| //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that NVPTX uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "NVPTXISelLowering.h" |
| #include "MCTargetDesc/NVPTXBaseInfo.h" |
| #include "NVPTX.h" |
| #include "NVPTXSubtarget.h" |
| #include "NVPTXTargetMachine.h" |
| #include "NVPTXTargetObjectFile.h" |
| #include "NVPTXUtilities.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "nvptx-lower" |
| |
| using namespace llvm; |
| |
| static std::atomic<unsigned> GlobalUniqueCallSite; |
| |
| static cl::opt<bool> sched4reg( |
| "nvptx-sched4reg", |
| cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); |
| |
| static cl::opt<unsigned> |
| FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden, |
| cl::desc("NVPTX Specific: FMA contraction (0: don't do it" |
| " 1: do it 2: do it aggressively"), |
| cl::init(2)); |
| |
| static cl::opt<int> UsePrecDivF32( |
| "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden, |
| cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use" |
| " IEEE Compliant F32 div.rnd if available."), |
| cl::init(2)); |
| |
| static cl::opt<bool> UsePrecSqrtF32( |
| "nvptx-prec-sqrtf32", cl::Hidden, |
| cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), |
| cl::init(true)); |
| |
| int NVPTXTargetLowering::getDivF32Level() const { |
| if (UsePrecDivF32.getNumOccurrences() > 0) { |
| // If nvptx-prec-div32=N is used on the command-line, always honor it |
| return UsePrecDivF32; |
| } else { |
| // Otherwise, use div.approx if fast math is enabled |
| if (getTargetMachine().Options.UnsafeFPMath) |
| return 0; |
| else |
| return 2; |
| } |
| } |
| |
| bool NVPTXTargetLowering::usePrecSqrtF32() const { |
| if (UsePrecSqrtF32.getNumOccurrences() > 0) { |
| // If nvptx-prec-sqrtf32 is used on the command-line, always honor it |
| return UsePrecSqrtF32; |
| } else { |
| // Otherwise, use sqrt.approx if fast math is enabled |
| return !getTargetMachine().Options.UnsafeFPMath; |
| } |
| } |
| |
| bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const { |
| return MF.getDenormalMode(APFloat::IEEEsingle()).Output == |
| DenormalMode::PreserveSign; |
| } |
| |
| static bool IsPTXVectorType(MVT VT) { |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::v2i1: |
| case MVT::v4i1: |
| case MVT::v2i8: |
| case MVT::v4i8: |
| case MVT::v2i16: |
| case MVT::v4i16: |
| case MVT::v2i32: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v2f16: |
| case MVT::v4f16: |
| case MVT::v8f16: // <4 x f16x2> |
| case MVT::v2f32: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| return true; |
| } |
| } |
| |
| /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive |
| /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors |
| /// into their primitive components. |
| /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the |
| /// same number of types as the Ins/Outs arrays in LowerFormalArguments, |
| /// LowerCall, and LowerReturn. |
| static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, |
| Type *Ty, SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets = nullptr, |
| uint64_t StartingOffset = 0) { |
| SmallVector<EVT, 16> TempVTs; |
| SmallVector<uint64_t, 16> TempOffsets; |
| |
| // Special case for i128 - decompose to (i64, i64) |
| if (Ty->isIntegerTy(128)) { |
| ValueVTs.push_back(EVT(MVT::i64)); |
| ValueVTs.push_back(EVT(MVT::i64)); |
| |
| if (Offsets) { |
| Offsets->push_back(StartingOffset + 0); |
| Offsets->push_back(StartingOffset + 8); |
| } |
| |
| return; |
| } |
| |
| // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| auto const *SL = DL.getStructLayout(STy); |
| auto ElementNum = 0; |
| for(auto *EI : STy->elements()) { |
| ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(ElementNum)); |
| ++ElementNum; |
| } |
| return; |
| } |
| |
| ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset); |
| for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) { |
| EVT VT = TempVTs[i]; |
| uint64_t Off = TempOffsets[i]; |
| // Split vectors into individual elements, except for v2f16, which |
| // we will pass as a single scalar. |
| if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| // Vectors with an even number of f16 elements will be passed to |
| // us as an array of v2f16 elements. We must match this so we |
| // stay in sync with Ins/Outs. |
| if (EltVT == MVT::f16 && NumElts % 2 == 0) { |
| EltVT = MVT::v2f16; |
| NumElts /= 2; |
| } |
| for (unsigned j = 0; j != NumElts; ++j) { |
| ValueVTs.push_back(EltVT); |
| if (Offsets) |
| Offsets->push_back(Off + j * EltVT.getStoreSize()); |
| } |
| } else { |
| ValueVTs.push_back(VT); |
| if (Offsets) |
| Offsets->push_back(Off); |
| } |
| } |
| } |
| |
| // Check whether we can merge loads/stores of some of the pieces of a |
| // flattened function parameter or return value into a single vector |
| // load/store. |
| // |
| // The flattened parameter is represented as a list of EVTs and |
| // offsets, and the whole structure is aligned to ParamAlignment. This |
| // function determines whether we can load/store pieces of the |
| // parameter starting at index Idx using a single vectorized op of |
| // size AccessSize. If so, it returns the number of param pieces |
| // covered by the vector op. Otherwise, it returns 1. |
| static unsigned CanMergeParamLoadStoresStartingAt( |
| unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) { |
| |
| // Can't vectorize if param alignment is not sufficient. |
| if (ParamAlignment < AccessSize) |
| return 1; |
| // Can't vectorize if offset is not aligned. |
| if (Offsets[Idx] & (AccessSize - 1)) |
| return 1; |
| |
| EVT EltVT = ValueVTs[Idx]; |
| unsigned EltSize = EltVT.getStoreSize(); |
| |
| // Element is too large to vectorize. |
| if (EltSize >= AccessSize) |
| return 1; |
| |
| unsigned NumElts = AccessSize / EltSize; |
| // Can't vectorize if AccessBytes if not a multiple of EltSize. |
| if (AccessSize != EltSize * NumElts) |
| return 1; |
| |
| // We don't have enough elements to vectorize. |
| if (Idx + NumElts > ValueVTs.size()) |
| return 1; |
| |
| // PTX ISA can only deal with 2- and 4-element vector ops. |
| if (NumElts != 4 && NumElts != 2) |
| return 1; |
| |
| for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) { |
| // Types do not match. |
| if (ValueVTs[j] != EltVT) |
| return 1; |
| |
| // Elements are not contiguous. |
| if (Offsets[j] - Offsets[j - 1] != EltSize) |
| return 1; |
| } |
| // OK. We can vectorize ValueVTs[i..i+NumElts) |
| return NumElts; |
| } |
| |
| // Flags for tracking per-element vectorization state of loads/stores |
| // of a flattened function parameter or return value. |
| enum ParamVectorizationFlags { |
| PVF_INNER = 0x0, // Middle elements of a vector. |
| PVF_FIRST = 0x1, // First element of the vector. |
| PVF_LAST = 0x2, // Last element of the vector. |
| // Scalar is effectively a 1-element vector. |
| PVF_SCALAR = PVF_FIRST | PVF_LAST |
| }; |
| |
| // Computes whether and how we can vectorize the loads/stores of a |
| // flattened function parameter or return value. |
| // |
| // The flattened parameter is represented as the list of ValueVTs and |
| // Offsets, and is aligned to ParamAlignment bytes. We return a vector |
| // of the same size as ValueVTs indicating how each piece should be |
| // loaded/stored (i.e. as a scalar, or as part of a vector |
| // load/store). |
| static SmallVector<ParamVectorizationFlags, 16> |
| VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs, |
| const SmallVectorImpl<uint64_t> &Offsets, |
| Align ParamAlignment) { |
| // Set vector size to match ValueVTs and mark all elements as |
| // scalars by default. |
| SmallVector<ParamVectorizationFlags, 16> VectorInfo; |
| VectorInfo.assign(ValueVTs.size(), PVF_SCALAR); |
| |
| // Check what we can vectorize using 128/64/32-bit accesses. |
| for (int I = 0, E = ValueVTs.size(); I != E; ++I) { |
| // Skip elements we've already processed. |
| assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state."); |
| for (unsigned AccessSize : {16, 8, 4, 2}) { |
| unsigned NumElts = CanMergeParamLoadStoresStartingAt( |
| I, AccessSize, ValueVTs, Offsets, ParamAlignment); |
| // Mark vectorized elements. |
| switch (NumElts) { |
| default: |
| llvm_unreachable("Unexpected return value"); |
| case 1: |
| // Can't vectorize using this size, try next smaller size. |
| continue; |
| case 2: |
| assert(I + 1 < E && "Not enough elements."); |
| VectorInfo[I] = PVF_FIRST; |
| VectorInfo[I + 1] = PVF_LAST; |
| I += 1; |
| break; |
| case 4: |
| assert(I + 3 < E && "Not enough elements."); |
| VectorInfo[I] = PVF_FIRST; |
| VectorInfo[I + 1] = PVF_INNER; |
| VectorInfo[I + 2] = PVF_INNER; |
| VectorInfo[I + 3] = PVF_LAST; |
| I += 3; |
| break; |
| } |
| // Break out of the inner loop because we've already succeeded |
| // using largest possible AccessSize. |
| break; |
| } |
| } |
| return VectorInfo; |
| } |
| |
| // NVPTXTargetLowering Constructor. |
| NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM, |
| const NVPTXSubtarget &STI) |
| : TargetLowering(TM), nvTM(&TM), STI(STI) { |
| // always lower memset, memcpy, and memmove intrinsics to load/store |
| // instructions, rather |
| // then generating calls to memset, mempcy or memmove. |
| MaxStoresPerMemset = (unsigned) 0xFFFFFFFF; |
| MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF; |
| MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF; |
| |
| setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Jump is Expensive. Don't create extra control flow for 'and', 'or' |
| // condition branches. |
| setJumpIsExpensive(true); |
| |
| // Wide divides are _very_ slow. Try to reduce the width of the divide if |
| // possible. |
| addBypassSlowDiv(64, 32); |
| |
| // By default, use the Source scheduling |
| if (sched4reg) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Source); |
| |
| auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action, |
| LegalizeAction NoF16Action) { |
| setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action); |
| }; |
| |
| addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); |
| addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); |
| addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); |
| addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); |
| addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); |
| addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); |
| addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass); |
| addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass); |
| |
| // Conversion to/from FP16/FP16x2 is always legal. |
| setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand); |
| |
| setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote); |
| setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand); |
| |
| // Operations not directly supported by NVPTX. |
