blob: dd9ea2b53ca2d2ea45f52bf74fdd3b5cb239a429 [file] [log] [blame]
//===- SIInstrInfo.h - SI Instruction Info Interface ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Interface definition for SIInstrInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H
#include "AMDGPUMIRFormatter.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#define GET_INSTRINFO_HEADER
#include "AMDGPUGenInstrInfo.inc"
namespace llvm {
class APInt;
class GCNSubtarget;
class LiveVariables;
class MachineDominatorTree;
class MachineRegisterInfo;
class RegScavenger;
class TargetRegisterClass;
class ScheduleHazardRecognizer;
class SIInstrInfo final : public AMDGPUGenInstrInfo {
private:
const SIRegisterInfo RI;
const GCNSubtarget &ST;
TargetSchedModel SchedModel;
mutable std::unique_ptr<AMDGPUMIRFormatter> Formatter;
// The inverse predicate should have the negative value.
enum BranchPredicate {
INVALID_BR = 0,
SCC_TRUE = 1,
SCC_FALSE = -1,
VCCNZ = 2,
VCCZ = -2,
EXECNZ = -3,
EXECZ = 3
};
using SetVectorType = SmallSetVector<MachineInstr *, 32>;
static unsigned getBranchOpcode(BranchPredicate Cond);
static BranchPredicate getBranchPredicate(unsigned Opcode);
public:
unsigned buildExtractSubReg(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC) const;
MachineOperand buildExtractSubRegOrImm(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC) const;
private:
void swapOperands(MachineInstr &Inst) const;
std::pair<bool, MachineBasicBlock *>
moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT = nullptr) const;
void lowerSelect32(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT = nullptr) const;
void splitSelect64(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT = nullptr) const;
void lowerScalarAbs(SetVectorType &Worklist,
MachineInstr &Inst) const;
void lowerScalarXnor(SetVectorType &Worklist,
MachineInstr &Inst) const;
void splitScalarNotBinop(SetVectorType &Worklist,
MachineInstr &Inst,
unsigned Opcode) const;
void splitScalarBinOpN2(SetVectorType &Worklist,
MachineInstr &Inst,
unsigned Opcode) const;
void splitScalar64BitUnaryOp(SetVectorType &Worklist,
MachineInstr &Inst, unsigned Opcode,
bool Swap = false) const;
void splitScalar64BitAddSub(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT = nullptr) const;
void splitScalar64BitBinaryOp(SetVectorType &Worklist, MachineInstr &Inst,
unsigned Opcode,
MachineDominatorTree *MDT = nullptr) const;
void splitScalar64BitXnor(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT = nullptr) const;
void splitScalar64BitBCNT(SetVectorType &Worklist,
MachineInstr &Inst) const;
void splitScalar64BitBFE(SetVectorType &Worklist,
MachineInstr &Inst) const;
void movePackToVALU(SetVectorType &Worklist,
MachineRegisterInfo &MRI,
MachineInstr &Inst) const;
void addUsersToMoveToVALUWorklist(Register Reg, MachineRegisterInfo &MRI,
SetVectorType &Worklist) const;
void addSCCDefUsersToVALUWorklist(MachineOperand &Op,
MachineInstr &SCCDefInst,
SetVectorType &Worklist,
Register NewCond = Register()) const;
void addSCCDefsToVALUWorklist(MachineOperand &Op,
SetVectorType &Worklist) const;
const TargetRegisterClass *
getDestEquivalentVGPRClass(const MachineInstr &Inst) const;
bool checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
const MachineInstr &MIb) const;
Register findUsedSGPR(const MachineInstr &MI, int OpIndices[3]) const;
protected:
bool swapSourceModifiers(MachineInstr &MI,
MachineOperand &Src0, unsigned Src0OpName,
MachineOperand &Src1, unsigned Src1OpName) const;
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx0,
unsigned OpIdx1) const override;
public:
enum TargetOperandFlags {
MO_MASK = 0xf,
MO_NONE = 0,
// MO_GOTPCREL -> symbol@GOTPCREL -> R_AMDGPU_GOTPCREL.
