| //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //==-----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Defines an instruction selector for the AMDGPU target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUISelDAGToDAG.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "MCTargetDesc/R600MCTargetDesc.h" |
| #include "R600RegisterInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/InitializePasses.h" |
| |
| #ifdef EXPENSIVE_CHECKS |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #endif |
| |
| #define DEBUG_TYPE "isel" |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Selector Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| static SDValue stripBitcast(SDValue Val) { |
| return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; |
| } |
| |
| // Figure out if this is really an extract of the high 16-bits of a dword. |
| static bool isExtractHiElt(SDValue In, SDValue &Out) { |
| In = stripBitcast(In); |
| |
| if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { |
| if (!Idx->isOne()) |
| return false; |
| Out = In.getOperand(0); |
| return true; |
| } |
| } |
| |
| if (In.getOpcode() != ISD::TRUNCATE) |
| return false; |
| |
| SDValue Srl = In.getOperand(0); |
| if (Srl.getOpcode() == ISD::SRL) { |
| if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { |
| if (ShiftAmt->getZExtValue() == 16) { |
| Out = stripBitcast(Srl.getOperand(0)); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Look through operations that obscure just looking at the low 16-bits of the |
| // same register. |
| static SDValue stripExtractLoElt(SDValue In) { |
| if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { |
| if (Idx->isZero() && In.getValueSizeInBits() <= 32) |
| return In.getOperand(0); |
| } |
| } |
| |
| if (In.getOpcode() == ISD::TRUNCATE) { |
| SDValue Src = In.getOperand(0); |
| if (Src.getValueType().getSizeInBits() == 32) |
| return stripBitcast(Src); |
| } |
| |
| return In; |
| } |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", |
| "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) |
| INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) |
| #ifdef EXPENSIVE_CHECKS |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| #endif |
| INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", |
| "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) |
| |
| /// This pass converts a legalized DAG into a AMDGPU-specific |
| // DAG, ready for instruction scheduling. |
| FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, |
| CodeGenOpt::Level OptLevel) { |
| return new AMDGPUDAGToDAGISel(TM, OptLevel); |
| } |
| |
| AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel( |
| TargetMachine *TM /*= nullptr*/, |
| CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/) |
| : SelectionDAGISel(*TM, OptLevel) { |
| EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; |
| } |
| |
| bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
| #ifdef EXPENSIVE_CHECKS |
| DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| for (auto &L : LI->getLoopsInPreorder()) { |
| assert(L->isLCSSAForm(DT)); |
| } |
| #endif |
| Subtarget = &MF.getSubtarget<GCNSubtarget>(); |
| Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); |
| return SelectionDAGISel::runOnMachineFunction(MF); |
| } |
| |
| bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { |
| // XXX - only need to list legal operations. |
| switch (Opc) { |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FCANONICALIZE: |
| case ISD::UINT_TO_FP: |
| case ISD::SINT_TO_FP: |
| case ISD::FABS: |
| // Fabs is lowered to a bit operation, but it's an and which will clear the |
| // high bits anyway. |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FPOWI: |
| case ISD::FPOW: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FCEIL: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FROUND: |
| case ISD::FFLOOR: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case AMDGPUISD::FRACT: |
| case AMDGPUISD::CLAMP: |
| case AMDGPUISD::COS_HW: |
| case AMDGPUISD::SIN_HW: |
| case AMDGPUISD::FMIN3: |
| case AMDGPUISD::FMAX3: |
| case AMDGPUISD::FMED3: |
| case AMDGPUISD::FMAD_FTZ: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::LDEXP: |
| // On gfx10, all 16-bit instructions preserve the high bits. |
| return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; |
| case ISD::FP_ROUND: |
| // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the |
| // high bits on gfx9. |
| // TODO: If we had the source node we could see if the source was fma/mad |
| return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
| case ISD::FMA: |
| case ISD::FMAD: |
| case AMDGPUISD::DIV_FIXUP: |
| return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
| default: |
| // fcopysign, select and others may be lowered to 32-bit bit operations |
| // which don't zero the high bits. |
| return false; |
| } |
| } |
| |
| void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AMDGPUArgumentUsageInfo>(); |
| AU.addRequired<LegacyDivergenceAnalysis>(); |
| #ifdef EXPENSIVE_CHECKS |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| #endif |
| SelectionDAGISel::getAnalysisUsage(AU); |
| } |
| |
| bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { |
| assert(Subtarget->d16PreservesUnusedBits()); |
| MVT VT = N->getValueType(0).getSimpleVT(); |
| if (VT != MVT::v2i16 && VT != MVT::v2f16) |
| return false; |
| |
| SDValue Lo = N->getOperand(0); |
| SDValue Hi = N->getOperand(1); |
| |
| LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); |
| |
| // build_vector lo, (load ptr) -> load_d16_hi ptr, lo |
| // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo |
| // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo |
| |
| // Need to check for possible indirect dependencies on the other half of the |
| // vector to avoid introducing a cycle. |
| if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { |
| SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); |
| |
| SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); |
| SDValue Ops[] = { |
| LdHi->getChain(), LdHi->getBasePtr(), TiedIn |
| }; |
| |
| unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; |
| if (LdHi->getMemoryVT() == MVT::i8) { |
| LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? |
| AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; |
| } else { |
| assert(LdHi->getMemoryVT() == MVT::i16); |
| } |
| |
| SDValue NewLoadHi = |
| CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, |
| Ops, LdHi->getMemoryVT(), |
| LdHi->getMemOperand()); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); |
| return true; |
| } |
| |
| // build_vector (load ptr), hi -> load_d16_lo ptr, hi |
| // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi |
| // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi |
| LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); |
| if (LdLo && Lo.hasOneUse()) { |
| SDValue TiedIn = getHi16Elt(Hi); |
| if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) |
| return false; |
| |
| SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); |
| unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; |
| if (LdLo->getMemoryVT() == MVT::i8) { |
| LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? |
| AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; |
| } else { |
| assert(LdLo->getMemoryVT() == MVT::i16); |
| } |
| |
| TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); |
| |
| SDValue Ops[] = { |
| LdLo->getChain(), LdLo->getBasePtr(), TiedIn |
| }; |
| |
| SDValue NewLoadLo = |
| CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, |
| Ops, LdLo->getMemoryVT(), |
| LdLo->getMemOperand()); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void AMDGPUDAGToDAGISel::PreprocessISelDAG() { |
| if (!Subtarget->d16PreservesUnusedBits()) |
| return; |
| |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| bool MadeChange = false; |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| if (N->use_empty()) |
| continue; |
| |
| switch (N->getOpcode()) { |
| case ISD::BUILD_VECTOR: |
| MadeChange |= matchLoadD16FromBuildVector(N); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (MadeChange) { |
| CurDAG->RemoveDeadNodes(); |
| LLVM_DEBUG(dbgs() << "After PreProcess:\n"; |
| CurDAG->dump();); |
| } |
| } |
| |
| bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { |
| if (TM.Options.NoNaNsFPMath) |
| return true; |
| |
| // TODO: Move into isKnownNeverNaN |
| if (N->getFlags().hasNoNaNs()) |
| return true; |
| |
| return CurDAG->isKnownNeverNaN(N); |
| } |
| |
| bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, |
| bool Negated) const { |
| if (N->isUndef()) |
| return true; |
| |
| const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
| if (Negated) { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) |
| return TII->isInlineConstant(-C->getAPIntValue()); |
| |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) |
| return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); |
| |
| } else { |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) |
| return TII->isInlineConstant(C->getAPIntValue()); |
| |
| if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) |
| return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); |
| } |
| |
| return false; |
| } |
| |
| /// Determine the register class for \p OpNo |
| /// \returns The register class of the virtual register that will be used for |
| /// the given operand number \OpNo or NULL if the register class cannot be |
| /// determined. |
| const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, |
| unsigned OpNo) const { |
| if (!N->isMachineOpcode()) { |
| if (N->getOpcode() == ISD::CopyToReg) { |
| Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (Reg.isVirtual()) { |
| MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); |
| return MRI.getRegClass(Reg); |
| } |
| |
| const SIRegisterInfo *TRI |
| = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); |
| return TRI->getPhysRegClass(Reg); |
| } |
| |
| return nullptr; |
| } |
| |
| switch (N->getMachineOpcode()) { |
| default: { |
| const MCInstrDesc &Desc = |
| Subtarget->getInstrInfo()->get(N->getMachineOpcode()); |
| unsigned OpIdx = Desc.getNumDefs() + OpNo; |
| if (OpIdx >= Desc.getNumOperands()) |
| return nullptr; |
| int RegClass = Desc.OpInfo[OpIdx].RegClass; |
| if (RegClass == -1) |
| return nullptr; |
| |
| return Subtarget->getRegisterInfo()->getRegClass(RegClass); |
| } |
| case AMDGPU::REG_SEQUENCE: { |
| unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| const TargetRegisterClass *SuperRC = |
| Subtarget->getRegisterInfo()->getRegClass(RCID); |
| |
| SDValue SubRegOp = N->getOperand(OpNo + 1); |
| unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); |
| return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, |
| SubRegIdx); |
| } |
| } |
| } |
| |
| SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, |
| SDValue Glue) const { |
| SmallVector <SDValue, 8> Ops; |
| Ops.push_back(NewChain); // Replace the chain. |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| Ops.push_back(N->getOperand(i)); |
| |
| Ops.push_back(Glue); |
| return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); |
| } |
| |
| SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { |
| const SITargetLowering& Lowering = |
| *static_cast<const SITargetLowering*>(getTargetLowering()); |
| |
| assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); |
| |
| SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); |
| return glueCopyToOp(N, M0, M0.getValue(1)); |
| } |
| |
| SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { |
| unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); |
| if (AS == AMDGPUAS::LOCAL_ADDRESS) { |
| if (Subtarget->ldsRequiresM0Init()) |
| return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); |
| } else if (AS == AMDGPUAS::REGION_ADDRESS) { |
| MachineFunction &MF = CurDAG->getMachineFunction(); |
| unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); |
| return |
| glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); |
| } |
| return N; |
| } |
| |
| MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, |
| EVT VT) const { |
| SDNode *Lo = CurDAG->getMachineNode( |
| AMDGPU::S_MOV_B32, DL, MVT::i32, |
| CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); |
| SDNode *Hi = |
| CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, |
| CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); |
| const SDValue Ops[] = { |
| CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), |
| SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), |
| SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; |
| |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { |
| EVT VT = N->getValueType(0); |
| unsigned NumVectorElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDLoc DL(N); |
| SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); |
| |
| if (NumVectorElts == 1) { |
| CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), |
| RegClass); |
| return; |
| } |
| |
| assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " |
| "supported yet"); |
| // 32 = Max Num Vector Elements |
| // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) |
| // 1 = Vector Register Class |
| SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); |
| |
| bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == |
| Triple::amdgcn; |
| RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); |
| bool IsRegSeq = true; |
| unsigned NOps = N->getNumOperands(); |
| for (unsigned i = 0; i < NOps; i++) { |
| // XXX: Why is this here? |
| if (isa<RegisterSDNode>(N->getOperand(i))) { |
| IsRegSeq = false; |
| break; |
| } |
| unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) |
| : R600RegisterInfo::getSubRegFromChannel(i); |
| RegSeqArgs[1 + (2 * i)] = N->getOperand(i); |
| RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); |
| } |
| if (NOps != NumVectorElts) { |
| // Fill in the missing undef elements if this was a scalar_to_vector. |
| assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); |
| MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, |
| DL, EltVT); |
| for (unsigned i = NOps; i < NumVectorElts; ++i) { |
| unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) |
| : R600RegisterInfo::getSubRegFromChannel(i); |
| RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); |
| RegSeqArgs[1 + (2 * i) + 1] = |
| CurDAG->getTargetConstant(Sub, DL, MVT::i32); |
| } |
| } |
| |
| if (!IsRegSeq) |
| SelectCode(N); |
| CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); |
| } |
| |
| void AMDGPUDAGToDAGISel::Select(SDNode *N) { |
| unsigned int Opc = N->getOpcode(); |
| if (N->isMachineOpcode()) { |
| N->setNodeId(-1); |
| return; // Already selected. |
| } |
| |
| // isa<MemSDNode> almost works but is slightly too permissive for some DS |
| // intrinsics. |
| if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || |
| (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || |
| Opc == ISD::ATOMIC_LOAD_FADD || |
| Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || |
| Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { |
| N = glueCopyToM0LDSInit(N); |
| SelectCode(N); |
| return; |
| } |
| |
| switch (Opc) { |
| default: |
| break; |
| // We are selecting i64 ADD here instead of custom lower it during |
| // DAG legalization, so we can fold some i64 ADDs used for address |
| // calculation into the LOAD and STORE instructions. |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: { |
| if (N->getValueType(0) != MVT::i64) |
| break; |
| |
| SelectADD_SUB_I64(N); |
| return; |
| } |
| case ISD::ADDCARRY: |
| case ISD::SUBCARRY: |
| if (N->getValueType(0) != MVT::i32) |
| break; |
| |
| SelectAddcSubb(N); |
| return; |
| case ISD::UADDO: |
| case ISD::USUBO: { |
| SelectUADDO_USUBO(N); |
| return; |
| } |
| case AMDGPUISD::FMUL_W_CHAIN: { |
| SelectFMUL_W_CHAIN(N); |
| return; |
| } |
| case AMDGPUISD::FMA_W_CHAIN: { |
| SelectFMA_W_CHAIN(N); |
| return; |
| } |
| |
| case ISD::SCALAR_TO_VECTOR: |
| case ISD::BUILD_VECTOR: { |
| EVT VT = N->getValueType(0); |
| unsigned NumVectorElts = VT.getVectorNumElements(); |
| if (VT.getScalarSizeInBits() == 16) { |
| if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { |
| if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { |
| ReplaceNode(N, Packed); |
| return; |
| } |
| } |
| |
| break; |
| } |
| |
| assert(VT.getVectorElementType().bitsEq(MVT::i32)); |
| unsigned RegClassID = |
| SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); |
| SelectBuildVector(N, RegClassID); |
| return; |
| } |
| case ISD::BUILD_PAIR: { |
| SDValue RC, SubReg0, SubReg1; |
| SDLoc DL(N); |
| if (N->getValueType(0) == MVT::i128) { |
| RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); |
| SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); |
| SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); |
| } else if (N->getValueType(0) == MVT::i64) { |
| RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); |
| SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); |
| SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); |
| } else { |
| llvm_unreachable("Unhandled value type for BUILD_PAIR"); |
| } |
| const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, |
| N->getOperand(1), SubReg1 }; |
| ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, |
| N->getValueType(0), Ops)); |
| return; |
| } |
| |
| case ISD::Constant: |
| case ISD::ConstantFP: { |
| if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) |
| break; |
| |
| uint64_t Imm; |
| if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) |
| Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| else { |
| ConstantSDNode *C = cast<ConstantSDNode>(N); |
| Imm = C->getZExtValue(); |
| } |
| |
| SDLoc DL(N); |
| ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); |
| return; |
| } |
| case AMDGPUISD::BFE_I32: |
| case AMDGPUISD::BFE_U32: { |
| // There is a scalar version available, but unlike the vector version which |
| // has a separate operand for the offset and width, the scalar version packs |
| // the width and offset into a single operand. Try to move to the scalar |
| // version if the offsets are constant, so that we can try to keep extended |
| // loads of kernel arguments in SGPRs. |
| |
| // TODO: Technically we could try to pattern match scalar bitshifts of |
| // dynamic values, but it's probably not useful. |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Offset) |
| break; |
| |
| ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); |
| if (!Width) |
| break; |
| |
| bool Signed = Opc == AMDGPUISD::BFE_I32; |
| |
| uint32_t OffsetVal = Offset->getZExtValue(); |
| uint32_t WidthVal = Width->getZExtValue(); |
| |
| ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, |
| WidthVal)); |
| return; |
| } |
| case AMDGPUISD::DIV_SCALE: { |
| SelectDIV_SCALE(N); |
| return; |
| } |
| case AMDGPUISD::MAD_I64_I32: |
| case AMDGPUISD::MAD_U64_U32: { |
| SelectMAD_64_32(N); |
| return; |
| } |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: |
| return SelectMUL_LOHI(N); |
| case ISD::CopyToReg: { |
| const SITargetLowering& Lowering = |
| *static_cast<const SITargetLowering*>(getTargetLowering()); |
| N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); |
| break; |
| } |
| case ISD::AND: |
| case ISD::SRL: |
| case ISD::SRA: |