| for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8, |
| MVT::i16, MVT::i32, MVT::i64}) { |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::BR_CC, VT, Expand); |
| } |
| |
| // Some SIGN_EXTEND_INREG can be done using cvt instruction. |
| // For others we will expand to a SHL/SRA pair. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom); |
| setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom); |
| |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| |
| // TODO: we may consider expanding ROTL/ROTR on older GPUs. Currently on GPUs |
| // that don't have h/w rotation we lower them to multi-instruction assembly. |
| // See ROT*_sw in NVPTXIntrInfo.td |
| setOperationAction(ISD::ROTL, MVT::i64, Legal); |
| setOperationAction(ISD::ROTR, MVT::i64, Legal); |
| setOperationAction(ISD::ROTL, MVT::i32, Legal); |
| setOperationAction(ISD::ROTR, MVT::i32, Legal); |
| |
| setOperationAction(ISD::ROTL, MVT::i16, Expand); |
| setOperationAction(ISD::ROTR, MVT::i16, Expand); |
| setOperationAction(ISD::ROTL, MVT::i8, Expand); |
| setOperationAction(ISD::ROTR, MVT::i8, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i16, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i64, Expand); |
| |
| // Indirect branch is not supported. |
| // This also disables Jump Table creation. |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| |
| // We want to legalize constant related memmove and memcopy |
| // intrinsics. |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); |
| |
| // Turn FP extload into load/fpextend |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); |
| // Turn FP truncstore into trunc + store. |
| // FIXME: vector types should also be expanded |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // PTX does not support load / store predicate registers |
| setOperationAction(ISD::LOAD, MVT::i1, Custom); |
| setOperationAction(ISD::STORE, MVT::i1, Custom); |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setTruncStoreAction(VT, MVT::i1, Expand); |
| } |
| |
| // This is legal in NVPTX |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
| |
| // TRAP can be lowered to PTX trap |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // Register custom handling for vector loads/stores |
| for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| if (IsPTXVectorType(VT)) { |
| setOperationAction(ISD::LOAD, VT, Custom); |
| setOperationAction(ISD::STORE, VT, Custom); |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom); |
| } |
| } |
| |
| // Custom handling for i8 intrinsics |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); |
| |
| for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) { |
| setOperationAction(ISD::ABS, Ty, Legal); |
| setOperationAction(ISD::SMIN, Ty, Legal); |
| setOperationAction(ISD::SMAX, Ty, Legal); |
| setOperationAction(ISD::UMIN, Ty, Legal); |
| setOperationAction(ISD::UMAX, Ty, Legal); |
| |
| setOperationAction(ISD::CTPOP, Ty, Legal); |
| setOperationAction(ISD::CTLZ, Ty, Legal); |
| } |
| |
| setOperationAction(ISD::CTTZ, MVT::i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i64, Expand); |
| |
| // PTX does not directly support SELP of i1, so promote to i32 first |
| setOperationAction(ISD::SELECT, MVT::i1, Custom); |
| |
| // PTX cannot multiply two i64s in a single instruction. |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| |
| // We have some custom DAG combine patterns for these nodes |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::AND); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SREM); |
| setTargetDAGCombine(ISD::UREM); |
| |
| // setcc for f16x2 needs special handling to prevent legalizer's |
| // attempt to scalarize it due to v2i1 not being legal. |
| if (STI.allowFP16Math()) |
| setTargetDAGCombine(ISD::SETCC); |
| |
| // Promote fp16 arithmetic if fp16 hardware isn't available or the |
| // user passed --nvptx-no-fp16-math. The flag is useful because, |
| // although sm_53+ GPUs have some sort of FP16 support in |
| // hardware, only sm_53 and sm_60 have full implementation. Others |
| // only have token amount of hardware and are likely to run faster |
| // by using fp32 units instead. |
| for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) { |
| setFP16OperationAction(Op, MVT::f16, Legal, Promote); |
| setFP16OperationAction(Op, MVT::v2f16, Legal, Expand); |
| } |
| |
| // There's no neg.f16 instruction. Expand to (0-x). |
| setOperationAction(ISD::FNEG, MVT::f16, Expand); |
| setOperationAction(ISD::FNEG, MVT::v2f16, Expand); |
| |
| // (would be) Library functions. |
| |
| // These map to conversion instructions for scalar FP types. |
| for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, |
| ISD::FTRUNC}) { |
| setOperationAction(Op, MVT::f16, Legal); |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setOperationAction(Op, MVT::v2f16, Expand); |
| } |
| |
| setOperationAction(ISD::FROUND, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::v2f16, Expand); |
| setOperationAction(ISD::FROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FROUND, MVT::f64, Custom); |
| |
| |
| // 'Expand' implements FCOPYSIGN without calling an external library. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| |
| // These map to corresponding instructions for f32/f64. f16 must be |
| // promoted to f32. v2f16 is expanded to f16, which is then promoted |
| // to f32. |
| for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, |
| ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) { |
| setOperationAction(Op, MVT::f16, Promote); |
| setOperationAction(Op, MVT::f32, Legal); |
| setOperationAction(Op, MVT::f64, Legal); |
| setOperationAction(Op, MVT::v2f16, Expand); |
| } |
| setOperationAction(ISD::FMINNUM, MVT::f16, Promote); |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); |
| setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); |
| setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); |
| |
| // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate. |
| // No FPOW or FREM in PTX. |
| |
| // Now deduce the information based on the above mentioned |
| // actions |
| computeRegisterProperties(STI.getRegisterInfo()); |
| } |
| |
| const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((NVPTXISD::NodeType)Opcode) { |
| case NVPTXISD::FIRST_NUMBER: |
| break; |
| case NVPTXISD::CALL: |
| return "NVPTXISD::CALL"; |
| case NVPTXISD::RET_FLAG: |
| return "NVPTXISD::RET_FLAG"; |
| case NVPTXISD::LOAD_PARAM: |
| return "NVPTXISD::LOAD_PARAM"; |
| case NVPTXISD::Wrapper: |
| return "NVPTXISD::Wrapper"; |
| case NVPTXISD::DeclareParam: |
| return "NVPTXISD::DeclareParam"; |
| case NVPTXISD::DeclareScalarParam: |
| return "NVPTXISD::DeclareScalarParam"; |
| case NVPTXISD::DeclareRet: |
| return "NVPTXISD::DeclareRet"; |
| case NVPTXISD::DeclareScalarRet: |
| return "NVPTXISD::DeclareScalarRet"; |
| case NVPTXISD::DeclareRetParam: |
| return "NVPTXISD::DeclareRetParam"; |
| case NVPTXISD::PrintCall: |
| return "NVPTXISD::PrintCall"; |
| case NVPTXISD::PrintConvergentCall: |
| return "NVPTXISD::PrintConvergentCall"; |
| case NVPTXISD::PrintCallUni: |
| return "NVPTXISD::PrintCallUni"; |
| case NVPTXISD::PrintConvergentCallUni: |
| return "NVPTXISD::PrintConvergentCallUni"; |
| case NVPTXISD::LoadParam: |
| return "NVPTXISD::LoadParam"; |
| case NVPTXISD::LoadParamV2: |
| return "NVPTXISD::LoadParamV2"; |
| case NVPTXISD::LoadParamV4: |
| return "NVPTXISD::LoadParamV4"; |
| case NVPTXISD::StoreParam: |
| return "NVPTXISD::StoreParam"; |
| case NVPTXISD::StoreParamV2: |
| return "NVPTXISD::StoreParamV2"; |
| case NVPTXISD::StoreParamV4: |
| return "NVPTXISD::StoreParamV4"; |
| case NVPTXISD::StoreParamS32: |
| return "NVPTXISD::StoreParamS32"; |
| case NVPTXISD::StoreParamU32: |
| return "NVPTXISD::StoreParamU32"; |
| case NVPTXISD::CallArgBegin: |
| return "NVPTXISD::CallArgBegin"; |
| case NVPTXISD::CallArg: |
| return "NVPTXISD::CallArg"; |
| case NVPTXISD::LastCallArg: |
| return "NVPTXISD::LastCallArg"; |
| case NVPTXISD::CallArgEnd: |
| return "NVPTXISD::CallArgEnd"; |
| case NVPTXISD::CallVoid: |
| return "NVPTXISD::CallVoid"; |
| case NVPTXISD::CallVal: |
| return "NVPTXISD::CallVal"; |
| case NVPTXISD::CallSymbol: |
| return "NVPTXISD::CallSymbol"; |
| case NVPTXISD::Prototype: |
| return "NVPTXISD::Prototype"; |
| case NVPTXISD::MoveParam: |
| return "NVPTXISD::MoveParam"; |
| case NVPTXISD::StoreRetval: |
| return "NVPTXISD::StoreRetval"; |
| case NVPTXISD::StoreRetvalV2: |
| return "NVPTXISD::StoreRetvalV2"; |
| case NVPTXISD::StoreRetvalV4: |
| return "NVPTXISD::StoreRetvalV4"; |
| case NVPTXISD::PseudoUseParam: |
| return "NVPTXISD::PseudoUseParam"; |
| case NVPTXISD::RETURN: |
| return "NVPTXISD::RETURN"; |
| case NVPTXISD::CallSeqBegin: |
| return "NVPTXISD::CallSeqBegin"; |
| case NVPTXISD::CallSeqEnd: |
| return "NVPTXISD::CallSeqEnd"; |
| case NVPTXISD::CallPrototype: |
| return "NVPTXISD::CallPrototype"; |
| case NVPTXISD::ProxyReg: |
| return "NVPTXISD::ProxyReg"; |
| case NVPTXISD::LoadV2: |
| return "NVPTXISD::LoadV2"; |
| case NVPTXISD::LoadV4: |
| return "NVPTXISD::LoadV4"; |
| case NVPTXISD::LDGV2: |
| return "NVPTXISD::LDGV2"; |
| case NVPTXISD::LDGV4: |
| return "NVPTXISD::LDGV4"; |
| case NVPTXISD::LDUV2: |
| return "NVPTXISD::LDUV2"; |
| case NVPTXISD::LDUV4: |
| return "NVPTXISD::LDUV4"; |
| case NVPTXISD::StoreV2: |
| return "NVPTXISD::StoreV2"; |
| case NVPTXISD::StoreV4: |
| return "NVPTXISD::StoreV4"; |
| case NVPTXISD::FUN_SHFL_CLAMP: |
| return "NVPTXISD::FUN_SHFL_CLAMP"; |
| case NVPTXISD::FUN_SHFR_CLAMP: |
| return "NVPTXISD::FUN_SHFR_CLAMP"; |
| case NVPTXISD::IMAD: |
| return "NVPTXISD::IMAD"; |
| case NVPTXISD::SETP_F16X2: |
| return "NVPTXISD::SETP_F16X2"; |
| case NVPTXISD::Dummy: |
| return "NVPTXISD::Dummy"; |
| case NVPTXISD::MUL_WIDE_SIGNED: |
| return "NVPTXISD::MUL_WIDE_SIGNED"; |
| case NVPTXISD::MUL_WIDE_UNSIGNED: |
| return "NVPTXISD::MUL_WIDE_UNSIGNED"; |
| case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32"; |
| case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat"; |
| case NVPTXISD::Tex1DFloatFloatLevel: |
| return "NVPTXISD::Tex1DFloatFloatLevel"; |
| case NVPTXISD::Tex1DFloatFloatGrad: |
| return "NVPTXISD::Tex1DFloatFloatGrad"; |
| case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32"; |
| case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float"; |
| case NVPTXISD::Tex1DS32FloatLevel: |
| return "NVPTXISD::Tex1DS32FloatLevel"; |
| case NVPTXISD::Tex1DS32FloatGrad: |
| return "NVPTXISD::Tex1DS32FloatGrad"; |
| case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32"; |
| case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float"; |
| case NVPTXISD::Tex1DU32FloatLevel: |
| return "NVPTXISD::Tex1DU32FloatLevel"; |
| case NVPTXISD::Tex1DU32FloatGrad: |
| return "NVPTXISD::Tex1DU32FloatGrad"; |
| case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32"; |
