| //===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the RISC-V instructions in TableGen format. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // RISC-V specific DAG Nodes. |
| //===----------------------------------------------------------------------===// |
| |
| // Target-independent type requirements, but with target-specific formats. |
| def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, |
| SDTCisVT<1, i32>]>; |
| def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, |
| SDTCisVT<1, i32>]>; |
| |
| // Target-dependent type requirements. |
| def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>; |
| def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, |
| SDTCisVT<3, OtherVT>, |
| SDTCisSameAs<0, 4>, |
| SDTCisSameAs<4, 5>]>; |
| def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>, |
| SDTCisVT<2, OtherVT>, |
| SDTCisVT<3, OtherVT>]>; |
| def SDT_RISCVReadCSR : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDT_RISCVSwapCSR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, |
| SDTCisInt<2>]>; |
| def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>, |
| SDTCisVT<1, i32>]>; |
| def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [ |
| SDTCisSameAs<0, 1>, SDTCisVT<0, i64> |
| ]>; |
| def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [ |
| SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64> |
| ]>; |
| def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [ |
| SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64> |
| ]>; |
| |
| // Target-independent nodes, but with target-specific formats. |
| def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, |
| [SDNPHasChain, SDNPOutGlue]>; |
| def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| |
| // Target-dependent nodes. |
| def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue]>; |
| def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue]>; |
| def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue]>; |
| def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>; |
| def riscv_brcc : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC, |
| [SDNPHasChain]>; |
| def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| def riscv_sllw : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>; |
| def riscv_sraw : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>; |
| def riscv_srlw : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>; |
| def riscv_read_csr : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR, |
| [SDNPHasChain]>; |
| def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR, |
| [SDNPHasChain]>; |
| def riscv_swap_csr : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR, |
| [SDNPHasChain]>; |
| |
| def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE", |
| SDT_RISCVReadCycleWide, |
| [SDNPHasChain, SDNPSideEffect]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Operand and SDNode transformation definitions. |
| //===----------------------------------------------------------------------===// |
| |
| class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass { |
| let Name = prefix # "ImmXLen" # suffix; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = !strconcat("Invalid", Name); |
| } |
| |
| class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass { |
| let Name = prefix # "Imm" # width # suffix; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = !strconcat("Invalid", Name); |
| } |
| |
| def ImmZeroAsmOperand : AsmOperandClass { |
| let Name = "ImmZero"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = !strconcat("Invalid", Name); |
| } |
| |
| class SImmAsmOperand<int width, string suffix = ""> |
| : ImmAsmOperand<"S", width, suffix> { |
| } |
| |
| class UImmAsmOperand<int width, string suffix = ""> |
| : ImmAsmOperand<"U", width, suffix> { |
| } |
| |
| def FenceArg : AsmOperandClass { |
| let Name = "FenceArg"; |
| let RenderMethod = "addFenceArgOperands"; |
| let DiagnosticType = "InvalidFenceArg"; |
| } |
| |
| def fencearg : Operand<XLenVT> { |
| let ParserMatchClass = FenceArg; |
| let PrintMethod = "printFenceArg"; |
| let DecoderMethod = "decodeUImmOperand<4>"; |
| let OperandType = "OPERAND_UIMM4"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def UImmLog2XLenAsmOperand : AsmOperandClass { |
| let Name = "UImmLog2XLen"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidUImmLog2XLen"; |
| } |
| |
| def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{ |
| if (Subtarget->is64Bit()) |
| return isUInt<6>(Imm); |
| return isUInt<5>(Imm); |
| }]> { |
| let ParserMatchClass = UImmLog2XLenAsmOperand; |
| // TODO: should ensure invalid shamt is rejected when decoding. |
| let DecoderMethod = "decodeUImmOperand<6>"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (!MCOp.evaluateAsConstantImm(Imm)) |
| return false; |
| if (STI.getTargetTriple().isArch64Bit()) |
| return isUInt<6>(Imm); |
| return isUInt<5>(Imm); |
| }]; |
| let OperandType = "OPERAND_UIMMLOG2XLEN"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def uimm2 : Operand<XLenVT> { |
| let ParserMatchClass = UImmAsmOperand<2>; |
| let DecoderMethod = "decodeUImmOperand<2>"; |
| let OperandType = "OPERAND_UIMM2"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def uimm3 : Operand<XLenVT> { |
| let ParserMatchClass = UImmAsmOperand<3>; |
| let DecoderMethod = "decodeUImmOperand<3>"; |
| let OperandType = "OPERAND_UIMM3"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> { |
| let ParserMatchClass = UImmAsmOperand<5>; |
| let DecoderMethod = "decodeUImmOperand<5>"; |
| let OperandType = "OPERAND_UIMM5"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def uimm7 : Operand<XLenVT> { |
| let ParserMatchClass = UImmAsmOperand<7>; |
| let DecoderMethod = "decodeUImmOperand<7>"; |
| let OperandType = "OPERAND_UIMM7"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> { |
| let ParserMatchClass = SImmAsmOperand<12>; |
| let EncoderMethod = "getImmOpValue"; |
| let DecoderMethod = "decodeSImmOperand<12>"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (MCOp.evaluateAsConstantImm(Imm)) |
| return isInt<12>(Imm); |
| return MCOp.isBareSymbolRef(); |
| }]; |
| let OperandType = "OPERAND_SIMM12"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| // A 13-bit signed immediate where the least significant bit is zero. |
| def simm13_lsb0 : Operand<OtherVT> { |
| let ParserMatchClass = SImmAsmOperand<13, "Lsb0">; |
| let PrintMethod = "printBranchOperand"; |
| let EncoderMethod = "getImmOpValueAsr1"; |
| let DecoderMethod = "decodeSImmOperandAndLsl1<13>"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (MCOp.evaluateAsConstantImm(Imm)) |
| return isShiftedInt<12, 1>(Imm); |
| return MCOp.isBareSymbolRef(); |
| }]; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| class UImm20Operand : Operand<XLenVT> { |
| let EncoderMethod = "getImmOpValue"; |
