| //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Base ARM implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMFeatures.h" |
| #include "ARMHazardRecognizer.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "MVETailPredUtils.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/MultiHazardRecognizer.h" |
| #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <new> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "arm-instrinfo" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "ARMGenInstrInfo.inc" |
| |
| static cl::opt<bool> |
| EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, |
| cl::desc("Enable ARM 2-addr to 3-addr conv")); |
| |
| /// ARM_MLxEntry - Record information about MLA / MLS instructions. |
| struct ARM_MLxEntry { |
| uint16_t MLxOpc; // MLA / MLS opcode |
| uint16_t MulOpc; // Expanded multiplication opcode |
| uint16_t AddSubOpc; // Expanded add / sub opcode |
| bool NegAcc; // True if the acc is negated before the add / sub. |
| bool HasLane; // True if instruction has an extra "lane" operand. |
| }; |
| |
| static const ARM_MLxEntry ARM_MLxTable[] = { |
| // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane |
| // fp scalar ops |
| { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, |
| { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, |
| { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, |
| { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, |
| { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, |
| { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, |
| { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, |
| |
| // fp SIMD ops |
| { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, |
| { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, |
| { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, |
| { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, |
| { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, |
| { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, |
| { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, |
| { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, |
| }; |
| |
| ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) |
| : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), |
| Subtarget(STI) { |
| for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { |
| if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) |
| llvm_unreachable("Duplicated entries?"); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); |
| MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); |
| } |
| } |
| |
| // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl |
| // currently defaults to no prepass hazard recognizer. |
| ScheduleHazardRecognizer * |
| ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| const ScheduleDAG *DAG) const { |
| if (usePreRAHazardRecognizer()) { |
| const InstrItineraryData *II = |
| static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); |
| return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); |
| } |
| return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| } |
| |
| // Called during: |
| // - pre-RA scheduling |
| // - post-RA scheduling when FeatureUseMISched is set |
| ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( |
| const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { |
| MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); |
| |
| // We would like to restrict this hazard recognizer to only |
| // post-RA scheduling; we can tell that we're post-RA because we don't |
| // track VRegLiveness. |
| // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM |
| // banks banked on bit 2. Assume that TCMs are in use. |
| if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) |
| MHR->AddHazardRecognizer( |
| std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); |
| |
| // Not inserting ARMHazardRecognizerFPMLx because that would change |
| // legacy behavior |
| |
| auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); |
| MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); |
| return MHR; |
| } |
| |
| // Called during post-RA scheduling when FeatureUseMISched is not set |
| ScheduleHazardRecognizer *ARMBaseInstrInfo:: |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); |
| |
| if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) |
| MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); |
| |
| auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); |
| if (BHR) |
| MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); |
| return MHR; |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, |
| LiveIntervals *LIS) const { |
| // FIXME: Thumb2 support. |
| |
| if (!EnableARM3Addr) |
| return nullptr; |
| |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| uint64_t TSFlags = MI.getDesc().TSFlags; |
| bool isPre = false; |
| switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { |
| default: return nullptr; |
| case ARMII::IndexModePre: |
| isPre = true; |
| break; |
| case ARMII::IndexModePost: |
| break; |
| } |
| |
| // Try splitting an indexed load/store to an un-indexed one plus an add/sub |
| // operation. |
| unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); |
| if (MemOpc == 0) |
| return nullptr; |
| |
| MachineInstr *UpdateMI = nullptr; |
| MachineInstr *MemMI = nullptr; |
| unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); |
| const MCInstrDesc &MCID = MI.getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| bool isLoad = !MI.mayStore(); |
| const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); |
| const MachineOperand &Base = MI.getOperand(2); |
| const MachineOperand &Offset = MI.getOperand(NumOps - 3); |
| Register WBReg = WB.getReg(); |
| Register BaseReg = Base.getReg(); |
| Register OffReg = Offset.getReg(); |
| unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); |
| ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); |
| switch (AddrMode) { |
| default: llvm_unreachable("Unknown indexed op!"); |
| case ARMII::AddrMode2: { |
| bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM2Offset(OffImm); |
| if (OffReg == 0) { |
| if (ARM_AM::getSOImmVal(Amt) == -1) |
| // Can't encode it in a so_imm operand. This transformation will |
| // add more than 1 instruction. Abandon! |
| return nullptr; |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg) |
| .addImm(Amt) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| } else if (Amt != 0) { |
| ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); |
| unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .addReg(0) |
| .addImm(SOOpc) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| } else |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| break; |
| } |
| case ARMII::AddrMode3 : { |
| bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; |
| unsigned Amt = ARM_AM::getAM3Offset(OffImm); |
| if (OffReg == 0) |
| // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) |
| .addReg(BaseReg) |
| .addImm(Amt) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| else |
| UpdateMI = BuildMI(MF, MI.getDebugLoc(), |
| get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) |
| .addReg(BaseReg) |
| .addReg(OffReg) |
| .add(predOps(Pred)) |
| .add(condCodeOp()); |
| break; |
| } |
| } |
| |
| std::vector<MachineInstr*> NewMIs; |
| if (isPre) { |
| if (isLoad) |
| MemMI = |
| BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) |
| .addReg(WBReg) |
| .addImm(0) |
| .addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addReg(WBReg) |
| .addReg(0) |
| .addImm(0) |
| .addImm(Pred); |
| NewMIs.push_back(MemMI); |
| NewMIs.push_back(UpdateMI); |
| } else { |
| if (isLoad) |
| MemMI = |
| BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) |
| .addReg(BaseReg) |
| .addImm(0) |
| .addImm(Pred); |
| else |
| MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) |
| .addReg(MI.getOperand(1).getReg()) |
| .addReg(BaseReg) |
| .addReg(0) |
| .addImm(0) |
| .addImm(Pred); |
| if (WB.isDead()) |
| UpdateMI->getOperand(0).setIsDead(); |
| NewMIs.push_back(UpdateMI); |
| NewMIs.push_back(MemMI); |
| } |
| |
| // Transfer LiveVariables states, kill / dead info. |
| if (LV) { |
| for (const MachineOperand &MO : MI.operands()) { |
| if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { |
| Register Reg = MO.getReg(); |
| |
| LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); |
| if (MO.isDef()) { |
| MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; |
| if (MO.isDead()) |
| LV->addVirtualRegisterDead(Reg, *NewMI); |
| } |
| if (MO.isUse() && MO.isKill()) { |
