| //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for clang's and llvm's instrumentation based |
| // code coverage. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ProfileData/Coverage/CoverageMapping.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" |
| #include "llvm/ProfileData/InstrProfReader.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <system_error> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace coverage; |
| |
| #define DEBUG_TYPE "coverage-mapping" |
| |
| Counter CounterExpressionBuilder::get(const CounterExpression &E) { |
| auto It = ExpressionIndices.find(E); |
| if (It != ExpressionIndices.end()) |
| return Counter::getExpression(It->second); |
| unsigned I = Expressions.size(); |
| Expressions.push_back(E); |
| ExpressionIndices[E] = I; |
| return Counter::getExpression(I); |
| } |
| |
| void CounterExpressionBuilder::extractTerms(Counter C, int Factor, |
| SmallVectorImpl<Term> &Terms) { |
| switch (C.getKind()) { |
| case Counter::Zero: |
| break; |
| case Counter::CounterValueReference: |
| Terms.emplace_back(C.getCounterID(), Factor); |
| break; |
| case Counter::Expression: |
| const auto &E = Expressions[C.getExpressionID()]; |
| extractTerms(E.LHS, Factor, Terms); |
| extractTerms( |
| E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); |
| break; |
| } |
| } |
| |
| Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { |
| // Gather constant terms. |
| SmallVector<Term, 32> Terms; |
| extractTerms(ExpressionTree, +1, Terms); |
| |
| // If there are no terms, this is just a zero. The algorithm below assumes at |
| // least one term. |
| if (Terms.size() == 0) |
| return Counter::getZero(); |
| |
| // Group the terms by counter ID. |
| llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { |
| return LHS.CounterID < RHS.CounterID; |
| }); |
| |
| // Combine terms by counter ID to eliminate counters that sum to zero. |
| auto Prev = Terms.begin(); |
| for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { |
| if (I->CounterID == Prev->CounterID) { |
| Prev->Factor += I->Factor; |
| continue; |
| } |
| ++Prev; |
| *Prev = *I; |
| } |
| Terms.erase(++Prev, Terms.end()); |
| |
| Counter C; |
| // Create additions. We do this before subtractions to avoid constructs like |
| // ((0 - X) + Y), as opposed to (Y - X). |
| for (auto T : Terms) { |
| if (T.Factor <= 0) |
| continue; |
| for (int I = 0; I < T.Factor; ++I) |
| if (C.isZero()) |
| C = Counter::getCounter(T.CounterID); |
| else |
| C = get(CounterExpression(CounterExpression::Add, C, |
| Counter::getCounter(T.CounterID))); |
| } |
| |
| // Create subtractions. |
| for (auto T : Terms) { |
| if (T.Factor >= 0) |
| continue; |
| for (int I = 0; I < -T.Factor; ++I) |
| C = get(CounterExpression(CounterExpression::Subtract, C, |
| Counter::getCounter(T.CounterID))); |
| } |
| return C; |
| } |
| |
| Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) { |
| return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS))); |
| } |
| |
| Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) { |
| return simplify( |
| get(CounterExpression(CounterExpression::Subtract, LHS, RHS))); |
| } |
| |
| void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { |
| switch (C.getKind()) { |
| case Counter::Zero: |
| OS << '0'; |
| return; |
| case Counter::CounterValueReference: |
| OS << '#' << C.getCounterID(); |
| break; |
| case Counter::Expression: { |
| if (C.getExpressionID() >= Expressions.size()) |
| return; |
| const auto &E = Expressions[C.getExpressionID()]; |
| OS << '('; |
| dump(E.LHS, OS); |
| OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); |
| dump(E.RHS, OS); |
| OS << ')'; |
| break; |
| } |
| } |
| if (CounterValues.empty()) |
| return; |
| Expected<int64_t> Value = evaluate(C); |
| if (auto E = Value.takeError()) { |
| consumeError(std::move(E)); |
| return; |
| } |
| OS << '[' << *Value << ']'; |
| } |
| |
| Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { |
| switch (C.getKind()) { |
| case Counter::Zero: |