MO_GOTPCREL = 1,
// MO_GOTPCREL32_LO -> symbol@gotpcrel32@lo -> R_AMDGPU_GOTPCREL32_LO.
MO_GOTPCREL32 = 2,
MO_GOTPCREL32_LO = 2,
// MO_GOTPCREL32_HI -> symbol@gotpcrel32@hi -> R_AMDGPU_GOTPCREL32_HI.
MO_GOTPCREL32_HI = 3,
// MO_REL32_LO -> symbol@rel32@lo -> R_AMDGPU_REL32_LO.
MO_REL32 = 4,
MO_REL32_LO = 4,
// MO_REL32_HI -> symbol@rel32@hi -> R_AMDGPU_REL32_HI.
MO_REL32_HI = 5,
MO_FAR_BRANCH_OFFSET = 6,
MO_ABS32_LO = 8,
MO_ABS32_HI = 9,
};
explicit SIInstrInfo(const GCNSubtarget &ST);
const SIRegisterInfo &getRegisterInfo() const {
return RI;
}
const GCNSubtarget &getSubtarget() const {
return ST;
}
bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
AAResults *AA) const override;
bool isIgnorableUse(const MachineOperand &MO) const override;
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1,
int64_t &Offset2) const override;
bool getMemOperandsWithOffsetWidth(
const MachineInstr &LdSt,
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const final;
bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
ArrayRef<const MachineOperand *> BaseOps2,
unsigned NumLoads, unsigned NumBytes) const override;
bool shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0,
int64_t Offset1, unsigned NumLoads) const override;
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const override;
void materializeImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL,
unsigned DestReg,
int64_t Value) const;
const TargetRegisterClass *getPreferredSelectRegClass(
unsigned Size) const;
Register insertNE(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register SrcReg, int Value) const;
Register insertEQ(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register SrcReg, int Value) const;
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, Register SrcReg,
bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, Register DestReg,
int FrameIndex, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const override;
bool expandPostRAPseudo(MachineInstr &MI) const override;
// Splits a V_MOV_B64_DPP_PSEUDO opcode into a pair of v_mov_b32_dpp
// instructions. Returns a pair of generated instructions.
// Can split either post-RA with physical registers or pre-RA with
// virtual registers. In latter case IR needs to be in SSA form and
// and a REG_SEQUENCE is produced to define original register.
std::pair<MachineInstr*, MachineInstr*>
expandMovDPP64(MachineInstr &MI) const;
// Returns an opcode that can be used to move a value to a \p DstRC
// register. If there is no hardware instruction that can store to \p
// DstRC, then AMDGPU::COPY is returned.
unsigned getMovOpcode(const TargetRegisterClass *DstRC) const;
const MCInstrDesc &getIndirectRegWriteMovRelPseudo(unsigned VecSize,
unsigned EltSize,
bool IsSGPR) const;
const MCInstrDesc &getIndirectGPRIDXPseudo(unsigned VecSize,
bool IsIndirectSrc) const;
LLVM_READONLY
int commuteOpcode(unsigned Opc) const;
LLVM_READONLY
inline int commuteOpcode(const MachineInstr &MI) const {
return commuteOpcode(MI.getOpcode());
}
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const override;
bool findCommutedOpIndices(MCInstrDesc Desc, unsigned & SrcOpIdx0,
unsigned & SrcOpIdx1) const;
bool isBranchOffsetInRange(unsigned BranchOpc,
int64_t BrOffset) const override;
MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const override;
void insertIndirectBranch(MachineBasicBlock &MBB,
MachineBasicBlock &NewDestBB,
MachineBasicBlock &RestoreBB, const DebugLoc &DL,
int64_t BrOffset, RegScavenger *RS) const override;
bool analyzeBranchImpl(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const;
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify = false) const override;
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
bool reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const override;
bool canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond, Register DstReg,
Register TrueReg, Register FalseReg, int &CondCycles,
int &TrueCycles, int &FalseCycles) const override;
void insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register DstReg, ArrayRef<MachineOperand> Cond,
Register TrueReg, Register FalseReg) const override;
void insertVectorSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register DstReg, ArrayRef<MachineOperand> Cond,
Register TrueReg, Register FalseReg) const;
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &CmpMask,
int64_t &CmpValue) const override;
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
Register SrcReg2, int64_t CmpMask, int64_t CmpValue,
const MachineRegisterInfo *MRI) const override;
unsigned getAddressSpaceForPseudoSourceKind(