| case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat"; |
| case NVPTXISD::Tex1DArrayFloatFloatLevel: |
| return "NVPTXISD::Tex1DArrayFloatFloatLevel"; |
| case NVPTXISD::Tex1DArrayFloatFloatGrad: |
| return "NVPTXISD::Tex1DArrayFloatFloatGrad"; |
| case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32"; |
| case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float"; |
| case NVPTXISD::Tex1DArrayS32FloatLevel: |
| return "NVPTXISD::Tex1DArrayS32FloatLevel"; |
| case NVPTXISD::Tex1DArrayS32FloatGrad: |
| return "NVPTXISD::Tex1DArrayS32FloatGrad"; |
| case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32"; |
| case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float"; |
| case NVPTXISD::Tex1DArrayU32FloatLevel: |
| return "NVPTXISD::Tex1DArrayU32FloatLevel"; |
| case NVPTXISD::Tex1DArrayU32FloatGrad: |
| return "NVPTXISD::Tex1DArrayU32FloatGrad"; |
| case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32"; |
| case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat"; |
| case NVPTXISD::Tex2DFloatFloatLevel: |
| return "NVPTXISD::Tex2DFloatFloatLevel"; |
| case NVPTXISD::Tex2DFloatFloatGrad: |
| return "NVPTXISD::Tex2DFloatFloatGrad"; |
| case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32"; |
| case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float"; |
| case NVPTXISD::Tex2DS32FloatLevel: |
| return "NVPTXISD::Tex2DS32FloatLevel"; |
| case NVPTXISD::Tex2DS32FloatGrad: |
| return "NVPTXISD::Tex2DS32FloatGrad"; |
| case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32"; |
| case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float"; |
| case NVPTXISD::Tex2DU32FloatLevel: |
| return "NVPTXISD::Tex2DU32FloatLevel"; |
| case NVPTXISD::Tex2DU32FloatGrad: |
| return "NVPTXISD::Tex2DU32FloatGrad"; |
| case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32"; |
| case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat"; |
| case NVPTXISD::Tex2DArrayFloatFloatLevel: |
| return "NVPTXISD::Tex2DArrayFloatFloatLevel"; |
| case NVPTXISD::Tex2DArrayFloatFloatGrad: |
| return "NVPTXISD::Tex2DArrayFloatFloatGrad"; |
| case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32"; |
| case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float"; |
| case NVPTXISD::Tex2DArrayS32FloatLevel: |
| return "NVPTXISD::Tex2DArrayS32FloatLevel"; |
| case NVPTXISD::Tex2DArrayS32FloatGrad: |
| return "NVPTXISD::Tex2DArrayS32FloatGrad"; |
| case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32"; |
| case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float"; |
| case NVPTXISD::Tex2DArrayU32FloatLevel: |
| return "NVPTXISD::Tex2DArrayU32FloatLevel"; |
| case NVPTXISD::Tex2DArrayU32FloatGrad: |
| return "NVPTXISD::Tex2DArrayU32FloatGrad"; |
| case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32"; |
| case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat"; |
| case NVPTXISD::Tex3DFloatFloatLevel: |
| return "NVPTXISD::Tex3DFloatFloatLevel"; |
| case NVPTXISD::Tex3DFloatFloatGrad: |
| return "NVPTXISD::Tex3DFloatFloatGrad"; |
| case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32"; |
| case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float"; |
| case NVPTXISD::Tex3DS32FloatLevel: |
| return "NVPTXISD::Tex3DS32FloatLevel"; |
| case NVPTXISD::Tex3DS32FloatGrad: |
| return "NVPTXISD::Tex3DS32FloatGrad"; |
| case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32"; |
| case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float"; |
| case NVPTXISD::Tex3DU32FloatLevel: |
| return "NVPTXISD::Tex3DU32FloatLevel"; |
| case NVPTXISD::Tex3DU32FloatGrad: |
| return "NVPTXISD::Tex3DU32FloatGrad"; |
| case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat"; |
| case NVPTXISD::TexCubeFloatFloatLevel: |
| return "NVPTXISD::TexCubeFloatFloatLevel"; |
| case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float"; |
| case NVPTXISD::TexCubeS32FloatLevel: |
| return "NVPTXISD::TexCubeS32FloatLevel"; |
| case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float"; |
| case NVPTXISD::TexCubeU32FloatLevel: |
| return "NVPTXISD::TexCubeU32FloatLevel"; |
| case NVPTXISD::TexCubeArrayFloatFloat: |
| return "NVPTXISD::TexCubeArrayFloatFloat"; |
| case NVPTXISD::TexCubeArrayFloatFloatLevel: |
| return "NVPTXISD::TexCubeArrayFloatFloatLevel"; |
| case NVPTXISD::TexCubeArrayS32Float: |
| return "NVPTXISD::TexCubeArrayS32Float"; |
| case NVPTXISD::TexCubeArrayS32FloatLevel: |
| return "NVPTXISD::TexCubeArrayS32FloatLevel"; |
| case NVPTXISD::TexCubeArrayU32Float: |
| return "NVPTXISD::TexCubeArrayU32Float"; |
| case NVPTXISD::TexCubeArrayU32FloatLevel: |
| return "NVPTXISD::TexCubeArrayU32FloatLevel"; |
| case NVPTXISD::Tld4R2DFloatFloat: |
| return "NVPTXISD::Tld4R2DFloatFloat"; |
| case NVPTXISD::Tld4G2DFloatFloat: |
| return "NVPTXISD::Tld4G2DFloatFloat"; |
| case NVPTXISD::Tld4B2DFloatFloat: |
| return "NVPTXISD::Tld4B2DFloatFloat"; |
| case NVPTXISD::Tld4A2DFloatFloat: |
| return "NVPTXISD::Tld4A2DFloatFloat"; |
| case NVPTXISD::Tld4R2DS64Float: |
| return "NVPTXISD::Tld4R2DS64Float"; |
| case NVPTXISD::Tld4G2DS64Float: |
| return "NVPTXISD::Tld4G2DS64Float"; |
| case NVPTXISD::Tld4B2DS64Float: |
| return "NVPTXISD::Tld4B2DS64Float"; |
| case NVPTXISD::Tld4A2DS64Float: |
| return "NVPTXISD::Tld4A2DS64Float"; |
| case NVPTXISD::Tld4R2DU64Float: |
| return "NVPTXISD::Tld4R2DU64Float"; |
| case NVPTXISD::Tld4G2DU64Float: |
| return "NVPTXISD::Tld4G2DU64Float"; |
| case NVPTXISD::Tld4B2DU64Float: |
| return "NVPTXISD::Tld4B2DU64Float"; |
| case NVPTXISD::Tld4A2DU64Float: |
| return "NVPTXISD::Tld4A2DU64Float"; |
| |
| case NVPTXISD::TexUnified1DFloatS32: |
| return "NVPTXISD::TexUnified1DFloatS32"; |
| case NVPTXISD::TexUnified1DFloatFloat: |
| return "NVPTXISD::TexUnified1DFloatFloat"; |
| case NVPTXISD::TexUnified1DFloatFloatLevel: |
| return "NVPTXISD::TexUnified1DFloatFloatLevel"; |
| case NVPTXISD::TexUnified1DFloatFloatGrad: |
| return "NVPTXISD::TexUnified1DFloatFloatGrad"; |
| case NVPTXISD::TexUnified1DS32S32: |
| return "NVPTXISD::TexUnified1DS32S32"; |
| case NVPTXISD::TexUnified1DS32Float: |
| return "NVPTXISD::TexUnified1DS32Float"; |
| case NVPTXISD::TexUnified1DS32FloatLevel: |
| return "NVPTXISD::TexUnified1DS32FloatLevel"; |
| case NVPTXISD::TexUnified1DS32FloatGrad: |
| return "NVPTXISD::TexUnified1DS32FloatGrad"; |
| case NVPTXISD::TexUnified1DU32S32: |
| return "NVPTXISD::TexUnified1DU32S32"; |
| case NVPTXISD::TexUnified1DU32Float: |
| return "NVPTXISD::TexUnified1DU32Float"; |
| case NVPTXISD::TexUnified1DU32FloatLevel: |
| return "NVPTXISD::TexUnified1DU32FloatLevel"; |
| case NVPTXISD::TexUnified1DU32FloatGrad: |
| return "NVPTXISD::TexUnified1DU32FloatGrad"; |
| case NVPTXISD::TexUnified1DArrayFloatS32: |
| return "NVPTXISD::TexUnified1DArrayFloatS32"; |
| case NVPTXISD::TexUnified1DArrayFloatFloat: |
| return "NVPTXISD::TexUnified1DArrayFloatFloat"; |
| case NVPTXISD::TexUnified1DArrayFloatFloatLevel: |
| return "NVPTXISD::TexUnified1DArrayFloatFloatLevel"; |
| case NVPTXISD::TexUnified1DArrayFloatFloatGrad: |
| return "NVPTXISD::TexUnified1DArrayFloatFloatGrad"; |
| case NVPTXISD::TexUnified1DArrayS32S32: |
| return "NVPTXISD::TexUnified1DArrayS32S32"; |
| case NVPTXISD::TexUnified1DArrayS32Float: |
| return "NVPTXISD::TexUnified1DArrayS32Float"; |
| case NVPTXISD::TexUnified1DArrayS32FloatLevel: |
| return "NVPTXISD::TexUnified1DArrayS32FloatLevel"; |
| case NVPTXISD::TexUnified1DArrayS32FloatGrad: |
| return "NVPTXISD::TexUnified1DArrayS32FloatGrad"; |
| case NVPTXISD::TexUnified1DArrayU32S32: |
| return "NVPTXISD::TexUnified1DArrayU32S32"; |
| case NVPTXISD::TexUnified1DArrayU32Float: |
| return "NVPTXISD::TexUnified1DArrayU32Float"; |
| case NVPTXISD::TexUnified1DArrayU32FloatLevel: |
| return "NVPTXISD::TexUnified1DArrayU32FloatLevel"; |
| case NVPTXISD::TexUnified1DArrayU32FloatGrad: |
| return "NVPTXISD::TexUnified1DArrayU32FloatGrad"; |
| case NVPTXISD::TexUnified2DFloatS32: |
| return "NVPTXISD::TexUnified2DFloatS32"; |
| case NVPTXISD::TexUnified2DFloatFloat: |
| return "NVPTXISD::TexUnified2DFloatFloat"; |
| case NVPTXISD::TexUnified2DFloatFloatLevel: |
| return "NVPTXISD::TexUnified2DFloatFloatLevel"; |
| case NVPTXISD::TexUnified2DFloatFloatGrad: |
| return "NVPTXISD::TexUnified2DFloatFloatGrad"; |
| case NVPTXISD::TexUnified2DS32S32: |
| return "NVPTXISD::TexUnified2DS32S32"; |
| case NVPTXISD::TexUnified2DS32Float: |
| return "NVPTXISD::TexUnified2DS32Float"; |
| case NVPTXISD::TexUnified2DS32FloatLevel: |
| return "NVPTXISD::TexUnified2DS32FloatLevel"; |
| case NVPTXISD::TexUnified2DS32FloatGrad: |
| return "NVPTXISD::TexUnified2DS32FloatGrad"; |
| case NVPTXISD::TexUnified2DU32S32: |
| return "NVPTXISD::TexUnified2DU32S32"; |
| case NVPTXISD::TexUnified2DU32Float: |
| return "NVPTXISD::TexUnified2DU32Float"; |
| case NVPTXISD::TexUnified2DU32FloatLevel: |
| return "NVPTXISD::TexUnified2DU32FloatLevel"; |
| case NVPTXISD::TexUnified2DU32FloatGrad: |
| return "NVPTXISD::TexUnified2DU32FloatGrad"; |
| case NVPTXISD::TexUnified2DArrayFloatS32: |
| return "NVPTXISD::TexUnified2DArrayFloatS32"; |
| case NVPTXISD::TexUnified2DArrayFloatFloat: |
| return "NVPTXISD::TexUnified2DArrayFloatFloat"; |
| case NVPTXISD::TexUnified2DArrayFloatFloatLevel: |
| return "NVPTXISD::TexUnified2DArrayFloatFloatLevel"; |
| case NVPTXISD::TexUnified2DArrayFloatFloatGrad: |
| return "NVPTXISD::TexUnified2DArrayFloatFloatGrad"; |
| case NVPTXISD::TexUnified2DArrayS32S32: |
| return "NVPTXISD::TexUnified2DArrayS32S32"; |
| case NVPTXISD::TexUnified2DArrayS32Float: |
| return "NVPTXISD::TexUnified2DArrayS32Float"; |
| case NVPTXISD::TexUnified2DArrayS32FloatLevel: |
| return "NVPTXISD::TexUnified2DArrayS32FloatLevel"; |
| case NVPTXISD::TexUnified2DArrayS32FloatGrad: |
| return "NVPTXISD::TexUnified2DArrayS32FloatGrad"; |
| case NVPTXISD::TexUnified2DArrayU32S32: |
| return "NVPTXISD::TexUnified2DArrayU32S32"; |
| case NVPTXISD::TexUnified2DArrayU32Float: |
| return "NVPTXISD::TexUnified2DArrayU32Float"; |
| case NVPTXISD::TexUnified2DArrayU32FloatLevel: |
| return "NVPTXISD::TexUnified2DArrayU32FloatLevel"; |
| case NVPTXISD::TexUnified2DArrayU32FloatGrad: |
| return "NVPTXISD::TexUnified2DArrayU32FloatGrad"; |
| case NVPTXISD::TexUnified3DFloatS32: |
| return "NVPTXISD::TexUnified3DFloatS32"; |
| case NVPTXISD::TexUnified3DFloatFloat: |
| return "NVPTXISD::TexUnified3DFloatFloat"; |
| case NVPTXISD::TexUnified3DFloatFloatLevel: |
| return "NVPTXISD::TexUnified3DFloatFloatLevel"; |
| case NVPTXISD::TexUnified3DFloatFloatGrad: |
| return "NVPTXISD::TexUnified3DFloatFloatGrad"; |
| case NVPTXISD::TexUnified3DS32S32: |
| return "NVPTXISD::TexUnified3DS32S32"; |
| case NVPTXISD::TexUnified3DS32Float: |
| return "NVPTXISD::TexUnified3DS32Float"; |
| case NVPTXISD::TexUnified3DS32FloatLevel: |
| return "NVPTXISD::TexUnified3DS32FloatLevel"; |
| case NVPTXISD::TexUnified3DS32FloatGrad: |
