shift value to get proper semantics from 32-bit shift |
| SDLoc DL(Op); |
| size_t NumLanes = Op.getSimpleValueType().getVectorNumElements(); |
| SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32); |
| unsigned ShiftOpcode = Op.getOpcode(); |
| SmallVector<SDValue, 16> ShiftedElements; |
| DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32); |
| SmallVector<SDValue, 16> ShiftElements; |
| DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32); |
| SmallVector<SDValue, 16> UnrolledOps; |
| for (size_t i = 0; i < NumLanes; ++i) { |
| SDValue MaskedShiftValue = |
| DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask); |
| SDValue ShiftedValue = ShiftedElements[i]; |
| if (ShiftOpcode == ISD::SRA) |
| ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, |
| ShiftedValue, DAG.getValueType(LaneT)); |
| UnrolledOps.push_back( |
| DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue)); |
| } |
| return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| |
| // Only manually lower vector shifts |
| assert(Op.getSimpleValueType().isVector()); |
| |
| auto ShiftVal = DAG.getSplatValue(Op.getOperand(1)); |
| if (!ShiftVal) |
| return unrollVectorShift(Op, DAG); |
| |
| // Use anyext because none of the high bits can affect the shift |
| ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32); |
| |
| unsigned Opcode; |
| switch (Op.getOpcode()) { |
| case ISD::SHL: |
| Opcode = WebAssemblyISD::VEC_SHL; |
| break; |
| case ISD::SRA: |
| Opcode = WebAssemblyISD::VEC_SHR_S; |
| break; |
| case ISD::SRL: |
| Opcode = WebAssemblyISD::VEC_SHR_U; |
| break; |
| default: |
| llvm_unreachable("unexpected opcode"); |
| } |
| |
| return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal); |
| } |
| |
| SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT ResT = Op.getValueType(); |
| EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| |
| if ((ResT == MVT::i32 || ResT == MVT::i64) && |
| (SatVT == MVT::i32 || SatVT == MVT::i64)) |
| return Op; |
| |
| if (ResT == MVT::v4i32 && SatVT == MVT::i32) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG combine hooks |
| //===----------------------------------------------------------------------===// |
| static SDValue |
| performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| auto &DAG = DCI.DAG; |
| auto Shuffle = cast<ShuffleVectorSDNode>(N); |
| |
| // Hoist vector bitcasts that don't change the number of lanes out of unary |
| // shuffles, where they are less likely to get in the way of other combines. |
| // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) -> |
| // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask)))) |
| SDValue Bitcast = N->getOperand(0); |
| if (Bitcast.getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| if (!N->getOperand(1).isUndef()) |
| return SDValue(); |
| SDValue CastOp = Bitcast.getOperand(0); |
| MVT SrcType = CastOp.getSimpleValueType(); |
| MVT DstType = Bitcast.getSimpleValueType(); |
| if (!SrcType.is128BitVector() || |
| SrcType.getVectorNumElements() != DstType.getVectorNumElements()) |
| return SDValue(); |
| SDValue NewShuffle = DAG.getVectorShuffle( |
| SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask()); |
| return DAG.getBitcast(DstType, NewShuffle); |
| } |
| |
| static SDValue |
| performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| auto &DAG = DCI.DAG; |
| assert(N->getOpcode() == ISD::SIGN_EXTEND || |
| N->getOpcode() == ISD::ZERO_EXTEND); |
| |
| // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if |
| // possible before the extract_subvector can be expanded. |
| auto Extract = N->getOperand(0); |
| if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR) |
| return SDValue(); |
| auto Source = Extract.getOperand(0); |
| auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); |
| if (IndexNode == nullptr) |
| return SDValue(); |
| auto Index = IndexNode->getZExtValue(); |
| |
| // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the |
| // extracted subvector is the low or high half of its source. |
| EVT ResVT = N->getValueType(0); |
| if (ResVT == MVT::v8i16) { |
| if (Extract.getValueType() != MVT::v8i8 || |
| Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8)) |
| return SDValue(); |
| } else if (ResVT == MVT::v4i32) { |
| if (Extract.getValueType() != MVT::v4i16 || |
| Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4)) |
| return SDValue(); |
| } else if (ResVT == MVT::v2i64) { |
| if (Extract.getValueType() != MVT::v2i32 || |
| Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2)) |