| for (unsigned j = 0; j < 2; ++j) { |
| // Look at the two new MI's in reverse order. |
| MachineInstr *NewMI = NewMIs[j]; |
| if (!NewMI->readsRegister(Reg)) |
| continue; |
| LV->addVirtualRegisterKilled(Reg, *NewMI); |
| if (VI.removeKill(MI)) |
| VI.Kills.push_back(NewMI); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MBB.insert(MI, NewMIs[1]); |
| MBB.insert(MI, NewMIs[0]); |
| return NewMIs[0]; |
| } |
| |
| // Branch analysis. |
| bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| TBB = nullptr; |
| FBB = nullptr; |
| |
| MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
| if (I == MBB.instr_begin()) |
| return false; // Empty blocks are easy. |
| --I; |
| |
| // Walk backwards from the end of the basic block until the branch is |
| // analyzed or we give up. |
| while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { |
| // Flag to be raised on unanalyzeable instructions. This is useful in cases |
| // where we want to clean up on the end of the basic block before we bail |
| // out. |
| bool CantAnalyze = false; |
| |
| // Skip over DEBUG values, predicated nonterminators and speculation |
| // barrier terminators. |
| while (I->isDebugInstr() || !I->isTerminator() || |
| isSpeculationBarrierEndBBOpcode(I->getOpcode()) || |
| I->getOpcode() == ARM::t2DoLoopStartTP){ |
| if (I == MBB.instr_begin()) |
| return false; |
| --I; |
| } |
| |
| if (isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode())) { |
| // Indirect branches and jump tables can't be analyzed, but we still want |
| // to clean up any instructions at the tail of the basic block. |
| CantAnalyze = true; |
| } else if (isUncondBranchOpcode(I->getOpcode())) { |
| TBB = I->getOperand(0).getMBB(); |
| } else if (isCondBranchOpcode(I->getOpcode())) { |
| // Bail out if we encounter multiple conditional branches. |
| if (!Cond.empty()) |
| return true; |
| |
| assert(!FBB && "FBB should have been null."); |
| FBB = TBB; |
| TBB = I->getOperand(0).getMBB(); |
| Cond.push_back(I->getOperand(1)); |
| Cond.push_back(I->getOperand(2)); |
| } else if (I->isReturn()) { |
| // Returns can't be analyzed, but we should run cleanup. |
| CantAnalyze = true; |
| } else { |
| // We encountered other unrecognized terminator. Bail out immediately. |
| return true; |
| } |
| |
| // Cleanup code - to be run for unpredicated unconditional branches and |
| // returns. |
| if (!isPredicated(*I) && |
| (isUncondBranchOpcode(I->getOpcode()) || |
| isIndirectBranchOpcode(I->getOpcode()) || |
| isJumpTableBranchOpcode(I->getOpcode()) || |
| I->isReturn())) { |
| // Forget any previous condition branch information - it no longer applies. |
| Cond.clear(); |
| FBB = nullptr; |
| |
| // If we can modify the function, delete everything below this |
| // unconditional branch. |
| if (AllowModify) { |
| MachineBasicBlock::iterator DI = std::next(I); |
| while (DI != MBB.instr_end()) { |
| MachineInstr &InstToDelete = *DI; |
| ++DI; |
| // Speculation barriers must not be deleted. |
| if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) |
| continue; |
| InstToDelete.eraseFromParent(); |
| } |
| } |
| } |
| |
| if (CantAnalyze) { |
| // We may not be able to analyze the block, but we could still have |
| // an unconditional branch as the last instruction in the block, which |
| // just branches to layout successor. If this is the case, then just |
| // remove it if we're allowed to make modifications. |
| if (AllowModify && !isPredicated(MBB.back()) && |
| isUncondBranchOpcode(MBB.back().getOpcode()) && |
| TBB && MBB.isLayoutSuccessor(TBB)) |
| removeBranch(MBB); |
| return true; |
| } |
| |
| if (I == MBB.instr_begin()) |
| return false; |
| |
| --I; |
| } |
| |
| // We made it past the terminators without bailing out - we must have |
| // analyzed this branch successfully. |
| return false; |
| } |
| |
| unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| if (I == MBB.end()) |
| return 0; |
| |
| if (!isUncondBranchOpcode(I->getOpcode()) && |
| !isCondBranchOpcode(I->getOpcode())) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (!isCondBranchOpcode(I->getOpcode())) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded) const { |
| assert(!BytesAdded && "code size not handled"); |
| ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); |
| int BOpc = !AFI->isThumbFunction() |
| ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); |
| int BccOpc = !AFI->isThumbFunction() |
| ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); |
| bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); |
| |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "ARM branch conditions have two components!"); |
| |
| // For conditional branches, we use addOperand to preserve CPSR flags. |
| |
| if (!FBB) { |
| if (Cond.empty()) { // Unconditional branch? |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); |
| } else |
| BuildMI(&MBB, DL, get(BccOpc)) |
| .addMBB(TBB) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]); |
| return 1; |
| } |
| |
| // Two-way conditional branch. |
| BuildMI(&MBB, DL, get(BccOpc)) |
| .addMBB(TBB) |
| .addImm(Cond[0].getImm()) |
| .add(Cond[1]); |
| if (isThumb) |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); |
| else |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); |
| return 2; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); |
| Cond[0].setImm(ARMCC::getOppositeCondition(CC)); |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { |
| if (MI.isBundle()) { |
| MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| int PIdx = I->findFirstPredOperandIdx(); |
| if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) |
| return true; |
| } |
| return false; |
| } |
| |
| int PIdx = MI.findFirstPredOperandIdx(); |
| return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; |
| } |
| |
| std::string ARMBaseInstrInfo::createMIROperandComment( |
| const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, |
| const TargetRegisterInfo *TRI) const { |
| |
| // First, let's see if there is a generic comment for this operand |
| std::string GenericComment = |
| TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); |
| if (!GenericComment.empty()) |
| return GenericComment; |
| |
| // If not, check if we have an immediate operand. |
| if (Op.getType() != MachineOperand::MO_Immediate) |
| return std::string(); |
| |
| // And print its corresponding condition code if the immediate is a |
| // predicate. |
| int FirstPredOp = MI.findFirstPredOperandIdx(); |
| if (FirstPredOp != (int) OpIdx) |
| return std::string(); |
| |
| std::string CC = "CC::"; |
| CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); |
| return CC; |
| } |
| |
| bool ARMBaseInstrInfo::PredicateInstruction( |
| MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { |
| unsigned Opc = MI.getOpcode(); |
| if (isUncondBranchOpcode(Opc)) { |
| MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); |
| MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| .addImm(Pred[0].getImm()) |
| .addReg(Pred[1].getReg()); |
| return true; |
| } |
| |
| int PIdx = MI.findFirstPredOperandIdx(); |
| if (PIdx != -1) { |
| MachineOperand &PMO = MI.getOperand(PIdx); |
| PMO.setImm(Pred[0].getImm()); |
| MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); |
| |
| // Thumb 1 arithmetic instructions do not set CPSR when executed inside an |
| // IT block. This affects how they are printed. |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
| assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); |
| assert((MI.getOperand(1).isDead() || |
| MI.getOperand(1).getReg() != ARM::CPSR) && |
| "if conversion tried to stop defining used CPSR"); |
| MI.getOperand(1).setReg(ARM::NoRegister); |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| ArrayRef<MachineOperand> Pred2) const { |
| if (Pred1.size() > 2 || Pred2.size() > 2) |
| return false; |
| |
| ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); |
| ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); |
| if (CC1 == CC2) |
| return true; |
| |
| switch (CC1) { |
| default: |
| return false; |
| case ARMCC::AL: |
| return true; |
| case ARMCC::HS: |
| return CC2 == ARMCC::HI; |
| case ARMCC::LS: |
| return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; |
| case ARMCC::GE: |
| return CC2 == ARMCC::GT; |
| case ARMCC::LE: |
| return CC2 == ARMCC::LT; |
| } |
| } |
| |
| bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| std::vector<MachineOperand> &Pred, |
| bool SkipDead) const { |
| bool Found = false; |
| for (const MachineOperand &MO : MI.operands()) { |
| bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); |
| bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; |
| if (ClobbersCPSR || IsCPSR) { |
| |
| // Filter out T1 instructions that have a dead CPSR, |
| // allowing IT blocks to be generated containing T1 instructions |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && |
| SkipDead) |
| continue; |
| |
| Pred.push_back(MO); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { |
| for (const auto &MO : MI.operands()) |
| if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) |
| return true; |
| return false; |
| } |
| |
| static bool isEligibleForITBlock(const MachineInstr *MI) { |
| switch (MI->getOpcode()) { |
| default: return true; |
| case ARM::tADC: // ADC (register) T1 |
| case ARM::tADDi3: // ADD (immediate) T1 |
| case ARM::tADDi8: // ADD (immediate) T2 |
| case ARM::tADDrr: // ADD (register) T1 |
| case ARM::tAND: // AND (register) T1 |
| case ARM::tASRri: // ASR (immediate) T1 |
| case ARM::tASRrr: // ASR (register) T1 |
| case ARM::tBIC: // BIC (register) T1 |
| case ARM::tEOR: // EOR (register) T1 |
| case ARM::tLSLri: // LSL (immediate) T1 |
| case ARM::tLSLrr: // LSL (register) T1 |
| case ARM::tLSRri: // LSR (immediate) T1 |
| case ARM::tLSRrr: // LSR (register) T1 |
| case ARM::tMUL: // MUL T1 |
| case ARM::tMVN: // MVN (register) T1 |
| case ARM::tORR: // ORR (register) T1 |
| case ARM::tROR: // ROR (register) T1 |
| case ARM::tRSB: // RSB (immediate) T1 |
| case ARM::tSBC: // SBC (register) T1 |
| case ARM::tSUBi3: // SUB (immediate) T1 |
| case ARM::tSUBi8: // SUB (immediate) T2 |
| case ARM::tSUBrr: // SUB (register) T1 |
| return !ARMBaseInstrInfo::isCPSRDefined(*MI); |
| } |
| } |
| |
| /// isPredicable - Return true if the specified instruction can be predicated. |
| /// By default, this returns true for every instruction with a |
| /// PredicateOperand. |
| bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { |
| if (!MI.isPredicable()) |
| return false; |
| |
| if (MI.isBundle()) |
| return false; |
| |
| if (!isEligibleForITBlock(&MI)) |
| return false; |
| |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const ARMFunctionInfo *AFI = |
| MF->getInfo<ARMFunctionInfo>(); |
| |
| // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. |
| // In their ARM encoding, they can't be encoded in a conditional form. |
| if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) |
| return false; |
| |
| // Make indirect control flow changes unpredicable when SLS mitigation is |
| // enabled. |
| const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); |
| if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) |
| return false; |
| if (ST.hardenSlsBlr() && isIndirectCall(MI)) |
| return false; |
| |
| if (AFI->isThumb2Function()) { |
| if (getSubtarget().restrictIT()) |
| return isV8EligibleForIT(&MI); |
| } |
| |
| return true; |
| } |
| |
| namespace llvm { |
| |
| template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg() || MO.isUndef() || MO.isUse()) |
| continue; |
| if (MO.getReg() != ARM::CPSR) |
| continue; |
| if (!MO.isDead()) |
| return false; |
| } |
| // all definitions of CPSR are dead |
| return true; |
| } |
| |
| } // end namespace llvm |
| |
| /// GetInstSize - Return the size of the specified MachineInstr. |
| /// |
| unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| const MachineBasicBlock &MBB = *MI.getParent(); |
| const MachineFunction *MF = MBB.getParent(); |
| const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); |
| |
| const MCInstrDesc &MCID = MI.getDesc(); |
| if (MCID.getSize()) |
| return MCID.getSize(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| // pseudo-instruction sizes are zero. |
| return 0; |
| case TargetOpcode::BUNDLE: |
| return getInstBundleLength(MI); |
| case ARM::MOVi16_ga_pcrel: |
| case ARM::MOVTi16_ga_pcrel: |
| case ARM::t2MOVi16_ga_pcrel: |
| case ARM::t2MOVTi16_ga_pcrel: |
| return 4; |
| case ARM::MOVi32imm: |
| case ARM::t2MOVi32imm: |
| return 8; |
| case ARM::CONSTPOOL_ENTRY: |
| case ARM::JUMPTABLE_INSTS: |
| case ARM::JUMPTABLE_ADDRS: |
| case ARM::JUMPTABLE_TBB: |
| case ARM::JUMPTABLE_TBH: |
| // If this machine instr is a constant pool entry, its size is recorded as |
| // operand #2. |
| return MI.getOperand(2).getImm(); |
| case ARM::Int_eh_sjlj_longjmp: |
| return 16; |
| case ARM::tInt_eh_sjlj_longjmp: |
| return 10; |
| case ARM::tInt_WIN_eh_sjlj_longjmp: |
| return 12; |
| case ARM::Int_eh_sjlj_setjmp: |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| return 20; |
| case ARM::tInt_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| return 12; |
| case ARM::SPACE: |
| return MI.getOperand(1).getImm(); |
| case ARM::INLINEASM: |
| case ARM::INLINEASM_BR: { |
| // If this machine instr is an inline asm, measure it. |
| unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); |
| if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) |
| Size = alignTo(Size, 4); |
| return Size; |
| } |
| case ARM::SpeculationBarrierISBDSBEndBB: |
| case ARM::t2SpeculationBarrierISBDSBEndBB: |
| // This gets lowered to 2 4-byte instructions. |
| return 8; |
| case ARM::SpeculationBarrierSBEndBB: |
| case ARM::t2SpeculationBarrierSBEndBB: |
| // This gets lowered to 1 4-byte instructions. |
| return 4; |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { |
| unsigned Size = 0; |
| MachineBasicBlock::const_instr_iterator I = MI.getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); |
| while (++I != E && I->isInsideBundle()) { |
| assert(!I->isBundle() && "No nested bundle!"); |
| Size += getInstSizeInBytes(*I); |
| } |
| return Size; |
| } |
| |
| void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) |
| : ARM::MRS; |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); |
| |
| // There is only 1 A/R class MRS instruction, and it always refers to |
| // APSR. However, there are lots of other possibilities on M-class cores. |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| |
| MIB.add(predOps(ARMCC::AL)) |
| .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); |
| } |
| |
| void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool KillSrc, |
| const ARMSubtarget &Subtarget) const { |
| unsigned Opc = Subtarget.isThumb() |
| ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) |
| : ARM::MSR; |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); |
| |
| if (Subtarget.isMClass()) |
| MIB.addImm(0x800); |
| else |
| MIB.addImm(8); |
| |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)) |
| .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); |
| } |
| |
| void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { |
| MIB.addImm(ARMVCC::None); |
| MIB.addReg(0); |
| MIB.addReg(0); // tp_reg |
| } |
| |
| void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, |
| Register DestReg) { |
| addUnpredicatedMveVpredNOp(MIB); |
| MIB.addReg(DestReg, RegState::Undef); |
| } |
| |
| void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { |
| MIB.addImm(Cond); |
| MIB.addReg(ARM::VPR, RegState::Implicit); |
| MIB.addReg(0); // tp_reg |
| } |
| |
| void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, |
| unsigned Cond, unsigned Inactive) { |
| addPredicatedMveVpredNOp(MIB, Cond); |
| MIB.addReg(Inactive); |
| } |
| |
| void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, MCRegister DestReg, |
| MCRegister SrcReg, bool KillSrc) const { |
| bool GPRDest = ARM::GPRRegClass.contains(DestReg); |
| bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); |
| |
| if (GPRDest && GPRSrc) { |
| BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)) |
| .add(condCodeOp()); |
| return; |
| } |
| |
| bool SPRDest = ARM::SPRRegClass.contains(DestReg); |
| bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); |
| |
| unsigned Opc = 0; |
| if (SPRDest && SPRSrc) |
| Opc = ARM::VMOVS; |
| else if (GPRDest && SPRSrc) |
| Opc = ARM::VMOVRS; |
| else if (SPRDest && GPRSrc) |
| Opc = ARM::VMOVSR; |
| else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) |
| Opc = ARM::VMOVD; |
| else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; |
| |
| if (Opc) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) |
| MIB.addReg(SrcReg, getKillRegState(KillSrc)); |
| if (Opc == ARM::MVE_VORR) |
| addUnpredicatedMveVpredROp(MIB, DestReg); |
| else if (Opc != ARM::MQPRCopy) |
| MIB.add(predOps(ARMCC::AL)); |
| return; |
| } |
| |
| // Handle register classes that require multiple instructions. |
| unsigned BeginIdx = 0; |
| unsigned SubRegs = 0; |
| int Spacing = 1; |
| |
| // Use VORRq when possible. |