| return "NVPTXISD::TexUnified3DS32FloatGrad"; |
| case NVPTXISD::TexUnified3DU32S32: |
| return "NVPTXISD::TexUnified3DU32S32"; |
| case NVPTXISD::TexUnified3DU32Float: |
| return "NVPTXISD::TexUnified3DU32Float"; |
| case NVPTXISD::TexUnified3DU32FloatLevel: |
| return "NVPTXISD::TexUnified3DU32FloatLevel"; |
| case NVPTXISD::TexUnified3DU32FloatGrad: |
| return "NVPTXISD::TexUnified3DU32FloatGrad"; |
| case NVPTXISD::TexUnifiedCubeFloatFloat: |
| return "NVPTXISD::TexUnifiedCubeFloatFloat"; |
| case NVPTXISD::TexUnifiedCubeFloatFloatLevel: |
| return "NVPTXISD::TexUnifiedCubeFloatFloatLevel"; |
| case NVPTXISD::TexUnifiedCubeS32Float: |
| return "NVPTXISD::TexUnifiedCubeS32Float"; |
| case NVPTXISD::TexUnifiedCubeS32FloatLevel: |
| return "NVPTXISD::TexUnifiedCubeS32FloatLevel"; |
| case NVPTXISD::TexUnifiedCubeU32Float: |
| return "NVPTXISD::TexUnifiedCubeU32Float"; |
| case NVPTXISD::TexUnifiedCubeU32FloatLevel: |
| return "NVPTXISD::TexUnifiedCubeU32FloatLevel"; |
| case NVPTXISD::TexUnifiedCubeArrayFloatFloat: |
| return "NVPTXISD::TexUnifiedCubeArrayFloatFloat"; |
| case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel: |
| return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel"; |
| case NVPTXISD::TexUnifiedCubeArrayS32Float: |
| return "NVPTXISD::TexUnifiedCubeArrayS32Float"; |
| case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel: |
| return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel"; |
| case NVPTXISD::TexUnifiedCubeArrayU32Float: |
| return "NVPTXISD::TexUnifiedCubeArrayU32Float"; |
| case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel: |
| return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel"; |
| case NVPTXISD::Tld4UnifiedR2DFloatFloat: |
| return "NVPTXISD::Tld4UnifiedR2DFloatFloat"; |
| case NVPTXISD::Tld4UnifiedG2DFloatFloat: |
| return "NVPTXISD::Tld4UnifiedG2DFloatFloat"; |
| case NVPTXISD::Tld4UnifiedB2DFloatFloat: |
| return "NVPTXISD::Tld4UnifiedB2DFloatFloat"; |
| case NVPTXISD::Tld4UnifiedA2DFloatFloat: |
| return "NVPTXISD::Tld4UnifiedA2DFloatFloat"; |
| case NVPTXISD::Tld4UnifiedR2DS64Float: |
| return "NVPTXISD::Tld4UnifiedR2DS64Float"; |
| case NVPTXISD::Tld4UnifiedG2DS64Float: |
| return "NVPTXISD::Tld4UnifiedG2DS64Float"; |
| case NVPTXISD::Tld4UnifiedB2DS64Float: |
| return "NVPTXISD::Tld4UnifiedB2DS64Float"; |
| case NVPTXISD::Tld4UnifiedA2DS64Float: |
| return "NVPTXISD::Tld4UnifiedA2DS64Float"; |
| case NVPTXISD::Tld4UnifiedR2DU64Float: |
| return "NVPTXISD::Tld4UnifiedR2DU64Float"; |
| case NVPTXISD::Tld4UnifiedG2DU64Float: |
| return "NVPTXISD::Tld4UnifiedG2DU64Float"; |
| case NVPTXISD::Tld4UnifiedB2DU64Float: |
| return "NVPTXISD::Tld4UnifiedB2DU64Float"; |
| case NVPTXISD::Tld4UnifiedA2DU64Float: |
| return "NVPTXISD::Tld4UnifiedA2DU64Float"; |
| |
| case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp"; |
| case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp"; |
| case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp"; |
| case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp"; |
| case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp"; |
| case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp"; |
| case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp"; |
| case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp"; |
| case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp"; |
| case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp"; |
| case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp"; |
| |
| case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp"; |
| case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp"; |
| case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp"; |
| case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp"; |
| case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp"; |
| case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp"; |
| case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp"; |
| case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp"; |
| case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp"; |
| case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp"; |
| case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp"; |
| |
| case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp"; |
| case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp"; |
| case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp"; |
| case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp"; |
| case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp"; |
| case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp"; |
| case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp"; |
| case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp"; |
| case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp"; |
| case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp"; |
| case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp"; |
| |
| case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp"; |
| case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp"; |
| case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp"; |
| case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp"; |
| case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp"; |
| case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp"; |
| case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp"; |
| case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp"; |
| case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp"; |
| case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp"; |
| case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp"; |
| |
| case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp"; |
| case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp"; |
| case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp"; |
| case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp"; |
| case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp"; |
| case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp"; |
| case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp"; |
| case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp"; |
| case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp"; |
| case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp"; |
| case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp"; |
| |
| case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap"; |
| case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap"; |
| case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap"; |
| case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap"; |
| case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap"; |
| case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap"; |
| case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap"; |
| case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap"; |
| case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap"; |
| case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap"; |
| case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap"; |
| |
| case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap"; |
| case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap"; |
| case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap"; |
| case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap"; |
| case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap"; |
| case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap"; |
| case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap"; |
| case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap"; |
| case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap"; |
| case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap"; |
| case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap"; |
| |
| case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap"; |
| case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap"; |
| case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap"; |
| case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap"; |
| case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap"; |
| case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap"; |
| case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap"; |
| case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap"; |
| case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap"; |
| case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap"; |
| case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap"; |
| |
| case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap"; |
| case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap"; |
| case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap"; |
| case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap"; |
| case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap"; |
| case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap"; |
| case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap"; |
| case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap"; |
| case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap"; |
| case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap"; |
| case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap"; |
| |
| case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap"; |
| case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap"; |
| case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap"; |
| case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap"; |
| case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap"; |
| case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap"; |
| case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap"; |
| case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap"; |
| case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap"; |
| case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap"; |
| case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap"; |
| |
| case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero"; |
| case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero"; |
| case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero"; |
| case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero"; |
| case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero"; |
| case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero"; |
| case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero"; |
| case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero"; |
| case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero"; |
| case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero"; |
| case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero"; |
| |
| case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero"; |