| case ISD::SIGN_EXTEND_INREG: |
| if (N->getValueType(0) != MVT::i32) |
| break; |
| |
| SelectS_BFE(N); |
| return; |
| case ISD::BRCOND: |
| SelectBRCOND(N); |
| return; |
| case ISD::FMAD: |
| case ISD::FMA: |
| SelectFMAD_FMA(N); |
| return; |
| case AMDGPUISD::ATOMIC_CMP_SWAP: |
| SelectATOMIC_CMP_SWAP(N); |
| return; |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: |
| case AMDGPUISD::CVT_PKNORM_I16_F32: |
| case AMDGPUISD::CVT_PKNORM_U16_F32: |
| case AMDGPUISD::CVT_PK_U16_U32: |
| case AMDGPUISD::CVT_PK_I16_I32: { |
| // Hack around using a legal type if f16 is illegal. |
| if (N->getValueType(0) == MVT::i32) { |
| MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; |
| N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), |
| { N->getOperand(0), N->getOperand(1) }); |
| SelectCode(N); |
| return; |
| } |
| |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| SelectINTRINSIC_W_CHAIN(N); |
| return; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| SelectINTRINSIC_WO_CHAIN(N); |
| return; |
| } |
| case ISD::INTRINSIC_VOID: { |
| SelectINTRINSIC_VOID(N); |
| return; |
| } |
| } |
| |
| SelectCode(N); |
| } |
| |
| bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { |
| const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); |
| const Instruction *Term = BB->getTerminator(); |
| return Term->getMetadata("amdgpu.uniform") || |
| Term->getMetadata("structurizecfg.uniform"); |
| } |
| |
| bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, |
| unsigned ShAmtBits) const { |
| assert(N->getOpcode() == ISD::AND); |
| |
| const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); |
| if (RHS.countTrailingOnes() >= ShAmtBits) |
| return true; |
| |
| const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; |
| return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; |
| } |
| |
| static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, |
| SDValue &N0, SDValue &N1) { |
| if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && |
| Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { |
| // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. |
| // (i64 (bitcast (v2i32 (build_vector |
| // (or (extract_vector_elt V, 0), OFFSET), |
| // (extract_vector_elt V, 1))))) |
| SDValue Lo = Addr.getOperand(0).getOperand(0); |
| if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { |
| SDValue BaseLo = Lo.getOperand(0); |
| SDValue BaseHi = Addr.getOperand(0).getOperand(1); |
| // Check that split base (Lo and Hi) are extracted from the same one. |
| if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
| BaseLo.getOperand(0) == BaseHi.getOperand(0) && |
| // Lo is statically extracted from index 0. |
| isa<ConstantSDNode>(BaseLo.getOperand(1)) && |
| BaseLo.getConstantOperandVal(1) == 0 && |
| // Hi is statically extracted from index 0. |
| isa<ConstantSDNode>(BaseHi.getOperand(1)) && |
| BaseHi.getConstantOperandVal(1) == 1) { |
| N0 = BaseLo.getOperand(0).getOperand(0); |
| N1 = Lo.getOperand(1); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, |
| SDValue &RHS) const { |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| LHS = Addr.getOperand(0); |
| RHS = Addr.getOperand(1); |
| return true; |
| } |
| |
| if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { |
| assert(LHS && RHS && isa<ConstantSDNode>(RHS)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| StringRef AMDGPUDAGToDAGISel::getPassName() const { |
| return "AMDGPU DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Patterns |
| //===----------------------------------------------------------------------===// |
| |
| bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, |
| SDValue &Offset) { |
| return false; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, |
| SDValue &Offset) { |
| ConstantSDNode *C; |
| SDLoc DL(Addr); |
| |
| if ((C = dyn_cast<ConstantSDNode>(Addr))) { |
| Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); |
| Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); |
| } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && |
| (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { |
| Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); |
| Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); |
| } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && |
| (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { |
| Base = Addr.getOperand(0); |
| Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); |
| } else { |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| } |
| |
| return true; |
| } |
| |
| SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, |
| const SDLoc &DL) const { |
| SDNode *Mov = CurDAG->getMachineNode( |
| AMDGPU::S_MOV_B32, DL, MVT::i32, |
| CurDAG->getTargetConstant(Val, DL, MVT::i32)); |
| return SDValue(Mov, 0); |
| } |
| |
| // FIXME: Should only handle addcarry/subcarry |
| void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { |
| SDLoc DL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| unsigned Opcode = N->getOpcode(); |
| bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); |
| bool ProduceCarry = |
| ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; |
| bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; |
| |
| SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); |
| SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); |
| |
| SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, LHS, Sub0); |
| SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, LHS, Sub1); |
| |
| SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, RHS, Sub0); |
| SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, RHS, Sub1); |
| |
| SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); |
| |
| static const unsigned OpcMap[2][2][2] = { |
| {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, |
| {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, |
| {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, |
| {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; |
| |
| unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; |
| unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; |
| |
| SDNode *AddLo; |
| if (!ConsumeCarry) { |
| SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; |
| AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); |
| } else { |
| SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; |
| AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); |
| } |
| SDValue AddHiArgs[] = { |
| SDValue(Hi0, 0), |
| SDValue(Hi1, 0), |
| SDValue(AddLo, 1) |
| }; |
| SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); |
| |
| SDValue RegSequenceArgs[] = { |
| CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), |
| SDValue(AddLo,0), |
| Sub0, |
| SDValue(AddHi,0), |
| Sub1, |
| }; |
| SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, |
| MVT::i64, RegSequenceArgs); |
| |
| if (ProduceCarry) { |
| // Replace the carry-use |
| ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); |
| } |
| |
| // Replace the remaining uses. |
| ReplaceNode(N, RegSequence); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { |
| SDLoc DL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| SDValue CI = N->getOperand(2); |
| |
| if (N->isDivergent()) { |
| unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 |
| : AMDGPU::V_SUBB_U32_e64; |
| CurDAG->SelectNodeTo( |
| N, Opc, N->getVTList(), |
| {LHS, RHS, CI, |
| CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); |
| } else { |
| unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO |
| : AMDGPU::S_SUB_CO_PSEUDO; |
| CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); |
| } |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { |
| // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned |
| // carry out despite the _i32 name. These were renamed in VI to _U32. |
| // FIXME: We should probably rename the opcodes here. |
| bool IsAdd = N->getOpcode() == ISD::UADDO; |
| bool IsVALU = N->isDivergent(); |
| |
| for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; |
| ++UI) |
| if (UI.getUse().getResNo() == 1) { |
| if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || |
| (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { |
| IsVALU = true; |
| break; |
| } |
| } |
| |
| if (IsVALU) { |
| unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
| |
| CurDAG->SelectNodeTo( |
| N, Opc, N->getVTList(), |
| {N->getOperand(0), N->getOperand(1), |
| CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); |
| } else { |
| unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO |
| : AMDGPU::S_USUBO_PSEUDO; |
| |
| CurDAG->SelectNodeTo(N, Opc, N->getVTList(), |
| {N->getOperand(0), N->getOperand(1)}); |
| } |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { |
| SDLoc SL(N); |
| // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod |
| SDValue Ops[10]; |
| |
| SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); |
| SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); |
| SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); |
| Ops[8] = N->getOperand(0); |
| Ops[9] = N->getOperand(4); |
| |
| // If there are no source modifiers, prefer fmac over fma because it can use |
| // the smaller VOP2 encoding. |
| bool UseFMAC = Subtarget->hasDLInsts() && |
| cast<ConstantSDNode>(Ops[0])->isZero() && |
| cast<ConstantSDNode>(Ops[2])->isZero() && |
| cast<ConstantSDNode>(Ops[4])->isZero(); |
| unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; |
| CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { |
| SDLoc SL(N); |
| // src0_modifiers, src0, src1_modifiers, src1, clamp, omod |
| SDValue Ops[8]; |
| |
| SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); |
| SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); |