| if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 2; |
| } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; |
| BeginIdx = ARM::qsub_0; |
| SubRegs = 4; |
| // Fall back to VMOVD. |
| } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { |
| Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; |
| BeginIdx = ARM::gsub_0; |
| SubRegs = 2; |
| } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 2; |
| Spacing = 2; |
| } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 3; |
| Spacing = 2; |
| } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { |
| Opc = ARM::VMOVD; |
| BeginIdx = ARM::dsub_0; |
| SubRegs = 4; |
| Spacing = 2; |
| } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && |
| !Subtarget.hasFP64()) { |
| Opc = ARM::VMOVS; |
| BeginIdx = ARM::ssub_0; |
| SubRegs = 2; |
| } else if (SrcReg == ARM::CPSR) { |
| copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); |
| return; |
| } else if (DestReg == ARM::CPSR) { |
| copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); |
| return; |
| } else if (DestReg == ARM::VPR) { |
| assert(ARM::GPRRegClass.contains(SrcReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (SrcReg == ARM::VPR) { |
| assert(ARM::GPRRegClass.contains(DestReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (DestReg == ARM::FPSCR_NZCV) { |
| assert(ARM::GPRRegClass.contains(SrcReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } else if (SrcReg == ARM::FPSCR_NZCV) { |
| assert(ARM::GPRRegClass.contains(DestReg)); |
| BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)) |
| .add(predOps(ARMCC::AL)); |
| return; |
| } |
| |
| assert(Opc && "Impossible reg-to-reg copy"); |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstrBuilder Mov; |
| |
| // Copy register tuples backward when the first Dest reg overlaps with SrcReg. |
| if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { |
| BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); |
| Spacing = -Spacing; |
| } |
| #ifndef NDEBUG |
| SmallSet<unsigned, 4> DstRegs; |
| #endif |
| for (unsigned i = 0; i != SubRegs; ++i) { |
| Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); |
| Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); |
| assert(Dst && Src && "Bad sub-register"); |
| #ifndef NDEBUG |
| assert(!DstRegs.count(Src) && "destructive vector copy"); |
| DstRegs.insert(Dst); |
| #endif |
| Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); |
| // VORR (NEON or MVE) takes two source operands. |
| if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { |
| Mov.addReg(Src); |
| } |
| // MVE VORR takes predicate operands in place of an ordinary condition. |
| if (Opc == ARM::MVE_VORR) |
| addUnpredicatedMveVpredROp(Mov, Dst); |
| else |
| Mov = Mov.add(predOps(ARMCC::AL)); |
| // MOVr can set CC. |
| if (Opc == ARM::MOVr) |
| Mov = Mov.add(condCodeOp()); |
| } |
| // Add implicit super-register defs and kills to the last instruction. |
| Mov->addRegisterDefined(DestReg, TRI); |
| if (KillSrc) |
| Mov->addRegisterKilled(SrcReg, TRI); |
| } |
| |
| Optional<DestSourcePair> |
| ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { |
| // VMOVRRD is also a copy instruction but it requires |
| // special way of handling. It is more complex copy version |
| // and since that we are not considering it. For recognition |
| // of such instruction isExtractSubregLike MI interface fuction |
| // could be used. |
| // VORRq is considered as a move only if two inputs are |
| // the same register. |
| if (!MI.isMoveReg() || |
| (MI.getOpcode() == ARM::VORRq && |
| MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) |
| return None; |
| return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; |
| } |
| |
| Optional<ParamLoadedValue> |
| ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, |
| Register Reg) const { |
| if (auto DstSrcPair = isCopyInstrImpl(MI)) { |
| Register DstReg = DstSrcPair->Destination->getReg(); |
| |
| // TODO: We don't handle cases where the forwarding reg is narrower/wider |
| // than the copy registers. Consider for example: |
| // |
| // s16 = VMOVS s0 |
| // s17 = VMOVS s1 |
| // call @callee(d0) |
| // |
| // We'd like to describe the call site value of d0 as d8, but this requires |
| // gathering and merging the descriptions for the two VMOVS instructions. |
| // |
| // We also don't handle the reverse situation, where the forwarding reg is |
| // narrower than the copy destination: |
| // |
| // d8 = VMOVD d0 |
| // call @callee(s1) |
| // |
| // We need to produce a fragment description (the call site value of s1 is |
| // /not/ just d8). |
| if (DstReg != Reg) |
| return None; |
| } |
| return TargetInstrInfo::describeLoadedValue(MI, Reg); |
| } |
| |
| const MachineInstrBuilder & |
| ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, |
| unsigned SubIdx, unsigned State, |
| const TargetRegisterInfo *TRI) const { |
| if (!SubIdx) |
| return MIB.addReg(Reg, State); |
| |
| if (Register::isPhysicalRegister(Reg)) |
| return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); |
| return MIB.addReg(Reg, State, SubIdx); |
| } |
| |
| void ARMBaseInstrInfo:: |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| Register SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| Align Alignment = MFI.getObjectAlign(FI); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), Alignment); |
| |
| switch (TRI->getSpillSize(*RC)) { |
| case 2: |
| if (ARM::HPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| if (Subtarget.hasV5TEOps()) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| // Fallback to STM instruction, which has existed since the dawn of |
| // time. |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); |
| AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { |
| // Use aligned spills if the stack can be realigned. |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } |
| } else if (ARM::QPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); |
| MIB.addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| addUnpredicatedMveVpredNOp(MIB); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| // Use aligned spills if the stack can be realigned. |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), |
| get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || |
| ARM::MQQPRRegClass.hasSubClassEq(RC) || |
| ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| // FIXME: It's possible to only store part of the QQ register if the |
| // spilled def has a sub-register index. |
| BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), |
| get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); |
| MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); |
| AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown reg class!"); |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case ARM::STRrs: |
| case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && |
| MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && |
| MI.getOperand(3).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::STRi12: |
| case ARM::t2STRi12: |
| case ARM::tSTRspi: |
| case ARM::VSTRD: |
| case ARM::VSTRS: |
| case ARM::VSTR_P0_off: |
| case ARM::MVE_VSTRWU32: |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VST1q64: |
| case ARM::VST1d64TPseudo: |
| case ARM::VST1d64QPseudo: |
| if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(0).getIndex(); |
| return MI.getOperand(2).getReg(); |
| } |
| break; |
| case ARM::VSTMQIA: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::MQQPRStore: |
| case ARM::MQQQQPRStore: |
| if (MI.getOperand(1).isFI()) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| SmallVector<const MachineMemOperand *, 1> Accesses; |
| if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && |
| Accesses.size() == 1) { |
| FrameIndex = |
| cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) |
| ->getFrameIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| void ARMBaseInstrInfo:: |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| Register DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL; |
| if (I != MBB.end()) DL = I->getDebugLoc(); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const Align Alignment = MFI.getObjectAlign(FI); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), Alignment); |
| |
| switch (TRI->getSpillSize(*RC)) { |
| case 2: |
| if (ARM::HPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 4: |
| if (ARM::GPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 8: |
| if (ARM::DPRRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) |
