| //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the ARM-specific support for the FastISel class. Some |
| // of the target-specific code is generated by tablegen in the file |
| // ARMGenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMCallingConv.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMISelLowering.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "Utils/ARMBaseInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| // All possible address modes, plus some. |
| struct Address { |
| enum { |
| RegBase, |
| FrameIndexBase |
| } BaseType = RegBase; |
| |
| union { |
| unsigned Reg; |
| int FI; |
| } Base; |
| |
| int Offset = 0; |
| |
| // Innocuous defaults for our address. |
| Address() { |
| Base.Reg = 0; |
| } |
| }; |
| |
| class ARMFastISel final : public FastISel { |
| /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const ARMSubtarget *Subtarget; |
| Module &M; |
| const TargetMachine &TM; |
| const TargetInstrInfo &TII; |
| const TargetLowering &TLI; |
| ARMFunctionInfo *AFI; |
| |
| // Convenience variables to avoid some queries. |
| bool isThumb2; |
| LLVMContext *Context; |
| |
| public: |
| explicit ARMFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) |
| : FastISel(funcInfo, libInfo), |
| Subtarget( |
| &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), |
| M(const_cast<Module &>(*funcInfo.Fn->getParent())), |
| TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), |
| TLI(*Subtarget->getTargetLowering()) { |
| AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); |
| isThumb2 = AFI->isThumbFunction(); |
| Context = &funcInfo.Fn->getContext(); |
| } |
| |
| private: |
| // Code from FastISel.cpp. |
| |
| unsigned fastEmitInst_r(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, unsigned Op0); |
| unsigned fastEmitInst_rr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, unsigned Op1); |
| unsigned fastEmitInst_ri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, uint64_t Imm); |
| unsigned fastEmitInst_i(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| uint64_t Imm); |
| |
| // Backend specific FastISel code. |
| |
| bool fastSelectInstruction(const Instruction *I) override; |
| unsigned fastMaterializeConstant(const Constant *C) override; |
| unsigned fastMaterializeAlloca(const AllocaInst *AI) override; |
| bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
| const LoadInst *LI) override; |
| bool fastLowerArguments() override; |
| |
| #include "ARMGenFastISel.inc" |
| |
| // Instruction selection routines. |
| |
| bool SelectLoad(const Instruction *I); |
| bool SelectStore(const Instruction *I); |
| bool SelectBranch(const Instruction *I); |
| bool SelectIndirectBr(const Instruction *I); |
| bool SelectCmp(const Instruction *I); |
| bool SelectFPExt(const Instruction *I); |
| bool SelectFPTrunc(const Instruction *I); |
| bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); |
| bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); |
| bool SelectIToFP(const Instruction *I, bool isSigned); |
| bool SelectFPToI(const Instruction *I, bool isSigned); |
| bool SelectDiv(const Instruction *I, bool isSigned); |
| bool SelectRem(const Instruction *I, bool isSigned); |
| bool SelectCall(const Instruction *I, const char *IntrMemName); |
| bool SelectIntrinsicCall(const IntrinsicInst &I); |
| bool SelectSelect(const Instruction *I); |
| bool SelectRet(const Instruction *I); |
| bool SelectTrunc(const Instruction *I); |
| bool SelectIntExt(const Instruction *I); |
| bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); |
| |
| // Utility routines. |
| |
| bool isPositionIndependent() const; |
| bool isTypeLegal(Type *Ty, MVT &VT); |
| bool isLoadTypeLegal(Type *Ty, MVT &VT); |
| bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, |
| bool isZExt); |
| bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
| unsigned Alignment = 0, bool isZExt = true, |
| bool allocReg = true); |
| bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, |
| unsigned Alignment = 0); |
| bool ARMComputeAddress(const Value *Obj, Address &Addr); |
| void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); |
| bool ARMIsMemCpySmall(uint64_t Len); |
| bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
| unsigned Alignment); |
| unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); |
| unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); |
| unsigned ARMMaterializeInt(const Constant *C, MVT VT); |
| unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); |
| unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); |
| unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); |
| unsigned ARMSelectCallOp(bool UseReg); |
| unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); |
| |
| const TargetLowering *getTargetLowering() { return &TLI; } |
| |
| // Call handling routines. |
| |
| CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, |
| bool Return, |
| bool isVarArg); |
| bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, |
| SmallVectorImpl<Register> &ArgRegs, |
| SmallVectorImpl<MVT> &ArgVTs, |
| SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| SmallVectorImpl<Register> &RegArgs, |
| CallingConv::ID CC, |
| unsigned &NumBytes, |
| bool isVarArg); |
| unsigned getLibcallReg(const Twine &Name); |
| bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, |
| const Instruction *I, CallingConv::ID CC, |
| unsigned &NumBytes, bool isVarArg); |
| bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); |
| |
| // OptionalDef handling routines. |
| |
| bool isARMNEONPred(const MachineInstr *MI); |
| bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); |
| const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); |
| void AddLoadStoreOperands(MVT VT, Address &Addr, |
| const MachineInstrBuilder &MIB, |
| MachineMemOperand::Flags Flags, bool useAM3); |
| }; |
| |
| } // end anonymous namespace |
| |
| // DefinesOptionalPredicate - This is different from DefinesPredicate in that |
| // we don't care about implicit defs here, just places we'll need to add a |
| // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. |
| bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { |
| if (!MI->hasOptionalDef()) |
| return false; |
| |
| // Look to see if our OptionalDef is defining CPSR or CCR. |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || !MO.isDef()) continue; |
| if (MO.getReg() == ARM::CPSR) |
| *CPSR = true; |
| } |
| return true; |
| } |
| |
| bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| |
| // If we're a thumb2 or not NEON function we'll be handled via isPredicable. |
| if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || |
| AFI->isThumb2Function()) |
| return MI->isPredicable(); |
| |
| for (const MCOperandInfo &opInfo : MCID.operands()) |
| if (opInfo.isPredicate()) |
| return true; |
| |
| return false; |
| } |
| |
| // If the machine is predicable go ahead and add the predicate operands, if |
| // it needs default CC operands add those. |
| // TODO: If we want to support thumb1 then we'll need to deal with optional |
| // CPSR defs that need to be added before the remaining operands. See s_cc_out |
| // for descriptions why. |
| const MachineInstrBuilder & |
| ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { |
| MachineInstr *MI = &*MIB; |
| |
| // Do we use a predicate? or... |
| // Are we NEON in ARM mode and have a predicate operand? If so, I know |
| // we're not predicable but add it anyways. |
| if (isARMNEONPred(MI)) |
| MIB.add(predOps(ARMCC::AL)); |
| |
| // Do we optionally set a predicate? Preds is size > 0 iff the predicate |
| // defines CPSR. All other OptionalDefines in ARM are the CCR register. |
| bool CPSR = false; |
| if (DefinesOptionalPredicate(MI, &CPSR)) |
| MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); |
| return MIB; |
| } |
| |
| unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0) { |
| Register ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| // Make sure the input operand is sufficiently constrained to be legal |
| // for this instruction. |
| Op0 = constrainOperandRegClass(II, Op0, 1); |
| if (II.getNumDefs() >= 1) { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, |
| ResultReg).addReg(Op0)); |
| } else { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(Op0)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(II.ImplicitDefs[0])); |
| } |
| return ResultReg; |
| } |
| |
| unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, unsigned Op1) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| // Make sure the input operands are sufficiently constrained to be legal |
| // for this instruction. |
| Op0 = constrainOperandRegClass(II, Op0, 1); |
| Op1 = constrainOperandRegClass(II, Op1, 2); |
| |
| if (II.getNumDefs() >= 1) { |
| AddOptionalDefs( |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) |
| .addReg(Op0) |
| .addReg(Op1)); |
| } else { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(Op0) |
| .addReg(Op1)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(II.ImplicitDefs[0])); |
| } |
| return ResultReg; |
| } |
| |
| unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| unsigned Op0, uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| // Make sure the input operand is sufficiently constrained to be legal |