| Ops[6] = N->getOperand(0); |
| Ops[7] = N->getOperand(3); |
| |
| CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); |
| } |
| |
| // We need to handle this here because tablegen doesn't support matching |
| // instructions with multiple outputs. |
| void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| |
| assert(VT == MVT::f32 || VT == MVT::f64); |
| |
| unsigned Opc |
| = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; |
| |
| // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, |
| // omod |
| SDValue Ops[8]; |
| SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); |
| SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); |
| SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); |
| CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); |
| } |
| |
| // We need to handle this here because tablegen doesn't support matching |
| // instructions with multiple outputs. |
| void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { |
| SDLoc SL(N); |
| bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; |
| unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
| |
| SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), |
| Clamp }; |
| CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); |
| } |
| |
| // We need to handle this here because tablegen doesn't support matching |
| // instructions with multiple outputs. |
| void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { |
| SDLoc SL(N); |
| bool Signed = N->getOpcode() == ISD::SMUL_LOHI; |
| unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
| |
| SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); |
| SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); |
| SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; |
| SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); |
| if (!SDValue(N, 0).use_empty()) { |
| SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); |
| SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, |
| MVT::i32, SDValue(Mad, 0), Sub0); |
| ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); |
| } |
| if (!SDValue(N, 1).use_empty()) { |
| SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); |
| SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, |
| MVT::i32, SDValue(Mad, 0), Sub1); |
| ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); |
| } |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { |
| if (!isUInt<16>(Offset)) |
| return false; |
| |
| if (!Base || Subtarget->hasUsableDSOffset() || |
| Subtarget->unsafeDSOffsetFoldingEnabled()) |
| return true; |
| |
| // On Southern Islands instruction with a negative base value and an offset |
| // don't seem to work. |
| return CurDAG->SignBitIsZero(Base); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| SDLoc DL(Addr); |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| SDValue N0 = Addr.getOperand(0); |
| SDValue N1 = Addr.getOperand(1); |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N1); |
| if (isDSOffsetLegal(N0, C1->getSExtValue())) { |
| // (add n0, c0) |
| Base = N0; |
| Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); |
| return true; |
| } |
| } else if (Addr.getOpcode() == ISD::SUB) { |
| // sub C, x -> add (sub 0, x), C |
| if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { |
| int64_t ByteOffset = C->getSExtValue(); |
| if (isDSOffsetLegal(SDValue(), ByteOffset)) { |
| SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| |
| // XXX - This is kind of hacky. Create a dummy sub node so we can check |
| // the known bits in isDSOffsetLegal. We need to emit the selected node |
| // here, so this is thrown away. |
| SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, |
| Zero, Addr.getOperand(1)); |
| |
| if (isDSOffsetLegal(Sub, ByteOffset)) { |
| SmallVector<SDValue, 3> Opnds; |
| Opnds.push_back(Zero); |
| Opnds.push_back(Addr.getOperand(1)); |
| |
| // FIXME: Select to VOP3 version for with-carry. |
| unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
| if (Subtarget->hasAddNoCarry()) { |
| SubOp = AMDGPU::V_SUB_U32_e64; |
| Opnds.push_back( |
| CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit |
| } |
| |
| MachineSDNode *MachineSub = |
| CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); |
| |
| Base = SDValue(MachineSub, 0); |
| Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); |
| return true; |
| } |
| } |
| } |
| } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { |
| // If we have a constant address, prefer to put the constant into the |
| // offset. This can save moves to load the constant address since multiple |
| // operations can share the zero base address register, and enables merging |
| // into read2 / write2 instructions. |
| |
| SDLoc DL(Addr); |
| |
| if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { |
| SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, |
| DL, MVT::i32, Zero); |
| Base = SDValue(MovZero, 0); |
| Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); |
| return true; |
| } |
| } |
| |
| // default case |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, |
| unsigned Offset1, |
| unsigned Size) const { |
| if (Offset0 % Size != 0 || Offset1 % Size != 0) |
| return false; |
| if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) |
| return false; |
| |
| if (!Base || Subtarget->hasUsableDSOffset() || |
| Subtarget->unsafeDSOffsetFoldingEnabled()) |
| return true; |
| |
| // On Southern Islands instruction with a negative base value and an offset |
| // don't seem to work. |
| return CurDAG->SignBitIsZero(Base); |
| } |
| |
| // TODO: If offset is too big, put low 16-bit into offset. |
| bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, |
| SDValue &Offset0, |
| SDValue &Offset1) const { |
| return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, |
| SDValue &Offset0, |
| SDValue &Offset1) const { |
| return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, |
| SDValue &Offset0, SDValue &Offset1, |
| unsigned Size) const { |
| SDLoc DL(Addr); |
| |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| SDValue N0 = Addr.getOperand(0); |
| SDValue N1 = Addr.getOperand(1); |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N1); |
| unsigned OffsetValue0 = C1->getZExtValue(); |
| unsigned OffsetValue1 = OffsetValue0 + Size; |
| |
| // (add n0, c0) |
| if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { |
| Base = N0; |
| Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); |
| Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); |
| return true; |
| } |
| } else if (Addr.getOpcode() == ISD::SUB) { |
| // sub C, x -> add (sub 0, x), C |
| if (const ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { |
| unsigned OffsetValue0 = C->getZExtValue(); |
| unsigned OffsetValue1 = OffsetValue0 + Size; |
| |
| if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { |
| SDLoc DL(Addr); |
| SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| |
| // XXX - This is kind of hacky. Create a dummy sub node so we can check |
| // the known bits in isDSOffsetLegal. We need to emit the selected node |
| // here, so this is thrown away. |
| SDValue Sub = |
| CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); |
| |
| if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { |
| SmallVector<SDValue, 3> Opnds; |
| Opnds.push_back(Zero); |
| Opnds.push_back(Addr.getOperand(1)); |
| unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
| if (Subtarget->hasAddNoCarry()) { |
| SubOp = AMDGPU::V_SUB_U32_e64; |
| Opnds.push_back( |
| CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit |
| } |
| |
| MachineSDNode *MachineSub = CurDAG->getMachineNode( |
| SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); |
| |
| Base = SDValue(MachineSub, 0); |
| Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); |
| Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); |
| return true; |
| } |
| } |
| } |
| } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { |
| unsigned OffsetValue0 = CAddr->getZExtValue(); |
| unsigned OffsetValue1 = OffsetValue0 + Size; |
| |
| if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { |
| SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| MachineSDNode *MovZero = |
| CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); |
| Base = SDValue(MovZero, 0); |
| Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); |
| Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); |
| return true; |
| } |
| } |
| |
| // default case |
| |
| Base = Addr; |
| Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); |
| Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, |
| SDValue &SOffset, SDValue &Offset, |
| SDValue &Offen, SDValue &Idxen, |
| SDValue &Addr64) const { |
| // Subtarget prefers to use flat instruction |
| // FIXME: This should be a pattern predicate and not reach here |
| if (Subtarget->useFlatForGlobal()) |
| return false; |
| |
| SDLoc DL(Addr); |
| |
| Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); |
| Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); |
| Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); |
| SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| |
| ConstantSDNode *C1 = nullptr; |
| SDValue N0 = Addr; |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| C1 = cast<ConstantSDNode>(Addr.getOperand(1)); |
| if (isUInt<32>(C1->getZExtValue())) |
| N0 = Addr.getOperand(0); |
| else |
| C1 = nullptr; |
| } |
| |
| if (N0.getOpcode() == ISD::ADD) { |
| // (add N2, N3) -> addr64, or |
| // (add (add N2, N3), C1) -> addr64 |
| SDValue N2 = N0.getOperand(0); |
| SDValue N3 = N0.getOperand(1); |
| Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); |
| |
| if (N2->isDivergent()) { |