| let DecoderMethod = "decodeUImmOperand<20>"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (MCOp.evaluateAsConstantImm(Imm)) |
| return isUInt<20>(Imm); |
| return MCOp.isBareSymbolRef(); |
| }]; |
| let OperandType = "OPERAND_UIMM20"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| def uimm20_lui : UImm20Operand { |
| let ParserMatchClass = UImmAsmOperand<20, "LUI">; |
| } |
| def uimm20_auipc : UImm20Operand { |
| let ParserMatchClass = UImmAsmOperand<20, "AUIPC">; |
| } |
| |
| def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> { |
| let ParserMethod = "parseJALOffset"; |
| } |
| |
| // A 21-bit signed immediate where the least significant bit is zero. |
| def simm21_lsb0_jal : Operand<OtherVT> { |
| let ParserMatchClass = Simm21Lsb0JALAsmOperand; |
| let PrintMethod = "printBranchOperand"; |
| let EncoderMethod = "getImmOpValueAsr1"; |
| let DecoderMethod = "decodeSImmOperandAndLsl1<21>"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (MCOp.evaluateAsConstantImm(Imm)) |
| return isShiftedInt<20, 1>(Imm); |
| return MCOp.isBareSymbolRef(); |
| }]; |
| let OperandType = "OPERAND_PCREL"; |
| } |
| |
| def BareSymbol : AsmOperandClass { |
| let Name = "BareSymbol"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidBareSymbol"; |
| let ParserMethod = "parseBareSymbol"; |
| } |
| |
| // A bare symbol. |
| def bare_symbol : Operand<XLenVT> { |
| let ParserMatchClass = BareSymbol; |
| } |
| |
| def CallSymbol : AsmOperandClass { |
| let Name = "CallSymbol"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidCallSymbol"; |
| let ParserMethod = "parseCallSymbol"; |
| } |
| |
| // A bare symbol used in call/tail only. |
| def call_symbol : Operand<XLenVT> { |
| let ParserMatchClass = CallSymbol; |
| } |
| |
| def PseudoJumpSymbol : AsmOperandClass { |
| let Name = "PseudoJumpSymbol"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidPseudoJumpSymbol"; |
| let ParserMethod = "parsePseudoJumpSymbol"; |
| } |
| |
| // A bare symbol used for pseudo jumps only. |
| def pseudo_jump_symbol : Operand<XLenVT> { |
| let ParserMatchClass = PseudoJumpSymbol; |
| } |
| |
| def TPRelAddSymbol : AsmOperandClass { |
| let Name = "TPRelAddSymbol"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidTPRelAddSymbol"; |
| let ParserMethod = "parseOperandWithModifier"; |
| } |
| |
| // A bare symbol with the %tprel_add variant. |
| def tprel_add_symbol : Operand<XLenVT> { |
| let ParserMatchClass = TPRelAddSymbol; |
| } |
| |
| def CSRSystemRegister : AsmOperandClass { |
| let Name = "CSRSystemRegister"; |
| let ParserMethod = "parseCSRSystemRegister"; |
| let DiagnosticType = "InvalidCSRSystemRegister"; |
| } |
| |
| def csr_sysreg : Operand<XLenVT> { |
| let ParserMatchClass = CSRSystemRegister; |
| let PrintMethod = "printCSRSystemRegister"; |
| let DecoderMethod = "decodeUImmOperand<12>"; |
| let OperandType = "OPERAND_UIMM12"; |
| let OperandNamespace = "RISCVOp"; |
| } |
| |
| // A parameterized register class alternative to i32imm/i64imm from Target.td. |
| def ixlenimm : Operand<XLenVT>; |
| |
| def ixlenimm_li : Operand<XLenVT> { |
| let ParserMatchClass = ImmXLenAsmOperand<"", "LI">; |
| } |
| |
| // Standalone (codegen-only) immleaf patterns. |
| |
| // A 12-bit signed immediate plus one where the imm range will be -2047~2048. |
| def simm12_plus1 : ImmLeaf<XLenVT, |
| [{return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;}]>; |
| |
| // A 6-bit constant greater than 32. |
| def uimm6gt32 : ImmLeaf<XLenVT, [{ |
| return isUInt<6>(Imm) && Imm > 32; |
| }]>; |
| |
| // Addressing modes. |
| // Necessary because a frameindex can't be matched directly in a pattern. |
| def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>; |
| def BaseAddr : ComplexPattern<iPTR, 1, "SelectBaseAddr">; |
| |
| // Return the negation of an immediate value. |
| def NegImm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Return an immediate value minus 32. |
| def ImmSub32 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Return an immediate value plus 32. |
| def ImmPlus32 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() + 32, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Return an immediate subtracted from XLen. |
| def ImmSubFromXLen : SDNodeXForm<imm, [{ |
| uint64_t XLen = Subtarget->getXLen(); |
| return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Return an immediate subtracted from 32. |
| def ImmSubFrom32 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1), |
| // in which imm = imm0 + imm1 and both imm0 and imm1 are simm12. |
| def AddiPair : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| // The immediate operand must be in range [-4096,-2049] or [2048,4094]. |
| int64_t Imm = N->getSExtValue(); |
| return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094); |
| }]>; |
| |
| // Return imm/2. |
| def AddiPairImmA : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() / 2, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Return imm - imm/2. |
| def AddiPairImmB : SDNodeXForm<imm, [{ |
| int64_t Imm = N->getSExtValue(); |
| return CurDAG->getTargetConstant(Imm - Imm / 2, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Formats |
| //===----------------------------------------------------------------------===// |
| |
| include "RISCVInstrFormats.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Class Templates |
| //===----------------------------------------------------------------------===// |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class BranchCC_rri<bits<3> funct3, string opcodestr> |
| : RVInstB<funct3, OPC_BRANCH, (outs), |
| (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12), |
| opcodestr, "$rs1, $rs2, $imm12">, |
| Sched<[WriteJmp, ReadJmp, ReadJmp]> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| } |
| |
| let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in |
| class Load_ri<bits<3> funct3, string opcodestr> |
| : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), |
| opcodestr, "$rd, ${imm12}(${rs1})">; |
| |
| // Operands for stores are in the order srcreg, base, offset rather than |
| // reflecting the order these fields are specified in the instruction |
| // encoding. |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in |
| class Store_rri<bits<3> funct3, string opcodestr> |
| : RVInstS<funct3, OPC_STORE, (outs), |
| (ins GPR:$rs2, GPR:$rs1, simm12:$imm12), |
| opcodestr, "$rs2, ${imm12}(${rs1})">; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class ALU_ri<bits<3> funct3, string opcodestr> |
| : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12), |
| opcodestr, "$rd, $rs1, $imm12">, |
| Sched<[WriteIALU, ReadIALU]>; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class Shift_ri<bits<5> imm11_7, bits<3> funct3, string opcodestr> |
| : RVInstIShift<imm11_7, funct3, OPC_OP_IMM, (outs GPR:$rd), |
| (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr, |
| "$rd, $rs1, $shamt">, |