| // for this instruction. |
| Op0 = constrainOperandRegClass(II, Op0, 1); |
| if (II.getNumDefs() >= 1) { |
| AddOptionalDefs( |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) |
| .addReg(Op0) |
| .addImm(Imm)); |
| } else { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(Op0) |
| .addImm(Imm)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(II.ImplicitDefs[0])); |
| } |
| return ResultReg; |
| } |
| |
| unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, |
| const TargetRegisterClass *RC, |
| uint64_t Imm) { |
| unsigned ResultReg = createResultReg(RC); |
| const MCInstrDesc &II = TII.get(MachineInstOpcode); |
| |
| if (II.getNumDefs() >= 1) { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, |
| ResultReg).addImm(Imm)); |
| } else { |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addImm(Imm)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), ResultReg) |
| .addReg(II.ImplicitDefs[0])); |
| } |
| return ResultReg; |
| } |
| |
| // TODO: Don't worry about 64-bit now, but when this is fixed remove the |
| // checks from the various callers. |
| unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { |
| if (VT == MVT::f64) return 0; |
| |
| unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVSR), MoveReg) |
| .addReg(SrcReg)); |
| return MoveReg; |
| } |
| |
| unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { |
| if (VT == MVT::i64) return 0; |
| |
| unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVRS), MoveReg) |
| .addReg(SrcReg)); |
| return MoveReg; |
| } |
| |
| // For double width floating point we need to materialize two constants |
| // (the high and the low) into integer registers then use a move to get |
| // the combined constant into an FP reg. |
| unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { |
| const APFloat Val = CFP->getValueAPF(); |
| bool is64bit = VT == MVT::f64; |
| |
| // This checks to see if we can use VFP3 instructions to materialize |
| // a constant, otherwise we have to go through the constant pool. |
| if (TLI.isFPImmLegal(Val, VT)) { |
| int Imm; |
| unsigned Opc; |
| if (is64bit) { |
| Imm = ARM_AM::getFP64Imm(Val); |
| Opc = ARM::FCONSTD; |
| } else { |
| Imm = ARM_AM::getFP32Imm(Val); |
| Opc = ARM::FCONSTS; |
| } |
| unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), DestReg).addImm(Imm)); |
| return DestReg; |
| } |
| |
| // Require VFP2 for loading fp constants. |
| if (!Subtarget->hasVFP2Base()) return false; |
| |
| // MachineConstantPool wants an explicit alignment. |
| Align Alignment = DL.getPrefTypeAlign(CFP->getType()); |
| unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); |
| unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); |
| unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; |
| |
| // The extra reg is for addrmode5. |
| AddOptionalDefs( |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) |
| .addConstantPoolIndex(Idx) |
| .addReg(0)); |
| return DestReg; |
| } |
| |
| unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { |
| if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) |
| return 0; |
| |
| // If we can do this in a single instruction without a constant pool entry |
| // do so now. |
| const ConstantInt *CI = cast<ConstantInt>(C); |
| if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { |
| unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : |
| &ARM::GPRRegClass; |
| unsigned ImmReg = createResultReg(RC); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ImmReg) |
| .addImm(CI->getZExtValue())); |
| return ImmReg; |
| } |
| |
| // Use MVN to emit negative constants. |
| if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { |
| unsigned Imm = (unsigned)~(CI->getSExtValue()); |
| bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : |
| (ARM_AM::getSOImmVal(Imm) != -1); |
| if (UseImm) { |
| unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : |
| &ARM::GPRRegClass; |
| unsigned ImmReg = createResultReg(RC); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ImmReg) |
| .addImm(Imm)); |
| return ImmReg; |
| } |
| } |
| |
| unsigned ResultReg = 0; |
| if (Subtarget->useMovt()) |
| ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); |
| |
| if (ResultReg) |
| return ResultReg; |
| |
| // Load from constant pool. For now 32-bit only. |
| if (VT != MVT::i32) |
| return 0; |
| |
| // MachineConstantPool wants an explicit alignment. |
| Align Alignment = DL.getPrefTypeAlign(C->getType()); |
| unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); |
| ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| if (isThumb2) |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::t2LDRpci), ResultReg) |
| .addConstantPoolIndex(Idx)); |
| else { |
| // The extra immediate is for addrmode2. |
| ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::LDRcp), ResultReg) |
| .addConstantPoolIndex(Idx) |
| .addImm(0)); |
| } |
| return ResultReg; |
| } |
| |
| bool ARMFastISel::isPositionIndependent() const { |
| return TLI.isPositionIndependent(); |
| } |
| |
| unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { |
| // For now 32-bit only. |
| if (VT != MVT::i32 || GV->isThreadLocal()) return 0; |
| |
| // ROPI/RWPI not currently supported. |
| if (Subtarget->isROPI() || Subtarget->isRWPI()) |
| return 0; |
| |
| bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass |
| : &ARM::GPRRegClass; |
| unsigned DestReg = createResultReg(RC); |
| |
| // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| bool IsThreadLocal = GVar && GVar->isThreadLocal(); |
| if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; |
| |
| bool IsPositionIndependent = isPositionIndependent(); |
| // Use movw+movt when possible, it avoids constant pool entries. |
| // Non-darwin targets only support static movt relocations in FastISel. |
| if (Subtarget->useMovt() && |
| (Subtarget->isTargetMachO() || !IsPositionIndependent)) { |
| unsigned Opc; |
| unsigned char TF = 0; |
| if (Subtarget->isTargetMachO()) |
| TF = ARMII::MO_NONLAZY; |
| |
| if (IsPositionIndependent) |
| Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; |
| else |
| Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); |
| } else { |
| // MachineConstantPool wants an explicit alignment. |
| Align Alignment = DL.getPrefTypeAlign(GV->getType()); |
| |
| if (Subtarget->isTargetELF() && IsPositionIndependent) |
| return ARMLowerPICELF(GV, VT); |
| |
| // Grab index. |
| unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; |
| unsigned Id = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, |
| ARMCP::CPValue, |
| PCAdj); |
| unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); |
| |
| // Load value. |
| MachineInstrBuilder MIB; |
| if (isThumb2) { |
| unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), |
| DestReg).addConstantPoolIndex(Idx); |
| if (IsPositionIndependent) |
| MIB.addImm(Id); |
| AddOptionalDefs(MIB); |
| } else { |
| // The extra immediate is for addrmode2. |
| DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::LDRcp), DestReg) |
| .addConstantPoolIndex(Idx) |
| .addImm(0); |
| AddOptionalDefs(MIB); |
| |
| if (IsPositionIndependent) { |
| unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; |
| unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); |
| |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DbgLoc, TII.get(Opc), NewDestReg) |
| .addReg(DestReg) |
| .addImm(Id); |
| AddOptionalDefs(MIB); |
| return NewDestReg; |
| } |
| } |
| } |
| |
| if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || |
| (Subtarget->isTargetMachO() && IsIndirect) || |
| Subtarget->genLongCalls()) { |
| MachineInstrBuilder MIB; |
| unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); |
| if (isThumb2) |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::t2LDRi12), NewDestReg) |
| .addReg(DestReg) |
| .addImm(0); |
| else |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::LDRi12), NewDestReg) |
| .addReg(DestReg) |
| .addImm(0); |
| DestReg = NewDestReg; |
| AddOptionalDefs(MIB); |
| } |
| |
| return DestReg; |
| } |
| |
| unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { |
| EVT CEVT = TLI.getValueType(DL, C->getType(), true); |
| |
| // Only handle simple types. |
| if (!CEVT.isSimple()) return 0; |
| MVT VT = CEVT.getSimpleVT(); |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return ARMMaterializeFP(CFP, VT); |
| else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return ARMMaterializeGV(GV, VT); |
| else if (isa<ConstantInt>(C)) |
| return ARMMaterializeInt(C, VT); |
| |
| return 0; |
| } |
| |
| // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); |
| |
| unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { |
| // Don't handle dynamic allocas. |
| if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; |
| |
| MVT VT; |
| if (!isLoadTypeLegal(AI->getType(), VT)) return 0; |
| |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| |
| // This will get lowered later into the correct offsets and registers |
| // via rewriteXFrameIndex. |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; |
| const TargetRegisterClass* RC = TLI.getRegClassFor(VT); |
| unsigned ResultReg = createResultReg(RC); |
| ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); |
| |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg) |