| .addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB; |
| |
| if (Subtarget.hasV5TEOps()) { |
| MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); |
| AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| // Fallback to LDM instruction, which has existed since the dawn of |
| // time. |
| MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); |
| } |
| |
| if (Register::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 16: |
| if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } |
| } else if (ARM::QPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); |
| MIB.addFrameIndex(FI) |
| .addImm(0) |
| .addMemOperand(MMO); |
| addUnpredicatedMveVpredNOp(MIB); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 24: |
| if (ARM::DTripleRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| if (Register::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 32: |
| if (ARM::QQPRRegClass.hasSubClassEq(RC) || |
| ARM::MQQPRRegClass.hasSubClassEq(RC) || |
| ARM::DQuadRegClass.hasSubClassEq(RC)) { |
| if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && |
| Subtarget.hasNEON()) { |
| BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) |
| .addFrameIndex(FI) |
| .addImm(16) |
| .addMemOperand(MMO) |
| .add(predOps(ARMCC::AL)); |
| } else if (Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| if (Register::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| case 64: |
| if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && |
| Subtarget.hasMVEIntegerOps()) { |
| BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) |
| .addFrameIndex(FI) |
| .addMemOperand(MMO); |
| } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { |
| MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) |
| .addFrameIndex(FI) |
| .add(predOps(ARMCC::AL)) |
| .addMemOperand(MMO); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); |
| MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); |
| if (Register::isPhysicalRegister(DestReg)) |
| MIB.addReg(DestReg, RegState::ImplicitDefine); |
| } else |
| llvm_unreachable("Unknown reg class!"); |
| break; |
| default: |
| llvm_unreachable("Unknown regclass!"); |
| } |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case ARM::LDRrs: |
| case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && |
| MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && |
| MI.getOperand(3).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::LDRi12: |
| case ARM::t2LDRi12: |
| case ARM::tLDRspi: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::VLDR_P0_off: |
| case ARM::MVE_VLDRWU32: |
| if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && |
| MI.getOperand(2).getImm() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLD1q64: |
| case ARM::VLD1d8TPseudo: |
| case ARM::VLD1d16TPseudo: |
| case ARM::VLD1d32TPseudo: |
| case ARM::VLD1d64TPseudo: |
| case ARM::VLD1d8QPseudo: |
| case ARM::VLD1d16QPseudo: |
| case ARM::VLD1d32QPseudo: |
| case ARM::VLD1d64QPseudo: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::VLDMQIA: |
| if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| case ARM::MQQPRLoad: |
| case ARM::MQQQQPRLoad: |
| if (MI.getOperand(1).isFI()) { |
| FrameIndex = MI.getOperand(1).getIndex(); |
| return MI.getOperand(0).getReg(); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| SmallVector<const MachineMemOperand *, 1> Accesses; |
| if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && |
| Accesses.size() == 1) { |
| FrameIndex = |
| cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) |
| ->getFrameIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD |
| /// depending on whether the result is used. |
| void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { |
| bool isThumb1 = Subtarget.isThumb1Only(); |
| bool isThumb2 = Subtarget.isThumb2(); |
| const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); |
| |
| DebugLoc dl = MI->getDebugLoc(); |
| MachineBasicBlock *BB = MI->getParent(); |
| |
| MachineInstrBuilder LDM, STM; |
| if (isThumb1 || !MI->getOperand(1).isDead()) { |
| MachineOperand LDWb(MI->getOperand(1)); |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD |
| : isThumb1 ? ARM::tLDMIA_UPD |
| : ARM::LDMIA_UPD)) |
| .add(LDWb); |
| } else { |
| LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); |
| } |
| |
| if (isThumb1 || !MI->getOperand(0).isDead()) { |
| MachineOperand STWb(MI->getOperand(0)); |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD |
| : isThumb1 ? ARM::tSTMIA_UPD |
| : ARM::STMIA_UPD)) |
| .add(STWb); |
| } else { |
| STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); |
| } |
| |
| MachineOperand LDBase(MI->getOperand(3)); |
| LDM.add(LDBase).add(predOps(ARMCC::AL)); |
| |
| MachineOperand STBase(MI->getOperand(2)); |
| STM.add(STBase).add(predOps(ARMCC::AL)); |
| |
| // Sort the scratch registers into ascending order. |
| const TargetRegisterInfo &TRI = getRegisterInfo(); |
| SmallVector<unsigned, 6> ScratchRegs; |
| for(unsigned I = 5; I < MI->getNumOperands(); ++I) |
| ScratchRegs.push_back(MI->getOperand(I).getReg()); |
| llvm::sort(ScratchRegs, |
| [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { |
| return TRI.getEncodingValue(Reg1) < |
| TRI.getEncodingValue(Reg2); |
| }); |
| |
| for (const auto &Reg : ScratchRegs) { |
| LDM.addReg(Reg, RegState::Define); |
| STM.addReg(Reg, RegState::Kill); |
| } |
| |
| BB->erase(MI); |
| } |
| |
| bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { |
| expandLoadStackGuard(MI); |
| MI.getParent()->erase(MI); |
| return true; |
| } |
| |
| if (MI.getOpcode() == ARM::MEMCPY) { |
| expandMEMCPY(MI); |
| return true; |
| } |
| |
| // This hook gets to expand COPY instructions before they become |
| // copyPhysReg() calls. Look for VMOVS instructions that can legally be |
| // widened to VMOVD. We prefer the VMOVD when possible because it may be |
| // changed into a VORR that can go down the NEON pipeline. |
| if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) |
| return false; |
| |
| // Look for a copy between even S-registers. That is where we keep floats |
| // when using NEON v2f32 instructions for f32 arithmetic. |
| Register DstRegS = MI.getOperand(0).getReg(); |
| Register SrcRegS = MI.getOperand(1).getReg(); |
| if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) |
| return false; |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, |
| &ARM::DPRRegClass); |
| if (!DstRegD || !SrcRegD) |
| return false; |
| |
| // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only |
| // legal if the COPY already defines the full DstRegD, and it isn't a |
| // sub-register insertion. |
| if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) |
| return false; |
| |
| // A dead copy shouldn't show up here, but reject it just in case. |
| if (MI.getOperand(0).isDead()) |
| return false; |
| |
| // All clear, widen the COPY. |
| LLVM_DEBUG(dbgs() << "widening: " << MI); |
| MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); |
| |
| // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg |
| // or some other super-register. |
| int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); |
| if (ImpDefIdx != -1) |
| MI.RemoveOperand(ImpDefIdx); |
| |
| // Change the opcode and operands. |
| MI.setDesc(get(ARM::VMOVD)); |
| MI.getOperand(0).setReg(DstRegD); |
| MI.getOperand(1).setReg(SrcRegD); |
| MIB.add(predOps(ARMCC::AL)); |
| |
| // We are now reading SrcRegD instead of SrcRegS. This may upset the |
| // register scavenger and machine verifier, so we need to indicate that we |
| // are reading an undefined value from SrcRegD, but a proper value from |
| // SrcRegS. |
| MI.getOperand(1).setIsUndef(); |
| MIB.addReg(SrcRegS, RegState::Implicit); |
| |
| // SrcRegD may actually contain an unrelated value in the ssub_1 |
| // sub-register. Don't kill it. Only kill the ssub_0 sub-register. |
| if (MI.getOperand(1).isKill()) { |
| MI.getOperand(1).setIsKill(false); |
| MI.addRegisterKilled(SrcRegS, TRI, true); |
| } |
| |
| LLVM_DEBUG(dbgs() << "replaced by: " << MI); |
| return true; |
| } |
| |
| /// Create a copy of a const pool value. Update CPI to the new index and return |
| /// the label UID. |
| static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { |
| MachineConstantPool *MCP = MF.getConstantPool(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; |
| assert(MCPE.isMachineConstantPoolEntry() && |
| "Expecting a machine constantpool entry!"); |
| ARMConstantPoolValue *ACPV = |
| static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); |
| |
| unsigned PCLabelId = AFI->createPICLabelUId(); |