| if (N3->isDivergent()) { |
| // Both N2 and N3 are divergent. Use N0 (the result of the add) as the |
| // addr64, and construct the resource from a 0 address. |
| Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); |
| VAddr = N0; |
| } else { |
| // N2 is divergent, N3 is not. |
| Ptr = N3; |
| VAddr = N2; |
| } |
| } else { |
| // N2 is not divergent. |
| Ptr = N2; |
| VAddr = N3; |
| } |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); |
| } else if (N0->isDivergent()) { |
| // N0 is divergent. Use it as the addr64, and construct the resource from a |
| // 0 address. |
| Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); |
| VAddr = N0; |
| Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); |
| } else { |
| // N0 -> offset, or |
| // (N0 + C1) -> offset |
| VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| Ptr = N0; |
| } |
| |
| if (!C1) { |
| // No offset. |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); |
| return true; |
| } |
| |
| if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { |
| // Legal offset for instruction. |
| Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); |
| return true; |
| } |
| |
| // Illegal offset, store it in soffset. |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); |
| SOffset = |
| SDValue(CurDAG->getMachineNode( |
| AMDGPU::S_MOV_B32, DL, MVT::i32, |
| CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), |
| 0); |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, |
| SDValue &VAddr, SDValue &SOffset, |
| SDValue &Offset) const { |
| SDValue Ptr, Offen, Idxen, Addr64; |
| |
| // addr64 bit was removed for volcanic islands. |
| // FIXME: This should be a pattern predicate and not reach here |
| if (!Subtarget->hasAddr64()) |
| return false; |
| |
| if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
| return false; |
| |
| ConstantSDNode *C = cast<ConstantSDNode>(Addr64); |
| if (C->getSExtValue()) { |
| SDLoc DL(Addr); |
| |
| const SITargetLowering& Lowering = |
| *static_cast<const SITargetLowering*>(getTargetLowering()); |
| |
| SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { |
| SDLoc DL(N); |
| |
| auto *FI = dyn_cast<FrameIndexSDNode>(N); |
| SDValue TFI = |
| FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; |
| |
| // We rebase the base address into an absolute stack address and hence |
| // use constant 0 for soffset. This value must be retained until |
| // frame elimination and eliminateFrameIndex will choose the appropriate |
| // frame register if need be. |
| return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, |
| SDValue Addr, SDValue &Rsrc, |
| SDValue &VAddr, SDValue &SOffset, |
| SDValue &ImmOffset) const { |
| |
| SDLoc DL(Addr); |
| MachineFunction &MF = CurDAG->getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); |
| |
| if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { |
| int64_t Imm = CAddr->getSExtValue(); |
| const int64_t NullPtr = |
| AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); |
| // Don't fold null pointer. |
| if (Imm != NullPtr) { |
| SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); |
| MachineSDNode *MovHighBits = CurDAG->getMachineNode( |
| AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); |
| VAddr = SDValue(MovHighBits, 0); |
| |
| SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); |
| return true; |
| } |
| } |
| |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| // (add n0, c1) |
| |
| SDValue N0 = Addr.getOperand(0); |
| SDValue N1 = Addr.getOperand(1); |
| |
| // Offsets in vaddr must be positive if range checking is enabled. |
| // |
| // The total computation of vaddr + soffset + offset must not overflow. If |
| // vaddr is negative, even if offset is 0 the sgpr offset add will end up |
| // overflowing. |
| // |
| // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would |
| // always perform a range check. If a negative vaddr base index was used, |
| // this would fail the range check. The overall address computation would |
| // compute a valid address, but this doesn't happen due to the range |
| // check. For out-of-bounds MUBUF loads, a 0 is returned. |
| // |
| // Therefore it should be safe to fold any VGPR offset on gfx9 into the |
| // MUBUF vaddr, but not on older subtargets which can only do this if the |
| // sign bit is known 0. |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N1); |
| if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && |
| (!Subtarget->privateMemoryResourceIsRangeChecked() || |
| CurDAG->SignBitIsZero(N0))) { |
| std::tie(VAddr, SOffset) = foldFrameIndex(N0); |
| ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); |
| return true; |
| } |
| } |
| |
| // (node) |
| std::tie(VAddr, SOffset) = foldFrameIndex(Addr); |
| ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); |
| return true; |
| } |
| |
| static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { |
| if (Val.getOpcode() != ISD::CopyFromReg) |
| return false; |
| auto RC = |
| TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); |
| return RC && TRI.isSGPRClass(RC); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, |
| SDValue Addr, |
| SDValue &SRsrc, |
| SDValue &SOffset, |
| SDValue &Offset) const { |
| const SIRegisterInfo *TRI = |
| static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
| MachineFunction &MF = CurDAG->getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| SDLoc DL(Addr); |
| |
| // CopyFromReg <sgpr> |
| if (IsCopyFromSGPR(*TRI, Addr)) { |
| SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); |
| SOffset = Addr; |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); |
| return true; |
| } |
| |
| ConstantSDNode *CAddr; |
| if (Addr.getOpcode() == ISD::ADD) { |
| // Add (CopyFromReg <sgpr>) <constant> |
| CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); |
| if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) |
| return false; |
| if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) |
| return false; |
| |
| SOffset = Addr.getOperand(0); |
| } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && |
| SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { |
| // <constant> |
| SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| } else { |
| return false; |
| } |
| |
| SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); |
| |
| Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, |
| SDValue &SOffset, SDValue &Offset |
| ) const { |
| SDValue Ptr, VAddr, Offen, Idxen, Addr64; |
| const SIInstrInfo *TII = |
| static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); |
| |
| if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
| return false; |
| |
| if (!cast<ConstantSDNode>(Offen)->getSExtValue() && |
| !cast<ConstantSDNode>(Idxen)->getSExtValue() && |
| !cast<ConstantSDNode>(Addr64)->getSExtValue()) { |
| uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | |
| APInt::getAllOnes(32).getZExtValue(); // Size |
| SDLoc DL(Addr); |
| |
| const SITargetLowering& Lowering = |
| *static_cast<const SITargetLowering*>(getTargetLowering()); |
| |
| SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); |
| return true; |
| } |
| return false; |
| } |
| |
| // Find a load or store from corresponding pattern root. |
| // Roots may be build_vector, bitconvert or their combinations. |
| static MemSDNode* findMemSDNode(SDNode *N) { |
| N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); |
| if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) |
| return MN; |
| assert(isa<BuildVectorSDNode>(N)); |
| for (SDValue V : N->op_values()) |
| if (MemSDNode *MN = |
| dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) |
| return MN; |
| llvm_unreachable("cannot find MemSDNode in the pattern!"); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, |
| SDValue &VAddr, SDValue &Offset, |
| uint64_t FlatVariant) const { |
| int64_t OffsetVal = 0; |
| |
| unsigned AS = findMemSDNode(N)->getAddressSpace(); |
| |
| bool CanHaveFlatSegmentOffsetBug = |
| Subtarget->hasFlatSegmentOffsetBug() && |
| FlatVariant == SIInstrFlags::FLAT && |
| (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); |
| |
| if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { |
| SDValue N0, N1; |
| if (isBaseWithConstantOffset64(Addr, N0, N1)) { |
| int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); |
| |
| const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
| if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { |
| Addr = N0; |
| OffsetVal = COffsetVal; |
| } else { |
| // If the offset doesn't fit, put the low bits into the offset field and |
| // add the rest. |
| // |
| // For a FLAT instruction the hardware decides whether to access |
| // global/scratch/shared memory based on the high bits of vaddr, |
| // ignoring the offset field, so we have to ensure that when we add |
| // remainder to vaddr it still points into the same underlying object. |
| // The easiest way to do that is to make sure that we split the offset |
| // into two pieces that are both >= 0 or both <= 0. |
| |
| SDLoc DL(N); |
| uint64_t RemainderOffset; |
| |
| std::tie(OffsetVal, RemainderOffset) = |
| TII->splitFlatOffset(COffsetVal, AS, FlatVariant); |
| |
| SDValue AddOffsetLo = |
| getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); |
| SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); |
| |
| if (Addr.getValueType().getSizeInBits() == 32) { |
| SmallVector<SDValue, 3> Opnds; |
| Opnds.push_back(N0); |
| Opnds.push_back(AddOffsetLo); |
| unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; |
| if (Subtarget->hasAddNoCarry()) { |
| AddOp = AMDGPU::V_ADD_U32_e64; |
| Opnds.push_back(Clamp); |
| } |
| Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); |
| } else { |
| // TODO: Should this try to use a scalar add pseudo if the base address |
| // is uniform and saddr is usable? |
| SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); |
| SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); |
| |
| SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, N0, Sub0); |
| SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, |
| DL, MVT::i32, N0, Sub1); |
| |
| SDValue AddOffsetHi = |
| getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); |
| |
| SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); |
| |
| SDNode *Add = |
| CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, |
| {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); |
| |
| SDNode *Addc = CurDAG->getMachineNode( |
| AMDGPU::V_ADDC_U32_e64, DL, VTs, |
| {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); |
| |
| SDValue RegSequenceArgs[] = { |
| CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), |
| SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; |
| |
| Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, |
| MVT::i64, RegSequenceArgs), |
| 0); |
| } |
| } |
| } |
| } |
| |
| VAddr = Addr; |
| Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, |
| SDValue &VAddr, |
| SDValue &Offset) const { |
| return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, |
| SDValue &VAddr, |
| SDValue &Offset) const { |
| return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, |
| SDValue &VAddr, |
| SDValue &Offset) const { |
| return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, |
| SIInstrFlags::FlatScratch); |
| } |
| |
| // If this matches zero_extend i32:x, return x |
| static SDValue matchZExtFromI32(SDValue Op) { |
| if (Op.getOpcode() != ISD::ZERO_EXTEND) |
| return SDValue(); |
| |
| SDValue ExtSrc = Op.getOperand(0); |
| return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); |
| } |
| |
| // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) |
| bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, |
| SDValue Addr, |
| SDValue &SAddr, |
| SDValue &VOffset, |
| SDValue &Offset) const { |
| int64_t ImmOffset = 0; |
| |
| // Match the immediate offset first, which canonically is moved as low as |
| // possible. |
| |
| SDValue LHS, RHS; |
| if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { |
| int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); |
| const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
| |
| if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, |
| SIInstrFlags::FlatGlobal)) { |
| Addr = LHS; |
| ImmOffset = COffsetVal; |
| } else if (!LHS->isDivergent()) { |
| if (COffsetVal > 0) { |
| SDLoc SL(N); |
| // saddr + large_offset -> saddr + |
| // (voffset = large_offset & ~MaxOffset) + |
| // (large_offset & MaxOffset); |
| int64_t SplitImmOffset, RemainderOffset; |
| std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( |
| COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); |
| |
| if (isUInt<32>(RemainderOffset)) { |
| SDNode *VMov = CurDAG->getMachineNode( |
| AMDGPU::V_MOV_B32_e32, SL, MVT::i32, |
| CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); |
| VOffset = SDValue(VMov, 0); |
| SAddr = LHS; |
| Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); |
| return true; |
| } |
| } |
| |
| // We are adding a 64 bit SGPR and a constant. If constant bus limit |
| // is 1 we would need to perform 1 or 2 extra moves for each half of |
| // the constant and it is better to do a scalar add and then issue a |
| // single VALU instruction to materialize zero. Otherwise it is less |
| // instructions to perform VALU adds with immediates or inline literals. |
| unsigned NumLiterals = |
| !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + |
| !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); |
| if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) |
| return false; |
| } |
| } |
| |
| // Match the variable offset. |
| if (Addr.getOpcode() == ISD::ADD) { |
| LHS = Addr.getOperand(0); |
| RHS = Addr.getOperand(1); |
| |
| if (!LHS->isDivergent()) { |
| // add (i64 sgpr), (zero_extend (i32 vgpr)) |
| if (SDValue ZextRHS = matchZExtFromI32(RHS)) { |
| SAddr = LHS; |
| VOffset = ZextRHS; |
| } |
| } |
| |
| if (!SAddr && !RHS->isDivergent()) { |
| // add (zero_extend (i32 vgpr)), (i64 sgpr) |
| if (SDValue ZextLHS = matchZExtFromI32(LHS)) { |
| SAddr = RHS; |
| VOffset = ZextLHS; |
| } |
| } |
| |
| if (SAddr) { |
| Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); |
| return true; |
| } |
| } |
| |
| if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || |
| isa<ConstantSDNode>(Addr)) |
| return false; |
| |
| // It's cheaper to materialize a single 32-bit zero for vaddr than the two |
| // moves required to copy a 64-bit SGPR to VGPR. |
| SAddr = Addr; |
| SDNode *VMov = |
| CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, |
| CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); |
| VOffset = SDValue(VMov, 0); |
| Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); |
| return true; |
| } |
| |
| static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { |
| if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { |
| SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); |
| } else if (SAddr.getOpcode() == ISD::ADD && |
| isa<FrameIndexSDNode>(SAddr.getOperand(0))) { |
| // Materialize this into a scalar move for scalar address to avoid |
| // readfirstlane. |
| auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); |
| SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), |
| FI->getValueType(0)); |
| SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), |
| MVT::i32, TFI, SAddr.getOperand(1)), |
| 0); |
| } |
| |
| return SAddr; |
| } |
| |
| // Match (32-bit SGPR base) + sext(imm offset) |
| bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, |
| SDValue &SAddr, |
| SDValue &Offset) const { |
| if (Addr->isDivergent()) |
| return false; |
| |
| SDLoc DL(Addr); |
| |
| int64_t COffsetVal = 0; |
| |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); |
| SAddr = Addr.getOperand(0); |
| } else { |
| SAddr = Addr; |
| } |
| |
| SAddr = SelectSAddrFI(CurDAG, SAddr); |
| |
| const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
| |
| if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, |
| SIInstrFlags::FlatScratch)) { |
| int64_t SplitImmOffset, RemainderOffset; |
| std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( |
| COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); |
| |
| COffsetVal = SplitImmOffset; |
| |
| SDValue AddOffset = |
| SAddr.getOpcode() == ISD::TargetFrameIndex |
| ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) |
| : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); |
| SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, |
| SAddr, AddOffset), |
| 0); |
| } |
| |
| Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); |
| |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, |
| SDValue &Offset, bool &Imm) const { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); |
| if (!C) { |
| if (ByteOffsetNode.getValueType().isScalarInteger() && |
| ByteOffsetNode.getValueType().getSizeInBits() == 32) { |
| Offset = ByteOffsetNode; |
| Imm = false; |
| return true; |
| } |
| if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { |
| if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { |
| Offset = ByteOffsetNode.getOperand(0); |
| Imm = false; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| SDLoc SL(ByteOffsetNode); |
| // GFX9 and GFX10 have signed byte immediate offsets. |
| int64_t ByteOffset = C->getSExtValue(); |
| Optional<int64_t> EncodedOffset = |
| AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); |
| if (EncodedOffset) { |
| Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); |
| Imm = true; |
| return true; |
| } |
| |
| // SGPR and literal offsets are unsigned. |
| if (ByteOffset < 0) |
| return false; |
| |
| EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); |
| if (EncodedOffset) { |
| Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); |
| return true; |
| } |
| |
| if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) |
| return false; |
| |
| SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); |
| Offset = SDValue( |
| CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); |
| |
| return true; |
| } |
| |
| SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { |
| if (Addr.getValueType() != MVT::i32) |
| return Addr; |
| |
| // Zero-extend a 32-bit address. |
| SDLoc SL(Addr); |
| |
| const MachineFunction &MF = CurDAG->getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| unsigned AddrHiVal = Info->get32BitAddressHighBits(); |
| SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); |
| |
| const SDValue Ops[] = { |
| CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), |
| Addr, |
| CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), |
| SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), |
| 0), |
| CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), |
| }; |
| |
| return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, |
| Ops), 0); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, |
| SDValue &Offset, bool &Imm) const { |
| SDLoc SL(Addr); |
| |
| // A 32-bit (address + offset) should not cause unsigned 32-bit integer |
| // wraparound, because s_load instructions perform the addition in 64 bits. |
| if ((Addr.getValueType() != MVT::i32 || |
| Addr->getFlags().hasNoUnsignedWrap())) { |
| SDValue N0, N1; |
| // Extract the base and offset if possible. |
| if (CurDAG->isBaseWithConstantOffset(Addr) || |
| Addr.getOpcode() == ISD::ADD) { |
| N0 = Addr.getOperand(0); |
