| //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file implements the OpenMPIRBuilder class, which is used as a |
| /// convenient way to create LLVM instructions for OpenMP directives. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| #include "llvm/Transforms/Utils/LoopPeel.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| |
| #include <sstream> |
| |
| #define DEBUG_TYPE "openmp-ir-builder" |
| |
| using namespace llvm; |
| using namespace omp; |
| |
| static cl::opt<bool> |
| OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden, |
| cl::desc("Use optimistic attributes describing " |
| "'as-if' properties of runtime calls."), |
| cl::init(false)); |
| |
| static cl::opt<double> UnrollThresholdFactor( |
| "openmp-ir-builder-unroll-threshold-factor", cl::Hidden, |
| cl::desc("Factor for the unroll threshold to account for code " |
| "simplifications still taking place"), |
| cl::init(1.5)); |
| |
| void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) { |
| LLVMContext &Ctx = Fn.getContext(); |
| |
| // Get the function's current attributes. |
| auto Attrs = Fn.getAttributes(); |
| auto FnAttrs = Attrs.getFnAttrs(); |
| auto RetAttrs = Attrs.getRetAttrs(); |
| SmallVector<AttributeSet, 4> ArgAttrs; |
| for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo) |
| ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo)); |
| |
| #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| |
| // Add attributes to the function declaration. |
| switch (FnID) { |
| #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \ |
| case Enum: \ |
| FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \ |
| RetAttrs = RetAttrs.addAttributes(Ctx, RetAttrSet); \ |
| for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \ |
| ArgAttrs[ArgNo] = \ |
| ArgAttrs[ArgNo].addAttributes(Ctx, ArgAttrSets[ArgNo]); \ |
| Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| default: |
| // Attributes are optional. |
| break; |
| } |
| } |
| |
| FunctionCallee |
| OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) { |
| FunctionType *FnTy = nullptr; |
| Function *Fn = nullptr; |
| |
| // Try to find the declation in the module first. |
| switch (FnID) { |
| #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \ |
| case Enum: \ |
| FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \ |
| IsVarArg); \ |
| Fn = M.getFunction(Str); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| if (!Fn) { |
| // Create a new declaration if we need one. |
| switch (FnID) { |
| #define OMP_RTL(Enum, Str, ...) \ |
| case Enum: \ |
| Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| // Add information if the runtime function takes a callback function |
| if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) { |
| if (!Fn->hasMetadata(LLVMContext::MD_callback)) { |
| LLVMContext &Ctx = Fn->getContext(); |
| MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the runtime function: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the runtime function are passed to the |
| // callback callee. |
| Fn->addMetadata( |
| LLVMContext::MD_callback, |
| *MDNode::get(Ctx, {MDB.createCallbackEncoding( |
| 2, {-1, -1}, /* VarArgsArePassed */ true)})); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName() |
| << " with type " << *Fn->getFunctionType() << "\n"); |
| addAttributes(FnID, *Fn); |
| |
| } else { |
| LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName() |
| << " with type " << *Fn->getFunctionType() << "\n"); |
| } |
| |
| assert(Fn && "Failed to create OpenMP runtime function"); |
| |
| // Cast the function to the expected type if necessary |
| Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo()); |
| return {FnTy, C}; |
| } |
| |
| Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) { |
| FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID); |
| auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee()); |
| assert(Fn && "Failed to create OpenMP runtime function pointer"); |
| return Fn; |
| } |
| |
| void OpenMPIRBuilder::initialize() { initializeTypes(M); } |
| |
| void OpenMPIRBuilder::finalize(Function *Fn, bool AllowExtractorSinking) { |
| SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; |
| SmallVector<BasicBlock *, 32> Blocks; |
| SmallVector<OutlineInfo, 16> DeferredOutlines; |
| for (OutlineInfo &OI : OutlineInfos) { |
| // Skip functions that have not finalized yet; may happen with nested |
| // function generation. |
| if (Fn && OI.getFunction() != Fn) { |
| DeferredOutlines.push_back(OI); |
| continue; |
| } |
| |