| Sched<[WriteShiftImm, ReadShiftImm]>; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr> |
| : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2), |
| opcodestr, "$rd, $rs1, $rs2">; |
| |
| let hasNoSchedulingInfo = 1, |
| hasSideEffects = 1, mayLoad = 0, mayStore = 0 in |
| class CSR_ir<bits<3> funct3, string opcodestr> |
| : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1), |
| opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>; |
| |
| let hasNoSchedulingInfo = 1, |
| hasSideEffects = 1, mayLoad = 0, mayStore = 0 in |
| class CSR_ii<bits<3> funct3, string opcodestr> |
| : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), |
| (ins csr_sysreg:$imm12, uimm5:$rs1), |
| opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class ShiftW_ri<bits<7> imm11_5, bits<3> funct3, string opcodestr> |
| : RVInstIShiftW<imm11_5, funct3, OPC_OP_IMM_32, (outs GPR:$rd), |
| (ins GPR:$rs1, uimm5:$shamt), opcodestr, |
| "$rd, $rs1, $shamt">, |
| Sched<[WriteShiftImm32, ReadShiftImm32]>; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr> |
| : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd), |
| (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">; |
| |
| let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in |
| class Priv<string opcodestr, bits<7> funct7> |
| : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2), |
| opcodestr, "">; |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions |
| //===----------------------------------------------------------------------===// |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in { |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20), |
| "lui", "$rd, $imm20">, Sched<[WriteIALU]>; |
| |
| def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20), |
| "auipc", "$rd, $imm20">, Sched<[WriteIALU]>; |
| |
| let isCall = 1 in |
| def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20), |
| "jal", "$rd, $imm20">, Sched<[WriteJal]>; |
| |
| let isCall = 1 in |
| def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd), |
| (ins GPR:$rs1, simm12:$imm12), |
| "jalr", "$rd, ${imm12}(${rs1})">, |
| Sched<[WriteJalr, ReadJalr]>; |
| } // hasSideEffects = 0, mayLoad = 0, mayStore = 0 |
| |
| def BEQ : BranchCC_rri<0b000, "beq">; |
| def BNE : BranchCC_rri<0b001, "bne">; |
| def BLT : BranchCC_rri<0b100, "blt">; |
| def BGE : BranchCC_rri<0b101, "bge">; |
| def BLTU : BranchCC_rri<0b110, "bltu">; |
| def BGEU : BranchCC_rri<0b111, "bgeu">; |
| |
| def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>; |
| def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>; |
| def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>; |
| def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>; |
| def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>; |
| |
| def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>; |
| def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>; |
| def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>; |
| |
| // ADDI isn't always rematerializable, but isReMaterializable will be used as |
| // a hint which is verified in isReallyTriviallyReMaterializable. |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| def ADDI : ALU_ri<0b000, "addi">; |
| |
| def SLTI : ALU_ri<0b010, "slti">; |
| def SLTIU : ALU_ri<0b011, "sltiu">; |
| |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in { |
| def XORI : ALU_ri<0b100, "xori">; |
| def ORI : ALU_ri<0b110, "ori">; |
| } |
| |
| def ANDI : ALU_ri<0b111, "andi">; |
| |
| def SLLI : Shift_ri<0b00000, 0b001, "slli">; |
| def SRLI : Shift_ri<0b00000, 0b101, "srli">; |
| def SRAI : Shift_ri<0b01000, 0b101, "srai">; |
| |
| def ADD : ALU_rr<0b0000000, 0b000, "add">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def SUB : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def SLL : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; |
| def SLT : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def XOR : ALU_rr<0b0000000, 0b100, "xor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def SRL : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; |
| def SRA : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>; |
| def OR : ALU_rr<0b0000000, 0b110, "or">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def AND : ALU_rr<0b0000000, 0b111, "and">, Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| |
| let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in { |
| def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs), |
| (ins fencearg:$pred, fencearg:$succ), |
| "fence", "$pred, $succ">, Sched<[]> { |
| bits<4> pred; |
| bits<4> succ; |
| |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = {0b0000,pred,succ}; |
| } |
| |
| def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> { |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = {0b1000,0b0011,0b0011}; |
| } |
| |
| def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> { |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = 0; |
| } |
| |
| def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> { |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = 0; |
| } |
| |
| def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">, |
| Sched<[]> { |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = 1; |
| } |
| |
| // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented |
| // instruction (i.e., it should always trap, if your implementation has invalid |
| // instruction traps). |
| def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">, |
| Sched<[]> { |
| let rs1 = 0; |
| let rd = 0; |
| let imm12 = 0b110000000000; |
| } |
| } // hasSideEffects = 1, mayLoad = 0, mayStore = 0 |
| |
| def CSRRW : CSR_ir<0b001, "csrrw">; |
| def CSRRS : CSR_ir<0b010, "csrrs">; |
| def CSRRC : CSR_ir<0b011, "csrrc">; |
| |
| def CSRRWI : CSR_ii<0b101, "csrrwi">; |
| def CSRRSI : CSR_ii<0b110, "csrrsi">; |
| def CSRRCI : CSR_ii<0b111, "csrrci">; |
| |
| /// RV64I instructions |
| |
| let Predicates = [IsRV64] in { |
| def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDWU, ReadMemBase]>; |
| def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>; |
| def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd), |
| (ins GPR:$rs1, simm12:$imm12), |
| "addiw", "$rd, $rs1, $imm12">, |
| Sched<[WriteIALU32, ReadIALU32]>; |
| |
| def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">; |
| def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">; |
| def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">; |
| |
| def ADDW : ALUW_rr<0b0000000, 0b000, "addw">, |
| Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; |
| def SUBW : ALUW_rr<0b0100000, 0b000, "subw">, |
| Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; |
| def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">, |
| Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; |
| def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">, |
| Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; |
| def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">, |
| Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>; |
| } // Predicates = [IsRV64] |
| |
| //===----------------------------------------------------------------------===// |
| // Privileged instructions |
| //===----------------------------------------------------------------------===// |
| |
| let isBarrier = 1, isReturn = 1, isTerminator = 1 in { |
| def URET : Priv<"uret", 0b0000000>, Sched<[]> { |
| let rd = 0; |
| let rs1 = 0; |
| let rs2 = 0b00010; |
| } |
| |
| def SRET : Priv<"sret", 0b0001000>, Sched<[]> { |
| let rd = 0; |
| let rs1 = 0; |
| let rs2 = 0b00010; |
| } |
| |
| def MRET : Priv<"mret", 0b0011000>, Sched<[]> { |
| let rd = 0; |
| let rs1 = 0; |
| let rs2 = 0b00010; |
| } |
| } // isBarrier = 1, isReturn = 1, isTerminator = 1 |
| |
| def WFI : Priv<"wfi", 0b0001000>, Sched<[]> { |
| let rd = 0; |
| let rs1 = 0; |
| let rs2 = 0b00101; |
| } |
| |
| let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in |
| def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs), |
| (ins GPR:$rs1, GPR:$rs2), |
| "sfence.vma", "$rs1, $rs2">, Sched<[]> { |
| let rd = 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Debug instructions |
| //===----------------------------------------------------------------------===// |
| |
| let isBarrier = 1, isReturn = 1, isTerminator = 1 in { |
| def DRET : Priv<"dret", 0b0111101>, Sched<[]> { |
| let rd = 0; |
| let rs1 = 0; |
| let rs2 = 0b10010; |
| } |
| } // isBarrier = 1, isReturn = 1, isTerminator = 1 |
| |
| //===----------------------------------------------------------------------===// |
| // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) |
| //===----------------------------------------------------------------------===// |
| |
| def : InstAlias<"nop", (ADDI X0, X0, 0)>; |
| |
| // Note that the size is 32 because up to 8 32-bit instructions are needed to |
| // generate an arbitrary 64-bit immediate. However, the size does not really |
| // matter since PseudoLI is currently only used in the AsmParser where it gets |
| // expanded to real instructions immediately. |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32, |
| isCodeGenOnly = 0, isAsmParserOnly = 1 in |
| def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [], |
| "li", "$rd, $imm">; |
| |
| def PseudoLB : PseudoLoad<"lb">; |
| def PseudoLBU : PseudoLoad<"lbu">; |
| def PseudoLH : PseudoLoad<"lh">; |
| def PseudoLHU : PseudoLoad<"lhu">; |
| def PseudoLW : PseudoLoad<"lw">; |
| |
| def PseudoSB : PseudoStore<"sb">; |
| def PseudoSH : PseudoStore<"sh">; |
| def PseudoSW : PseudoStore<"sw">; |
| |
| let Predicates = [IsRV64] in { |
| def PseudoLWU : PseudoLoad<"lwu">; |
| def PseudoLD : PseudoLoad<"ld">; |
| def PseudoSD : PseudoStore<"sd">; |
| } // Predicates = [IsRV64] |
| |
| def : InstAlias<"li $rd, $imm", (ADDI GPR:$rd, X0, simm12:$imm)>; |
| def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>; |
| def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>; |
| def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>; |
| |
| let Predicates = [IsRV64] in { |
| def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>; |
| def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>; |
| } // Predicates = [IsRV64] |
| |
| def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>; |
| def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>; |
| def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>; |
| def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>; |
| |
| // sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu |
| // form will always be printed. Therefore, set a zero weight. |
| def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>; |
| def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>; |
| |
| def : InstAlias<"beqz $rs, $offset", |
| (BEQ GPR:$rs, X0, simm13_lsb0:$offset)>; |
| def : InstAlias<"bnez $rs, $offset", |
| (BNE GPR:$rs, X0, simm13_lsb0:$offset)>; |
| def : InstAlias<"blez $rs, $offset", |
| (BGE X0, GPR:$rs, simm13_lsb0:$offset)>; |
| def : InstAlias<"bgez $rs, $offset", |
| (BGE GPR:$rs, X0, simm13_lsb0:$offset)>; |
| def : InstAlias<"bltz $rs, $offset", |
| (BLT GPR:$rs, X0, simm13_lsb0:$offset)>; |
| def : InstAlias<"bgtz $rs, $offset", |
| (BLT X0, GPR:$rs, simm13_lsb0:$offset)>; |
| |
| // Always output the canonical mnemonic for the pseudo branch instructions. |
| // The GNU tools emit the canonical mnemonic for the branch pseudo instructions |
| // as well (e.g. "bgt" will be recognised by the assembler but never printed by |
| // objdump). Match this behaviour by setting a zero weight. |
| def : InstAlias<"bgt $rs, $rt, $offset", |
| (BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; |
| def : InstAlias<"ble $rs, $rt, $offset", |
| (BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; |
| def : InstAlias<"bgtu $rs, $rt, $offset", |
| (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; |
| def : InstAlias<"bleu $rs, $rt, $offset", |
| (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>; |
| |
| def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>; |
| def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>; |
| |
| // Non-zero offset aliases of "jalr" are the lowest weight, followed by the |
| // two-register form, then the one-register forms and finally "ret". |
| def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>; |
| def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>; |
| def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>; |
| def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>; |
| def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>; |
| def : InstAlias<"ret", (JALR X0, X1, 0), 4>; |
| |
| // Non-canonical forms for jump targets also accepted by the assembler. |
| def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>; |
| def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>; |
| def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>; |
| |
| def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw |
| |
| def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>; |
| def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>; |
| def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>; |
| |
| let Predicates = [IsRV32] in { |
| def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>; |
| def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>; |
| def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>; |
| } // Predicates = [IsRV32] |
| |
| def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>; |
| def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>; |
| def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>; |
| def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>; |
| |
| def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| |