| N1 = Addr.getOperand(1); |
| } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { |
| assert(N0 && N1 && isa<ConstantSDNode>(N1)); |
| } |
| if (N0 && N1) { |
| if (SelectSMRDOffset(N1, Offset, Imm)) { |
| SBase = Expand32BitAddress(N0); |
| return true; |
| } |
| } |
| } |
| SBase = Expand32BitAddress(Addr); |
| Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); |
| Imm = true; |
| return true; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, |
| SDValue &Offset) const { |
| bool Imm = false; |
| return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, |
| SDValue &Offset) const { |
| |
| assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
| |
| bool Imm = false; |
| if (!SelectSMRD(Addr, SBase, Offset, Imm)) |
| return false; |
| |
| return !Imm && isa<ConstantSDNode>(Offset); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, |
| SDValue &Offset) const { |
| bool Imm = false; |
| return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && |
| !isa<ConstantSDNode>(Offset); |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, |
| SDValue &Offset) const { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { |
| // The immediate offset for S_BUFFER instructions is unsigned. |
| if (auto Imm = |
| AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { |
| Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, |
| SDValue &Offset) const { |
| assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { |
| if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, |
| C->getZExtValue())) { |
| Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, |
| SDValue &Base, |
| SDValue &Offset) const { |
| SDLoc DL(Index); |
| |
| if (CurDAG->isBaseWithConstantOffset(Index)) { |
| SDValue N0 = Index.getOperand(0); |
| SDValue N1 = Index.getOperand(1); |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N1); |
| |
| // (add n0, c0) |
| // Don't peel off the offset (c0) if doing so could possibly lead |
| // the base (n0) to be negative. |
| // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. |
| if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || |
| (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { |
| Base = N0; |
| Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); |
| return true; |
| } |
| } |
| |
| if (isa<ConstantSDNode>(Index)) |
| return false; |
| |
| Base = Index; |
| Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| return true; |
| } |
| |
| SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, |
| SDValue Val, uint32_t Offset, |
| uint32_t Width) { |
| if (Val->isDivergent()) { |
| unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; |
| SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); |
| SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); |
| |
| return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); |
| } |
| unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; |
| // Transformation function, pack the offset and width of a BFE into |
| // the format expected by the S_BFE_I32 / S_BFE_U32. In the second |
| // source, bits [5:0] contain the offset and bits [22:16] the width. |
| uint32_t PackedVal = Offset | (Width << 16); |
| SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); |
| |
| return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { |
| // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) |
| // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) |
| // Predicate: 0 < b <= c < 32 |
| |
| const SDValue &Shl = N->getOperand(0); |
| ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| |
| if (B && C) { |
| uint32_t BVal = B->getZExtValue(); |
| uint32_t CVal = C->getZExtValue(); |
| |
| if (0 < BVal && BVal <= CVal && CVal < 32) { |
| bool Signed = N->getOpcode() == ISD::SRA; |
| ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, |
| 32 - CVal)); |
| return; |
| } |
| } |
| SelectCode(N); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::AND: |
| if (N->getOperand(0).getOpcode() == ISD::SRL) { |
| // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" |
| // Predicate: isMask(mask) |
| const SDValue &Srl = N->getOperand(0); |
| ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); |
| ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| |
| if (Shift && Mask) { |
| uint32_t ShiftVal = Shift->getZExtValue(); |
| uint32_t MaskVal = Mask->getZExtValue(); |
| |
| if (isMask_32(MaskVal)) { |
| uint32_t WidthVal = countPopulation(MaskVal); |
| ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, |
| WidthVal)); |
| return; |
| } |
| } |
| } |
| break; |
| case ISD::SRL: |
| if (N->getOperand(0).getOpcode() == ISD::AND) { |
| // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" |
| // Predicate: isMask(mask >> b) |
| const SDValue &And = N->getOperand(0); |
| ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); |
| |
| if (Shift && Mask) { |
| uint32_t ShiftVal = Shift->getZExtValue(); |
| uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; |
| |
| if (isMask_32(MaskVal)) { |
| uint32_t WidthVal = countPopulation(MaskVal); |
| ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, |
| WidthVal)); |
| return; |
| } |
| } |
| } else if (N->getOperand(0).getOpcode() == ISD::SHL) { |
| SelectS_BFEFromShifts(N); |
| return; |
| } |
| break; |
| case ISD::SRA: |
| if (N->getOperand(0).getOpcode() == ISD::SHL) { |
| SelectS_BFEFromShifts(N); |
| return; |
| } |
| break; |
| |
| case ISD::SIGN_EXTEND_INREG: { |
| // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 |
| SDValue Src = N->getOperand(0); |
| if (Src.getOpcode() != ISD::SRL) |
| break; |
| |
| const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); |
| if (!Amt) |
| break; |
| |
| unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); |
| ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), |
| Amt->getZExtValue(), Width)); |
| return; |
| } |
| } |
| |
| SelectCode(N); |
| } |
| |
| bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { |
| assert(N->getOpcode() == ISD::BRCOND); |
| if (!N->hasOneUse()) |
| return false; |
| |
| SDValue Cond = N->getOperand(1); |
| if (Cond.getOpcode() == ISD::CopyToReg) |
| Cond = Cond.getOperand(2); |
| |
| if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) |
| return false; |
| |
| MVT VT = Cond.getOperand(0).getSimpleValueType(); |
| if (VT == MVT::i32) |
| return true; |
| |
| if (VT == MVT::i64) { |
| auto ST = static_cast<const GCNSubtarget *>(Subtarget); |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); |
| } |
| |
| return false; |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { |
| SDValue Cond = N->getOperand(1); |
| |
| if (Cond.isUndef()) { |
| CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, |
| N->getOperand(2), N->getOperand(0)); |
| return; |
| } |
| |
| const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); |
| const SIRegisterInfo *TRI = ST->getRegisterInfo(); |
| |
| bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); |
| unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; |
| Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); |
| SDLoc SL(N); |
| |
| if (!UseSCCBr) { |
| // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not |
| // analyzed what generates the vcc value, so we do not know whether vcc |
| // bits for disabled lanes are 0. Thus we need to mask out bits for |
| // disabled lanes. |
| // |
| // For the case that we select S_CBRANCH_SCC1 and it gets |
| // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls |
| // SIInstrInfo::moveToVALU which inserts the S_AND). |
| // |
| // We could add an analysis of what generates the vcc value here and omit |
| // the S_AND when is unnecessary. But it would be better to add a separate |
| // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it |
| // catches both cases. |
| Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 |
| : AMDGPU::S_AND_B64, |
| SL, MVT::i1, |
| CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO |
| : AMDGPU::EXEC, |
| MVT::i1), |
| Cond), |
| 0); |
| } |
| |
| SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); |
| CurDAG->SelectNodeTo(N, BrOp, MVT::Other, |
| N->getOperand(2), // Basic Block |
| VCC.getValue(0)); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { |
| MVT VT = N->getSimpleValueType(0); |
| bool IsFMA = N->getOpcode() == ISD::FMA; |
| if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && |
| !Subtarget->hasFmaMixInsts()) || |
| ((IsFMA && Subtarget->hasMadMixInsts()) || |
| (!IsFMA && Subtarget->hasFmaMixInsts()))) { |
| SelectCode(N); |
| return; |
| } |
| |
| SDValue Src0 = N->getOperand(0); |
| SDValue Src1 = N->getOperand(1); |
| SDValue Src2 = N->getOperand(2); |
| unsigned Src0Mods, Src1Mods, Src2Mods; |
| |
| // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand |
| // using the conversion from f16. |
| bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); |
| bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); |
| bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); |
| |
| assert((IsFMA || !Mode.allFP32Denormals()) && |
| "fmad selected with denormals enabled"); |
| // TODO: We can select this with f32 denormals enabled if all the sources are |
| // converted from f16 (in which case fmad isn't legal). |
| |
| if (Sel0 || Sel1 || Sel2) { |
| // For dummy operands. |
| SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); |
| SDValue Ops[] = { |
| CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, |
| CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, |
| CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, |
| CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), |
| Zero, Zero |
| }; |
| |
| CurDAG->SelectNodeTo(N, |
| IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, |