| return 0; |
| case Counter::CounterValueReference: |
| if (C.getCounterID() >= CounterValues.size()) |
| return errorCodeToError(errc::argument_out_of_domain); |
| return CounterValues[C.getCounterID()]; |
| case Counter::Expression: { |
| if (C.getExpressionID() >= Expressions.size()) |
| return errorCodeToError(errc::argument_out_of_domain); |
| const auto &E = Expressions[C.getExpressionID()]; |
| Expected<int64_t> LHS = evaluate(E.LHS); |
| if (!LHS) |
| return LHS; |
| Expected<int64_t> RHS = evaluate(E.RHS); |
| if (!RHS) |
| return RHS; |
| return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS; |
| } |
| } |
| llvm_unreachable("Unhandled CounterKind"); |
| } |
| |
| unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { |
| switch (C.getKind()) { |
| case Counter::Zero: |
| return 0; |
| case Counter::CounterValueReference: |
| return C.getCounterID(); |
| case Counter::Expression: { |
| if (C.getExpressionID() >= Expressions.size()) |
| return 0; |
| const auto &E = Expressions[C.getExpressionID()]; |
| return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS)); |
| } |
| } |
| llvm_unreachable("Unhandled CounterKind"); |
| } |
| |
| void FunctionRecordIterator::skipOtherFiles() { |
| while (Current != Records.end() && !Filename.empty() && |
| Filename != Current->Filenames[0]) |
| ++Current; |
| if (Current == Records.end()) |
| *this = FunctionRecordIterator(); |
| } |
| |
| ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( |
| StringRef Filename) const { |
| size_t FilenameHash = hash_value(Filename); |
| auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); |
| if (RecordIt == FilenameHash2RecordIndices.end()) |
| return {}; |
| return RecordIt->second; |
| } |
| |
| static unsigned getMaxCounterID(const CounterMappingContext &Ctx, |
| const CoverageMappingRecord &Record) { |
| unsigned MaxCounterID = 0; |
| for (const auto &Region : Record.MappingRegions) { |
| MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); |
| } |
| return MaxCounterID; |
| } |
| |
| Error CoverageMapping::loadFunctionRecord( |
| const CoverageMappingRecord &Record, |
| IndexedInstrProfReader &ProfileReader) { |
| StringRef OrigFuncName = Record.FunctionName; |
| if (OrigFuncName.empty()) |
| return make_error<CoverageMapError>(coveragemap_error::malformed); |
| |
| if (Record.Filenames.empty()) |
| OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); |
| else |
| OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); |
| |
| CounterMappingContext Ctx(Record.Expressions); |
| |
| std::vector<uint64_t> Counts; |
| if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, |
| Record.FunctionHash, Counts)) { |
| instrprof_error IPE = InstrProfError::take(std::move(E)); |
| if (IPE == instrprof_error::hash_mismatch) { |
| FuncHashMismatches.emplace_back(std::string(Record.FunctionName), |
| Record.FunctionHash); |
| return Error::success(); |
| } else if (IPE != instrprof_error::unknown_function) |
| return make_error<InstrProfError>(IPE); |
| Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); |
| } |
| Ctx.setCounts(Counts); |
| |
| assert(!Record.MappingRegions.empty() && "Function has no regions"); |
| |
| // This coverage record is a zero region for a function that's unused in |
| // some TU, but used in a different TU. Ignore it. The coverage maps from the |
| // the other TU will either be loaded (providing full region counts) or they |
| // won't (in which case we don't unintuitively report functions as uncovered |
| // when they have non-zero counts in the profile). |
| if (Record.MappingRegions.size() == 1 && |
| Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) |
| return Error::success(); |
| |
| FunctionRecord Function(OrigFuncName, Record.Filenames); |
| for (const auto &Region : Record.MappingRegions) { |
| Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); |
| if (auto E = ExecutionCount.takeError()) { |
| consumeError(std::move(E)); |
| return Error::success(); |
| } |
| Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); |