| .addFrameIndex(SI->second) |
| .addImm(0)); |
| return ResultReg; |
| } |
| |
| return 0; |
| } |
| |
| bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { |
| EVT evt = TLI.getValueType(DL, Ty, true); |
| |
| // Only handle simple types. |
| if (evt == MVT::Other || !evt.isSimple()) return false; |
| VT = evt.getSimpleVT(); |
| |
| // Handle all legal types, i.e. a register that will directly hold this |
| // value. |
| return TLI.isTypeLegal(VT); |
| } |
| |
| bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { |
| if (isTypeLegal(Ty, VT)) return true; |
| |
| // If this is a type than can be sign or zero-extended to a basic operation |
| // go ahead and accept it now. |
| if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| return true; |
| |
| return false; |
| } |
| |
| // Computes the address to get to an object. |
| bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { |
| // Some boilerplate from the X86 FastISel. |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(Obj)) { |
| // Don't walk into other basic blocks unless the object is an alloca from |
| // another block, otherwise it may not have a virtual register assigned. |
| if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || |
| FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) |
| if (Ty->getAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| switch (Opcode) { |
| default: |
| break; |
| case Instruction::BitCast: |
| // Look through bitcasts. |
| return ARMComputeAddress(U->getOperand(0), Addr); |
| case Instruction::IntToPtr: |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(DL, U->getOperand(0)->getType()) == |
| TLI.getPointerTy(DL)) |
| return ARMComputeAddress(U->getOperand(0), Addr); |
| break; |
| case Instruction::PtrToInt: |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) |
| return ARMComputeAddress(U->getOperand(0), Addr); |
| break; |
| case Instruction::GetElementPtr: { |
| Address SavedAddr = Addr; |
| int TmpOffset = Addr.Offset; |
| |
| // Iterate through the GEP folding the constants into offsets where |
| // we can. |
| gep_type_iterator GTI = gep_type_begin(U); |
| for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
| i != e; ++i, ++GTI) { |
| const Value *Op = *i; |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); |
| TmpOffset += SL->getElementOffset(Idx); |
| } else { |
| uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); |
| while (true) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| TmpOffset += CI->getSExtValue() * S; |
| break; |
| } |
| if (canFoldAddIntoGEP(U, Op)) { |
| // A compatible add with a constant operand. Fold the constant. |
| ConstantInt *CI = |
| cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| TmpOffset += CI->getSExtValue() * S; |
| // Iterate on the other operand. |
| Op = cast<AddOperator>(Op)->getOperand(0); |
| continue; |
| } |
| // Unsupported |
| goto unsupported_gep; |
| } |
| } |
| } |
| |
| // Try to grab the base operand now. |
| Addr.Offset = TmpOffset; |
| if (ARMComputeAddress(U->getOperand(0), Addr)) return true; |
| |
| // We failed, restore everything and try the other options. |
| Addr = SavedAddr; |
| |
| unsupported_gep: |
| break; |
| } |
| case Instruction::Alloca: { |
| const AllocaInst *AI = cast<AllocaInst>(Obj); |
| DenseMap<const AllocaInst*, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| Addr.BaseType = Address::FrameIndexBase; |
| Addr.Base.FI = SI->second; |
| return true; |
| } |
| break; |
| } |
| } |
| |
| // Try to get this in a register if nothing else has worked. |
| if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); |
| return Addr.Base.Reg != 0; |
| } |
| |
| void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { |
| bool needsLowering = false; |
| switch (VT.SimpleTy) { |
| default: llvm_unreachable("Unhandled load/store type!"); |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (!useAM3) { |
| // Integer loads/stores handle 12-bit offsets. |
| needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); |
| // Handle negative offsets. |
| if (needsLowering && isThumb2) |
| needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && |
| Addr.Offset > -256); |
| } else { |
| // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. |
| needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); |
| } |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| // Floating point operands handle 8-bit offsets. |
| needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); |
| break; |
| } |
| |
| // If this is a stack pointer and the offset needs to be simplified then |
| // put the alloca address into a register, set the base type back to |
| // register and continue. This should almost never happen. |
| if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass; |
| unsigned ResultReg = createResultReg(RC); |
| unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg) |
| .addFrameIndex(Addr.Base.FI) |
| .addImm(0)); |
| Addr.Base.Reg = ResultReg; |
| Addr.BaseType = Address::RegBase; |
| } |
| |
| // Since the offset is too large for the load/store instruction |
| // get the reg+offset into a register. |
| if (needsLowering) { |
| Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, |
| Addr.Offset, MVT::i32); |
| Addr.Offset = 0; |
| } |
| } |
| |
| void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, |
| const MachineInstrBuilder &MIB, |
| MachineMemOperand::Flags Flags, |
| bool useAM3) { |
| // addrmode5 output depends on the selection dag addressing dividing the |
| // offset by 4 that it then later multiplies. Do this here as well. |
| if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) |
| Addr.Offset /= 4; |
| |
| // Frame base works a bit differently. Handle it separately. |
| if (Addr.BaseType == Address::FrameIndexBase) { |
| int FI = Addr.Base.FI; |
| int Offset = Addr.Offset; |
| MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, |
| MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); |
| // Now add the rest of the operands. |
| MIB.addFrameIndex(FI); |
| |
| // ARM halfword load/stores and signed byte loads need an additional |
| // operand. |
| if (useAM3) { |
| int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; |
| MIB.addReg(0); |
| MIB.addImm(Imm); |
| } else { |
| MIB.addImm(Addr.Offset); |
| } |
| MIB.addMemOperand(MMO); |
| } else { |
| // Now add the rest of the operands. |
| MIB.addReg(Addr.Base.Reg); |
| |
| // ARM halfword load/stores and signed byte loads need an additional |
| // operand. |
| if (useAM3) { |
| int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; |
| MIB.addReg(0); |
| MIB.addImm(Imm); |
| } else { |
| MIB.addImm(Addr.Offset); |
| } |
| } |
| AddOptionalDefs(MIB); |
| } |
| |
| bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, |
| unsigned Alignment, bool isZExt, bool allocReg) { |
| unsigned Opc; |
| bool useAM3 = false; |
| bool needVMOV = false; |
| const TargetRegisterClass *RC; |
| switch (VT.SimpleTy) { |
| // This is mostly going to be Neon/vector support. |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; |
| else |
| Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; |
| } else { |
| if (isZExt) { |
| Opc = ARM::LDRBi12; |
| } else { |
| Opc = ARM::LDRSB; |
| useAM3 = true; |
| } |
| } |
| RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
| break; |
| case MVT::i16: |
| if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) |
| return false; |
| |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; |
| else |
| Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; |
| } else { |
| Opc = isZExt ? ARM::LDRH : ARM::LDRSH; |
| useAM3 = true; |
| } |
| RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
| break; |
| case MVT::i32: |
| if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) |
| return false; |
| |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| Opc = ARM::t2LDRi8; |
| else |
| Opc = ARM::t2LDRi12; |
| } else { |
| Opc = ARM::LDRi12; |
| } |
| RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
| break; |
| case MVT::f32: |
| if (!Subtarget->hasVFP2Base()) return false; |
| // Unaligned loads need special handling. Floats require word-alignment. |
| if (Alignment && Alignment < 4) { |
| needVMOV = true; |
| VT = MVT::i32; |
| Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; |
| RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; |
| } else { |
| Opc = ARM::VLDRS; |
| RC = TLI.getRegClassFor(VT); |
| } |
| break; |
| case MVT::f64: |
| // Can load and store double precision even without FeatureFP64 |
| if (!Subtarget->hasVFP2Base()) return false; |
| // FIXME: Unaligned loads need special handling. Doublewords require |
| // word-alignment. |
| if (Alignment && Alignment < 4) |
| return false; |
| |
| Opc = ARM::VLDRD; |
| RC = TLI.getRegClassFor(VT); |
| break; |
| } |
| // Simplify this down to something we can handle. |
| ARMSimplifyAddress(Addr, VT, useAM3); |
| |
| // Create the base instruction, then add the operands. |
| if (allocReg) |
| ResultReg = createResultReg(RC); |
| assert(ResultReg > 255 && "Expected an allocated virtual register."); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg); |
| AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); |
| |
| // If we had an unaligned load of a float we've converted it to an regular |