| case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero"; |
| case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero"; |
| case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero"; |
| case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero"; |
| case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero"; |
| case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero"; |
| case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero"; |
| case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero"; |
| case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero"; |
| case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero"; |
| |
| case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero"; |
| case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero"; |
| case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero"; |
| case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero"; |
| case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero"; |
| case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero"; |
| case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero"; |
| case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero"; |
| case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero"; |
| case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero"; |
| case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero"; |
| |
| case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero"; |
| case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero"; |
| case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero"; |
| case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero"; |
| case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero"; |
| case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero"; |
| case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero"; |
| case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero"; |
| case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero"; |
| case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero"; |
| case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero"; |
| |
| case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero"; |
| case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero"; |
| case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero"; |
| case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero"; |
| case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero"; |
| case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero"; |
| case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero"; |
| case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero"; |
| case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero"; |
| case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero"; |
| case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero"; |
| } |
| return nullptr; |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarType() == MVT::i1) |
| return TypeSplitVector; |
| if (VT == MVT::v2f16) |
| return TypeLegal; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, |
| int Enabled, int &ExtraSteps, |
| bool &UseOneConst, |
| bool Reciprocal) const { |
| if (!(Enabled == ReciprocalEstimate::Enabled || |
| (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32()))) |
| return SDValue(); |
| |
| if (ExtraSteps == ReciprocalEstimate::Unspecified) |
| ExtraSteps = 0; |
| |
| SDLoc DL(Operand); |
| EVT VT = Operand.getValueType(); |
| bool Ftz = useF32FTZ(DAG.getMachineFunction()); |
| |
| auto MakeIntrinsicCall = [&](Intrinsic::ID IID) { |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(IID, DL, MVT::i32), Operand); |
| }; |
| |
| // The sqrt and rsqrt refinement processes assume we always start out with an |
| // approximation of the rsqrt. Therefore, if we're going to do any refinement |
| // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing |
| // any refinement, we must return a regular sqrt. |
| if (Reciprocal || ExtraSteps > 0) { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f |
| : Intrinsic::nvvm_rsqrt_approx_f); |
| else if (VT == MVT::f64) |
| return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d); |
| else |
| return SDValue(); |
| } else { |
| if (VT == MVT::f32) |
| return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f |
| : Intrinsic::nvvm_sqrt_approx_f); |
| else { |
| // There's no sqrt.approx.f64 instruction, so we emit |
| // reciprocal(rsqrt(x)). This is faster than |
| // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain |
| // x * rsqrt(x).) |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32), |
| MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d)); |
| } |
| } |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op); |
| auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace()); |
| Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT); |
| return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op); |
| } |
| |
| std::string NVPTXTargetLowering::getPrototype( |
| const DataLayout &DL, Type *retTy, const ArgListTy &Args, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment, |
| const CallBase &CB, unsigned UniqueCallSite) const { |
| auto PtrVT = getPointerTy(DL); |
| |
| bool isABI = (STI.getSmVersion() >= 20); |
| assert(isABI && "Non-ABI compilation is not supported"); |
| if (!isABI) |
| return ""; |
| |
| std::stringstream O; |
| O << "prototype_" << UniqueCallSite << " : .callprototype "; |
| |
| if (retTy->getTypeID() == Type::VoidTyID) { |
| O << "()"; |
| } else { |
| O << "("; |
| if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) { |
| unsigned size = 0; |
| if (auto *ITy = dyn_cast<IntegerType>(retTy)) { |
| size = ITy->getBitWidth(); |
| } else { |
| assert(retTy->isFloatingPointTy() && |
| "Floating point type expected here"); |
| size = retTy->getPrimitiveSizeInBits(); |
| } |
| // PTX ABI requires all scalar return values to be at least 32 |
| // bits in size. fp16 normally uses .b16 as its storage type in |
| // PTX, so its size must be adjusted here, too. |
| if (size < 32) |
| size = 32; |
| |
| O << ".param .b" << size << " _"; |
| } else if (isa<PointerType>(retTy)) { |
| O << ".param .b" << PtrVT.getSizeInBits() << " _"; |
| } else if (retTy->isAggregateType() || retTy->isVectorTy() || |
| retTy->isIntegerTy(128)) { |
| O << ".param .align " << (retAlignment ? retAlignment->value() : 0) |
| << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]"; |
| } else { |
| llvm_unreachable("Unknown return type"); |
| } |
| O << ") "; |
| } |
| O << "_ ("; |
| |
| bool first = true; |
| |
| unsigned OIdx = 0; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { |
| Type *Ty = Args[i].Ty; |
| if (!first) { |
| O << ", "; |
| } |
| first = false; |
| |
| if (!Outs[OIdx].Flags.isByVal()) { |
| if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { |
| unsigned align = 0; |
| const CallInst *CallI = cast<CallInst>(&CB); |
| // +1 because index 0 is reserved for return type alignment |
| if (!getAlign(*CallI, i + 1, align)) |
| align = DL.getABITypeAlignment(Ty); |
| unsigned sz = DL.getTypeAllocSize(Ty); |
| O << ".param .align " << align << " .b8 "; |
| O << "_"; |
| O << "[" << sz << "]"; |
| // update the index for Outs |
| SmallVector<EVT, 16> vtparts; |
| ComputeValueVTs(*this, DL, Ty, vtparts); |
| if (unsigned len = vtparts.size()) |
| OIdx += len - 1; |
| continue; |
| } |
| // i8 types in IR will be i16 types in SDAG |
| assert((getValueType(DL, Ty) == Outs[OIdx].VT || |
| (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && |
| "type mismatch between callee prototype and arguments"); |
| // scalar type |
| unsigned sz = 0; |
| if (isa<IntegerType>(Ty)) { |
| sz = cast<IntegerType>(Ty)->getBitWidth(); |
| if (sz < 32) |
| sz = 32; |
| } else if (isa<PointerType>(Ty)) { |
| sz = PtrVT.getSizeInBits(); |
| } else if (Ty->isHalfTy()) |
| // PTX ABI requires all scalar parameters to be at least 32 |
| // bits in size. fp16 normally uses .b16 as its storage type |
| // in PTX, so its size must be adjusted here, too. |
| sz = 32; |
| else |
| sz = Ty->getPrimitiveSizeInBits(); |
| O << ".param .b" << sz << " "; |
| O << "_"; |
| continue; |
| } |
| auto *PTy = dyn_cast<PointerType>(Ty); |
| assert(PTy && "Param with byval attribute should be a pointer type"); |
| Type *ETy = PTy->getElementType(); |
| |
| Align align = Outs[OIdx].Flags.getNonZeroByValAlign(); |
| unsigned sz = DL.getTypeAllocSize(ETy); |
| O << ".param .align " << align.value() << " .b8 "; |
| O << "_"; |
| O << "[" << sz << "]"; |
| } |
| O << ");"; |
| return O.str(); |
| } |
| |
| Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee, |
| const CallBase *CB, Type *Ty, |
| unsigned Idx, |
| const DataLayout &DL) const { |
| if (!CB) { |
| // CallSite is zero, fallback to ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| unsigned Alignment = 0; |
| const Function *DirectCallee = CB->getCalledFunction(); |
| |
| if (!DirectCallee) { |
| // We don't have a direct function symbol, but that may be because of |
| // constant cast instructions in the call. |
| |
| // With bitcast'd call targets, the instruction will be the call |
| if (const auto *CI = dyn_cast<CallInst>(CB)) { |
| // Check if we have call alignment metadata |
| if (getAlign(*CI, Idx, Alignment)) |
| return Align(Alignment); |
| |
| const Value *CalleeV = CI->getCalledOperand(); |
| // Ignore any bitcast instructions |
| while (isa<ConstantExpr>(CalleeV)) { |
| const ConstantExpr *CE = cast<ConstantExpr>(CalleeV); |
| if (!CE->isCast()) |
| break; |
| // Look through the bitcast |
| CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0); |
| } |
| |
| // We have now looked past all of the bitcasts. Do we finally have a |
| // Function? |
| if (const auto *CalleeF = dyn_cast<Function>(CalleeV)) |
| DirectCallee = CalleeF; |
| } |
| } |
| |
| // Check for function alignment information if we found that the |
| // ultimate target is a Function |
| if (DirectCallee) |
| if (getAlign(*DirectCallee, Idx, Alignment)) |
| return Align(Alignment); |
| |
| // Call is indirect or alignment information is not available, fall back to |
| // the ABI type alignment |
| return DL.getABITypeAlign(Ty); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc dl = CLI.DL; |
| SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| ArgListTy &Args = CLI.getArgs(); |
| Type *RetTy = CLI.RetTy; |
| const CallBase *CB = CLI.CB; |
| const DataLayout &DL = DAG.getDataLayout(); |
| |
| bool isABI = (STI.getSmVersion() >= 20); |
| assert(isABI && "Non-ABI compilation is not supported"); |
| if (!isABI) |
| return Chain; |
| |
| unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1); |
| SDValue tempChain = Chain; |
| Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl); |
| SDValue InFlag = Chain.getValue(1); |
| |
| unsigned paramCount = 0; |