| if (auto E = AltExecutionCount.takeError()) { |
| consumeError(std::move(E)); |
| return Error::success(); |
| } |
| Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); |
| } |
| |
| // Don't create records for (filenames, function) pairs we've already seen. |
| auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), |
| Record.Filenames.end()); |
| if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) |
| return Error::success(); |
| |
| Functions.push_back(std::move(Function)); |
| |
| // Performance optimization: keep track of the indices of the function records |
| // which correspond to each filename. This can be used to substantially speed |
| // up queries for coverage info in a file. |
| unsigned RecordIndex = Functions.size() - 1; |
| for (StringRef Filename : Record.Filenames) { |
| auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; |
| // Note that there may be duplicates in the filename set for a function |
| // record, because of e.g. macro expansions in the function in which both |
| // the macro and the function are defined in the same file. |
| if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) |
| RecordIndices.push_back(RecordIndex); |
| } |
| |
| return Error::success(); |
| } |
| |
| // This function is for memory optimization by shortening the lifetimes |
| // of CoverageMappingReader instances. |
| Error CoverageMapping::loadFromReaders( |
| ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
| IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { |
| for (const auto &CoverageReader : CoverageReaders) { |
| for (auto RecordOrErr : *CoverageReader) { |
| if (Error E = RecordOrErr.takeError()) |
| return E; |
| const auto &Record = *RecordOrErr; |
| if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) |
| return E; |
| } |
| } |
| return Error::success(); |
| } |
| |
| Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
| ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
| IndexedInstrProfReader &ProfileReader) { |
| auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
| if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) |
| return std::move(E); |
| return std::move(Coverage); |
| } |
| |
| // If E is a no_data_found error, returns success. Otherwise returns E. |
| static Error handleMaybeNoDataFoundError(Error E) { |
| return handleErrors( |
| std::move(E), [](const CoverageMapError &CME) { |
| if (CME.get() == coveragemap_error::no_data_found) |
| return static_cast<Error>(Error::success()); |
| return make_error<CoverageMapError>(CME.get()); |
| }); |
| } |
| |
| Expected<std::unique_ptr<CoverageMapping>> |
| CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames, |
| StringRef ProfileFilename, ArrayRef<StringRef> Arches, |
| StringRef CompilationDir) { |
| auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename); |
| if (Error E = ProfileReaderOrErr.takeError()) |
| return std::move(E); |
| auto ProfileReader = std::move(ProfileReaderOrErr.get()); |
| auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
| bool DataFound = false; |
| |
| for (const auto &File : llvm::enumerate(ObjectFilenames)) { |
| auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( |
| File.value(), /*IsText=*/false, /*RequiresNullTerminator=*/false); |
| if (std::error_code EC = CovMappingBufOrErr.getError()) |
| return errorCodeToError(EC); |
| StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()]; |
| MemoryBufferRef CovMappingBufRef = |
| CovMappingBufOrErr.get()->getMemBufferRef(); |
| SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; |
| auto CoverageReadersOrErr = BinaryCoverageReader::create( |
| CovMappingBufRef, Arch, Buffers, CompilationDir); |
| if (Error E = CoverageReadersOrErr.takeError()) { |
| E = handleMaybeNoDataFoundError(std::move(E)); |
| if (E) |
| return std::move(E); |
| // E == success (originally a no_data_found error). |
| continue; |
| } |
| |
| SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; |