| // load. Now we must move from the GRP to the FP register. |
| if (needVMOV) { |
| unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVSR), MoveReg) |
| .addReg(ResultReg)); |
| ResultReg = MoveReg; |
| } |
| return true; |
| } |
| |
| bool ARMFastISel::SelectLoad(const Instruction *I) { |
| // Atomic loads need special handling. |
| if (cast<LoadInst>(I)->isAtomic()) |
| return false; |
| |
| const Value *SV = I->getOperand(0); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(SV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| // Verify we have a legal type before going any further. |
| MVT VT; |
| if (!isLoadTypeLegal(I->getType(), VT)) |
| return false; |
| |
| // See if we can handle this address. |
| Address Addr; |
| if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; |
| |
| Register ResultReg; |
| if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) |
| return false; |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, |
| unsigned Alignment) { |
| unsigned StrOpc; |
| bool useAM3 = false; |
| switch (VT.SimpleTy) { |
| // This is mostly going to be Neon/vector support. |
| default: return false; |
| case MVT::i1: { |
| unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass); |
| unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; |
| SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), Res) |
| .addReg(SrcReg).addImm(1)); |
| SrcReg = Res; |
| LLVM_FALLTHROUGH; |
| } |
| case MVT::i8: |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| StrOpc = ARM::t2STRBi8; |
| else |
| StrOpc = ARM::t2STRBi12; |
| } else { |
| StrOpc = ARM::STRBi12; |
| } |
| break; |
| case MVT::i16: |
| if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) |
| return false; |
| |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| StrOpc = ARM::t2STRHi8; |
| else |
| StrOpc = ARM::t2STRHi12; |
| } else { |
| StrOpc = ARM::STRH; |
| useAM3 = true; |
| } |
| break; |
| case MVT::i32: |
| if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) |
| return false; |
| |
| if (isThumb2) { |
| if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) |
| StrOpc = ARM::t2STRi8; |
| else |
| StrOpc = ARM::t2STRi12; |
| } else { |
| StrOpc = ARM::STRi12; |
| } |
| break; |
| case MVT::f32: |
| if (!Subtarget->hasVFP2Base()) return false; |
| // Unaligned stores need special handling. Floats require word-alignment. |
| if (Alignment && Alignment < 4) { |
| unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVRS), MoveReg) |
| .addReg(SrcReg)); |
| SrcReg = MoveReg; |
| VT = MVT::i32; |
| StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; |
| } else { |
| StrOpc = ARM::VSTRS; |
| } |
| break; |
| case MVT::f64: |
| // Can load and store double precision even without FeatureFP64 |
| if (!Subtarget->hasVFP2Base()) return false; |
| // FIXME: Unaligned stores need special handling. Doublewords require |
| // word-alignment. |
| if (Alignment && Alignment < 4) |
| return false; |
| |
| StrOpc = ARM::VSTRD; |
| break; |
| } |
| // Simplify this down to something we can handle. |
| ARMSimplifyAddress(Addr, VT, useAM3); |
| |
| // Create the base instruction, then add the operands. |
| SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(StrOpc)) |
| .addReg(SrcReg); |
| AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectStore(const Instruction *I) { |
| Value *Op0 = I->getOperand(0); |
| unsigned SrcReg = 0; |
| |
| // Atomic stores need special handling. |
| if (cast<StoreInst>(I)->isAtomic()) |
| return false; |
| |
| const Value *PtrV = I->getOperand(1); |
| if (TLI.supportSwiftError()) { |
| // Swifterror values can come from either a function parameter with |
| // swifterror attribute or an alloca with swifterror attribute. |
| if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { |
| if (Arg->hasSwiftErrorAttr()) |
| return false; |
| } |
| |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { |
| if (Alloca->isSwiftError()) |
| return false; |
| } |
| } |
| |
| // Verify we have a legal type before going any further. |
| MVT VT; |
| if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) |
| return false; |
| |
| // Get the value to be stored into a register. |
| SrcReg = getRegForValue(Op0); |
| if (SrcReg == 0) return false; |
| |
| // See if we can handle this address. |
| Address Addr; |
| if (!ARMComputeAddress(I->getOperand(1), Addr)) |
| return false; |
| |
| if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) |
| return false; |
| return true; |
| } |
| |
| static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { |
| switch (Pred) { |
| // Needs two compares... |
| case CmpInst::FCMP_ONE: |
| case CmpInst::FCMP_UEQ: |
| default: |
| // AL is our "false" for now. The other two need more compares. |
| return ARMCC::AL; |
| case CmpInst::ICMP_EQ: |
| case CmpInst::FCMP_OEQ: |
| return ARMCC::EQ; |
| case CmpInst::ICMP_SGT: |
| case CmpInst::FCMP_OGT: |
| return ARMCC::GT; |
| case CmpInst::ICMP_SGE: |
| case CmpInst::FCMP_OGE: |
| return ARMCC::GE; |
| case CmpInst::ICMP_UGT: |
| case CmpInst::FCMP_UGT: |
| return ARMCC::HI; |
| case CmpInst::FCMP_OLT: |
| return ARMCC::MI; |
| case CmpInst::ICMP_ULE: |
| case CmpInst::FCMP_OLE: |
| return ARMCC::LS; |
| case CmpInst::FCMP_ORD: |
| return ARMCC::VC; |
| case CmpInst::FCMP_UNO: |
| return ARMCC::VS; |
| case CmpInst::FCMP_UGE: |
| return ARMCC::PL; |
| case CmpInst::ICMP_SLT: |
| case CmpInst::FCMP_ULT: |
| return ARMCC::LT; |
| case CmpInst::ICMP_SLE: |
| case CmpInst::FCMP_ULE: |
| return ARMCC::LE; |
| case CmpInst::FCMP_UNE: |
| case CmpInst::ICMP_NE: |
| return ARMCC::NE; |
| case CmpInst::ICMP_UGE: |
| return ARMCC::HS; |
| case CmpInst::ICMP_ULT: |
| return ARMCC::LO; |
| } |
| } |
| |
| bool ARMFastISel::SelectBranch(const Instruction *I) { |
| const BranchInst *BI = cast<BranchInst>(I); |
| MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| |
| // Simple branch support. |
| |
| // If we can, avoid recomputing the compare - redoing it could lead to wonky |
| // behavior. |
| if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { |
| // Get the compare predicate. |
| // Try to take advantage of fallthrough opportunities. |
| CmpInst::Predicate Predicate = CI->getPredicate(); |
| if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| std::swap(TBB, FBB); |
| Predicate = CmpInst::getInversePredicate(Predicate); |
| } |
| |
| ARMCC::CondCodes ARMPred = getComparePred(Predicate); |
| |
| // We may not handle every CC for now. |
| if (ARMPred == ARMCC::AL) return false; |
| |
| // Emit the compare. |
| if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| return false; |
| |
| unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) |
| .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); |
| finishCondBranch(BI->getParent(), TBB, FBB); |
| return true; |
| } |
| } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { |
| MVT SourceVT; |
| if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
| (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { |
| unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
| unsigned OpReg = getRegForValue(TI->getOperand(0)); |
| OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TstOpc)) |
| .addReg(OpReg).addImm(1)); |
| |
| unsigned CCMode = ARMCC::NE; |
| if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| std::swap(TBB, FBB); |
| CCMode = ARMCC::EQ; |
| } |
| |
| unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) |
| .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); |
| |
| finishCondBranch(BI->getParent(), TBB, FBB); |
| return true; |
| } |
| } else if (const ConstantInt *CI = |
| dyn_cast<ConstantInt>(BI->getCondition())) { |
| uint64_t Imm = CI->getZExtValue(); |
| MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
| fastEmitBranch(Target, DbgLoc); |
| return true; |
| } |
| |
| unsigned CmpReg = getRegForValue(BI->getCondition()); |
| if (CmpReg == 0) return false; |
| |
| // We've been divorced from our compare! Our block was split, and |
| // now our compare lives in a predecessor block. We musn't |
| // re-compare here, as the children of the compare aren't guaranteed |
| // live across the block boundary (we *could* check for this). |
| // Regardless, the compare has been done in the predecessor block, |
| // and it left a value for us in a virtual register. Ergo, we test |
| // the one-bit value left in the virtual register. |
| unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
| CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); |
| AddOptionalDefs( |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) |
| .addReg(CmpReg) |
| .addImm(1)); |
| |
| unsigned CCMode = ARMCC::NE; |
| if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| std::swap(TBB, FBB); |
| CCMode = ARMCC::EQ; |
| } |
| |
| unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) |
| .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); |
| finishCondBranch(BI->getParent(), TBB, FBB); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectIndirectBr(const Instruction *I) { |
| unsigned AddrReg = getRegForValue(I->getOperand(0)); |
| if (AddrReg == 0) return false; |
| |
| unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; |
| assert(isThumb2 || Subtarget->hasV4TOps()); |