unsigned Kind) const override;
bool
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const override;
static bool isFoldableCopy(const MachineInstr &MI);
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
MachineRegisterInfo *MRI) const final;
unsigned getMachineCSELookAheadLimit() const override { return 500; }
MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
LiveIntervals *LIS) const override;
bool isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const override;
static bool isSALU(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SALU;
}
bool isSALU(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SALU;
}
static bool isVALU(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VALU;
}
bool isVALU(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VALU;
}
static bool isVMEM(const MachineInstr &MI) {
return isMUBUF(MI) || isMTBUF(MI) || isMIMG(MI);
}
bool isVMEM(uint16_t Opcode) const {
return isMUBUF(Opcode) || isMTBUF(Opcode) || isMIMG(Opcode);
}
static bool isSOP1(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOP1;
}
bool isSOP1(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOP1;
}
static bool isSOP2(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOP2;
}
bool isSOP2(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOP2;
}
static bool isSOPC(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOPC;
}
bool isSOPC(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOPC;
}
static bool isSOPK(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOPK;
}
bool isSOPK(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOPK;
}
static bool isSOPP(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOPP;
}
bool isSOPP(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOPP;
}
static bool isPacked(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IsPacked;
}
bool isPacked(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::IsPacked;
}
static bool isVOP1(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VOP1;
}
bool isVOP1(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP1;
}
static bool isVOP2(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VOP2;
}
bool isVOP2(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP2;
}
static bool isVOP3(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VOP3;
}
bool isVOP3(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP3;
}
static bool isSDWA(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SDWA;
}
bool isSDWA(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SDWA;
}
static bool isVOPC(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VOPC;
}
bool isVOPC(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOPC;
}
static bool isMUBUF(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::MUBUF;
}
bool isMUBUF(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MUBUF;
}
static bool isMTBUF(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::MTBUF;
}
bool isMTBUF(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MTBUF;
}
static bool isSMRD(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SMRD;
}
bool isSMRD(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SMRD;
}
bool isBufferSMRD(const MachineInstr &MI) const;
static bool isDS(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::DS;
}
bool isDS(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::DS;
}
bool isAlwaysGDS(uint16_t Opcode) const;
static bool isMIMG(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::MIMG;
}
bool isMIMG(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::MIMG;
}
static bool isGather4(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::Gather4;
}
bool isGather4(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::Gather4;
}
static bool isFLAT(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FLAT;
}
// Is a FLAT encoded instruction which accesses a specific segment,
// i.e. global_* or scratch_*.
static bool isSegmentSpecificFLAT(const MachineInstr &MI) {
auto Flags = MI.getDesc().TSFlags;
return Flags & (SIInstrFlags::FlatGlobal | SIInstrFlags::FlatScratch);
}
bool isSegmentSpecificFLAT(uint16_t Opcode) const {
auto Flags = get(Opcode).TSFlags;
return Flags & (SIInstrFlags::FlatGlobal | SIInstrFlags::FlatScratch);
}
static bool isFLATGlobal(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FlatGlobal;
}
bool isFLATGlobal(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FlatGlobal;
}
static bool isFLATScratch(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FlatScratch;
}
bool isFLATScratch(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FlatScratch;
}
// Any FLAT encoded instruction, including global_* and scratch_*.