| let EmitPriority = 0 in { |
| def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>; |
| |
| def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; |
| def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>; |
| } |
| |
| def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>; |
| def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>; |
| |
| let EmitPriority = 0 in { |
| def : InstAlias<"lb $rd, (${rs1})", |
| (LB GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"lh $rd, (${rs1})", |
| (LH GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"lw $rd, (${rs1})", |
| (LW GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"lbu $rd, (${rs1})", |
| (LBU GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"lhu $rd, (${rs1})", |
| (LHU GPR:$rd, GPR:$rs1, 0)>; |
| |
| def : InstAlias<"sb $rs2, (${rs1})", |
| (SB GPR:$rs2, GPR:$rs1, 0)>; |
| def : InstAlias<"sh $rs2, (${rs1})", |
| (SH GPR:$rs2, GPR:$rs1, 0)>; |
| def : InstAlias<"sw $rs2, (${rs1})", |
| (SW GPR:$rs2, GPR:$rs1, 0)>; |
| |
| def : InstAlias<"add $rd, $rs1, $imm12", |
| (ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"and $rd, $rs1, $imm12", |
| (ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"xor $rd, $rs1, $imm12", |
| (XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"or $rd, $rs1, $imm12", |
| (ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"sll $rd, $rs1, $shamt", |
| (SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; |
| def : InstAlias<"srl $rd, $rs1, $shamt", |
| (SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; |
| def : InstAlias<"sra $rd, $rs1, $shamt", |
| (SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>; |
| let Predicates = [IsRV64] in { |
| def : InstAlias<"lwu $rd, (${rs1})", |
| (LWU GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"ld $rd, (${rs1})", |
| (LD GPR:$rd, GPR:$rs1, 0)>; |
| def : InstAlias<"sd $rs2, (${rs1})", |
| (SD GPR:$rs2, GPR:$rs1, 0)>; |
| |
| def : InstAlias<"addw $rd, $rs1, $imm12", |
| (ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"sllw $rd, $rs1, $shamt", |
| (SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; |
| def : InstAlias<"srlw $rd, $rs1, $shamt", |
| (SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; |
| def : InstAlias<"sraw $rd, $rs1, $shamt", |
| (SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>; |
| } // Predicates = [IsRV64] |
| def : InstAlias<"slt $rd, $rs1, $imm12", |
| (SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| def : InstAlias<"sltu $rd, $rs1, $imm12", |
| (SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>; |
| } |
| |
| def : MnemonicAlias<"move", "mv">; |
| |
| // The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in |
| // version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept |
| // the old name for backwards compatibility. |
| def : MnemonicAlias<"scall", "ecall">; |
| def : MnemonicAlias<"sbreak", "ebreak">; |
| |
| // This alias was added to the spec in December 2020. Don't print it by default |
| // to allow assembly we print to be compatible with versions of GNU assembler |
| // that don't support this alias. |
| def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>; |
| |
| //===----------------------------------------------------------------------===// |
| // .insn directive instructions |
| //===----------------------------------------------------------------------===// |
| |
| // isCodeGenOnly = 1 to hide them from the tablegened assembly parser. |
| let isCodeGenOnly = 1, hasSideEffects = 1, mayLoad = 1, mayStore = 1, |
| hasNoSchedulingInfo = 1 in { |
| def InsnR : DirectiveInsnR<(outs AnyReg:$rd), (ins uimm7:$opcode, uimm3:$funct3, |
| uimm7:$funct7, AnyReg:$rs1, |
| AnyReg:$rs2), |
| "$opcode, $funct3, $funct7, $rd, $rs1, $rs2">; |
| def InsnR4 : DirectiveInsnR4<(outs AnyReg:$rd), (ins uimm7:$opcode, |
| uimm3:$funct3, |
| uimm2:$funct2, |
| AnyReg:$rs1, AnyReg:$rs2, |
| AnyReg:$rs3), |
| "$opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3">; |
| def InsnI : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7:$opcode, uimm3:$funct3, |
| AnyReg:$rs1, simm12:$imm12), |
| "$opcode, $funct3, $rd, $rs1, $imm12">; |
| def InsnI_Mem : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7:$opcode, |
| uimm3:$funct3, |
| AnyReg:$rs1, |
| simm12:$imm12), |
| "$opcode, $funct3, $rd, ${imm12}(${rs1})">; |
| def InsnB : DirectiveInsnB<(outs), (ins uimm7:$opcode, uimm3:$funct3, |
| AnyReg:$rs1, AnyReg:$rs2, |
| simm13_lsb0:$imm12), |
| "$opcode, $funct3, $rs1, $rs2, $imm12">; |
| def InsnU : DirectiveInsnU<(outs AnyReg:$rd), (ins uimm7:$opcode, |
| uimm20_lui:$imm20), |
| "$opcode, $rd, $imm20">; |
| def InsnJ : DirectiveInsnJ<(outs AnyReg:$rd), (ins uimm7:$opcode, |
| simm21_lsb0_jal:$imm20), |
| "$opcode, $rd, $imm20">; |
| def InsnS : DirectiveInsnS<(outs), (ins uimm7:$opcode, uimm3:$funct3, |
| AnyReg:$rs2, AnyReg:$rs1, |
| simm12:$imm12), |
| "$opcode, $funct3, $rs2, ${imm12}(${rs1})">; |
| } |
| |
| // Use InstAliases to match these so that we can combine the insn and format |
| // into a mnemonic to use as the key for the tablegened asm matcher table. The |
| // parser will take care of creating these fake mnemonics and will only do it |
| // for known formats. |
| let EmitPriority = 0 in { |
| def : InstAlias<".insn_r $opcode, $funct3, $funct7, $rd, $rs1, $rs2", |
| (InsnR AnyReg:$rd, uimm7:$opcode, uimm3:$funct3, uimm7:$funct7, |
| AnyReg:$rs1, AnyReg:$rs2)>; |
| // Accept 4 register form of ".insn r" as alias for ".insn r4". |
| def : InstAlias<".insn_r $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3", |
| (InsnR4 AnyReg:$rd, uimm7:$opcode, uimm3:$funct3, uimm2:$funct2, |
| AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>; |
| def : InstAlias<".insn_r4 $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3", |
| (InsnR4 AnyReg:$rd, uimm7:$opcode, uimm3:$funct3, uimm2:$funct2, |
| AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>; |
| def : InstAlias<".insn_i $opcode, $funct3, $rd, $rs1, $imm12", |
| (InsnI AnyReg:$rd, uimm7:$opcode, uimm3:$funct3, AnyReg:$rs1, |
| simm12:$imm12)>; |
| def : InstAlias<".insn_i $opcode, $funct3, $rd, ${imm12}(${rs1})", |
| (InsnI_Mem AnyReg:$rd, uimm7:$opcode, uimm3:$funct3, |
| AnyReg:$rs1, simm12:$imm12)>; |
| def : InstAlias<".insn_b $opcode, $funct3, $rs1, $rs2, $imm12", |
| (InsnB uimm7:$opcode, uimm3:$funct3, AnyReg:$rs1, |
| AnyReg:$rs2, simm13_lsb0:$imm12)>; |
| // Accept sb as an alias for b. |
| def : InstAlias<".insn_sb $opcode, $funct3, $rs1, $rs2, $imm12", |
| (InsnB uimm7:$opcode, uimm3:$funct3, AnyReg:$rs1, |
| AnyReg:$rs2, simm13_lsb0:$imm12)>; |
| def : InstAlias<".insn_u $opcode, $rd, $imm20", |
| (InsnU AnyReg:$rd, uimm7:$opcode, uimm20_lui:$imm20)>; |
| def : InstAlias<".insn_j $opcode, $rd, $imm20", |
| (InsnJ AnyReg:$rd, uimm7:$opcode, simm21_lsb0_jal:$imm20)>; |
| // Accept uj as an alias for j. |