| // Args.size() and Outs.size() need not match. |
| // Outs.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Outs) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Outs. |
| // So a different index should be used for indexing into Outs/OutVals. |
| // See similar issue in LowerFormalArguments. |
| unsigned OIdx = 0; |
| // Declare the .params or .reg need to pass values |
| // to the function |
| for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) { |
| EVT VT = Outs[OIdx].VT; |
| Type *Ty = Args[i].Ty; |
| |
| if (!Outs[OIdx].Flags.isByVal()) { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets); |
| Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL); |
| unsigned AllocSize = DL.getTypeAllocSize(Ty); |
| SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| bool NeedAlign; // Does argument declaration specify alignment? |
| if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) { |
| // declare .param .align <align> .b8 .param<n>[<size>]; |
| SDValue DeclareParamOps[] = { |
| Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), |
| DAG.getConstant(paramCount, dl, MVT::i32), |
| DAG.getConstant(AllocSize, dl, MVT::i32), InFlag}; |
| Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, |
| DeclareParamOps); |
| NeedAlign = true; |
| } else { |
| // declare .param .b<size> .param<n>; |
| if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) { |
| // PTX ABI requires integral types to be at least 32 bits in |
| // size. FP16 is loaded/stored using i16, so it's handled |
| // here as well. |
| AllocSize = 4; |
| } |
| SDValue DeclareScalarParamOps[] = { |
| Chain, DAG.getConstant(paramCount, dl, MVT::i32), |
| DAG.getConstant(AllocSize * 8, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InFlag}; |
| Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, |
| DeclareScalarParamOps); |
| NeedAlign = false; |
| } |
| InFlag = Chain.getValue(1); |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter |
| // than 32-bits are sign extended or zero extended, depending on |
| // whether they are signed or unsigned types. This case applies |
| // only to scalar parameters and not to aggregate values. |
| bool ExtendIntegerParam = |
| Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32; |
| |
| auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign); |
| SmallVector<SDValue, 6> StoreOperands; |
| for (unsigned j = 0, je = VTs.size(); j != je; ++j) { |
| // New store. |
| if (VectorInfo[j] & PVF_FIRST) { |
| assert(StoreOperands.empty() && "Unfinished preceding store."); |
| StoreOperands.push_back(Chain); |
| StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32)); |
| StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32)); |
| } |
| |
| EVT EltVT = VTs[j]; |
| SDValue StVal = OutVals[OIdx]; |
| if (ExtendIntegerParam) { |
| assert(VTs.size() == 1 && "Scalar can't have multiple parts."); |
| // zext/sext to i32 |
| StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND |
| : ISD::ZERO_EXTEND, |
| dl, MVT::i32, StVal); |
| } else if (EltVT.getSizeInBits() < 16) { |
| // Use 16-bit registers for small stores as it's the |
| // smallest general purpose register size supported by NVPTX. |
| StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal); |
| } |
| |
| // Record the value to store. |
| StoreOperands.push_back(StVal); |
| |
| if (VectorInfo[j] & PVF_LAST) { |
| unsigned NumElts = StoreOperands.size() - 3; |
| NVPTXISD::NodeType Op; |
| switch (NumElts) { |
| case 1: |
| Op = NVPTXISD::StoreParam; |
| break; |
| case 2: |
| Op = NVPTXISD::StoreParamV2; |
| break; |
| case 4: |
| Op = NVPTXISD::StoreParamV4; |
| break; |
| default: |
| llvm_unreachable("Invalid vector info."); |
| } |
| |
| StoreOperands.push_back(InFlag); |
| |
| // Adjust type of the store op if we've extended the scalar |
| // return value. |
| EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j]; |
| MaybeAlign EltAlign; |
| if (NeedAlign) |
| EltAlign = commonAlignment(ArgAlign, Offsets[j]); |
| |
| Chain = DAG.getMemIntrinsicNode( |
| Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands, |
| TheStoreType, MachinePointerInfo(), EltAlign, |
| MachineMemOperand::MOStore); |
| InFlag = Chain.getValue(1); |
| |
| // Cleanup. |
| StoreOperands.clear(); |
| } |
| ++OIdx; |
| } |
| assert(StoreOperands.empty() && "Unfinished parameter store."); |
| if (VTs.size() > 0) |
| --OIdx; |
| ++paramCount; |
| continue; |
| } |
| |
| // ByVal arguments |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| auto *PTy = dyn_cast<PointerType>(Args[i].Ty); |
| assert(PTy && "Type of a byval parameter should be pointer"); |
| ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0); |
| |
| // declare .param .align <align> .b8 .param<n>[<size>]; |
| unsigned sz = Outs[OIdx].Flags.getByValSize(); |
| SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign(); |
| // The ByValAlign in the Outs[OIdx].Flags is alway set at this point, |
| // so we don't need to worry about natural alignment or not. |
| // See TargetLowering::LowerCallTo(). |
| |
| // Enforce minumum alignment of 4 to work around ptxas miscompile |
| // for sm_50+. See corresponding alignment adjustment in |
| // emitFunctionParamList() for details. |
| if (ArgAlign < Align(4)) |
| ArgAlign = Align(4); |
| SDValue DeclareParamOps[] = { |
| Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32), |
| DAG.getConstant(paramCount, dl, MVT::i32), |
| DAG.getConstant(sz, dl, MVT::i32), InFlag}; |
| Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, |
| DeclareParamOps); |
| InFlag = Chain.getValue(1); |
| for (unsigned j = 0, je = VTs.size(); j != je; ++j) { |
| EVT elemtype = VTs[j]; |
| int curOffset = Offsets[j]; |
| unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset); |
| auto PtrVT = getPointerTy(DL); |
| SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx], |
| DAG.getConstant(curOffset, dl, PtrVT)); |
| SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, |
| MachinePointerInfo(), PartAlign); |
| if (elemtype.getSizeInBits() < 16) { |
| theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal); |
| } |
| SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CopyParamOps[] = { Chain, |
| DAG.getConstant(paramCount, dl, MVT::i32), |
| DAG.getConstant(curOffset, dl, MVT::i32), |
| theVal, InFlag }; |
| Chain = DAG.getMemIntrinsicNode( |
| NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype, |
| MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore); |
| |
| InFlag = Chain.getValue(1); |
| } |
| ++paramCount; |
| } |
| |
| GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode()); |
| MaybeAlign retAlignment = None; |
| |
| // Handle Result |
| if (Ins.size() > 0) { |
| SmallVector<EVT, 16> resvtparts; |
| ComputeValueVTs(*this, DL, RetTy, resvtparts); |
| |
| // Declare |
| // .param .align 16 .b8 retval0[<size-in-bytes>], or |
| // .param .b<size-in-bits> retval0 |
| unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy); |
| // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for |
| // these three types to match the logic in |
| // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype. |
| // Plus, this behavior is consistent with nvcc's. |
| if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() || |
| (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) { |
| // Scalar needs to be at least 32bit wide |
| if (resultsz < 32) |
| resultsz = 32; |
| SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(resultsz, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InFlag }; |
| Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, |
| DeclareRetOps); |
| InFlag = Chain.getValue(1); |
| } else { |
| retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL); |
| assert(retAlignment && "retAlignment is guaranteed to be set"); |
| SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue DeclareRetOps[] = { |
| Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32), |
| DAG.getConstant(resultsz / 8, dl, MVT::i32), |
| DAG.getConstant(0, dl, MVT::i32), InFlag}; |
| Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, |
| DeclareRetOps); |
| InFlag = Chain.getValue(1); |
| } |
| } |
| |
| // Both indirect calls and libcalls have nullptr Func. In order to distinguish |
| // between them we must rely on the call site value which is valid for |
| // indirect calls but is always null for libcalls. |
| bool isIndirectCall = !Func && CB; |
| |
| if (isa<ExternalSymbolSDNode>(Callee)) { |
| Function* CalleeFunc = nullptr; |
| |
| // Try to find the callee in the current module. |
| Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc); |
| assert(CalleeFunc != nullptr && "Libcall callee must be set."); |
| |
| // Set the "libcall callee" attribute to indicate that the function |
| // must always have a declaration. |
| CalleeFunc->addFnAttr("nvptx-libcall-callee", "true"); |
| } |
| |
| if (isIndirectCall) { |
| // This is indirect function call case : PTX requires a prototype of the |
| // form |
| // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); |
| // to be emitted, and the label has to used as the last arg of call |
| // instruction. |
| // The prototype is embedded in a string and put as the operand for a |
| // CallPrototype SDNode which will print out to the value of the string. |
| SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| std::string Proto = |
| getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB, UniqueCallSite); |
| const char *ProtoStr = |
| nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str(); |
| SDValue ProtoOps[] = { |
| Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag, |
| }; |
| Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps); |
| InFlag = Chain.getValue(1); |
| } |
| // Op to just print "call" |
| SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue PrintCallOps[] = { |
| Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag |
| }; |
| // We model convergent calls as separate opcodes. |
| unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni; |
| if (CLI.IsConvergent) |
| Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni |
| : NVPTXISD::PrintConvergentCall; |
| Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps); |
| InFlag = Chain.getValue(1); |
| |
| // Ops to print out the function name |
| SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallVoidOps[] = { Chain, Callee, InFlag }; |
| Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps); |
| InFlag = Chain.getValue(1); |
| |
| // Ops to print out the param list |
| SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgBeginOps[] = { Chain, InFlag }; |
| Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, |
| CallArgBeginOps); |
| InFlag = Chain.getValue(1); |
| |
| for (unsigned i = 0, e = paramCount; i != e; ++i) { |
| unsigned opcode; |
| if (i == (e - 1)) |
| opcode = NVPTXISD::LastCallArg; |
| else |
| opcode = NVPTXISD::CallArg; |
| SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(i, dl, MVT::i32), InFlag }; |
| Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps); |
| InFlag = Chain.getValue(1); |
| } |
| SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue CallArgEndOps[] = { Chain, |
| DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32), |
| InFlag }; |
| Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps); |
| InFlag = Chain.getValue(1); |
| |
| if (isIndirectCall) { |
| SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue PrototypeOps[] = { |
| Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InFlag}; |
| Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps); |
| InFlag = Chain.getValue(1); |
| } |
| |
| SmallVector<SDValue, 16> ProxyRegOps; |
| SmallVector<Optional<MVT>, 16> ProxyRegTruncates; |
| |
| // Generate loads from param memory/moves from registers for result |
| if (Ins.size() > 0) { |
| SmallVector<EVT, 16> VTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0); |
| assert(VTs.size() == Ins.size() && "Bad value decomposition"); |
| |
| Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL); |
| auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign); |
| |
| SmallVector<EVT, 6> LoadVTs; |
| int VecIdx = -1; // Index of the first element of the vector. |
| |
| // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than |
| // 32-bits are sign extended or zero extended, depending on whether |
| // they are signed or unsigned types. |
| bool ExtendIntegerRetVal = |
| RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32; |
| |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| bool needTruncate = false; |
| EVT TheLoadType = VTs[i]; |
| EVT EltType = Ins[i].VT; |
| Align EltAlign = commonAlignment(RetAlign, Offsets[i]); |
| if (ExtendIntegerRetVal) { |
| TheLoadType = MVT::i32; |
| EltType = MVT::i32; |
| needTruncate = true; |
| } else if (TheLoadType.getSizeInBits() < 16) { |
| if (VTs[i].isInteger()) |
| needTruncate = true; |
| EltType = MVT::i16; |
| } |
| |
| // Record index of the very first element of the vector. |
| if (VectorInfo[i] & PVF_FIRST) { |
| assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list."); |
| VecIdx = i; |
| } |
| |
| LoadVTs.push_back(EltType); |
| |
| if (VectorInfo[i] & PVF_LAST) { |
| unsigned NumElts = LoadVTs.size(); |
| LoadVTs.push_back(MVT::Other); |
| LoadVTs.push_back(MVT::Glue); |
| NVPTXISD::NodeType Op; |
| switch (NumElts) { |
| case 1: |
| Op = NVPTXISD::LoadParam; |
| break; |
| case 2: |
| Op = NVPTXISD::LoadParamV2; |
| break; |
| case 4: |
| Op = NVPTXISD::LoadParamV4; |
| break; |
| default: |
| llvm_unreachable("Invalid vector info."); |
| } |
| |
| SDValue LoadOperands[] = { |
| Chain, DAG.getConstant(1, dl, MVT::i32), |
| DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag}; |
| SDValue RetVal = DAG.getMemIntrinsicNode( |
| Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType, |
| MachinePointerInfo(), EltAlign, |
| MachineMemOperand::MOLoad); |
| |
| for (unsigned j = 0; j < NumElts; ++j) { |
| ProxyRegOps.push_back(RetVal.getValue(j)); |
| |
| if (needTruncate) |
| ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT)); |
| else |
| ProxyRegTruncates.push_back(Optional<MVT>()); |
| } |
| |
| Chain = RetVal.getValue(NumElts); |
| InFlag = RetVal.getValue(NumElts + 1); |
| |
| // Cleanup |
| VecIdx = -1; |
| LoadVTs.clear(); |
| } |
| } |
| } |
| |
| Chain = DAG.getCALLSEQ_END( |
| Chain, DAG.getIntPtrConstant(UniqueCallSite, dl, true), |
| DAG.getIntPtrConstant(UniqueCallSite + 1, dl, true), InFlag, dl); |
| InFlag = Chain.getValue(1); |
| |
| // Append ProxyReg instructions to the chain to make sure that `callseq_end` |
| // will not get lost. Otherwise, during libcalls expansion, the nodes can become |
| // dangling. |
| for (unsigned i = 0; i < ProxyRegOps.size(); ++i) { |
| SDValue Ret = DAG.getNode( |
| NVPTXISD::ProxyReg, dl, |
| DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue), |
| { Chain, ProxyRegOps[i], InFlag } |
| ); |
| |
| Chain = Ret.getValue(1); |
| InFlag = Ret.getValue(2); |
| |
| if (ProxyRegTruncates[i].hasValue()) { |
| Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret); |
| } |
| |
| InVals.push_back(Ret); |
| } |
| |
| // set isTailCall to false for now, until we figure out how to express |
| // tail call optimization in PTX |
| isTailCall = false; |
| return Chain; |
| } |
| |
| // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() |
| // (see LegalizeDAG.cpp). This is slow and uses local memory. |
| // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 |
| SDValue |
| NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| SmallVector<SDValue, 8> Ops; |
| unsigned NumOperands = Node->getNumOperands(); |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| SDValue SubOp = Node->getOperand(i); |
| EVT VVT = SubOp.getNode()->getValueType(0); |
| EVT EltVT = VVT.getVectorElementType(); |
| unsigned NumSubElem = VVT.getVectorNumElements(); |
| for (unsigned j = 0; j < NumSubElem; ++j) { |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, |
| DAG.getIntPtrConstant(j, dl))); |
| } |
| } |
| return DAG.getBuildVector(Node->getValueType(0), dl, Ops); |
| } |
| |
| // We can init constant f16x2 with a single .b32 move. Normally it |
| // would get lowered as two constant loads and vector-packing move. |
| // mov.b16 %h1, 0x4000; |
| // mov.b16 %h2, 0x3C00; |
| // mov.b32 %hh2, {%h2, %h1}; |
| // Instead we want just a constant move: |
| // mov.b32 %hh2, 0x40003C00 |
| // |
| // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0 |
| // generates good SASS in both cases. |
| SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| //return Op; |
| if (!(Op->getValueType(0) == MVT::v2f16 && |
| isa<ConstantFPSDNode>(Op->getOperand(0)) && |
| isa<ConstantFPSDNode>(Op->getOperand(1)))) |
| return Op; |
| |
| APInt E0 = |
| cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt(); |
| APInt E1 = |
| cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt(); |
| SDValue Const = |
| DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32); |
| return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Index = Op->getOperand(1); |
| // Constant index will be matched by tablegen. |
| if (isa<ConstantSDNode>(Index.getNode())) |
| return Op; |
| |
| // Extract individual elements and select one of them. |
| SDValue Vector = Op->getOperand(0); |
| EVT VectorVT = Vector.getValueType(); |
| assert(VectorVT == MVT::v2f16 && "Unexpected vector type."); |
| EVT EltVT = VectorVT.getVectorElementType(); |
| |
| SDLoc dl(Op.getNode()); |
| SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(0, dl)); |
| SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector, |
| DAG.getIntPtrConstant(1, dl)); |
| return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1, |
| ISD::CondCode::SETEQ); |
| } |
| |
| /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // dHi = aHi >> Amt |
| // dLo = shf.r.clamp aLo, aHi, Amt |
| |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi, |
| ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} >> Amt |
| // - if (Amt>=size) then |
| // dLo = aHi >> (Amt-size) |
| // dHi = aHi >> Amt (this is either all 0 or all 1) |
| // else |
| // dLo = (aLo >>logic Amt) | (aHi << (size-Amt)) |
| // dHi = aHi >> Amt |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which |
| /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift |
| /// amount, or |
| /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift |
| /// amount. |
| SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| if (VTBits == 32 && STI.getSmVersion() >= 35) { |
| // For 32bit and sm35, we can use the funnel shift 'shf' instruction. |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // dHi = shf.l.clamp aLo, aHi, Amt |
| // dLo = aLo << Amt |
| |
| SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi, |
| ShAmt); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| else { |
| // {dHi, dLo} = {aHi, aLo} << Amt |
| // - if (Amt>=size) then |
| // dLo = aLo << Amt (all 0) |
| // dLo = aLo << (Amt-size) |
| // else |
| // dLo = aLo << Amt |
| // dHi = (aHi << Amt) | (aLo >> (size-Amt)) |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i32), |
| ISD::SETGE); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32) |
| return LowerFROUND32(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFROUND64(Op, DAG); |
| |
| llvm_unreachable("unhandled type"); |
| } |
| |
| // This is the the rounding method used in CUDA libdevice in C like code: |
| // float roundf(float A) |
| // { |
| // float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)); |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| // } |
| SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f)) |
| SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A); |
| const int SignBitMask = 0x80000000; |
| SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast, |
| DAG.getConstant(SignBitMask, SL, MVT::i32)); |
| const int PointFiveInBits = 0x3F000000; |
| SDValue PointFiveWithSignRaw = |
| DAG.getNode(ISD::OR, SL, MVT::i32, Sign, |
| DAG.getConstant(PointFiveInBits, SL, MVT::i32)); |
| SDValue PointFiveWithSign = |
| DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT), |
| ISD::SETOGT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| |
| // return abs(A) < 0.5 ? (float)(int)A : RoundedA; |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA); |
| } |
| |
| // The implementation of round(double) is similar to that of round(float) in |
| // that they both separate the value range into three regions and use a method |
| // specific to the region to round the values. However, round(double) first |
| // calculates the round of the absolute value and then adds the sign back while |
| // round(float) directly rounds the value with sign. |
| SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue A = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A); |
| |
| // double RoundedA = (double) (int) (abs(A) + 0.5f); |
| SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT)); |
| SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA); |
| |
| // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA; |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA, |
| DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT); |
| RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall, |
| DAG.getConstantFP(0, SL, VT), |
| RoundedA); |
| |
| // Add sign to rounded_A |
| RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A); |
| DAG.getNode(ISD::FTRUNC, SL, VT, A); |
| |
| // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA; |
| SDValue IsLarge = |
| DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT), |
| ISD::SETOGT); |
| return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA); |
| } |
| |
| |
| |
| SDValue |
| NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| case ISD::RETURNADDR: |
| return SDValue(); |
| case ISD::FRAMEADDR: |
| return SDValue(); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: |
| return Op; |
| case ISD::BUILD_VECTOR: |
| return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: |
| return Op; |
| case ISD::EXTRACT_VECTOR_ELT: |
| return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::CONCAT_VECTORS: |
| return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::STORE: |
| return LowerSTORE(Op, DAG); |
| case ISD::LOAD: |
| return LowerLOAD(Op, DAG); |
| case ISD::SHL_PARTS: |
| return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| return LowerShiftRightParts(Op, DAG); |
| case ISD::SELECT: |
| return LowerSelect(Op, DAG); |
| case ISD::FROUND: |
| return LowerFROUND(Op, DAG); |
| default: |
| llvm_unreachable("Custom lowering not defined for operation"); |
| } |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Op0 = Op->getOperand(0); |
| SDValue Op1 = Op->getOperand(1); |
| SDValue Op2 = Op->getOperand(2); |
| SDLoc DL(Op.getNode()); |
| |
| assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"); |
| |
| Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1); |
| Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2); |
| SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select); |
| |
| return Trunc; |
| } |
| |
| SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getValueType() == MVT::i1) |
| return LowerLOADi1(Op, DAG); |
| |
| // v2f16 is legal, so we can't rely on legalizer to handle unaligned |
| // loads and have to handle it here. |
| if (Op.getValueType() == MVT::v2f16) { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT MemVT = Load->getMemoryVT(); |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| MemVT, *Load->getMemOperand())) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, SDLoc(Op)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // v = ld i1* addr |
| // => |
| // v1 = ld i8* addr (-> i16) |
| // v = trunc i16 to i1 |
| SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| LoadSDNode *LD = cast<LoadSDNode>(Node); |
| SDLoc dl(Node); |
| assert(LD->getExtensionType() == ISD::NON_EXTLOAD); |
| assert(Node->getValueType(0) == MVT::i1 && |
| "Custom lowering for i1 load only"); |
| SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(), |
| LD->getPointerInfo(), LD->getAlignment(), |
| LD->getMemOperand()->getFlags()); |
| SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD); |
| // The legalizer (the caller) is expecting two values from the legalized |
| // load, so we build a MergeValues node for it. See ExpandUnalignedLoad() |
| // in LegalizeDAG.cpp which also uses MergeValues. |
| SDValue Ops[] = { result, LD->getChain() }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| EVT VT = Store->getMemoryVT(); |
| |
| if (VT == MVT::i1) |
| return LowerSTOREi1(Op, DAG); |
| |
| // v2f16 is legal, so we can't rely on legalizer to handle unaligned |
| // stores and have to handle it here. |
| if (VT == MVT::v2f16 && |
| !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| VT, *Store->getMemOperand())) |
| return expandUnalignedStore(Store, DAG); |
| |
| if (VT.isVector()) |
| return LowerSTOREVector(Op, DAG); |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *N = Op.getNode(); |
| SDValue Val = N->getOperand(1); |
| SDLoc DL(N); |
| EVT ValVT = Val.getValueType(); |
| |
| if (ValVT.isVector()) { |
| // We only handle "native" vector sizes for now, e.g. <4 x double> is not |
| // legal. We can (and should) split that into 2 stores of <2 x double> here |
| // but I'm leaving that as a TODO for now. |
| if (!ValVT.isSimple()) |
| return SDValue(); |
| switch (ValVT.getSimpleVT().SimpleTy) { |
| default: |
| return SDValue(); |
| case MVT::v2i8: |
| case MVT::v2i16: |
| case MVT::v2i32: |
| case MVT::v2i64: |
| case MVT::v2f16: |
| case MVT::v2f32: |
| case MVT::v2f64: |
| case MVT::v4i8: |
| case MVT::v4i16: |
| case MVT::v4i32: |
| case MVT::v4f16: |
| case MVT::v4f32: |
| case MVT::v8f16: // <4 x f16x2> |
| // This is a "native" vector type |
| break; |
| } |
| |
| MemSDNode *MemSD = cast<MemSDNode>(N); |
| const DataLayout &TD = DAG.getDataLayout(); |
| |
| Align Alignment = MemSD->getAlign(); |
| Align PrefAlign = |
| TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext())); |
| if (Alignment < PrefAlign) { |
| // This store is not sufficiently aligned, so bail out and let this vector |
| // store be scalarized. Note that we may still be able to emit smaller |
| // vector stores. For example, if we are storing a <4 x float> with an |
| // alignment of 8, this check will fail but the legalizer will try again |
| // with 2 x <2 x float>, which will succeed with an alignment of 8. |
| return SDValue(); |
| } |
| |
| unsigned Opcode = 0; |
| EVT EltVT = ValVT.getVectorElementType(); |
| unsigned NumElts = ValVT.getVectorNumElements(); |
| |
| // Since StoreV2 is a target node, we cannot rely on DAG type legalization. |
| // Therefore, we must ensure the type is legal. For i1 and i8, we set the |
| // stored type to i16 and propagate the "real" type as the memory type. |
| bool NeedExt = false; |
| if (EltVT.getSizeInBits() < 16) |
| NeedExt = true; |
| |
| bool StoreF16x2 = false; |
| switch (NumElts) { |
| default: |
| return SDValue(); |
| case 2: |
| Opcode = NVPTXISD::StoreV2; |
| break; |
| case 4: |
| Opcode = NVPTXISD::StoreV4; |
| break; |
| case 8: |
| // v8f16 is a special case. PTX doesn't have st.v8.f16 |
| // instruction. Instead, we split the vector into v2f16 chunks and |
| // store them with st.v4.b32. |
| assert(EltVT == MVT::f16 && "Wrong type for the vector."); |
| Opcode = NVPTXISD::StoreV4; |
| StoreF16x2 = true; |
| break; |
| } |
| |
| SmallVector<SDValue, 8> Ops; |
| |
| // First is the chain |
| Ops.push_back(N->getOperand(0)); |
| |
| if (StoreF16x2) { |
| // Combine f16,f16 -> v2f16 |
| NumElts /= 2; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, |
| DAG.getIntPtrConstant(i * 2, DL)); |
| SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val, |
| DAG.getIntPtrConstant(i * 2 + 1, DL)); |
| SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1); |
| Ops.push_back(V2); |
| } |
| } else { |
| // Then the split values |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val, |
| DAG.getIntPtrConstant(i, DL)); |
| if (NeedExt) |
| ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal); |
| Ops.push_back(ExtVal); |
| } |
| } |
| |
| // Then any remaining arguments |
| Ops.append(N->op_begin() + 2, N->op_end()); |
| |
| SDValue NewSt = |
| DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops, |
| MemSD->getMemoryVT(), MemSD->getMemOperand()); |
| |
| // return DCI.CombineTo(N, NewSt, true); |
| return NewSt; |
| } |
| |
| return SDValue(); |
| } |
| |
| // st i1 v, addr |
| // => |
| // v1 = zxt v to i16 |
| // st.u8 i16, addr |
| SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| SDLoc dl(Node); |
| StoreSDNode *ST = cast<StoreSDNode>(Node); |
| SDValue Tmp1 = ST->getChain(); |
| SDValue Tmp2 = ST->getBasePtr(); |
| SDValue Tmp3 = ST->getValue(); |
| assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"); |
| Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3); |
| SDValue Result = |
| DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8, |
| ST->getAlignment(), ST->getMemOperand()->getFlags()); |
| return Result; |
| } |
| |
| SDValue |
| NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const { |
| std::string ParamSym; |
| raw_string_ostream ParamStr(ParamSym); |
| |
| ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx; |
| ParamStr.flush(); |
| |
| std::string *SavedStr = |
| nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str()); |
| return DAG.getTargetExternalSymbol(SavedStr->c_str(), v); |
| } |
| |
| // Check to see if the kernel argument is image*_t or sampler_t |
| |
| static bool isImageOrSamplerVal(const Value *arg, const Module *context) { |
| static const char *const specialTypes[] = { "struct._image2d_t", |
| "struct._image3d_t", |
| "struct._sampler_t" }; |
| |
| Type *Ty = arg->getType(); |
| auto *PTy = dyn_cast<PointerType>(Ty); |
| |
| if (!PTy) |
| return false; |
| |
| if (!context) |
| return false; |
| |
| auto *STy = dyn_cast<StructType>(PTy->getElementType()); |
| if (!STy || STy->isLiteral()) |
| return false; |
| |
| return llvm::is_contained(specialTypes, STy->getName()); |
| } |
| |
| SDValue NVPTXTargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const DataLayout &DL = DAG.getDataLayout(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| const Function *F = &MF.getFunction(); |
| const AttributeList &PAL = F->getAttributes(); |
| const TargetLowering *TLI = STI.getTargetLowering(); |
| |
| SDValue Root = DAG.getRoot(); |
| std::vector<SDValue> OutChains; |
| |
| bool isABI = (STI.getSmVersion() >= 20); |
| assert(isABI && "Non-ABI compilation is not supported"); |
| if (!isABI) |
| return Chain; |
| |
| std::vector<Type *> argTypes; |
| std::vector<const Argument *> theArgs; |
| for (const Argument &I : F->args()) { |
| theArgs.push_back(&I); |
| argTypes.push_back(I.getType()); |
| } |
| // argTypes.size() (or theArgs.size()) and Ins.size() need not match. |
| // Ins.size() will be larger |
| // * if there is an aggregate argument with multiple fields (each field |
| // showing up separately in Ins) |
| // * if there is a vector argument with more than typical vector-length |
| // elements (generally if more than 4) where each vector element is |
| // individually present in Ins. |
| // So a different index should be used for indexing into Ins. |
| // See similar issue in LowerCall. |
| unsigned InsIdx = 0; |
| |
| int idx = 0; |
| for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) { |
| Type *Ty = argTypes[i]; |
| |
| // If the kernel argument is image*_t or sampler_t, convert it to |
| // a i32 constant holding the parameter position. This can later |
| // matched in the AsmPrinter to output the correct mangled name. |
| if (isImageOrSamplerVal( |
| theArgs[i], |
| (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() |
| : nullptr))) { |
| assert(isKernelFunction(*F) && |
| "Only kernels can have image/sampler params"); |
| InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32)); |
| continue; |
| } |
| |
| if (theArgs[i]->use_empty()) { |
| // argument is dead |
| if (Ty->isAggregateType() || Ty->isIntegerTy(128)) { |
| SmallVector<EVT, 16> vtparts; |
| |
| ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts); |
| assert(vtparts.size() > 0 && "empty aggregate type not expected"); |
| for (unsigned parti = 0, parte = vtparts.size(); parti != parte; |
| ++parti) { |
| InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT)); |
| ++InsIdx; |
| } |
| if (vtparts.size() > 0) |
| --InsIdx; |
| continue; |
| } |
| if (Ty->isVectorTy()) { |
| EVT ObjectVT = getValueType( |