bool isFLAT(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FLAT;
}
static bool isEXP(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::EXP;
}
bool isEXP(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::EXP;
}
static bool isAtomicNoRet(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IsAtomicNoRet;
}
bool isAtomicNoRet(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::IsAtomicNoRet;
}
static bool isAtomicRet(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IsAtomicRet;
}
bool isAtomicRet(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::IsAtomicRet;
}
static bool isAtomic(const MachineInstr &MI) {
return MI.getDesc().TSFlags & (SIInstrFlags::IsAtomicRet |
SIInstrFlags::IsAtomicNoRet);
}
bool isAtomic(uint16_t Opcode) const {
return get(Opcode).TSFlags & (SIInstrFlags::IsAtomicRet |
SIInstrFlags::IsAtomicNoRet);
}
static bool isWQM(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::WQM;
}
bool isWQM(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::WQM;
}
static bool isDisableWQM(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::DisableWQM;
}
bool isDisableWQM(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::DisableWQM;
}
static bool isVGPRSpill(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VGPRSpill;
}
bool isVGPRSpill(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VGPRSpill;
}
static bool isSGPRSpill(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SGPRSpill;
}
bool isSGPRSpill(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SGPRSpill;
}
static bool isDPP(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::DPP;
}
bool isDPP(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::DPP;
}
static bool isTRANS(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::TRANS;
}
bool isTRANS(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::TRANS;
}
static bool isVOP3P(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VOP3P;
}
bool isVOP3P(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VOP3P;
}
static bool isVINTRP(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VINTRP;
}
bool isVINTRP(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::VINTRP;
}
static bool isMAI(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IsMAI;
}
bool isMAI(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::IsMAI;
}
static bool isDOT(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IsDOT;
}
bool isDOT(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::IsDOT;
}
static bool isScalarUnit(const MachineInstr &MI) {
return MI.getDesc().TSFlags & (SIInstrFlags::SALU | SIInstrFlags::SMRD);
}
static bool usesVM_CNT(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::VM_CNT;
}
static bool usesLGKM_CNT(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::LGKM_CNT;
}
static bool sopkIsZext(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SOPK_ZEXT;
}
bool sopkIsZext(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SOPK_ZEXT;
}
/// \returns true if this is an s_store_dword* instruction. This is more
/// specific than than isSMEM && mayStore.
static bool isScalarStore(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::SCALAR_STORE;
}
bool isScalarStore(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::SCALAR_STORE;
}
static bool isFixedSize(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FIXED_SIZE;
}
bool isFixedSize(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FIXED_SIZE;
}
static bool hasFPClamp(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FPClamp;
}
bool hasFPClamp(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FPClamp;
}
static bool hasIntClamp(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::IntClamp;
}
uint64_t getClampMask(const MachineInstr &MI) const {
const uint64_t ClampFlags = SIInstrFlags::FPClamp |
SIInstrFlags::IntClamp |
SIInstrFlags::ClampLo |
SIInstrFlags::ClampHi;
return MI.getDesc().TSFlags & ClampFlags;
}
static bool usesFPDPRounding(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FPDPRounding;
}
bool usesFPDPRounding(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FPDPRounding;
}
static bool isFPAtomic(const MachineInstr &MI) {
return MI.getDesc().TSFlags & SIInstrFlags::FPAtomic;
}
bool isFPAtomic(uint16_t Opcode) const {
return get(Opcode).TSFlags & SIInstrFlags::FPAtomic;
}
bool isVGPRCopy(const MachineInstr &MI) const {
assert(MI.isCopy());
Register Dest = MI.getOperand(0).getReg();
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return !RI.isSGPRReg(MRI, Dest);
}
bool hasVGPRUses(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return llvm::any_of(MI.explicit_uses(),
[&MRI, this](const MachineOperand &MO) {
return MO.isReg() && RI.isVGPR(MRI, MO.getReg());});
}
/// Return true if the instruction modifies the mode register.q
static bool modifiesModeRegister(const MachineInstr &MI);
/// Whether we must prevent this instruction from executing with EXEC = 0.
bool hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const;
/// Returns true if the instruction could potentially depend on the value of
/// exec. If false, exec dependencies may safely be ignored.
bool mayReadEXEC(const MachineRegisterInfo &MRI, const MachineInstr &MI) const;
bool isInlineConstant(const APInt &Imm) const;
bool isInlineConstant(const APFloat &Imm) const {
return isInlineConstant(Imm.bitcastToAPInt());
}
bool isInlineConstant(const MachineOperand &MO, uint8_t OperandType) const;
bool isInlineConstant(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
return isInlineConstant(MO, OpInfo.OperandType);
}
/// \p returns true if \p UseMO is substituted with \p DefMO in \p MI it would
/// be an inline immediate.