| for (auto &Reader : CoverageReadersOrErr.get()) |
| Readers.push_back(std::move(Reader)); |
| DataFound |= !Readers.empty(); |
| if (Error E = loadFromReaders(Readers, *ProfileReader, *Coverage)) |
| return std::move(E); |
| } |
| // If no readers were created, either no objects were provided or none of them |
| // had coverage data. Return an error in the latter case. |
| if (!DataFound && !ObjectFilenames.empty()) |
| return make_error<CoverageMapError>(coveragemap_error::no_data_found); |
| return std::move(Coverage); |
| } |
| |
| namespace { |
| |
| /// Distributes functions into instantiation sets. |
| /// |
| /// An instantiation set is a collection of functions that have the same source |
| /// code, ie, template functions specializations. |
| class FunctionInstantiationSetCollector { |
| using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; |
| MapT InstantiatedFunctions; |
| |
| public: |
| void insert(const FunctionRecord &Function, unsigned FileID) { |
| auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); |
| while (I != E && I->FileID != FileID) |
| ++I; |
| assert(I != E && "function does not cover the given file"); |
| auto &Functions = InstantiatedFunctions[I->startLoc()]; |
| Functions.push_back(&Function); |
| } |
| |
| MapT::iterator begin() { return InstantiatedFunctions.begin(); } |
| MapT::iterator end() { return InstantiatedFunctions.end(); } |
| }; |
| |
| class SegmentBuilder { |
| std::vector<CoverageSegment> &Segments; |
| SmallVector<const CountedRegion *, 8> ActiveRegions; |
| |
| SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} |
| |
| /// Emit a segment with the count from \p Region starting at \p StartLoc. |
| // |
| /// \p IsRegionEntry: The segment is at the start of a new non-gap region. |
| /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. |
| void startSegment(const CountedRegion &Region, LineColPair StartLoc, |
| bool IsRegionEntry, bool EmitSkippedRegion = false) { |
| bool HasCount = !EmitSkippedRegion && |
| (Region.Kind != CounterMappingRegion::SkippedRegion); |
| |
| // If the new segment wouldn't affect coverage rendering, skip it. |
| if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { |
| const auto &Last = Segments.back(); |
| if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && |
| !Last.IsRegionEntry) |
| return; |
| } |
| |
| if (HasCount) |
| Segments.emplace_back(StartLoc.first, StartLoc.second, |
| Region.ExecutionCount, IsRegionEntry, |
| Region.Kind == CounterMappingRegion::GapRegion); |
| else |
| Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); |
| |
| LLVM_DEBUG({ |
| const auto &Last = Segments.back(); |
| dbgs() << "Segment at " << Last.Line << ":" << Last.Col |
| << " (count = " << Last.Count << ")" |
| << (Last.IsRegionEntry ? ", RegionEntry" : "") |
| << (!Last.HasCount ? ", Skipped" : "") |
| << (Last.IsGapRegion ? ", Gap" : "") << "\n"; |
| }); |
| } |
| |
| /// Emit segments for active regions which end before \p Loc. |
| /// |
| /// \p Loc: The start location of the next region. If None, all active |
| /// regions are completed. |
| /// \p FirstCompletedRegion: Index of the first completed region. |
| void completeRegionsUntil(Optional<LineColPair> Loc, |
| unsigned FirstCompletedRegion) { |
| // Sort the completed regions by end location. This makes it simple to |
| // emit closing segments in sorted order. |
| auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; |
| std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), |
| [](const CountedRegion *L, const CountedRegion *R) { |
| return L->endLoc() < R->endLoc(); |
| }); |
| |
| // Emit segments for all completed regions. |
| for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; |
| ++I) { |
| const auto *CompletedRegion = ActiveRegions[I]; |
| assert((!Loc || CompletedRegion->endLoc() <= *Loc) && |
| "Completed region ends after start of new region"); |
| |
| const auto *PrevCompletedRegion = ActiveRegions[I - 1]; |
| auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); |
| |