| |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc)).addReg(AddrReg)); |
| |
| const IndirectBrInst *IB = cast<IndirectBrInst>(I); |
| for (const BasicBlock *SuccBB : IB->successors()) |
| FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); |
| |
| return true; |
| } |
| |
| bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, |
| bool isZExt) { |
| Type *Ty = Src1Value->getType(); |
| EVT SrcEVT = TLI.getValueType(DL, Ty, true); |
| if (!SrcEVT.isSimple()) return false; |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| |
| if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) |
| return false; |
| |
| if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) |
| return false; |
| |
| // Check to see if the 2nd operand is a constant that we can encode directly |
| // in the compare. |
| int Imm = 0; |
| bool UseImm = false; |
| bool isNegativeImm = false; |
| // FIXME: At -O0 we don't have anything that canonicalizes operand order. |
| // Thus, Src1Value may be a ConstantInt, but we're missing it. |
| if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { |
| if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || |
| SrcVT == MVT::i1) { |
| const APInt &CIVal = ConstInt->getValue(); |
| Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); |
| // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather |
| // then a cmn, because there is no way to represent 2147483648 as a |
| // signed 32-bit int. |
| if (Imm < 0 && Imm != (int)0x80000000) { |
| isNegativeImm = true; |
| Imm = -Imm; |
| } |
| UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : |
| (ARM_AM::getSOImmVal(Imm) != -1); |
| } |
| } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { |
| if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
| if (ConstFP->isZero() && !ConstFP->isNegative()) |
| UseImm = true; |
| } |
| |
| unsigned CmpOpc; |
| bool isICmp = true; |
| bool needsExt = false; |
| switch (SrcVT.SimpleTy) { |
| default: return false; |
| // TODO: Verify compares. |
| case MVT::f32: |
| isICmp = false; |
| CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; |
| break; |
| case MVT::f64: |
| isICmp = false; |
| CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; |
| break; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| needsExt = true; |
| LLVM_FALLTHROUGH; |
| case MVT::i32: |
| if (isThumb2) { |
| if (!UseImm) |
| CmpOpc = ARM::t2CMPrr; |
| else |
| CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; |
| } else { |
| if (!UseImm) |
| CmpOpc = ARM::CMPrr; |
| else |
| CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; |
| } |
| break; |
| } |
| |
| unsigned SrcReg1 = getRegForValue(Src1Value); |
| if (SrcReg1 == 0) return false; |
| |
| unsigned SrcReg2 = 0; |
| if (!UseImm) { |
| SrcReg2 = getRegForValue(Src2Value); |
| if (SrcReg2 == 0) return false; |
| } |
| |
| // We have i1, i8, or i16, we need to either zero extend or sign extend. |
| if (needsExt) { |
| SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); |
| if (SrcReg1 == 0) return false; |
| if (!UseImm) { |
| SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); |
| if (SrcReg2 == 0) return false; |
| } |
| } |
| |
| const MCInstrDesc &II = TII.get(CmpOpc); |
| SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); |
| if (!UseImm) { |
| SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(SrcReg1).addReg(SrcReg2)); |
| } else { |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) |
| .addReg(SrcReg1); |
| |
| // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. |
| if (isICmp) |
| MIB.addImm(Imm); |
| AddOptionalDefs(MIB); |
| } |
| |
| // For floating point we need to move the result to a comparison register |
| // that we can then use for branches. |
| if (Ty->isFloatTy() || Ty->isDoubleTy()) |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::FMSTAT))); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectCmp(const Instruction *I) { |
| const CmpInst *CI = cast<CmpInst>(I); |
| |
| // Get the compare predicate. |
| ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); |
| |
| // We may not handle every CC for now. |
| if (ARMPred == ARMCC::AL) return false; |
| |
| // Emit the compare. |
| if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| return false; |
| |
| // Now set a register based on the comparison. Explicitly set the predicates |
| // here. |
| unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass |
| : &ARM::GPRRegClass; |
| unsigned DestReg = createResultReg(RC); |
| Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); |
| unsigned ZeroReg = fastMaterializeConstant(Zero); |
| // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) |
| .addReg(ZeroReg).addImm(1) |
| .addImm(ARMPred).addReg(ARM::CPSR); |
| |
| updateValueMap(I, DestReg); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectFPExt(const Instruction *I) { |
| // Make sure we have VFP and that we're extending float to double. |
| if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; |
| |
| Value *V = I->getOperand(0); |
| if (!I->getType()->isDoubleTy() || |
| !V->getType()->isFloatTy()) return false; |
| |
| unsigned Op = getRegForValue(V); |
| if (Op == 0) return false; |
| |
| unsigned Result = createResultReg(&ARM::DPRRegClass); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VCVTDS), Result) |
| .addReg(Op)); |
| updateValueMap(I, Result); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectFPTrunc(const Instruction *I) { |
| // Make sure we have VFP and that we're truncating double to float. |
| if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; |
| |
| Value *V = I->getOperand(0); |
| if (!(I->getType()->isFloatTy() && |
| V->getType()->isDoubleTy())) return false; |
| |
| unsigned Op = getRegForValue(V); |
| if (Op == 0) return false; |
| |
| unsigned Result = createResultReg(&ARM::SPRRegClass); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VCVTSD), Result) |
| .addReg(Op)); |
| updateValueMap(I, Result); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { |
| // Make sure we have VFP. |
| if (!Subtarget->hasVFP2Base()) return false; |
| |
| MVT DstVT; |
| Type *Ty = I->getType(); |
| if (!isTypeLegal(Ty, DstVT)) |
| return false; |
| |
| Value *Src = I->getOperand(0); |
| EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); |
| if (!SrcEVT.isSimple()) |
| return false; |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) |
| return false; |
| |
| unsigned SrcReg = getRegForValue(Src); |
| if (SrcReg == 0) return false; |
| |
| // Handle sign-extension. |
| if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { |
| SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, |
| /*isZExt*/!isSigned); |
| if (SrcReg == 0) return false; |
| } |
| |
| // The conversion routine works on fp-reg to fp-reg and the operand above |
| // was an integer, move it to the fp registers if possible. |
| unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); |
| if (FP == 0) return false; |
| |
| unsigned Opc; |
| if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; |
| else if (Ty->isDoubleTy() && Subtarget->hasFP64()) |
| Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; |
| else return false; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg).addReg(FP)); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { |
| // Make sure we have VFP. |
| if (!Subtarget->hasVFP2Base()) return false; |
| |
| MVT DstVT; |
| Type *RetTy = I->getType(); |
| if (!isTypeLegal(RetTy, DstVT)) |
| return false; |
| |
| unsigned Op = getRegForValue(I->getOperand(0)); |
| if (Op == 0) return false; |
| |
| unsigned Opc; |
| Type *OpTy = I->getOperand(0)->getType(); |
| if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; |
| else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) |
| Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; |
| else return false; |
| |
| // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg).addReg(Op)); |
| |
| // This result needs to be in an integer register, but the conversion only |
| // takes place in fp-regs. |
| unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); |
| if (IntReg == 0) return false; |
| |
| updateValueMap(I, IntReg); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectSelect(const Instruction *I) { |
| MVT VT; |
| if (!isTypeLegal(I->getType(), VT)) |
| return false; |
| |
| // Things need to be register sized for register moves. |
| if (VT != MVT::i32) return false; |
| |
| unsigned CondReg = getRegForValue(I->getOperand(0)); |
| if (CondReg == 0) return false; |
| unsigned Op1Reg = getRegForValue(I->getOperand(1)); |
| if (Op1Reg == 0) return false; |
| |
| // Check to see if we can use an immediate in the conditional move. |
| int Imm = 0; |
| bool UseImm = false; |
| bool isNegativeImm = false; |
| if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { |
| assert(VT == MVT::i32 && "Expecting an i32."); |
| Imm = (int)ConstInt->getValue().getZExtValue(); |
| if (Imm < 0) { |
| isNegativeImm = true; |
| Imm = ~Imm; |
| } |
| UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : |
| (ARM_AM::getSOImmVal(Imm) != -1); |
| } |
| |
| unsigned Op2Reg = 0; |
| if (!UseImm) { |
| Op2Reg = getRegForValue(I->getOperand(2)); |
| if (Op2Reg == 0) return false; |
| } |
| |
| unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; |
| CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); |