| def : InstAlias<".insn_uj $opcode, $rd, $imm20", |
| (InsnJ AnyReg:$rd, uimm7:$opcode, simm21_lsb0_jal:$imm20)>; |
| def : InstAlias<".insn_s $opcode, $funct3, $rs2, ${imm12}(${rs1})", |
| (InsnS uimm7:$opcode, uimm3:$funct3, AnyReg:$rs2, |
| AnyReg:$rs1, simm12:$imm12)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo-instructions and codegen patterns |
| // |
| // Naming convention: For 'generic' pattern classes, we use the naming |
| // convention PatTy1Ty2. For pattern classes which offer a more complex |
| // expansion, prefix the class name, e.g. BccPat. |
| //===----------------------------------------------------------------------===// |
| |
| /// Generic pattern classes |
| |
| class PatGpr<SDPatternOperator OpNode, RVInst Inst> |
| : Pat<(OpNode GPR:$rs1), (Inst GPR:$rs1)>; |
| class PatGprGpr<SDPatternOperator OpNode, RVInst Inst> |
| : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>; |
| |
| class PatGprImm<SDPatternOperator OpNode, RVInst Inst, ImmLeaf ImmType> |
| : Pat<(XLenVT (OpNode (XLenVT GPR:$rs1), ImmType:$imm)), |
| (Inst GPR:$rs1, ImmType:$imm)>; |
| class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst> |
| : PatGprImm<OpNode, Inst, simm12>; |
| class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst> |
| : PatGprImm<OpNode, Inst, uimmlog2xlen>; |
| |
| /// Predicates |
| |
| def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{ |
| return isOrEquivalentToAdd(N); |
| }]>; |
| def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{ |
| return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32); |
| }]>; |
| def sexti32 : ComplexPattern<i64, 1, "selectSExti32">; |
| def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{ |
| return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32); |
| }]>; |
| def zexti32 : ComplexPattern<i64, 1, "selectZExti32">; |
| |
| def add_oneuse : PatFrag<(ops node:$A, node:$B), (add node:$A, node:$B), [{ |
| return N->hasOneUse(); |
| }]>; |
| |
| def mul_oneuse : PatFrag<(ops node:$A, node:$B), (mul node:$A, node:$B), [{ |
| return N->hasOneUse(); |
| }]>; |
| |
| def mul_const_oneuse : PatFrag<(ops node:$A, node:$B), |
| (mul node:$A, node:$B), [{ |
| if (auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) |
| if (N1C->hasOneUse()) |
| return true; |
| return false; |
| }]>; |
| |
| /// Simple arithmetic operations |
| |
| def : PatGprGpr<add, ADD>; |
| def : PatGprSimm12<add, ADDI>; |
| def : PatGprGpr<sub, SUB>; |
| def : PatGprGpr<or, OR>; |
| def : PatGprSimm12<or, ORI>; |
| def : PatGprGpr<and, AND>; |
| def : PatGprSimm12<and, ANDI>; |
| def : PatGprGpr<xor, XOR>; |
| def : PatGprSimm12<xor, XORI>; |
| def : PatGprUimmLog2XLen<shl, SLLI>; |
| def : PatGprUimmLog2XLen<srl, SRLI>; |
| def : PatGprUimmLog2XLen<sra, SRAI>; |
| |
| // Match both a plain shift and one where the shift amount is masked (this is |
| // typically introduced when the legalizer promotes the shift amount and |
| // zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base |
| // ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I). |
| def shiftMaskXLen : ComplexPattern<XLenVT, 1, "selectShiftMaskXLen", [], [], 0>; |
| def shiftMask32 : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>; |
| |
| class shiftop<SDPatternOperator operator> |
| : PatFrag<(ops node:$val, node:$count), |
| (operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>; |
| class shiftopw<SDPatternOperator operator> |
| : PatFrag<(ops node:$val, node:$count), |
| (operator node:$val, (i64 (shiftMask32 node:$count)))>; |
| |
| def : PatGprGpr<shiftop<shl>, SLL>; |
| def : PatGprGpr<shiftop<srl>, SRL>; |
| def : PatGprGpr<shiftop<sra>, SRA>; |
| |
| // This is a special case of the ADD instruction used to facilitate the use of a |
| // fourth operand to emit a relocation on a symbol relating to this instruction. |
| // The relocation does not affect any bits of the instruction itself but is used |
| // as a hint to the linker. |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in |
| def PseudoAddTPRel : Pseudo<(outs GPR:$rd), |
| (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [], |
| "add", "$rd, $rs1, $rs2, $src">; |
| |
| /// FrameIndex calculations |
| |
| def : Pat<(add (XLenVT AddrFI:$Rs), simm12:$imm12), |
| (ADDI (XLenVT AddrFI:$Rs), simm12:$imm12)>; |
| def : Pat<(IsOrAdd (XLenVT AddrFI:$Rs), simm12:$imm12), |
| (ADDI (XLenVT AddrFI:$Rs), simm12:$imm12)>; |
| |
| /// Setcc |
| |
| def : PatGprGpr<setlt, SLT>; |
| def : PatGprSimm12<setlt, SLTI>; |
| def : PatGprGpr<setult, SLTU>; |
| def : PatGprSimm12<setult, SLTIU>; |
| |
| // Define pattern expansions for setcc operations that aren't directly |
| // handled by a RISC-V instruction. |
| def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>; |
| def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>; |
| def : Pat<(seteq GPR:$rs1, simm12_plus1:$imm12), |
| (SLTIU (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)), 1)>; |
| def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>; |
| def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>; |
| def : Pat<(setne GPR:$rs1, simm12_plus1:$imm12), |
| (SLTU X0, (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)))>; |
| def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>; |
| def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>; |
| def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>; |
| def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>; |
| def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>; |
| def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>; |
| |
| def IntCCtoRISCVCC : SDNodeXForm<riscv_selectcc, [{ |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| RISCVCC::CondCode BrCC = getRISCVCCForIntCC(CC); |
| return CurDAG->getTargetConstant(BrCC, SDLoc(N), Subtarget->getXLenVT()); |
| }]>; |
| |
| def riscv_selectcc_frag : PatFrag<(ops node:$lhs, node:$rhs, node:$cc, |
| node:$truev, node:$falsev), |
| (riscv_selectcc node:$lhs, node:$rhs, |
| node:$cc, node:$truev, |
| node:$falsev), [{}], |
| IntCCtoRISCVCC>; |
| |
| let usesCustomInserter = 1 in |
| class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty> |
| : Pseudo<(outs valty:$dst), |
| (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm, |
| valty:$truev, valty:$falsev), |
| [(set valty:$dst, |
| (riscv_selectcc_frag:$imm cmpty:$lhs, cmpty:$rhs, cond, |
| valty:$truev, valty:$falsev))]>; |
| |
| def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>; |
| |
| /// Branches and jumps |
| |
| // Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction. |
| class BccPat<CondCode Cond, RVInstB Inst> |
| : Pat<(riscv_brcc GPR:$rs1, GPR:$rs2, Cond, bb:$imm12), |
| (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>; |
| |
| def : BccPat<SETEQ, BEQ>; |
| def : BccPat<SETNE, BNE>; |
| def : BccPat<SETLT, BLT>; |
| def : BccPat<SETGE, BGE>; |
| def : BccPat<SETULT, BLTU>; |
| def : BccPat<SETUGE, BGEU>; |