| // Don't emit any more segments if they start where the new region begins. |
| if (Loc && CompletedSegmentLoc == *Loc) |
| break; |
| |
| // Don't emit a segment if the next completed region ends at the same |
| // location as this one. |
| if (CompletedSegmentLoc == CompletedRegion->endLoc()) |
| continue; |
| |
| // Use the count from the last completed region which ends at this loc. |
| for (unsigned J = I + 1; J < E; ++J) |
| if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) |
| CompletedRegion = ActiveRegions[J]; |
| |
| startSegment(*CompletedRegion, CompletedSegmentLoc, false); |
| } |
| |
| auto Last = ActiveRegions.back(); |
| if (FirstCompletedRegion && Last->endLoc() != *Loc) { |
| // If there's a gap after the end of the last completed region and the |
| // start of the new region, use the last active region to fill the gap. |
| startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), |
| false); |
| } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { |
| // Emit a skipped segment if there are no more active regions. This |
| // ensures that gaps between functions are marked correctly. |
| startSegment(*Last, Last->endLoc(), false, true); |
| } |
| |
| // Pop the completed regions. |
| ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); |
| } |
| |
| void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { |
| for (const auto &CR : enumerate(Regions)) { |
| auto CurStartLoc = CR.value().startLoc(); |
| |
| // Active regions which end before the current region need to be popped. |
| auto CompletedRegions = |
| std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), |
| [&](const CountedRegion *Region) { |
| return !(Region->endLoc() <= CurStartLoc); |
| }); |
| if (CompletedRegions != ActiveRegions.end()) { |
| unsigned FirstCompletedRegion = |
| std::distance(ActiveRegions.begin(), CompletedRegions); |
| completeRegionsUntil(CurStartLoc, FirstCompletedRegion); |
| } |
| |
| bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; |
| |
| // Try to emit a segment for the current region. |
| if (CurStartLoc == CR.value().endLoc()) { |
| // Avoid making zero-length regions active. If it's the last region, |
| // emit a skipped segment. Otherwise use its predecessor's count. |
| const bool Skipped = |
| (CR.index() + 1) == Regions.size() || |
| CR.value().Kind == CounterMappingRegion::SkippedRegion; |
| startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), |
| CurStartLoc, !GapRegion, Skipped); |
| // If it is skipped segment, create a segment with last pushed |
| // regions's count at CurStartLoc. |
| if (Skipped && !ActiveRegions.empty()) |
| startSegment(*ActiveRegions.back(), CurStartLoc, false); |
| continue; |
| } |
| if (CR.index() + 1 == Regions.size() || |
| CurStartLoc != Regions[CR.index() + 1].startLoc()) { |
| // Emit a segment if the next region doesn't start at the same location |
| // as this one. |
| startSegment(CR.value(), CurStartLoc, !GapRegion); |
| } |
| |
| // This region is active (i.e not completed). |
| ActiveRegions.push_back(&CR.value()); |
| } |
| |
| // Complete any remaining active regions. |
| if (!ActiveRegions.empty()) |
| completeRegionsUntil(None, 0); |
| } |
| |
| /// Sort a nested sequence of regions from a single file. |
| static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { |
| llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { |
| if (LHS.startLoc() != RHS.startLoc()) |
| return LHS.startLoc() < RHS.startLoc(); |
| if (LHS.endLoc() != RHS.endLoc()) |
| // When LHS completely contains RHS, we sort LHS first. |
| return RHS.endLoc() < LHS.endLoc(); |
| // If LHS and RHS cover the same area, we need to sort them according |
| // to their kinds so that the most suitable region will become "active" |
| // in combineRegions(). Because we accumulate counter values only from |
| // regions of the same kind as the first region of the area, prefer |
| // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. |
| static_assert(CounterMappingRegion::CodeRegion < |