| MVT::f32, Ops); |
| } else { |
| SelectCode(N); |
| } |
| } |
| |
| // This is here because there isn't a way to use the generated sub0_sub1 as the |
| // subreg index to EXTRACT_SUBREG in tablegen. |
| void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { |
| MemSDNode *Mem = cast<MemSDNode>(N); |
| unsigned AS = Mem->getAddressSpace(); |
| if (AS == AMDGPUAS::FLAT_ADDRESS) { |
| SelectCode(N); |
| return; |
| } |
| |
| MVT VT = N->getSimpleValueType(0); |
| bool Is32 = (VT == MVT::i32); |
| SDLoc SL(N); |
| |
| MachineSDNode *CmpSwap = nullptr; |
| if (Subtarget->hasAddr64()) { |
| SDValue SRsrc, VAddr, SOffset, Offset; |
| |
| if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { |
| unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : |
| AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; |
| SDValue CmpVal = Mem->getOperand(2); |
| SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); |
| |
| // XXX - Do we care about glue operands? |
| |
| SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, |
| Mem->getChain()}; |
| |
| CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); |
| } |
| } |
| |
| if (!CmpSwap) { |
| SDValue SRsrc, SOffset, Offset; |
| if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { |
| unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : |
| AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; |
| |
| SDValue CmpVal = Mem->getOperand(2); |
| SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); |
| SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; |
| |
| CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); |
| } |
| } |
| |
| if (!CmpSwap) { |
| SelectCode(N); |
| return; |
| } |
| |
| MachineMemOperand *MMO = Mem->getMemOperand(); |
| CurDAG->setNodeMemRefs(CmpSwap, {MMO}); |
| |
| unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; |
| SDValue Extract |
| = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); |
| |
| ReplaceUses(SDValue(N, 0), Extract); |
| ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { |
| // The address is assumed to be uniform, so if it ends up in a VGPR, it will |
| // be copied to an SGPR with readfirstlane. |
| unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? |
| AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; |
| |
| SDValue Chain = N->getOperand(0); |
| SDValue Ptr = N->getOperand(2); |
| MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); |
| MachineMemOperand *MMO = M->getMemOperand(); |
| bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; |
| |
| SDValue Offset; |
| if (CurDAG->isBaseWithConstantOffset(Ptr)) { |
| SDValue PtrBase = Ptr.getOperand(0); |
| SDValue PtrOffset = Ptr.getOperand(1); |
| |
| const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); |
| if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { |
| N = glueCopyToM0(N, PtrBase); |
| Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); |
| } |
| } |
| |
| if (!Offset) { |
| N = glueCopyToM0(N, Ptr); |
| Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); |
| } |
| |
| SDValue Ops[] = { |
| Offset, |
| CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), |
| Chain, |
| N->getOperand(N->getNumOperands() - 1) // New glue |
| }; |
| |
| SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); |
| CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); |
| } |
| |
| static unsigned gwsIntrinToOpcode(unsigned IntrID) { |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_gws_init: |
| return AMDGPU::DS_GWS_INIT; |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| return AMDGPU::DS_GWS_BARRIER; |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| return AMDGPU::DS_GWS_SEMA_V; |
| case Intrinsic::amdgcn_ds_gws_sema_br: |
| return AMDGPU::DS_GWS_SEMA_BR; |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| return AMDGPU::DS_GWS_SEMA_P; |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: |
| return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; |
| default: |
| llvm_unreachable("not a gws intrinsic"); |
| } |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { |
| if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && |
| !Subtarget->hasGWSSemaReleaseAll()) { |
| // Let this error. |
| SelectCode(N); |
| return; |
| } |
| |
| // Chain, intrinsic ID, vsrc, offset |
| const bool HasVSrc = N->getNumOperands() == 4; |
| assert(HasVSrc || N->getNumOperands() == 3); |
| |
| SDLoc SL(N); |
| SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); |
| int ImmOffset = 0; |
| MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); |
| MachineMemOperand *MMO = M->getMemOperand(); |
| |
| // Don't worry if the offset ends up in a VGPR. Only one lane will have |
| // effect, so SIFixSGPRCopies will validly insert readfirstlane. |
| |
| // The resource id offset is computed as (<isa opaque base> + M0[21:16] + |
| // offset field) % 64. Some versions of the programming guide omit the m0 |
| // part, or claim it's from offset 0. |
| if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { |
| // If we have a constant offset, try to use the 0 in m0 as the base. |
| // TODO: Look into changing the default m0 initialization value. If the |
| // default -1 only set the low 16-bits, we could leave it as-is and add 1 to |
| // the immediate offset. |
| glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); |
| ImmOffset = ConstOffset->getZExtValue(); |
| } else { |
| if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { |
| ImmOffset = BaseOffset.getConstantOperandVal(1); |
| BaseOffset = BaseOffset.getOperand(0); |
| } |
| |
| // Prefer to do the shift in an SGPR since it should be possible to use m0 |
| // as the result directly. If it's already an SGPR, it will be eliminated |
| // later. |
| SDNode *SGPROffset |
| = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, |
| BaseOffset); |
| // Shift to offset in m0 |
| SDNode *M0Base |
| = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, |
| SDValue(SGPROffset, 0), |
| CurDAG->getTargetConstant(16, SL, MVT::i32)); |
| glueCopyToM0(N, SDValue(M0Base, 0)); |
| } |
| |
| SDValue Chain = N->getOperand(0); |
| SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); |
| |
| const unsigned Opc = gwsIntrinToOpcode(IntrID); |
| SmallVector<SDValue, 5> Ops; |
| if (HasVSrc) |
| Ops.push_back(N->getOperand(2)); |
| Ops.push_back(OffsetField); |
| Ops.push_back(Chain); |
| |
| SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); |
| CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { |
| if (Subtarget->getLDSBankCount() != 16) { |
| // This is a single instruction with a pattern. |
| SelectCode(N); |
| return; |
| } |
| |
| SDLoc DL(N); |
| |
| // This requires 2 instructions. It is possible to write a pattern to support |
| // this, but the generated isel emitter doesn't correctly deal with multiple |
| // output instructions using the same physical register input. The copy to m0 |
| // is incorrectly placed before the second instruction. |
| // |
| // TODO: Match source modifiers. |
| // |
| // def : Pat < |
| // (int_amdgcn_interp_p1_f16 |
| // (VOP3Mods f32:$src0, i32:$src0_modifiers), |
| // (i32 timm:$attrchan), (i32 timm:$attr), |
| // (i1 timm:$high), M0), |
| // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, |
| // timm:$attrchan, 0, |
| // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { |
| // let Predicates = [has16BankLDS]; |
| // } |
| |
| // 16 bank LDS |
| SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, |
| N->getOperand(5), SDValue()); |
| |
| SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); |
| |
| SDNode *InterpMov = |
| CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { |
| CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 |
| N->getOperand(3), // Attr |
| N->getOperand(2), // Attrchan |
| ToM0.getValue(1) // In glue |
| }); |
| |
| SDNode *InterpP1LV = |
| CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { |
| CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers |
| N->getOperand(1), // Src0 |
| N->getOperand(3), // Attr |
| N->getOperand(2), // Attrchan |
| CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers |
| SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high |
| N->getOperand(4), // high |
| CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp |
| CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod |
| SDValue(InterpMov, 1) |
| }); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { |
| unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: { |
| if (N->getValueType(0) != MVT::i32) |
| break; |
| SelectDSAppendConsume(N, IntrID); |
| return; |
| } |
| } |
| |
| SelectCode(N); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { |
| unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| unsigned Opcode; |
| switch (IntrID) { |
| case Intrinsic::amdgcn_wqm: |
| Opcode = AMDGPU::WQM; |
| break; |
| case Intrinsic::amdgcn_softwqm: |
| Opcode = AMDGPU::SOFT_WQM; |
| break; |
| case Intrinsic::amdgcn_wwm: |
| case Intrinsic::amdgcn_strict_wwm: |
| Opcode = AMDGPU::STRICT_WWM; |
| break; |
| case Intrinsic::amdgcn_strict_wqm: |
| Opcode = AMDGPU::STRICT_WQM; |
| break; |
| case Intrinsic::amdgcn_interp_p1_f16: |
| SelectInterpP1F16(N); |
| return; |
| default: |
| SelectCode(N); |
| return; |
| } |
| |
| SDValue Src = N->getOperand(1); |
| CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); |
| } |
| |
| void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { |
| unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_gws_init: |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| case Intrinsic::amdgcn_ds_gws_sema_br: |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: |
| SelectDS_GWS(N, IntrID); |
| return; |
| |