bool isInlineConstant(const MachineInstr &MI,
const MachineOperand &UseMO,
const MachineOperand &DefMO) const {
assert(UseMO.getParent() == &MI);
int OpIdx = MI.getOperandNo(&UseMO);
if (!MI.getDesc().OpInfo || OpIdx >= MI.getDesc().NumOperands) {
return false;
}
return isInlineConstant(DefMO, MI.getDesc().OpInfo[OpIdx]);
}
/// \p returns true if the operand \p OpIdx in \p MI is a valid inline
/// immediate.
bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx) const {
const MachineOperand &MO = MI.getOperand(OpIdx);
return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
}
bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx,
const MachineOperand &MO) const {
if (!MI.getDesc().OpInfo || OpIdx >= MI.getDesc().NumOperands)
return false;
if (MI.isCopy()) {
unsigned Size = getOpSize(MI, OpIdx);
assert(Size == 8 || Size == 4);
uint8_t OpType = (Size == 8) ?
AMDGPU::OPERAND_REG_IMM_INT64 : AMDGPU::OPERAND_REG_IMM_INT32;
return isInlineConstant(MO, OpType);
}
return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
}
bool isInlineConstant(const MachineOperand &MO) const {
const MachineInstr *Parent = MO.getParent();
return isInlineConstant(*Parent, Parent->getOperandNo(&MO));
}
bool isLiteralConstant(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
return MO.isImm() && !isInlineConstant(MO, OpInfo.OperandType);
}
bool isLiteralConstant(const MachineInstr &MI, int OpIdx) const {
const MachineOperand &MO = MI.getOperand(OpIdx);
return MO.isImm() && !isInlineConstant(MI, OpIdx);
}
// Returns true if this operand could potentially require a 32-bit literal
// operand, but not necessarily. A FrameIndex for example could resolve to an
// inline immediate value that will not require an additional 4-bytes; this
// assumes that it will.
bool isLiteralConstantLike(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const;
bool isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
const MachineOperand &MO) const;
/// Return true if this 64-bit VALU instruction has a 32-bit encoding.
/// This function will return false if you pass it a 32-bit instruction.
bool hasVALU32BitEncoding(unsigned Opcode) const;
/// Returns true if this operand uses the constant bus.
bool usesConstantBus(const MachineRegisterInfo &MRI,
const MachineOperand &MO,
const MCOperandInfo &OpInfo) const;
/// Return true if this instruction has any modifiers.
/// e.g. src[012]_mod, omod, clamp.
bool hasModifiers(unsigned Opcode) const;
bool hasModifiersSet(const MachineInstr &MI,
unsigned OpName) const;
bool hasAnyModifiersSet(const MachineInstr &MI) const;
bool canShrink(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const;
MachineInstr *buildShrunkInst(MachineInstr &MI,
unsigned NewOpcode) const;
bool verifyInstruction(const MachineInstr &MI,
StringRef &ErrInfo) const override;
unsigned getVALUOp(const MachineInstr &MI) const;
/// Return the correct register class for \p OpNo. For target-specific
/// instructions, this will return the register class that has been defined
/// in tablegen. For generic instructions, like REG_SEQUENCE it will return
/// the register class of its machine operand.
/// to infer the correct register class base on the other operands.
const TargetRegisterClass *getOpRegClass(const MachineInstr &MI,
unsigned OpNo) const;
/// Return the size in bytes of the operand OpNo on the given
// instruction opcode.
unsigned getOpSize(uint16_t Opcode, unsigned OpNo) const {
const MCOperandInfo &OpInfo = get(Opcode).OpInfo[OpNo];
if (OpInfo.RegClass == -1) {
// If this is an immediate operand, this must be a 32-bit literal.
assert(OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE);
return 4;
}
return RI.getRegSizeInBits(*RI.getRegClass(OpInfo.RegClass)) / 8;
}
/// This form should usually be preferred since it handles operands
/// with unknown register classes.