| CounterMappingRegion::ExpansionRegion && |
| CounterMappingRegion::ExpansionRegion < |
| CounterMappingRegion::SkippedRegion, |
| "Unexpected order of region kind values"); |
| return LHS.Kind < RHS.Kind; |
| }); |
| } |
| |
| /// Combine counts of regions which cover the same area. |
| static ArrayRef<CountedRegion> |
| combineRegions(MutableArrayRef<CountedRegion> Regions) { |
| if (Regions.empty()) |
| return Regions; |
| auto Active = Regions.begin(); |
| auto End = Regions.end(); |
| for (auto I = Regions.begin() + 1; I != End; ++I) { |
| if (Active->startLoc() != I->startLoc() || |
| Active->endLoc() != I->endLoc()) { |
| // Shift to the next region. |
| ++Active; |
| if (Active != I) |
| *Active = *I; |
| continue; |
| } |
| // Merge duplicate region. |
| // If CodeRegions and ExpansionRegions cover the same area, it's probably |
| // a macro which is fully expanded to another macro. In that case, we need |
| // to accumulate counts only from CodeRegions, or else the area will be |
| // counted twice. |
| // On the other hand, a macro may have a nested macro in its body. If the |
| // outer macro is used several times, the ExpansionRegion for the nested |
| // macro will also be added several times. These ExpansionRegions cover |
| // the same source locations and have to be combined to reach the correct |
| // value for that area. |
| // We add counts of the regions of the same kind as the active region |
| // to handle the both situations. |
| if (I->Kind == Active->Kind) |
| Active->ExecutionCount += I->ExecutionCount; |
| } |
| return Regions.drop_back(std::distance(++Active, End)); |
| } |
| |
| public: |
| /// Build a sorted list of CoverageSegments from a list of Regions. |
| static std::vector<CoverageSegment> |
| buildSegments(MutableArrayRef<CountedRegion> Regions) { |
| std::vector<CoverageSegment> Segments; |
| SegmentBuilder Builder(Segments); |
| |
| sortNestedRegions(Regions); |
| ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Combined regions:\n"; |
| for (const auto &CR : CombinedRegions) |
| dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " |
| << CR.LineEnd << ":" << CR.ColumnEnd |
| << " (count=" << CR.ExecutionCount << ")\n"; |
| }); |
| |
| Builder.buildSegmentsImpl(CombinedRegions); |
| |
| #ifndef NDEBUG |
| for (unsigned I = 1, E = Segments.size(); I < E; ++I) { |
| const auto &L = Segments[I - 1]; |
| const auto &R = Segments[I]; |
| if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { |
| if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) |
| continue; |
| LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col |
| << " followed by " << R.Line << ":" << R.Col << "\n"); |
| assert(false && "Coverage segments not unique or sorted"); |
| } |
| } |
| #endif |
| |
| return Segments; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { |
| std::vector<StringRef> Filenames; |
| for (const auto &Function : getCoveredFunctions()) |
| llvm::append_range(Filenames, Function.Filenames); |
| llvm::sort(Filenames); |
| auto Last = std::unique(Filenames.begin(), Filenames.end()); |
| Filenames.erase(Last, Filenames.end()); |
| return Filenames; |
| } |
| |
| static SmallBitVector gatherFileIDs(StringRef SourceFile, |
| const FunctionRecord &Function) { |
| SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); |
| for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) |
| if (SourceFile == Function.Filenames[I]) |
| FilenameEquivalence[I] = true; |
| return FilenameEquivalence; |
| } |
| |
| /// Return the ID of the file where the definition of the function is located. |
| static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) { |
| SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); |
| for (const auto &CR : Function.CountedRegions) |
| if (CR.Kind == CounterMappingRegion::ExpansionRegion) |
| IsNotExpandedFile[CR.ExpandedFileID] = false; |
| int I = IsNotExpandedFile.find_first(); |
| if (I == -1) |
| return None; |
| return I; |
| } |
| |
| /// Check if SourceFile is the file that contains the definition of |
