| //=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // AArch64 Atomic operand code-gen constructs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===---------------------------------- |
| // Atomic fences |
| //===---------------------------------- |
| let AddedComplexity = 15, Size = 0 in |
| def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering), |
| [(atomic_fence timm:$ordering, 0)]>, Sched<[]>; |
| def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>; |
| def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>; |
| |
| //===---------------------------------- |
| // Atomic loads |
| //===---------------------------------- |
| |
| // When they're actually atomic, only one addressing mode (GPR64sp) is |
| // supported, but when they're relaxed and anything can be used, all the |
| // standard modes would be valid and may give efficiency gains. |
| |
| // A atomic load operation that actually needs acquire semantics. |
| class acquiring_load<PatFrag base> |
| : PatFrag<(ops node:$ptr), (base node:$ptr)> { |
| let IsAtomic = 1; |
| let IsAtomicOrderingAcquireOrStronger = 1; |
| } |
| |
| // An atomic load operation that does not need either acquire or release |
| // semantics. |
| class relaxed_load<PatFrag base> |
| : PatFrag<(ops node:$ptr), (base node:$ptr)> { |
| let IsAtomic = 1; |
| let IsAtomicOrderingAcquireOrStronger = 0; |
| } |
| |
| // 8-bit loads |
| def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>; |
| def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend8:$offset)), |
| (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend8:$offset)), |
| (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn, |
| uimm12s1:$offset)), |
| (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_8> |
| (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), |
| (LDURBBi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 16-bit loads |
| def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>; |
| def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend16:$extend)), |
| (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend16:$extend)), |
| (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn, |
| uimm12s2:$offset)), |
| (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_16> |
| (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), |
| (LDURHHi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 32-bit loads |
| def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>; |
| def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend32:$extend)), |
| (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend32:$extend)), |
| (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn, |
| uimm12s4:$offset)), |
| (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_32> |
| (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), |
| (LDURWi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 64-bit loads |
| def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>; |
| def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend64:$extend)), |
| (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend64:$extend)), |
| (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; |
| def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn, |
| uimm12s8:$offset)), |
| (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(relaxed_load<atomic_load_64> |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (LDURXi GPR64sp:$Rn, simm9:$offset)>; |
| |
| //===---------------------------------- |
| // Atomic stores |
| //===---------------------------------- |
| |
| // When they're actually atomic, only one addressing mode (GPR64sp) is |
| // supported, but when they're relaxed and anything can be used, all the |
| // standard modes would be valid and may give efficiency gains. |
| |
| // A store operation that actually needs release semantics. |
| class releasing_store<PatFrag base> |
| : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> { |
| let IsAtomic = 1; |
| let IsAtomicOrderingReleaseOrStronger = 1; |
| } |
| |
| // An atomic store operation that doesn't actually need to be atomic on AArch64. |
| class relaxed_store<PatFrag base> |
| : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> { |
| let IsAtomic = 1; |
| let IsAtomicOrderingReleaseOrStronger = 0; |
| } |
| |
| // 8-bit stores |
| def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val), |
| (STLRB GPR32:$val, GPR64sp:$ptr)>; |
| def : Pat<(relaxed_store<atomic_store_8> |
| (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend), |
| GPR32:$val), |
| (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_8> |
| (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend), |
| GPR32:$val), |
| (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_8> |
| (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val), |
| (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : Pat<(relaxed_store<atomic_store_8> |
| (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val), |
| (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 16-bit stores |
| def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val), |
| (STLRH GPR32:$val, GPR64sp:$ptr)>; |
| def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend16:$extend), |
| GPR32:$val), |
| (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend16:$extend), |
| GPR32:$val), |
| (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_16> |
| (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val), |
| (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : Pat<(relaxed_store<atomic_store_16> |
| (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val), |
| (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 32-bit stores |
| def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val), |
| (STLRW GPR32:$val, GPR64sp:$ptr)>; |
| def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend32:$extend), |
| GPR32:$val), |
| (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend32:$extend), |
| GPR32:$val), |
| (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_32> |
| (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val), |
| (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>; |
| def : Pat<(relaxed_store<atomic_store_32> |
| (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val), |
| (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 64-bit stores |
| def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val), |
| (STLRX GPR64:$val, GPR64sp:$ptr)>; |
| def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend16:$extend), |
| GPR64:$val), |
| (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend16:$extend), |
| GPR64:$val), |
| (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; |
| def : Pat<(relaxed_store<atomic_store_64> |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val), |
| (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(relaxed_store<atomic_store_64> |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val), |
| (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>; |
| |
| //===---------------------------------- |
| // Low-level exclusive operations |
| //===---------------------------------- |
| |
| // Load-exclusives. |
| |
| def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; |
| } |
| |
| def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; |
| } |
| |
| def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; |
| } |
| |