| ARMConstantPoolValue *NewCPV = nullptr; |
| |
| // FIXME: The below assumes PIC relocation model and that the function |
| // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and |
| // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR |
| // instructions, so that's probably OK, but is PIC always correct when |
| // we get here? |
| if (ACPV->isGlobalValue()) |
| NewCPV = ARMConstantPoolConstant::Create( |
| cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, |
| 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); |
| else if (ACPV->isExtSymbol()) |
| NewCPV = ARMConstantPoolSymbol:: |
| Create(MF.getFunction().getContext(), |
| cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); |
| else if (ACPV->isBlockAddress()) |
| NewCPV = ARMConstantPoolConstant:: |
| Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, |
| ARMCP::CPBlockAddress, 4); |
| else if (ACPV->isLSDA()) |
| NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, |
| ARMCP::CPLSDA, 4); |
| else if (ACPV->isMachineBasicBlock()) |
| NewCPV = ARMConstantPoolMBB:: |
| Create(MF.getFunction().getContext(), |
| cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); |
| else |
| llvm_unreachable("Unexpected ARM constantpool value type!!"); |
| CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); |
| return PCLabelId; |
| } |
| |
| void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| Register DestReg, unsigned SubIdx, |
| const MachineInstr &Orig, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Opcode = Orig.getOpcode(); |
| switch (Opcode) { |
| default: { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); |
| MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| MBB.insert(I, MI); |
| break; |
| } |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = Orig.getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) |
| .addConstantPoolIndex(CPI) |
| .addImm(PCLabelId) |
| .cloneMemRefs(Orig); |
| break; |
| } |
| } |
| } |
| |
| MachineInstr & |
| ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator InsertBefore, |
| const MachineInstr &Orig) const { |
| MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); |
| MachineBasicBlock::instr_iterator I = Cloned.getIterator(); |
| for (;;) { |
| switch (I->getOpcode()) { |
| case ARM::tLDRpci_pic: |
| case ARM::t2LDRpci_pic: { |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned CPI = I->getOperand(1).getIndex(); |
| unsigned PCLabelId = duplicateCPV(MF, CPI); |
| I->getOperand(1).setIndex(CPI); |
| I->getOperand(2).setImm(PCLabelId); |
| break; |
| } |
| } |
| if (!I->isBundledWithSucc()) |
| break; |
| ++I; |
| } |
| return Cloned; |
| } |
| |
| bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, |
| const MachineInstr &MI1, |
| const MachineRegisterInfo *MRI) const { |
| unsigned Opcode = MI0.getOpcode(); |
| if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || |
| Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || |
| Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) { |
| if (MI1.getOpcode() != Opcode) |
| return false; |
| if (MI0.getNumOperands() != MI1.getNumOperands()) |
| return false; |
| |
| const MachineOperand &MO0 = MI0.getOperand(1); |
| const MachineOperand &MO1 = MI1.getOperand(1); |
| if (MO0.getOffset() != MO1.getOffset()) |
| return false; |
| |
| if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || |
| Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || |
| Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || |
| Opcode == ARM::t2MOV_ga_pcrel) |
| // Ignore the PC labels. |
| return MO0.getGlobal() == MO1.getGlobal(); |
| |
| const MachineFunction *MF = MI0.getParent()->getParent(); |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| int CPI0 = MO0.getIndex(); |
| int CPI1 = MO1.getIndex(); |
| const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; |
| const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; |
| bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); |
| bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); |
| if (isARMCP0 && isARMCP1) { |
| ARMConstantPoolValue *ACPV0 = |
| static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); |
| ARMConstantPoolValue *ACPV1 = |
| static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); |
| return ACPV0->hasSameValue(ACPV1); |
| } else if (!isARMCP0 && !isARMCP1) { |
| return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; |
| } |
| return false; |
| } else if (Opcode == ARM::PICLDR) { |
| if (MI1.getOpcode() != Opcode) |
| return false; |
| if (MI0.getNumOperands() != MI1.getNumOperands()) |
| return false; |
| |
| Register Addr0 = MI0.getOperand(1).getReg(); |
| Register Addr1 = MI1.getOperand(1).getReg(); |
| if (Addr0 != Addr1) { |
| if (!MRI || !Register::isVirtualRegister(Addr0) || |
| !Register::isVirtualRegister(Addr1)) |
| return false; |
| |
| // This assumes SSA form. |
| MachineInstr *Def0 = MRI->getVRegDef(Addr0); |
| MachineInstr *Def1 = MRI->getVRegDef(Addr1); |
| // Check if the loaded value, e.g. a constantpool of a global address, are |
| // the same. |
| if (!produceSameValue(*Def0, *Def1, MRI)) |
| return false; |
| } |
| |
| for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { |
| // %12 = PICLDR %11, 0, 14, %noreg |
| const MachineOperand &MO0 = MI0.getOperand(i); |
| const MachineOperand &MO1 = MI1.getOperand(i); |
| if (!MO0.isIdenticalTo(MO1)) |
| return false; |
| } |
| return true; |
| } |
| |
| return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); |
| } |
| |
| /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to |
| /// determine if two loads are loading from the same base address. It should |
| /// only return true if the base pointers are the same and the only differences |
| /// between the two addresses is the offset. It also returns the offsets by |
| /// reference. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, |
| int64_t &Offset2) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| |
| switch (Load1->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRDi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| switch (Load2->getMachineOpcode()) { |
| default: |
| return false; |
| case ARM::LDRi12: |
| case ARM::LDRBi12: |
| case ARM::LDRD: |
| case ARM::LDRH: |
| case ARM::LDRSB: |
| case ARM::LDRSH: |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| case ARM::t2LDRi8: |
| case ARM::t2LDRBi8: |
| case ARM::t2LDRSHi8: |
| case ARM::t2LDRi12: |
| case ARM::t2LDRBi12: |
| case ARM::t2LDRSHi12: |
| break; |
| } |
| |
| // Check if base addresses and chain operands match. |
| if (Load1->getOperand(0) != Load2->getOperand(0) || |
| Load1->getOperand(4) != Load2->getOperand(4)) |
| return false; |
| |
| // Index should be Reg0. |
| if (Load1->getOperand(3) != Load2->getOperand(3)) |
| return false; |
| |
| // Determine the offsets. |
| if (isa<ConstantSDNode>(Load1->getOperand(1)) && |
| isa<ConstantSDNode>(Load2->getOperand(1))) { |
| Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); |
| Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to |
| /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should |
| /// be scheduled togther. On some targets if two loads are loading from |
| /// addresses in the same cache line, it's better if they are scheduled |
| /// together. This function takes two integers that represent the load offsets |
| /// from the common base address. It returns true if it decides it's desirable |
| /// to schedule the two loads together. "NumLoads" is the number of loads that |
| /// have already been scheduled after Load1. |
| /// |
| /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched |
| /// is permanently disabled. |
| bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| // Don't worry about Thumb: just ARM and Thumb2. |
| if (Subtarget.isThumb1Only()) return false; |
| |
| assert(Offset2 > Offset1); |
| |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| // Check if the machine opcodes are different. If they are different |
| // then we consider them to not be of the same base address, |
| // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. |
| // In this case, they are considered to be the same because they are different |
| // encoding forms of the same basic instruction. |
| if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && |
| !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi12) || |
| (Load1->getMachineOpcode() == ARM::t2LDRBi12 && |
| Load2->getMachineOpcode() == ARM::t2LDRBi8))) |
| return false; // FIXME: overly conservative? |
| |
| // Four loads in a row should be sufficient. |