| /// the Function. Return the ID of the file in that case or None otherwise. |
| static Optional<unsigned> findMainViewFileID(StringRef SourceFile, |
| const FunctionRecord &Function) { |
| Optional<unsigned> I = findMainViewFileID(Function); |
| if (I && SourceFile == Function.Filenames[*I]) |
| return I; |
| return None; |
| } |
| |
| static bool isExpansion(const CountedRegion &R, unsigned FileID) { |
| return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; |
| } |
| |
| CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { |
| CoverageData FileCoverage(Filename); |
| std::vector<CountedRegion> Regions; |
| |
| // Look up the function records in the given file. Due to hash collisions on |
| // the filename, we may get back some records that are not in the file. |
| ArrayRef<unsigned> RecordIndices = |
| getImpreciseRecordIndicesForFilename(Filename); |
| for (unsigned RecordIndex : RecordIndices) { |
| const FunctionRecord &Function = Functions[RecordIndex]; |
| auto MainFileID = findMainViewFileID(Filename, Function); |
| auto FileIDs = gatherFileIDs(Filename, Function); |
| for (const auto &CR : Function.CountedRegions) |
| if (FileIDs.test(CR.FileID)) { |
| Regions.push_back(CR); |
| if (MainFileID && isExpansion(CR, *MainFileID)) |
| FileCoverage.Expansions.emplace_back(CR, Function); |
| } |
| // Capture branch regions specific to the function (excluding expansions). |
| for (const auto &CR : Function.CountedBranchRegions) |
| if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) |
| FileCoverage.BranchRegions.push_back(CR); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); |
| FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
| |
| return FileCoverage; |
| } |
| |
| std::vector<InstantiationGroup> |
| CoverageMapping::getInstantiationGroups(StringRef Filename) const { |
| FunctionInstantiationSetCollector InstantiationSetCollector; |
| // Look up the function records in the given file. Due to hash collisions on |
| // the filename, we may get back some records that are not in the file. |
| ArrayRef<unsigned> RecordIndices = |
| getImpreciseRecordIndicesForFilename(Filename); |
| for (unsigned RecordIndex : RecordIndices) { |
| const FunctionRecord &Function = Functions[RecordIndex]; |
| auto MainFileID = findMainViewFileID(Filename, Function); |
| if (!MainFileID) |
| continue; |
| InstantiationSetCollector.insert(Function, *MainFileID); |
| } |
| |
| std::vector<InstantiationGroup> Result; |
| for (auto &InstantiationSet : InstantiationSetCollector) { |
| InstantiationGroup IG{InstantiationSet.first.first, |
| InstantiationSet.first.second, |
| std::move(InstantiationSet.second)}; |
| Result.emplace_back(std::move(IG)); |
| } |
| return Result; |
| } |
| |
| CoverageData |
| CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { |
| auto MainFileID = findMainViewFileID(Function); |
| if (!MainFileID) |
| return CoverageData(); |
| |
| CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); |
| std::vector<CountedRegion> Regions; |
| for (const auto &CR : Function.CountedRegions) |
| if (CR.FileID == *MainFileID) { |
| Regions.push_back(CR); |
| if (isExpansion(CR, *MainFileID)) |
| FunctionCoverage.Expansions.emplace_back(CR, Function); |
| } |
| // Capture branch regions specific to the function (excluding expansions). |
| for (const auto &CR : Function.CountedBranchRegions) |
| if (CR.FileID == *MainFileID) |
| FunctionCoverage.BranchRegions.push_back(CR); |
| |
| LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name |
| << "\n"); |
| FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
| |
| return FunctionCoverage; |
| } |
| |
| CoverageData CoverageMapping::getCoverageForExpansion( |
| const ExpansionRecord &Expansion) const { |
| CoverageData ExpansionCoverage( |
| Expansion.Function.Filenames[Expansion.FileID]); |
| std::vector<CountedRegion> Regions; |
| for (const auto &CR : Expansion.Function.CountedRegions) |
| if (CR.FileID == Expansion.FileID) { |
| Regions.push_back(CR); |