| AddOptionalDefs( |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) |
| .addReg(CondReg) |
| .addImm(1)); |
| |
| unsigned MovCCOpc; |
| const TargetRegisterClass *RC; |
| if (!UseImm) { |
| RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; |
| MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; |
| } else { |
| RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; |
| if (!isNegativeImm) |
| MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; |
| else |
| MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; |
| } |
| unsigned ResultReg = createResultReg(RC); |
| if (!UseImm) { |
| Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); |
| Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), |
| ResultReg) |
| .addReg(Op2Reg) |
| .addReg(Op1Reg) |
| .addImm(ARMCC::NE) |
| .addReg(ARM::CPSR); |
| } else { |
| Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), |
| ResultReg) |
| .addReg(Op1Reg) |
| .addImm(Imm) |
| .addImm(ARMCC::EQ) |
| .addReg(ARM::CPSR); |
| } |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { |
| MVT VT; |
| Type *Ty = I->getType(); |
| if (!isTypeLegal(Ty, VT)) |
| return false; |
| |
| // If we have integer div support we should have selected this automagically. |
| // In case we have a real miss go ahead and return false and we'll pick |
| // it up later. |
| if (Subtarget->hasDivideInThumbMode()) |
| return false; |
| |
| // Otherwise emit a libcall. |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| if (VT == MVT::i8) |
| LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; |
| else if (VT == MVT::i16) |
| LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; |
| else if (VT == MVT::i32) |
| LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; |
| else if (VT == MVT::i64) |
| LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; |
| else if (VT == MVT::i128) |
| LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); |
| |
| return ARMEmitLibcall(I, LC); |
| } |
| |
| bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { |
| MVT VT; |
| Type *Ty = I->getType(); |
| if (!isTypeLegal(Ty, VT)) |
| return false; |
| |
| // Many ABIs do not provide a libcall for standalone remainder, so we need to |
| // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double |
| // multi-reg returns, we'll have to bail out. |
| if (!TLI.hasStandaloneRem(VT)) { |
| return false; |
| } |
| |
| RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
| if (VT == MVT::i8) |
| LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; |
| else if (VT == MVT::i16) |
| LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; |
| else if (VT == MVT::i32) |
| LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; |
| else if (VT == MVT::i64) |
| LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; |
| else if (VT == MVT::i128) |
| LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; |
| assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); |
| |
| return ARMEmitLibcall(I, LC); |
| } |
| |
| bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { |
| EVT DestVT = TLI.getValueType(DL, I->getType(), true); |
| |
| // We can get here in the case when we have a binary operation on a non-legal |
| // type and the target independent selector doesn't know how to handle it. |
| if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) |
| return false; |
| |
| unsigned Opc; |
| switch (ISDOpcode) { |
| default: return false; |
| case ISD::ADD: |
| Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; |
| break; |
| case ISD::OR: |
| Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; |
| break; |
| case ISD::SUB: |
| Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; |
| break; |
| } |
| |
| unsigned SrcReg1 = getRegForValue(I->getOperand(0)); |
| if (SrcReg1 == 0) return false; |
| |
| // TODO: Often the 2nd operand is an immediate, which can be encoded directly |
| // in the instruction, rather then materializing the value in a register. |
| unsigned SrcReg2 = getRegForValue(I->getOperand(1)); |
| if (SrcReg2 == 0) return false; |
| |
| unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); |
| SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); |
| SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg) |
| .addReg(SrcReg1).addReg(SrcReg2)); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { |
| EVT FPVT = TLI.getValueType(DL, I->getType(), true); |
| if (!FPVT.isSimple()) return false; |
| MVT VT = FPVT.getSimpleVT(); |
| |
| // FIXME: Support vector types where possible. |
| if (VT.isVector()) |
| return false; |
| |
| // We can get here in the case when we want to use NEON for our fp |
| // operations, but can't figure out how to. Just use the vfp instructions |
| // if we have them. |
| // FIXME: It'd be nice to use NEON instructions. |
| Type *Ty = I->getType(); |
| if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) |
| return false; |
| if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) |
| return false; |
| |
| unsigned Opc; |
| bool is64bit = VT == MVT::f64 || VT == MVT::i64; |
| switch (ISDOpcode) { |
| default: return false; |
| case ISD::FADD: |
| Opc = is64bit ? ARM::VADDD : ARM::VADDS; |
| break; |
| case ISD::FSUB: |
| Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; |
| break; |
| case ISD::FMUL: |
| Opc = is64bit ? ARM::VMULD : ARM::VMULS; |
| break; |
| } |
| unsigned Op1 = getRegForValue(I->getOperand(0)); |
| if (Op1 == 0) return false; |
| |
| unsigned Op2 = getRegForValue(I->getOperand(1)); |
| if (Op2 == 0) return false; |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg) |
| .addReg(Op1).addReg(Op2)); |
| updateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| // Call Handling Code |
| |
| // This is largely taken directly from CCAssignFnForNode |
| // TODO: We may not support all of this. |
| CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, |
| bool Return, |
| bool isVarArg) { |
| switch (CC) { |
| default: |
| report_fatal_error("Unsupported calling convention"); |
| case CallingConv::Fast: |
| if (Subtarget->hasVFP2Base() && !isVarArg) { |
| if (!Subtarget->isAAPCS_ABI()) |
| return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); |
| // For AAPCS ABI targets, just use VFP variant of the calling convention. |
| return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); |
| } |
| LLVM_FALLTHROUGH; |
| case CallingConv::C: |
| case CallingConv::CXX_FAST_TLS: |
| // Use target triple & subtarget features to do actual dispatch. |
| if (Subtarget->isAAPCS_ABI()) { |
| if (Subtarget->hasVFP2Base() && |
| TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| else |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| } else { |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| } |
| case CallingConv::ARM_AAPCS_VFP: |
| case CallingConv::Swift: |
| case CallingConv::SwiftTail: |
| if (!isVarArg) |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| // Fall through to soft float variant, variadic functions don't |
| // use hard floating point ABI. |
| LLVM_FALLTHROUGH; |
| case CallingConv::ARM_AAPCS: |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| case CallingConv::ARM_APCS: |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| case CallingConv::GHC: |
| if (Return) |
| report_fatal_error("Can't return in GHC call convention"); |
| else |
| return CC_ARM_APCS_GHC; |
| case CallingConv::CFGuard_Check: |
| return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); |
| } |
| } |
| |
| bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, |
| SmallVectorImpl<Register> &ArgRegs, |
| SmallVectorImpl<MVT> &ArgVTs, |
| SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| SmallVectorImpl<Register> &RegArgs, |
| CallingConv::ID CC, |
| unsigned &NumBytes, |
| bool isVarArg) { |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); |
| CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, |
| CCAssignFnForCall(CC, false, isVarArg)); |
| |
| // Check that we can handle all of the arguments. If we can't, then bail out |
| // now before we add code to the MBB. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| MVT ArgVT = ArgVTs[VA.getValNo()]; |
| |
| // We don't handle NEON/vector parameters yet. |
| if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) |
| return false; |
| |
| // Now copy/store arg to correct locations. |
| if (VA.isRegLoc() && !VA.needsCustom()) { |
| continue; |
| } else if (VA.needsCustom()) { |
| // TODO: We need custom lowering for vector (v2f64) args. |
| if (VA.getLocVT() != MVT::f64 || |
| // TODO: Only handle register args for now. |
| !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) |
| return false; |
| } else { |
| switch (ArgVT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| break; |
| case MVT::f32: |
| if (!Subtarget->hasVFP2Base()) |
| return false; |
| break; |
| case MVT::f64: |
| if (!Subtarget->hasVFP2Base()) |
| return false; |
| break; |
| } |
| } |
| } |
| |
| // At the point, we are able to handle the call's arguments in fast isel. |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Issue CALLSEQ_START |
| unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AdjStackDown)) |
| .addImm(NumBytes).addImm(0)); |
| |
| // Process the args. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| const Value *ArgVal = Args[VA.getValNo()]; |