| def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; |
| } |
| |
| def : Pat<(ldxr_1 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldxr_2 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldxr_4 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>; |
| |
| def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff), |
| (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>; |
| def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff), |
| (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>; |
| def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff), |
| (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>; |
| |
| // Load-exclusives. |
| |
| def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; |
| } |
| |
| def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; |
| } |
| |
| def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; |
| } |
| |
| def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; |
| } |
| |
| def : Pat<(ldaxr_1 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldaxr_2 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldaxr_4 GPR64sp:$addr), |
| (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>; |
| def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>; |
| |
| def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff), |
| (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>; |
| def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff), |
| (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>; |
| def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff), |
| (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>; |
| |
| // Store-exclusives. |
| |
| def stxr_1 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; |
| } |
| |
| def stxr_2 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; |
| } |
| |
| def stxr_4 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; |
| } |
| |
| def stxr_8 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; |
| } |
| |
| |
| def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr), |
| (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr), |
| (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr), |
| (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr), |
| (STXRX GPR64:$val, GPR64sp:$addr)>; |
| |
| def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr), |
| (STXRB GPR32:$val, GPR64sp:$addr)>; |
| def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr), |
| (STXRH GPR32:$val, GPR64sp:$addr)>; |
| def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr), |
| (STXRW GPR32:$val, GPR64sp:$addr)>; |
| |
| def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr), |
| (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr), |
| (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr), |
| (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| |
| // Store-release-exclusives. |
| |
| def stlxr_1 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stlxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }]; |
| } |
| |
| def stlxr_2 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stlxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }]; |
| } |
| |
| def stlxr_4 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stlxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }]; |
| } |
| |
| def stlxr_8 : PatFrag<(ops node:$val, node:$ptr), |
| (int_aarch64_stlxr node:$val, node:$ptr), [{ |
| return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; |
| }]> { |
| let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }]; |
| } |
| |
| |
| def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr), |
| (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr), |
| (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr), |
| (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr), |
| (STLXRX GPR64:$val, GPR64sp:$addr)>; |
| |
| def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr), |
| (STLXRB GPR32:$val, GPR64sp:$addr)>; |
| def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr), |
| (STLXRH GPR32:$val, GPR64sp:$addr)>; |
| def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr), |
| (STLXRW GPR32:$val, GPR64sp:$addr)>; |
| |
| def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr), |
| (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr), |
| (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr), |
| (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>; |
| |
| |
| // And clear exclusive. |
| |
| def : Pat<(int_aarch64_clrex), (CLREX 0xf)>; |
| |
| //===---------------------------------- |
| // Atomic cmpxchg for -O0 |
| //===---------------------------------- |
| |
| // The fast register allocator used during -O0 inserts spills to cover any VRegs |
| // live across basic block boundaries. When this happens between an LDXR and an |
| // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to |
| // fail. |
| |
| // Unfortunately, this means we have to have an alternative (expanded |
| // post-regalloc) path for -O0 compilations. Fortunately this path can be |
| // significantly more naive than the standard expansion: we conservatively |
| // assume seq_cst, strong cmpxchg and omit clrex on failure. |
| |
| let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch", |
| mayLoad = 1, mayStore = 1 in { |
| def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), |
| (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, |
| Sched<[WriteAtomic]>; |
| |
| def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), |
| (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, |
| Sched<[WriteAtomic]>; |
| |
| def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch), |
| (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>, |
| Sched<[WriteAtomic]>; |
| |
| def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch), |
| (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>, |
| Sched<[WriteAtomic]>; |
| } |
| |
| let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch", |
| mayLoad = 1, mayStore = 1 in { |
| class cmp_swap_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32common:$scratch), |
| (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi, |
| GPR64:$newLo, GPR64:$newHi), []>, |
| Sched<[WriteAtomic]>; |
| def CMP_SWAP_128 : cmp_swap_128; |
| def CMP_SWAP_128_RELEASE : cmp_swap_128; |
| def CMP_SWAP_128_ACQUIRE : cmp_swap_128; |
| def CMP_SWAP_128_MONOTONIC : cmp_swap_128; |
| } |
| |
| // v8.1 Atomic instructions: |
| let Predicates = [HasLSE] in { |
| defm : LDOPregister_patterns<"LDADD", "atomic_load_add">; |
| defm : LDOPregister_patterns<"LDSET", "atomic_load_or">; |
| defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">; |
| defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">; |
| defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">; |
| defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">; |
| defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">; |
| defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">; |
| defm : LDOPregister_patterns<"SWP", "atomic_swap">; |
| defm : CASregister_patterns<"CAS", "atomic_cmp_swap">; |
| |
| // These two patterns are only needed for global isel, selection dag isel |
| // converts atomic load-sub into a sub and atomic load-add, and likewise for |
| // and -> clr. |
| defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">; |
| defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">; |
| } |