unsigned getOpSize(const MachineInstr &MI, unsigned OpNo) const {
const MachineOperand &MO = MI.getOperand(OpNo);
if (MO.isReg()) {
if (unsigned SubReg = MO.getSubReg()) {
return RI.getSubRegIdxSize(SubReg) / 8;
}
}
return RI.getRegSizeInBits(*getOpRegClass(MI, OpNo)) / 8;
}
/// Legalize the \p OpIndex operand of this instruction by inserting
/// a MOV. For example:
/// ADD_I32_e32 VGPR0, 15
/// to
/// MOV VGPR1, 15
/// ADD_I32_e32 VGPR0, VGPR1
///
/// If the operand being legalized is a register, then a COPY will be used
/// instead of MOV.
void legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const;
/// Check if \p MO is a legal operand if it was the \p OpIdx Operand
/// for \p MI.
bool isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
const MachineOperand *MO = nullptr) const;
/// Check if \p MO would be a valid operand for the given operand
/// definition \p OpInfo. Note this does not attempt to validate constant bus
/// restrictions (e.g. literal constant usage).
bool isLegalVSrcOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const;
/// Check if \p MO (a register operand) is a legal register for the
/// given operand description.
bool isLegalRegOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const;
/// Legalize operands in \p MI by either commuting it or inserting a
/// copy of src1.
void legalizeOperandsVOP2(MachineRegisterInfo &MRI, MachineInstr &MI) const;
/// Fix operands in \p MI to satisfy constant bus requirements.
void legalizeOperandsVOP3(MachineRegisterInfo &MRI, MachineInstr &MI) const;
/// Copy a value from a VGPR (\p SrcReg) to SGPR. This function can only
/// be used when it is know that the value in SrcReg is same across all
/// threads in the wave.
/// \returns The SGPR register that \p SrcReg was copied to.
Register readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
MachineRegisterInfo &MRI) const;
void legalizeOperandsSMRD(MachineRegisterInfo &MRI, MachineInstr &MI) const;
void legalizeOperandsFLAT(MachineRegisterInfo &MRI, MachineInstr &MI) const;
void legalizeGenericOperand(MachineBasicBlock &InsertMBB,
MachineBasicBlock::iterator I,
const TargetRegisterClass *DstRC,
MachineOperand &Op, MachineRegisterInfo &MRI,
const DebugLoc &DL) const;
/// Legalize all operands in this instruction. This function may create new
/// instructions and control-flow around \p MI. If present, \p MDT is
/// updated.
/// \returns A new basic block that contains \p MI if new blocks were created.
MachineBasicBlock *
legalizeOperands(MachineInstr &MI, MachineDominatorTree *MDT = nullptr) const;
/// Change SADDR form of a FLAT \p Inst to its VADDR form if saddr operand
/// was moved to VGPR. \returns true if succeeded.
bool moveFlatAddrToVGPR(MachineInstr &Inst) const;
/// Replace this instruction's opcode with the equivalent VALU
/// opcode. This function will also move the users of \p MI to the
/// VALU if necessary. If present, \p MDT is updated.
MachineBasicBlock *moveToVALU(MachineInstr &MI,
MachineDominatorTree *MDT = nullptr) const;
void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const override;
void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned Quantity) const override;
void insertReturn(MachineBasicBlock &MBB) const;
/// Return the number of wait states that result from executing this
/// instruction.
static unsigned getNumWaitStates(const MachineInstr &MI);
/// Returns the operand named \p Op. If \p MI does not have an
/// operand named \c Op, this function returns nullptr.
LLVM_READONLY
MachineOperand *getNamedOperand(MachineInstr &MI, unsigned OperandName) const;
LLVM_READONLY
const MachineOperand *getNamedOperand(const MachineInstr &MI,
unsigned OpName) const {
return getNamedOperand(const_cast<MachineInstr &>(MI), OpName);
}
/// Get required immediate operand
int64_t getNamedImmOperand(const MachineInstr &MI, unsigned OpName) const {
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName);
return MI.getOperand(Idx).getImm();
}
uint64_t getDefaultRsrcDataFormat() const;
uint64_t getScratchRsrcWords23() const;
bool isLowLatencyInstruction(const MachineInstr &MI) const;
bool isHighLatencyDef(int Opc) const override;
/// Return the descriptor of the target-specific machine instruction
/// that corresponds to the specified pseudo or native opcode.