| if (isExpansion(CR, Expansion.FileID)) |
| ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); |
| } |
| for (const auto &CR : Expansion.Function.CountedBranchRegions) |
| // Capture branch regions that only pertain to the corresponding expansion. |
| if (CR.FileID == Expansion.FileID) |
| ExpansionCoverage.BranchRegions.push_back(CR); |
| |
| LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " |
| << Expansion.FileID << "\n"); |
| ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
| |
| return ExpansionCoverage; |
| } |
| |
| LineCoverageStats::LineCoverageStats( |
| ArrayRef<const CoverageSegment *> LineSegments, |
| const CoverageSegment *WrappedSegment, unsigned Line) |
| : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), |
| LineSegments(LineSegments), WrappedSegment(WrappedSegment) { |
| // Find the minimum number of regions which start in this line. |
| unsigned MinRegionCount = 0; |
| auto isStartOfRegion = [](const CoverageSegment *S) { |
| return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; |
| }; |
| for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) |
| if (isStartOfRegion(LineSegments[I])) |
| ++MinRegionCount; |
| |
| bool StartOfSkippedRegion = !LineSegments.empty() && |
| !LineSegments.front()->HasCount && |
| LineSegments.front()->IsRegionEntry; |
| |
| HasMultipleRegions = MinRegionCount > 1; |
| Mapped = |
| !StartOfSkippedRegion && |
| ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); |
| |
| if (!Mapped) |
| return; |
| |
| // Pick the max count from the non-gap, region entry segments and the |
| // wrapped count. |
| if (WrappedSegment) |
| ExecutionCount = WrappedSegment->Count; |
| if (!MinRegionCount) |
| return; |
| for (const auto *LS : LineSegments) |
| if (isStartOfRegion(LS)) |
| ExecutionCount = std::max(ExecutionCount, LS->Count); |
| } |
| |
| LineCoverageIterator &LineCoverageIterator::operator++() { |
| if (Next == CD.end()) { |
| Stats = LineCoverageStats(); |
| Ended = true; |
| return *this; |
| } |
| if (Segments.size()) |
| WrappedSegment = Segments.back(); |
| Segments.clear(); |
| while (Next != CD.end() && Next->Line == Line) |
| Segments.push_back(&*Next++); |
| Stats = LineCoverageStats(Segments, WrappedSegment, Line); |
| ++Line; |
| return *this; |
| } |
| |
| static std::string getCoverageMapErrString(coveragemap_error Err) { |
| switch (Err) { |
| case coveragemap_error::success: |
| return "Success"; |
| case coveragemap_error::eof: |
| return "End of File"; |
| case coveragemap_error::no_data_found: |
| return "No coverage data found"; |
| case coveragemap_error::unsupported_version: |
| return "Unsupported coverage format version"; |
| case coveragemap_error::truncated: |
| return "Truncated coverage data"; |
| case coveragemap_error::malformed: |
| return "Malformed coverage data"; |
| case coveragemap_error::decompression_failed: |
| return "Failed to decompress coverage data (zlib)"; |
| case coveragemap_error::invalid_or_missing_arch_specifier: |
| return "`-arch` specifier is invalid or missing for universal binary"; |
| } |
| llvm_unreachable("A value of coveragemap_error has no message."); |
| } |
| |
| namespace { |
| |
| // FIXME: This class is only here to support the transition to llvm::Error. It |
| // will be removed once this transition is complete. Clients should prefer to |
| // deal with the Error value directly, rather than converting to error_code. |
| class CoverageMappingErrorCategoryType : public std::error_category { |
| const char *name() const noexcept override { return "llvm.coveragemap"; } |
| std::string message(int IE) const override { |
| return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| std::string CoverageMapError::message() const { |
| return getCoverageMapErrString(Err); |
| } |
| |
| static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory; |
| |
| const std::error_category &llvm::coverage::coveragemap_category() { |
| return *ErrorCategory; |
| } |
| |
| char CoverageMapError::ID = 0; |