| |
| let isBarrier = 1, isBranch = 1, isTerminator = 1 in |
| def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>, |
| PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>; |
| |
| let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in |
| def PseudoBRIND : Pseudo<(outs), (ins GPRJALR:$rs1, simm12:$imm12), []>, |
| PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>; |
| |
| def : Pat<(brind GPRJALR:$rs1), (PseudoBRIND GPRJALR:$rs1, 0)>; |
| def : Pat<(brind (add GPRJALR:$rs1, simm12:$imm12)), |
| (PseudoBRIND GPRJALR:$rs1, simm12:$imm12)>; |
| |
| // PseudoCALLReg is a generic pseudo instruction for calls which will eventually |
| // expand to auipc and jalr while encoding, with any given register used as the |
| // destination. |
| // Define AsmString to print "call" when compile with -S flag. |
| // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. |
| let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0, |
| mayStore = 0, mayLoad = 0 in |
| def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> { |
| let AsmString = "call\t$rd, $func"; |
| } |
| |
| // PseudoCALL is a pseudo instruction which will eventually expand to auipc |
| // and jalr while encoding. This is desirable, as an auipc+jalr pair with |
| // R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker |
| // if the offset fits in a signed 21-bit immediate. |
| // Define AsmString to print "call" when compile with -S flag. |
| // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction. |
| let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in |
| def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> { |
| let AsmString = "call\t$func"; |
| } |
| |
| def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>; |
| def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>; |
| |
| def : Pat<(riscv_uret_flag), (URET X0, X0)>; |
| def : Pat<(riscv_sret_flag), (SRET X0, X0)>; |
| def : Pat<(riscv_mret_flag), (MRET X0, X0)>; |
| |
| let isCall = 1, Defs = [X1] in |
| def PseudoCALLIndirect : Pseudo<(outs), (ins GPRJALR:$rs1), |
| [(riscv_call GPRJALR:$rs1)]>, |
| PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>; |
| |
| let isBarrier = 1, isReturn = 1, isTerminator = 1 in |
| def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>, |
| PseudoInstExpansion<(JALR X0, X1, 0)>; |
| |
| // PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually |
| // expand to auipc and jalr while encoding. |
| // Define AsmString to print "tail" when compile with -S flag. |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2], |
| isCodeGenOnly = 0 in |
| def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> { |
| let AsmString = "tail\t$dst"; |
| } |
| |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in |
| def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1), |
| [(riscv_tail GPRTC:$rs1)]>, |
| PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>; |
| |
| def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)), |
| (PseudoTAIL texternalsym:$dst)>; |
| def : Pat<(riscv_tail (iPTR texternalsym:$dst)), |
| (PseudoTAIL texternalsym:$dst)>; |
| |
| let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1, |
| isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in |
| def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), []> { |
| let AsmString = "jump\t$target, $rd"; |
| } |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0, |
| isAsmParserOnly = 1 in |
| def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], |
| "lla", "$dst, $src">; |
| |
| let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, |
| isAsmParserOnly = 1 in |
| def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], |
| "la", "$dst, $src">; |
| |
| let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, |
| isAsmParserOnly = 1 in |
| def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], |
| "la.tls.ie", "$dst, $src">; |
| |
| let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0, |
| isAsmParserOnly = 1 in |
| def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [], |
| "la.tls.gd", "$dst, $src">; |
| |
| |
| /// Sign/Zero Extends |
| |
| // There are single-instruction versions of these in Zbb, so disable these |
| // Pseudos if that extension is present. |
| let hasSideEffects = 0, mayLoad = 0, |
| mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in { |
| def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">; |
| def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">; |
| // rv64's sext.w is defined above, using InstAlias<"sext.w ... |
| // zext.b is defined above, using InstAlias<"zext.b ... |
| def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">; |
| } // hasSideEffects = 0, ... |
| |
| let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0, |
| isCodeGenOnly = 0, isAsmParserOnly = 1 in { |
| def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">; |
| } // Predicates = [IsRV64], ... |
| |
| /// Loads |
| |
| multiclass LdPat<PatFrag LoadOp, RVInst Inst, ValueType vt = XLenVT> { |
| def : Pat<(vt (LoadOp BaseAddr:$rs1)), (Inst BaseAddr:$rs1, 0)>; |
| def : Pat<(vt (LoadOp (add BaseAddr:$rs1, simm12:$imm12))), |
| (Inst BaseAddr:$rs1, simm12:$imm12)>; |
| def : Pat<(vt (LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12))), |
| (Inst AddrFI:$rs1, simm12:$imm12)>; |
| } |
| |
| defm : LdPat<sextloadi8, LB>; |
| defm : LdPat<extloadi8, LB>; |
| defm : LdPat<sextloadi16, LH>; |
| defm : LdPat<extloadi16, LH>; |
| defm : LdPat<load, LW, i32>, Requires<[IsRV32]>; |
| defm : LdPat<zextloadi8, LBU>; |
| defm : LdPat<zextloadi16, LHU>; |
| |
| /// Stores |
| |
| multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy, |
| ValueType vt> { |
| def : Pat<(StoreOp (vt StTy:$rs2), BaseAddr:$rs1), |
| (Inst StTy:$rs2, BaseAddr:$rs1, 0)>; |
| def : Pat<(StoreOp (vt StTy:$rs2), (add BaseAddr:$rs1, simm12:$imm12)), |
| (Inst StTy:$rs2, BaseAddr:$rs1, simm12:$imm12)>; |
| def : Pat<(StoreOp (vt StTy:$rs2), (IsOrAdd AddrFI:$rs1, simm12:$imm12)), |
| (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>; |
| } |
| |
| defm : StPat<truncstorei8, SB, GPR, XLenVT>; |
| defm : StPat<truncstorei16, SH, GPR, XLenVT>; |
| defm : StPat<store, SW, GPR, i32>, Requires<[IsRV32]>; |
| |
| /// Fences |
| |
| // Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set |
| // Manual: Volume I. |
| |
| // fence acquire -> fence r, rw |
| def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>; |
| // fence release -> fence rw, w |
| def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>; |
| // fence acq_rel -> fence.tso |
| def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>; |
| // fence seq_cst -> fence rw, rw |
| def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>; |
| |
| // Lowering for atomic load and store is defined in RISCVInstrInfoA.td. |
| // Although these are lowered to fence+load/store instructions defined in the |