const MCInstrDesc &getMCOpcodeFromPseudo(unsigned Opcode) const {
return get(pseudoToMCOpcode(Opcode));
}
unsigned isStackAccess(const MachineInstr &MI, int &FrameIndex) const;
unsigned isSGPRStackAccess(const MachineInstr &MI, int &FrameIndex) const;
unsigned isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
unsigned isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
unsigned getInstBundleSize(const MachineInstr &MI) const;
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
bool mayAccessFlatAddressSpace(const MachineInstr &MI) const;
bool isNonUniformBranchInstr(MachineInstr &Instr) const;
void convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
MachineBasicBlock *IfEnd) const;
void convertNonUniformLoopRegion(MachineBasicBlock *LoopEntry,
MachineBasicBlock *LoopEnd) const;
std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices() const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const override;
ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const override;
ScheduleHazardRecognizer *
CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAGMI *DAG) const override;
bool isBasicBlockPrologue(const MachineInstr &MI) const override;
MachineInstr *createPHIDestinationCopy(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsPt,
const DebugLoc &DL, Register Src,
Register Dst) const override;
MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsPt,
const DebugLoc &DL, Register Src,
unsigned SrcSubReg,
Register Dst) const override;
bool isWave32() const;
/// Return a partially built integer add instruction without carry.
/// Caller must add source operands.
/// For pre-GFX9 it will generate unused carry destination operand.
/// TODO: After GFX9 it should return a no-carry operation.
MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register DestReg) const;
MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register DestReg,
RegScavenger &RS) const;
static bool isKillTerminator(unsigned Opcode);
const MCInstrDesc &getKillTerminatorFromPseudo(unsigned Opcode) const;
static bool isLegalMUBUFImmOffset(unsigned Imm) {
return isUInt<12>(Imm);
}
/// Returns if \p Offset is legal for the subtarget as the offset to a FLAT
/// encoded instruction. If \p Signed, this is for an instruction that
/// interprets the offset as signed.
bool isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
uint64_t FlatVariant) const;
/// Split \p COffsetVal into {immediate offset field, remainder offset}
/// values.
std::pair<int64_t, int64_t> splitFlatOffset(int64_t COffsetVal,
unsigned AddrSpace,
uint64_t FlatVariant) const;
/// \brief Return a target-specific opcode if Opcode is a pseudo instruction.
/// Return -1 if the target-specific opcode for the pseudo instruction does
/// not exist. If Opcode is not a pseudo instruction, this is identity.
int pseudoToMCOpcode(int Opcode) const;
/// \brief Check if this instruction should only be used by assembler.
/// Return true if this opcode should not be used by codegen.
bool isAsmOnlyOpcode(int MCOp) const;
const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
const TargetRegisterInfo *TRI,
const MachineFunction &MF)
const override;
void fixImplicitOperands(MachineInstr &MI) const;
MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt,
int FrameIndex,
LiveIntervals *LIS = nullptr,
VirtRegMap *VRM = nullptr) const override;
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost = nullptr) const override;
const MIRFormatter *getMIRFormatter() const override {
if (!Formatter.get())
Formatter = std::make_unique<AMDGPUMIRFormatter>();
return Formatter.get();
}
static unsigned getDSShaderTypeValue(const MachineFunction &MF);
const TargetSchedModel &getSchedModel() const { return SchedModel; }
};
/// \brief Returns true if a reg:subreg pair P has a TRC class
inline bool isOfRegClass(const TargetInstrInfo::RegSubRegPair &P,
const TargetRegisterClass &TRC,
MachineRegisterInfo &MRI) {
auto *RC = MRI.getRegClass(P.Reg);
if (!P.SubReg)
return RC == &TRC;
auto *TRI = MRI.getTargetRegisterInfo();
return RC == TRI->getMatchingSuperRegClass(RC, &TRC, P.SubReg);
}
/// \brief Create RegSubRegPair from a register MachineOperand
inline
TargetInstrInfo::RegSubRegPair getRegSubRegPair(const MachineOperand &O) {
assert(O.isReg());
return TargetInstrInfo::RegSubRegPair(O.getReg(), O.getSubReg());
}
/// \brief Return the SubReg component from REG_SEQUENCE
TargetInstrInfo::RegSubRegPair getRegSequenceSubReg(MachineInstr &MI,
unsigned SubReg);
/// \brief Return the defining instruction for a given reg:subreg pair
/// skipping copy like instructions and subreg-manipulation pseudos.