| Register Arg = ArgRegs[VA.getValNo()]; |
| MVT ArgVT = ArgVTs[VA.getValNo()]; |
| |
| assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && |
| "We don't handle NEON/vector parameters yet."); |
| |
| // Handle arg promotion, etc. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: { |
| MVT DestVT = VA.getLocVT(); |
| Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); |
| assert(Arg != 0 && "Failed to emit a sext"); |
| ArgVT = DestVT; |
| break; |
| } |
| case CCValAssign::AExt: |
| // Intentional fall-through. Handle AExt and ZExt. |
| case CCValAssign::ZExt: { |
| MVT DestVT = VA.getLocVT(); |
| Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); |
| assert(Arg != 0 && "Failed to emit a zext"); |
| ArgVT = DestVT; |
| break; |
| } |
| case CCValAssign::BCvt: { |
| unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg); |
| assert(BC != 0 && "Failed to emit a bitcast!"); |
| Arg = BC; |
| ArgVT = VA.getLocVT(); |
| break; |
| } |
| default: llvm_unreachable("Unknown arg promotion!"); |
| } |
| |
| // Now copy/store arg to correct locations. |
| if (VA.isRegLoc() && !VA.needsCustom()) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); |
| RegArgs.push_back(VA.getLocReg()); |
| } else if (VA.needsCustom()) { |
| // TODO: We need custom lowering for vector (v2f64) args. |
| assert(VA.getLocVT() == MVT::f64 && |
| "Custom lowering for v2f64 args not available"); |
| |
| // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() |
| CCValAssign &NextVA = ArgLocs[++i]; |
| |
| assert(VA.isRegLoc() && NextVA.isRegLoc() && |
| "We only handle register args!"); |
| |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVRRD), VA.getLocReg()) |
| .addReg(NextVA.getLocReg(), RegState::Define) |
| .addReg(Arg)); |
| RegArgs.push_back(VA.getLocReg()); |
| RegArgs.push_back(NextVA.getLocReg()); |
| } else { |
| assert(VA.isMemLoc()); |
| // Need to store on the stack. |
| |
| // Don't emit stores for undef values. |
| if (isa<UndefValue>(ArgVal)) |
| continue; |
| |
| Address Addr; |
| Addr.BaseType = Address::RegBase; |
| Addr.Base.Reg = ARM::SP; |
| Addr.Offset = VA.getLocMemOffset(); |
| |
| bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; |
| assert(EmitRet && "Could not emit a store for argument!"); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, |
| const Instruction *I, CallingConv::ID CC, |
| unsigned &NumBytes, bool isVarArg) { |
| // Issue CALLSEQ_END |
| unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AdjStackUp)) |
| .addImm(NumBytes).addImm(0)); |
| |
| // Now the return value. |
| if (RetVT != MVT::isVoid) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); |
| CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); |
| |
| // Copy all of the result registers out of their specified physreg. |
| if (RVLocs.size() == 2 && RetVT == MVT::f64) { |
| // For this move we copy into two registers and then move into the |
| // double fp reg we want. |
| MVT DestVT = RVLocs[0].getValVT(); |
| const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); |
| Register ResultReg = createResultReg(DstRC); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(ARM::VMOVDRR), ResultReg) |
| .addReg(RVLocs[0].getLocReg()) |
| .addReg(RVLocs[1].getLocReg())); |
| |
| UsedRegs.push_back(RVLocs[0].getLocReg()); |
| UsedRegs.push_back(RVLocs[1].getLocReg()); |
| |
| // Finally update the result. |
| updateValueMap(I, ResultReg); |
| } else { |
| assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); |
| MVT CopyVT = RVLocs[0].getValVT(); |
| |
| // Special handling for extended integers. |
| if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) |
| CopyVT = MVT::i32; |
| |
| const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); |
| |
| Register ResultReg = createResultReg(DstRC); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(RVLocs[0].getLocReg()); |
| UsedRegs.push_back(RVLocs[0].getLocReg()); |
| |
| // Finally update the result. |
| updateValueMap(I, ResultReg); |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ARMFastISel::SelectRet(const Instruction *I) { |
| const ReturnInst *Ret = cast<ReturnInst>(I); |
| const Function &F = *I->getParent()->getParent(); |
| const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); |
| |
| if (!FuncInfo.CanLowerReturn) |
| return false; |
| |
| if (TLI.supportSwiftError() && |
| F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| return false; |
| |
| if (TLI.supportSplitCSR(FuncInfo.MF)) |
| return false; |
| |
| // Build a list of return value registers. |
| SmallVector<unsigned, 4> RetRegs; |
| |
| CallingConv::ID CC = F.getCallingConv(); |
| if (Ret->getNumOperands() > 0) { |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ValLocs; |
| CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, |
| F.isVarArg())); |
| |
| const Value *RV = Ret->getOperand(0); |
| unsigned Reg = getRegForValue(RV); |
| if (Reg == 0) |
| return false; |
| |
| // Only handle a single return value for now. |
| if (ValLocs.size() != 1) |
| return false; |
| |
| CCValAssign &VA = ValLocs[0]; |
| |
| // Don't bother handling odd stuff for now. |
| if (VA.getLocInfo() != CCValAssign::Full) |
| return false; |
| // Only handle register returns for now. |
| if (!VA.isRegLoc()) |
| return false; |
| |
| unsigned SrcReg = Reg + VA.getValNo(); |
| EVT RVEVT = TLI.getValueType(DL, RV->getType()); |
| if (!RVEVT.isSimple()) return false; |
| MVT RVVT = RVEVT.getSimpleVT(); |
| MVT DestVT = VA.getValVT(); |
| // Special handling for extended integers. |
| if (RVVT != DestVT) { |
| if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) |
| return false; |
| |
| assert(DestVT == MVT::i32 && "ARM should always ext to i32"); |
| |
| // Perform extension if flagged as either zext or sext. Otherwise, do |
| // nothing. |
| if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { |
| SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); |
| if (SrcReg == 0) return false; |
| } |
| } |
| |
| // Make the copy. |
| Register DstReg = VA.getLocReg(); |
| const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); |
| // Avoid a cross-class copy. This is very unlikely. |
| if (!SrcRC->contains(DstReg)) |
| return false; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); |
| |
| // Add register to return instruction. |
| RetRegs.push_back(VA.getLocReg()); |
| } |
| |
| unsigned RetOpc; |
| if (IsCmseNSEntry) |
| if (isThumb2) |
| RetOpc = ARM::tBXNS_RET; |
| else |
| llvm_unreachable("CMSE not valid for non-Thumb targets"); |
| else |
| RetOpc = Subtarget->getReturnOpcode(); |
| |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(RetOpc)); |
| AddOptionalDefs(MIB); |
| for (unsigned R : RetRegs) |
| MIB.addReg(R, RegState::Implicit); |
| return true; |
| } |
| |
| unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { |
| if (UseReg) |
| return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); |
| else |
| return isThumb2 ? ARM::tBL : ARM::BL; |
| } |
| |
| unsigned ARMFastISel::getLibcallReg(const Twine &Name) { |
| // Manually compute the global's type to avoid building it when unnecessary. |
| Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); |
| EVT LCREVT = TLI.getValueType(DL, GVTy); |
| if (!LCREVT.isSimple()) return 0; |
| |
| GlobalValue *GV = M.getNamedGlobal(Name.str()); |
| if (!GV) |
| GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, |
| GlobalValue::ExternalLinkage, nullptr, Name); |
| |
| return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); |
| } |
| |
| // A quick function that will emit a call for a named libcall in F with the |
| // vector of passed arguments for the Instruction in I. We can assume that we |
| // can emit a call for any libcall we can produce. This is an abridged version |
| // of the full call infrastructure since we won't need to worry about things |
| // like computed function pointers or strange arguments at call sites. |
| // TODO: Try to unify this and the normal call bits for ARM, then try to unify |
| // with X86. |
| bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { |
| CallingConv::ID CC = TLI.getLibcallCallingConv(Call); |
| |
| // Handle *simple* calls for now. |
| Type *RetTy = I->getType(); |
| MVT RetVT; |
| if (RetTy->isVoidTy()) |
| RetVT = MVT::isVoid; |
| else if (!isTypeLegal(RetTy, RetVT)) |
| return false; |
| |
| // Can't handle non-double multi-reg retvals. |
| if (RetVT != MVT::isVoid && RetVT != MVT::i32) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); |
| CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); |
| if (RVLocs.size() >= 2 && RetVT != MVT::f64) |
| return false; |
| } |
| |
| // Set up the argument vectors. |
| SmallVector<Value*, 8> Args; |
| SmallVector<Register, 8> ArgRegs; |
| SmallVector<MVT, 8> ArgVTs; |
| SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| Args.reserve(I->getNumOperands()); |
| ArgRegs.reserve(I->getNumOperands()); |
| ArgVTs.reserve(I->getNumOperands()); |
| ArgFlags.reserve(I->getNumOperands()); |
| for (Value *Op : I->operands()) { |
| unsigned Arg = getRegForValue(Op); |
| if (Arg == 0) return false; |
| |
| Type *ArgTy = Op->getType(); |
| MVT ArgVT; |
| if (!isTypeLegal(ArgTy, ArgVT)) return false; |
| |
| ISD::ArgFlagsTy Flags; |
| Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); |
| |
| Args.push_back(Op); |
| ArgRegs.push_back(Arg); |
| ArgVTs.push_back(ArgVT); |
| ArgFlags.push_back(Flags); |
| } |
| |
| // Handle the arguments now that we've gotten them. |
| SmallVector<Register, 4> RegArgs; |
| unsigned NumBytes; |
| if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, |
| RegArgs, CC, NumBytes, false)) |
| return false; |
| |
| Register CalleeReg; |
| if (Subtarget->genLongCalls()) { |
| CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); |
| if (CalleeReg == 0) return false; |
| } |
| |
| // Issue the call. |
| unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DbgLoc, TII.get(CallOpc)); |
| // BL / BLX don't take a predicate, but tBL / tBLX do. |
| if (isThumb2) |
| MIB.add(predOps(ARMCC::AL)); |
| if (Subtarget->genLongCalls()) { |
| CalleeReg = |
| constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); |
| MIB.addReg(CalleeReg); |
| } else |
| MIB.addExternalSymbol(TLI.getLibcallName(Call)); |
| |
| // Add implicit physical register uses to the call. |
| for (Register R : RegArgs) |
| MIB.addReg(R, RegState::Implicit); |
| |
| // Add a register mask with the call-preserved registers. |
| // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); |
| |
| // Finish off the call including any return values. |
| SmallVector<Register, 4> UsedRegs; |
| if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; |
| |
| // Set all unused physreg defs as dead. |
| static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
| |
| return true; |
| } |
| |
| bool ARMFastISel::SelectCall(const Instruction *I, |
| const char *IntrMemName = nullptr) { |
| const CallInst *CI = cast<CallInst>(I); |
| const Value *Callee = CI->getCalledOperand(); |
| |
| // Can't handle inline asm. |
| if (isa<InlineAsm>(Callee)) return false; |
| |
| // Allow SelectionDAG isel to handle tail calls. |
| if (CI->isTailCall()) return false; |
| |
| // Check the calling convention. |
| CallingConv::ID CC = CI->getCallingConv(); |
| |
| // TODO: Avoid some calling conventions? |
| |
| FunctionType *FTy = CI->getFunctionType(); |
| bool isVarArg = FTy->isVarArg(); |
| |
| // Handle *simple* calls for now. |
| Type *RetTy = I->getType(); |
| MVT RetVT; |
| if (RetTy->isVoidTy()) |
| RetVT = MVT::isVoid; |
| else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && |
| RetVT != MVT::i8 && RetVT != MVT::i1) |
| return false; |
| |
| // Can't handle non-double multi-reg retvals. |
| if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && |
| RetVT != MVT::i16 && RetVT != MVT::i32) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); |
| CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); |
| if (RVLocs.size() >= 2 && RetVT != MVT::f64) |
| return false; |
| } |
| |
| // Set up the argument vectors. |
| SmallVector<Value*, 8> Args; |
| SmallVector<Register, 8> ArgRegs; |
| SmallVector<MVT, 8> ArgVTs; |
| SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| unsigned arg_size = CI->arg_size(); |
| Args.reserve(arg_size); |
| ArgRegs.reserve(arg_size); |
| ArgVTs.reserve(arg_size); |
| ArgFlags.reserve(arg_size); |
| for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { |
| // If we're lowering a memory intrinsic instead of a regular call, skip the |
| // last argument, which shouldn't be passed to the underlying function. |
| if (IntrMemName && ArgE - ArgI <= 1) |
| break; |
| |
| ISD::ArgFlagsTy Flags; |
| unsigned ArgIdx = ArgI - CI->arg_begin(); |
| if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) |
| Flags.setSExt(); |
| if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| // FIXME: Only handle *easy* calls for now. |
| if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || |
| CI->paramHasAttr(ArgIdx, Attribute::StructRet) || |
| CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || |
| CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || |
| CI->paramHasAttr(ArgIdx, Attribute::Nest) || |
| CI->paramHasAttr(ArgIdx, Attribute::ByVal)) |
| return false; |
| |
| Type *ArgTy = (*ArgI)->getType(); |
| MVT ArgVT; |
| if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && |
| ArgVT != MVT::i1) |
| return false; |
| |
| Register Arg = getRegForValue(*ArgI); |
| if (!Arg.isValid()) |
| return false; |
| |
| Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); |
| |
| Args.push_back(*ArgI); |
| ArgRegs.push_back(Arg); |
| ArgVTs.push_back(ArgVT); |
| ArgFlags.push_back(Flags); |
| } |
| |
| // Handle the arguments now that we've gotten them. |
| SmallVector<Register, 4> RegArgs; |
| unsigned NumBytes; |
| if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, |
| RegArgs, CC, NumBytes, isVarArg)) |
| return false; |
| |
| bool UseReg = false; |
| const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); |
| if (!GV || Subtarget->genLongCalls()) UseReg = true; |
| |
| Register CalleeReg; |
| if (UseReg) { |
| if (IntrMemName) |
| CalleeReg = getLibcallReg(IntrMemName); |
| else |
| CalleeReg = getRegForValue(Callee); |
| |
| if (CalleeReg == 0) return false; |
| } |
| |
| // Issue the call. |
| unsigned CallOpc = ARMSelectCallOp(UseReg); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, |
| DbgLoc, TII.get(CallOpc)); |
| |
| // ARM calls don't take a predicate, but tBL / tBLX do. |
| if(isThumb2) |
| MIB.add(predOps(ARMCC::AL)); |
| if (UseReg) { |
| CalleeReg = |
| constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); |
| MIB.addReg(CalleeReg); |
| } else if (!IntrMemName) |
| MIB.addGlobalAddress(GV, 0, 0); |
| else |
| MIB.addExternalSymbol(IntrMemName, 0); |
| |
| // Add implicit physical register uses to the call. |
| for (Register R : RegArgs) |
| MIB.addReg(R, RegState::Implicit); |
| |
| // Add a register mask with the call-preserved registers. |
| // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); |
| |
| // Finish off the call including any return values. |
| SmallVector<Register, 4> UsedRegs; |
| if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) |
| return false; |
| |
| // Set all unused physreg defs as dead. |
| static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
| |
| return true; |
| } |
| |
| bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { |
| return Len <= 16; |
| } |
| |
| bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, |
| uint64_t Len, unsigned Alignment) { |
| // Make sure we don't bloat code by inlining very large memcpy's. |
| if (!ARMIsMemCpySmall(Len)) |
| return false; |
| |
| while (Len) { |
| MVT VT; |
| if (!Alignment || Alignment >= 4) { |
| if (Len >= 4) |
| VT = MVT::i32; |
| else if (Len >= 2) |
| VT = MVT::i16; |
| else { |
| assert(Len == 1 && "Expected a length of 1!"); |
| VT = MVT::i8; |
| } |
| } else { |
| // Bound based on alignment. |
| if (Len >= 2 && Alignment == 2) |
| VT = MVT::i16; |
| else { |
| VT = MVT::i8; |
| } |
| } |
| |
| bool RV; |
| Register ResultReg; |
| RV = ARMEmitLoad(VT, ResultReg, Src); |
| assert(RV && "Should be able to handle this load."); |
| RV = ARMEmitStore(VT, ResultReg, Dest); |
| assert(RV && "Should be able to handle this store."); |
| (void)RV; |
| |
| unsigned Size = VT.getSizeInBits()/8; |
| Len -= Size; |
| Dest.Offset += Size; |
| Src.Offset += Size; |
| } |
| |
| return true; |
| } |
| |
| bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { |
| // FIXME: Handle more intrinsics. |
| switch (I.getIntrinsicID()) { |
| default: return false; |
| case Intrinsic::frameaddress: { |
| MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; |
| const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass |
| : &ARM::GPRRegClass; |
| |
| const ARMBaseRegisterInfo *RegInfo = |
| static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); |
| Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); |
| unsigned SrcReg = FramePtr; |
| |
| // Recursively load frame address |
| // ldr r0 [fp] |
| // ldr r0 [r0] |
| // ldr r0 [r0] |
| // ... |
| unsigned DestReg; |
| unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); |
| while (Depth--) { |
| DestReg = createResultReg(RC); |
| AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(LdrOpc), DestReg) |
| .addReg(SrcReg).addImm(0)); |
| SrcReg = DestReg; |
| } |
| updateValueMap(&I, SrcReg); |
| return true; |
| } |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: { |
| const MemTransferInst &MTI = cast<MemTransferInst>(I); |
| // Don't handle volatile. |
| if (MTI.isVolatile()) |
| return false; |
| |
| // Disable inlining for memmove before calls to ComputeAddress. Otherwise, |
| // we would emit dead code because we don't currently handle memmoves. |
| bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); |
| if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { |
| // Small memcpy's are common enough that we want to do them without a call |
| // if possible. |
| uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); |
| if (ARMIsMemCpySmall(Len)) { |
| Address Dest, Src; |
| if (!ARMComputeAddress(MTI.getRawDest(), Dest) || |
| !ARMComputeAddress(MTI.getRawSource(), Src)) |
| return false; |
| unsigned Alignment = MinAlign(MTI.getDestAlignment(), |
| MTI.getSourceAlignment()); |
| if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) |
| return true; |
| } |
| } |
| |
| if (!MTI.getLength()->getType()->isIntegerTy(32)) |
| return false; |
| |
|