| // base RV32I/RV64I ISA, this lowering is only used when the A extension is |
| // present. This is necessary as it isn't valid to mix __atomic_* libcalls |
| // with inline atomic operations for the same object. |
| |
| /// Access to system registers |
| |
| // Helpers for defining specific operations. They are defined for each system |
| // register separately. Side effect is not used because dependencies are |
| // expressed via use-def properties. |
| |
| class ReadSysReg<SysReg SR, list<Register> Regs> |
| : Pseudo<(outs GPR:$rd), (ins), |
| [(set GPR:$rd, (riscv_read_csr (XLenVT SR.Encoding)))]>, |
| PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> { |
| let hasSideEffects = 0; |
| let Uses = Regs; |
| } |
| |
| class WriteSysReg<SysReg SR, list<Register> Regs> |
| : Pseudo<(outs), (ins GPR:$val), |
| [(riscv_write_csr (XLenVT SR.Encoding), GPR:$val)]>, |
| PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> { |
| let hasSideEffects = 0; |
| let Defs = Regs; |
| } |
| |
| class WriteSysRegImm<SysReg SR, list<Register> Regs> |
| : Pseudo<(outs), (ins uimm5:$val), |
| [(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>, |
| PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> { |
| let hasSideEffects = 0; |
| let Defs = Regs; |
| } |
| |
| class SwapSysReg<SysReg SR, list<Register> Regs> |
| : Pseudo<(outs GPR:$rd), (ins GPR:$val), |
| [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), GPR:$val))]>, |
| PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> { |
| let hasSideEffects = 0; |
| let Uses = Regs; |
| let Defs = Regs; |
| } |
| |
| class SwapSysRegImm<SysReg SR, list<Register> Regs> |
| : Pseudo<(outs GPR:$rd), (ins uimm5:$val), |
| [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val))]>, |
| PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> { |
| let hasSideEffects = 0; |
| let Uses = Regs; |
| let Defs = Regs; |
| } |
| |
| def ReadFRM : ReadSysReg<SysRegFRM, [FRM]>; |
| def WriteFRM : WriteSysReg<SysRegFRM, [FRM]>; |
| def WriteFRMImm : WriteSysRegImm<SysRegFRM, [FRM]>; |
| |
| /// Other pseudo-instructions |
| |
| // Pessimistically assume the stack pointer will be clobbered |
| let Defs = [X2], Uses = [X2] in { |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(callseq_start timm:$amt1, timm:$amt2)]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(callseq_end timm:$amt1, timm:$amt2)]>; |
| } // Defs = [X2], Uses = [X2] |
| |
| /// RV64 patterns |
| |
| let Predicates = [IsRV64, NotHasStdExtZba] in { |
| def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (SLLI GPR:$rs1, 32), 32)>; |
| |
| // If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2 |
| // shifts instead of 3. This can occur when unsigned is used to index an array. |
| def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)), |
| (SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>; |
| } |
| |
| // PatFrag to allow ADDW/SUBW/MULW/SLLW to be selected from i64 add/sub/mul/shl |
| // if only the lower 32 bits of their result is used. |
| class binop_allwusers<SDPatternOperator operator> |
| : PatFrag<(ops node:$lhs, node:$rhs), |
| (operator node:$lhs, node:$rhs), [{ |
| return hasAllWUsers(Node); |
| }]>; |
| |
| def sexti32_allwusers : PatFrag<(ops node:$src), |
| (sext_inreg node:$src, i32), [{ |
| return hasAllWUsers(Node); |
| }]>; |
| |
| let Predicates = [IsRV64] in { |
| |
| /// sext and zext |
| |
| // Sign extend is not needed if all users are W instructions. |
| def : Pat<(sexti32_allwusers GPR:$rs1), (XLenVT GPR:$rs1)>; |
| |
| def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>; |
| |
| /// ALU operations |
| |
| def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)), |
| (SRLIW GPR:$rs1, uimm5:$shamt)>; |
| def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)), |
| (SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>; |
| def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt), |
| (SRAIW GPR:$rs1, uimm5:$shamt)>; |
| def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)), |
| (SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>; |
| |
| def : PatGprGpr<shiftopw<riscv_sllw>, SLLW>; |
| def : PatGprGpr<shiftopw<riscv_srlw>, SRLW>; |
| def : PatGprGpr<shiftopw<riscv_sraw>, SRAW>; |
| |
| // Select W instructions if only the lower 32 bits of the result are used. |
| def : PatGprGpr<binop_allwusers<add>, ADDW>; |
| def : PatGprSimm12<binop_allwusers<add>, ADDIW>; |
| def : PatGprGpr<binop_allwusers<sub>, SUBW>; |
| def : PatGprImm<binop_allwusers<shl>, SLLIW, uimm5>; |
| |
| // If this is a shr of a value sign extended from i32, and all the users only |
| // use the lower 32 bits, we can use an sraiw to remove the sext_inreg. This |
| // occurs because SimplifyDemandedBits prefers srl over sra. |
| def : Pat<(binop_allwusers<srl> (sext_inreg GPR:$rs1, i32), uimm5:$shamt), |
| (SRAIW GPR:$rs1, uimm5:$shamt)>; |
| |
| /// Loads |
| |
| defm : LdPat<sextloadi32, LW, i64>; |
| defm : LdPat<extloadi32, LW, i64>; |
| defm : LdPat<zextloadi32, LWU, i64>; |
| defm : LdPat<load, LD, i64>; |
| |
| /// Stores |
| |
| defm : StPat<truncstorei32, SW, GPR, i64>; |
| defm : StPat<store, SD, GPR, i64>; |
| } // Predicates = [IsRV64] |
| |
| /// readcyclecounter |
| // On RV64, we can directly read the 64-bit "cycle" CSR. |
| let Predicates = [IsRV64] in |
| def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, X0)>; |
| // On RV32, ReadCycleWide will be expanded to the suggested loop reading both |
| // halves of the 64-bit "cycle" CSR. |
| let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in |
| def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), |
| [(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))], |
| "", "">; |
| |
| /// traps |
| |
| // We lower `trap` to `unimp`, as this causes a hard exception on nearly all |
| // systems. |
| def : Pat<(trap), (UNIMP)>; |
| |
| // We lower `debugtrap` to `ebreak`, as this will get the attention of the |
| // debugger if possible. |
| def : Pat<(debugtrap), (EBREAK)>; |
| |
| /// Simple optimization |
| def : Pat<(add GPR:$rs1, (AddiPair:$rs2)), |
| (ADDI (ADDI GPR:$rs1, (AddiPairImmB AddiPair:$rs2)), |
| (AddiPairImmA GPR:$rs2))>; |
| |
| let Predicates = [IsRV64] in { |
| // Select W instructions if only the lower 32-bits of the result are used. |
| def : Pat<(binop_allwusers<add> GPR:$rs1, (AddiPair:$rs2)), |
| (ADDIW (ADDIW GPR:$rs1, (AddiPairImmB AddiPair:$rs2)), |
| (AddiPairImmA AddiPair:$rs2))>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard extensions |
| //===----------------------------------------------------------------------===// |
| |
| include "RISCVInstrInfoM.td" |
| include "RISCVInstrInfoA.td" |
| include "RISCVInstrInfoF.td" |
| include "RISCVInstrInfoD.td" |
| include "RISCVInstrInfoC.td" |
| include "RISCVInstrInfoZb.td" |
| include "RISCVInstrInfoV.td" |
| include "RISCVInstrInfoZfh.td" |