| if (NumLoads >= 3) |
| return false; |
| |
| return true; |
| } |
| |
| bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Debug info is never a scheduling boundary. It's necessary to be explicit |
| // due to the special treatment of IT instructions below, otherwise a |
| // dbg_value followed by an IT will result in the IT instruction being |
| // considered a scheduling hazard, which is wrong. It should be the actual |
| // instruction preceding the dbg_value instruction(s), just like it is |
| // when debug info is not present. |
| if (MI.isDebugInstr()) |
| return false; |
| |
| // Terminators and labels can't be scheduled around. |
| if (MI.isTerminator() || MI.isPosition()) |
| return true; |
| |
| // INLINEASM_BR can jump to another block |
| if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
| return true; |
| |
| // Treat the start of the IT block as a scheduling boundary, but schedule |
| // t2IT along with all instructions following it. |
| // FIXME: This is a big hammer. But the alternative is to add all potential |
| // true and anti dependencies to IT block instructions as implicit operands |
| // to the t2IT instruction. The added compile time and complexity does not |
| // seem worth it. |
| MachineBasicBlock::const_iterator I = MI; |
| // Make sure to skip any debug instructions |
| while (++I != MBB->end() && I->isDebugInstr()) |
| ; |
| if (I != MBB->end() && I->getOpcode() == ARM::t2IT) |
| return true; |
| |
| // Don't attempt to schedule around any instruction that defines |
| // a stack-oriented pointer, as it's unlikely to be profitable. This |
| // saves compile time, because it doesn't require every single |
| // stack slot reference to depend on the instruction that does the |
| // modification. |
| // Calls don't actually change the stack pointer, even if they have imp-defs. |
| // No ARM calling conventions change the stack pointer. (X86 calling |
| // conventions sometimes do). |
| if (!MI.isCall() && MI.definesRegister(ARM::SP)) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &MBB, |
| unsigned NumCycles, unsigned ExtraPredCycles, |
| BranchProbability Probability) const { |
| if (!NumCycles) |
| return false; |
| |
| // If we are optimizing for size, see if the branch in the predecessor can be |
| // lowered to cbn?z by the constant island lowering pass, and return false if |
| // so. This results in a shorter instruction sequence. |
| if (MBB.getParent()->getFunction().hasOptSize()) { |
| MachineBasicBlock *Pred = *MBB.pred_begin(); |
| if (!Pred->empty()) { |
| MachineInstr *LastMI = &*Pred->rbegin(); |
| if (LastMI->getOpcode() == ARM::t2Bcc) { |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); |
| if (CmpMI) |
| return false; |
| } |
| } |
| } |
| return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, |
| MBB, 0, 0, Probability); |
| } |
| |
| bool ARMBaseInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &TBB, |
| unsigned TCycles, unsigned TExtra, |
| MachineBasicBlock &FBB, |
| unsigned FCycles, unsigned FExtra, |
| BranchProbability Probability) const { |
| if (!TCycles) |
| return false; |
| |
| // In thumb code we often end up trading one branch for a IT block, and |
| // if we are cloning the instruction can increase code size. Prevent |
| // blocks with multiple predecesors from being ifcvted to prevent this |
| // cloning. |
| if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { |
| if (TBB.pred_size() != 1 || FBB.pred_size() != 1) |
| return false; |
| } |
| |
| // Attempt to estimate the relative costs of predication versus branching. |
| // Here we scale up each component of UnpredCost to avoid precision issue when |
| // scaling TCycles/FCycles by Probability. |
| const unsigned ScalingUpFactor = 1024; |
| |
| unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; |
| unsigned UnpredCost; |
| if (!Subtarget.hasBranchPredictor()) { |
| // When we don't have a branch predictor it's always cheaper to not take a |
| // branch than take it, so we have to take that into account. |
| unsigned NotTakenBranchCost = 1; |
| unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); |
| unsigned TUnpredCycles, FUnpredCycles; |
| if (!FCycles) { |
| // Triangle: TBB is the fallthrough |
| TUnpredCycles = TCycles + NotTakenBranchCost; |
| FUnpredCycles = TakenBranchCost; |
| } else { |
| // Diamond: TBB is the block that is branched to, FBB is the fallthrough |
| TUnpredCycles = TCycles + TakenBranchCost; |
| FUnpredCycles = FCycles + NotTakenBranchCost; |
| // The branch at the end of FBB will disappear when it's predicated, so |
| // discount it from PredCost. |
| PredCost -= 1 * ScalingUpFactor; |
| } |
| // The total cost is the cost of each path scaled by their probabilites |
| unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); |
| unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); |
| UnpredCost = TUnpredCost + FUnpredCost; |
| // When predicating assume that the first IT can be folded away but later |
| // ones cost one cycle each |
| if (Subtarget.isThumb2() && TCycles + FCycles > 4) { |
| PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; |
| } |
| } else { |
| unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); |
| unsigned FUnpredCost = |
| Probability.getCompl().scale(FCycles * ScalingUpFactor); |
| UnpredCost = TUnpredCost + FUnpredCost; |
| UnpredCost += 1 * ScalingUpFactor; // The branch itself |
| UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; |
| } |
| |
| return PredCost <= UnpredCost; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, |
| unsigned NumInsts) const { |
| // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. |
| // ARM has a condition code field in every predicable instruction, using it |
| // doesn't change code size. |
| if (!Subtarget.isThumb2()) |
| return 0; |
| |
| // It's possible that the size of the IT is restricted to a single block. |
| unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; |
| return divideCeil(NumInsts, MaxInsts) * 2; |
| } |
| |
| unsigned |
| ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { |
| // If this branch is likely to be folded into the comparison to form a |
| // CB(N)Z, then removing it won't reduce code size at all, because that will |
| // just replace the CB(N)Z with a CMP. |
| if (MI.getOpcode() == ARM::t2Bcc && |
| findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) |
| return 0; |
| |
| unsigned Size = getInstSizeInBytes(MI); |
| |
| // For Thumb2, all branches are 32-bit instructions during the if conversion |
| // pass, but may be replaced with 16-bit instructions during size reduction. |
| // Since the branches considered by if conversion tend to be forward branches |
| // over small basic blocks, they are very likely to be in range for the |
| // narrow instructions, so we assume the final code size will be half what it |
| // currently is. |
| if (Subtarget.isThumb2()) |
| Size /= 2; |
| |
| return Size; |
| } |
| |
| bool |
| ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, |
| MachineBasicBlock &FMBB) const { |
| // Reduce false anti-dependencies to let the target's out-of-order execution |
| // engine do its thing. |
| return Subtarget.isProfitableToUnpredicate(); |
| } |
| |
| /// getInstrPredicate - If instruction is predicated, returns its predicate |
| /// condition, otherwise returns AL. It also returns the condition code |
| /// register by reference. |
| ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, |
| Register &PredReg) { |
| int PIdx = MI.findFirstPredOperandIdx(); |
| if (PIdx == -1) { |
| PredReg = 0; |
| return ARMCC::AL; |
| } |
| |
| PredReg = MI.getOperand(PIdx+1).getReg(); |
| return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); |
| } |
| |
| unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { |
| if (Opc == ARM::B) |
| return ARM::Bcc; |
| if (Opc == ARM::tB) |
| return ARM::tBcc; |
| if (Opc == ARM::t2B) |
| return ARM::t2Bcc; |
| |
| llvm_unreachable("Unknown unconditional branch opcode!"); |
| } |
| |
| MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, |
| bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| switch (MI.getOpcode()) { |
| case ARM::MOVCCr: |
| case ARM::t2MOVCCr: { |
| // MOVCC can be commuted by inverting the condition. |
| Register PredReg; |
| ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); |
| // MOVCC AL can't be inverted. Shouldn't happen. |
| if (CC == ARMCC::AL || PredReg != ARM::CPSR) |
| return nullptr; |
| MachineInstr *CommutedMI = |
| TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| if (!CommutedMI) |