/// Following another subreg of a reg:subreg isn't supported.
MachineInstr *getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
MachineRegisterInfo &MRI);
/// \brief Return false if EXEC is not changed between the def of \p VReg at \p
/// DefMI and the use at \p UseMI. Should be run on SSA. Currently does not
/// attempt to track between blocks.
bool execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
Register VReg,
const MachineInstr &DefMI,
const MachineInstr &UseMI);
/// \brief Return false if EXEC is not changed between the def of \p VReg at \p
/// DefMI and all its uses. Should be run on SSA. Currently does not attempt to
/// track between blocks.
bool execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
Register VReg,
const MachineInstr &DefMI);
namespace AMDGPU {
LLVM_READONLY
int getVOPe64(uint16_t Opcode);
LLVM_READONLY
int getVOPe32(uint16_t Opcode);
LLVM_READONLY
int getSDWAOp(uint16_t Opcode);
LLVM_READONLY
int getDPPOp32(uint16_t Opcode);
LLVM_READONLY
int getBasicFromSDWAOp(uint16_t Opcode);
LLVM_READONLY
int getCommuteRev(uint16_t Opcode);
LLVM_READONLY
int getCommuteOrig(uint16_t Opcode);
LLVM_READONLY
int getAddr64Inst(uint16_t Opcode);
/// Check if \p Opcode is an Addr64 opcode.
///
/// \returns \p Opcode if it is an Addr64 opcode, otherwise -1.
LLVM_READONLY
int getIfAddr64Inst(uint16_t Opcode);
LLVM_READONLY
int getMUBUFNoLdsInst(uint16_t Opcode);
LLVM_READONLY
int getAtomicNoRetOp(uint16_t Opcode);
LLVM_READONLY
int getSOPKOp(uint16_t Opcode);
/// \returns SADDR form of a FLAT Global instruction given an \p Opcode
/// of a VADDR form.
LLVM_READONLY
int getGlobalSaddrOp(uint16_t Opcode);
/// \returns VADDR form of a FLAT Global instruction given an \p Opcode
/// of a SADDR form.
LLVM_READONLY
int getGlobalVaddrOp(uint16_t Opcode);
LLVM_READONLY
int getVCMPXNoSDstOp(uint16_t Opcode);
/// \returns ST form with only immediate offset of a FLAT Scratch instruction
/// given an \p Opcode of an SS (SADDR) form.
LLVM_READONLY
int getFlatScratchInstSTfromSS(uint16_t Opcode);
/// \returns SS (SADDR) form of a FLAT Scratch instruction given an \p Opcode
/// of an SV (VADDR) form.
LLVM_READONLY
int getFlatScratchInstSSfromSV(uint16_t Opcode);
/// \returns SV (VADDR) form of a FLAT Scratch instruction given an \p Opcode
/// of an SS (SADDR) form.
LLVM_READONLY
int getFlatScratchInstSVfromSS(uint16_t Opcode);
const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;
const uint64_t RSRC_ELEMENT_SIZE_SHIFT = (32 + 19);
const uint64_t RSRC_INDEX_STRIDE_SHIFT = (32 + 21);
const uint64_t RSRC_TID_ENABLE = UINT64_C(1) << (32 + 23);
} // end namespace AMDGPU
namespace SI {
namespace KernelInputOffsets {
/// Offsets in bytes from the start of the input buffer
enum Offsets {
NGROUPS_X = 0,
NGROUPS_Y = 4,
NGROUPS_Z = 8,
GLOBAL_SIZE_X = 12,
GLOBAL_SIZE_Y = 16,
GLOBAL_SIZE_Z = 20,
LOCAL_SIZE_X = 24,
LOCAL_SIZE_Y = 28,
LOCAL_SIZE_Z = 32
};
} // end namespace KernelInputOffsets
} // end namespace SI
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H