| return nullptr; |
| // After swapping the MOVCC operands, also invert the condition. |
| CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) |
| .setImm(ARMCC::getOppositeCondition(CC)); |
| return CommutedMI; |
| } |
| } |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| |
| /// Identify instructions that can be folded into a MOVCC instruction, and |
| /// return the defining instruction. |
| MachineInstr * |
| ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, |
| const TargetInstrInfo *TII) const { |
| if (!Reg.isVirtual()) |
| return nullptr; |
| if (!MRI.hasOneNonDBGUse(Reg)) |
| return nullptr; |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| if (!MI) |
| return nullptr; |
| // Check if MI can be predicated and folded into the MOVCC. |
| if (!isPredicable(*MI)) |
| return nullptr; |
| // Check if MI has any non-dead defs or physreg uses. This also detects |
| // predicated instructions which will be reading CPSR. |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { |
| // Reject frame index operands, PEI can't handle the predicated pseudos. |
| if (MO.isFI() || MO.isCPI() || MO.isJTI()) |
| return nullptr; |
| if (!MO.isReg()) |
| continue; |
| // MI can't have any tied operands, that would conflict with predication. |
| if (MO.isTied()) |
| return nullptr; |
| if (Register::isPhysicalRegister(MO.getReg())) |
| return nullptr; |
| if (MO.isDef() && !MO.isDead()) |
| return nullptr; |
| } |
| bool DontMoveAcrossStores = true; |
| if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) |
| return nullptr; |
| return MI; |
| } |
| |
| bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, |
| SmallVectorImpl<MachineOperand> &Cond, |
| unsigned &TrueOp, unsigned &FalseOp, |
| bool &Optimizable) const { |
| assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| // MOVCC operands: |
| // 0: Def. |
| // 1: True use. |
| // 2: False use. |
| // 3: Condition code. |
| // 4: CPSR use. |
| TrueOp = 1; |
| FalseOp = 2; |
| Cond.push_back(MI.getOperand(3)); |
| Cond.push_back(MI.getOperand(4)); |
| // We can always fold a def. |
| Optimizable = true; |
| return false; |
| } |
| |
| MachineInstr * |
| ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, |
| SmallPtrSetImpl<MachineInstr *> &SeenMIs, |
| bool PreferFalse) const { |
| assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && |
| "Unknown select instruction"); |
| MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); |
| bool Invert = !DefMI; |
| if (!DefMI) |
| DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); |
| if (!DefMI) |
| return nullptr; |
| |
| // Find new register class to use. |
| MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); |
| MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); |
| Register DestReg = MI.getOperand(0).getReg(); |
| const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); |
| const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); |
| if (!MRI.constrainRegClass(DestReg, FalseClass)) |
| return nullptr; |
| if (!MRI.constrainRegClass(DestReg, TrueClass)) |
| return nullptr; |
| |
| // Create a new predicated version of DefMI. |
| // Rfalse is the first use. |
| MachineInstrBuilder NewMI = |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); |
| |
| // Copy all the DefMI operands, excluding its (null) predicate. |
| const MCInstrDesc &DefDesc = DefMI->getDesc(); |
| for (unsigned i = 1, e = DefDesc.getNumOperands(); |
| i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) |
| NewMI.add(DefMI->getOperand(i)); |
| |
| unsigned CondCode = MI.getOperand(3).getImm(); |
| if (Invert) |
| NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); |
| else |
| NewMI.addImm(CondCode); |
| NewMI.add(MI.getOperand(4)); |
| |
| // DefMI is not the -S version that sets CPSR, so add an optional %noreg. |
| if (NewMI->hasOptionalDef()) |
| NewMI.add(condCodeOp()); |
| |
| // The output register value when the predicate is false is an implicit |
| // register operand tied to the first def. |
| // The tie makes the register allocator ensure the FalseReg is allocated the |
| // same register as operand 0. |
| FalseReg.setImplicit(); |
| NewMI.add(FalseReg); |
| NewMI->tieOperands(0, NewMI->getNumOperands() - 1); |
| |
| // Update SeenMIs set: register newly created MI and erase removed DefMI. |
| SeenMIs.insert(NewMI); |
| SeenMIs.erase(DefMI); |
| |
| // If MI is inside a loop, and DefMI is outside the loop, then kill flags on |
| // DefMI would be invalid when tranferred inside the loop. Checking for a |
| // loop is expensive, but at least remove kill flags if they are in different |
| // BBs. |
| if (DefMI->getParent() != MI.getParent()) |
| NewMI->clearKillInfo(); |
| |
| // The caller will erase MI, but not DefMI. |
| DefMI->eraseFromParent(); |
| return NewMI; |
| } |
| |
| /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the |
| /// instruction is encoded with an 'S' bit is determined by the optional CPSR |
| /// def operand. |
| /// |
| /// This will go away once we can teach tblgen how to set the optional CPSR def |
| /// operand itself. |
| struct AddSubFlagsOpcodePair { |
| uint16_t PseudoOpc; |
| uint16_t MachineOpc; |
| }; |
| |
| static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { |
| {ARM::ADDSri, ARM::ADDri}, |
| {ARM::ADDSrr, ARM::ADDrr}, |
| {ARM::ADDSrsi, ARM::ADDrsi}, |
| {ARM::ADDSrsr, ARM::ADDrsr}, |
| |
| {ARM::SUBSri, ARM::SUBri}, |
| {ARM::SUBSrr, ARM::SUBrr}, |
| {ARM::SUBSrsi, ARM::SUBrsi}, |
| {ARM::SUBSrsr, ARM::SUBrsr}, |
| |
| {ARM::RSBSri, ARM::RSBri}, |
| {ARM::RSBSrsi, ARM::RSBrsi}, |
| {ARM::RSBSrsr, ARM::RSBrsr}, |
| |
| {ARM::tADDSi3, ARM::tADDi3}, |
| {ARM::tADDSi8, ARM::tADDi8}, |
| {ARM::tADDSrr, ARM::tADDrr}, |
| {ARM::tADCS, ARM::tADC}, |
| |
| {ARM::tSUBSi3, ARM::tSUBi3}, |
| {ARM::tSUBSi8, ARM::tSUBi8}, |
| {ARM::tSUBSrr, ARM::tSUBrr}, |
| {ARM::tSBCS, ARM::tSBC}, |
| {ARM::tRSBS, ARM::tRSB}, |
| {ARM::tLSLSri, ARM::tLSLri}, |
| |
| {ARM::t2ADDSri, ARM::t2ADDri}, |
| {ARM::t2ADDSrr, ARM::t2ADDrr}, |
| {ARM::t2ADDSrs, ARM::t2ADDrs}, |
| |
| {ARM::t2SUBSri, ARM::t2SUBri}, |
| {ARM::t2SUBSrr, ARM::t2SUBrr}, |
| {ARM::t2SUBSrs, ARM::t2SUBrs}, |
| |
| {ARM::t2RSBSri, ARM::t2RSBri}, |
| {ARM::t2RSBSrs, ARM::t2RSBrs}, |
| }; |
| |
| unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { |
| for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) |
| if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) |
| return AddSubFlagsOpcodeMap[i].MachineOpc; |
| return 0; |
| } |
| |
| void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, |
| const DebugLoc &dl, Register DestReg, |
| Register BaseReg, int NumBytes, |
| ARMCC::CondCodes Pred, Register PredReg, |
| const ARMBaseInstrInfo &TII, |
| unsigned MIFlags) { |
| if (NumBytes == 0 && DestReg != BaseReg) { |
| BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) |
| .addReg(BaseReg, RegState::Kill) |
| .add(predOps(Pred, PredReg)) |
| .add(condCodeOp()) |
| .setMIFlags(MIFlags); |
| return; |
| } |
| |
| bool isSub = NumBytes < 0; |
| if (isSub) NumBytes = -NumBytes; |
| |
| while (NumBytes) { |
| unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); |
| unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); |
| assert(ThisVal && "Didn't extract field correctly"); |
| |
| // We will handle these bits from offset, clear them. |
| NumBytes &= ~ThisVal; |
| |
| assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); |
| |
| // Build the new ADD / SUB. |
| unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; |
| BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) |
| .addReg(BaseReg, RegState::Kill) |
| .addImm(ThisVal) |
| .add(predOps(Pred, PredReg)) |
| .add(condCodeOp()) |
| .setMIFlags(MIFlags); |
| BaseReg = DestReg; |
| } |
| } |
| |
| bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, |
| MachineFunction &MF, MachineInstr *MI, |
| unsigned NumBytes) { |
| // This optimisation potentially adds lots of load and store |
| // micro-operations, it's only really a great benefit to code-size. |
| if (!Subtarget.hasMinSize()) |
| return false; |
| |
| // If only one register is pushed/popped, LLVM can use an LDR/STR |
| // instead. We can't modify those so make sure we're dealing with an |
| // instruction we understand. |
| bool IsPop = isPopOpcode(MI->getOpcode()); |
| bool IsPush = isPushOpcode(MI->getOpcode()); |
| if (!IsPush && !IsPop) |
| return false; |
| |
| bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || |
| MI->getOpcode() == ARM::VLDMDIA_UPD; |
| bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || |
|