| ParallelRegionBlockSet.clear(); |
| Blocks.clear(); |
| OI.collectBlocks(ParallelRegionBlockSet, Blocks); |
| |
| Function *OuterFn = OI.getFunction(); |
| CodeExtractorAnalysisCache CEAC(*OuterFn); |
| CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, |
| /* AggregateArgs */ false, |
| /* BlockFrequencyInfo */ nullptr, |
| /* BranchProbabilityInfo */ nullptr, |
| /* AssumptionCache */ nullptr, |
| /* AllowVarArgs */ true, |
| /* AllowAlloca */ true, |
| /* Suffix */ ".omp_par"); |
| |
| LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n"); |
| LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName() |
| << " Exit: " << OI.ExitBB->getName() << "\n"); |
| assert(Extractor.isEligible() && |
| "Expected OpenMP outlining to be possible!"); |
| |
| Function *OutlinedFn = Extractor.extractCodeRegion(CEAC); |
| |
| LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n"); |
| LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n"); |
| assert(OutlinedFn->getReturnType()->isVoidTy() && |
| "OpenMP outlined functions should not return a value!"); |
| |
| // For compability with the clang CG we move the outlined function after the |
| // one with the parallel region. |
| OutlinedFn->removeFromParent(); |
| M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn); |
| |
| // Remove the artificial entry introduced by the extractor right away, we |
| // made our own entry block after all. |
| { |
| BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock(); |
| assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB); |
| assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry); |
| if (AllowExtractorSinking) { |
| // Move instructions from the to-be-deleted ArtificialEntry to the entry |
| // basic block of the parallel region. CodeExtractor may have sunk |
| // allocas/bitcasts for values that are solely used in the outlined |
| // region and do not escape. |
| assert(!ArtificialEntry.empty() && |
| "Expected instructions to sink in the outlined region"); |
| for (BasicBlock::iterator It = ArtificialEntry.begin(), |
| End = ArtificialEntry.end(); |
| It != End;) { |
| Instruction &I = *It; |
| It++; |
| |
| if (I.isTerminator()) |
| continue; |
| |
| I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt()); |
| } |
| } |
| OI.EntryBB->moveBefore(&ArtificialEntry); |
| ArtificialEntry.eraseFromParent(); |
| } |
| assert(&OutlinedFn->getEntryBlock() == OI.EntryBB); |
| assert(OutlinedFn && OutlinedFn->getNumUses() == 1); |
| |
| // Run a user callback, e.g. to add attributes. |
| if (OI.PostOutlineCB) |
| OI.PostOutlineCB(*OutlinedFn); |
| } |
| |
| // Remove work items that have been completed. |
| OutlineInfos = std::move(DeferredOutlines); |
| } |
| |
| OpenMPIRBuilder::~OpenMPIRBuilder() { |
| assert(OutlineInfos.empty() && "There must be no outstanding outlinings"); |
| } |
| |
| GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) { |
| IntegerType *I32Ty = Type::getInt32Ty(M.getContext()); |
| auto *GV = |
| new GlobalVariable(M, I32Ty, |
| /* isConstant = */ true, GlobalValue::WeakODRLinkage, |
| ConstantInt::get(I32Ty, Value), Name); |
| |
| return GV; |
| } |
| |
| Value *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr, |
| IdentFlag LocFlags, |
| unsigned Reserve2Flags) { |
| // Enable "C-mode". |
| LocFlags |= OMP_IDENT_FLAG_KMPC; |
| |
| Value *&Ident = |
| IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}]; |
| if (!Ident) { |
| Constant *I32Null = ConstantInt::getNullValue(Int32); |
| Constant *IdentData[] = { |
| I32Null, ConstantInt::get(Int32, uint32_t(LocFlags)), |
| ConstantInt::get(Int32, Reserve2Flags), I32Null, SrcLocStr}; |
| Constant *Initializer = |
| ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData); |
| |
| // Look for existing encoding of the location + flags, not needed but |
| // minimizes the difference to the existing solution while we transition. |
| for (GlobalVariable &GV : M.getGlobalList()) |
| if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer()) |
| if (GV.getInitializer() == Initializer) |
| Ident = &GV; |
| |
| if (!Ident) { |
| auto *GV = new GlobalVariable( |
| M, OpenMPIRBuilder::Ident, |
| /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "", |
| nullptr, GlobalValue::NotThreadLocal, |
| M.getDataLayout().getDefaultGlobalsAddressSpace()); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| GV->setAlignment(Align(8)); |
| Ident = GV; |
| } |
| } |
| |
| return Builder.CreatePointerCast(Ident, IdentPtr); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr) { |
| Constant *&SrcLocStr = SrcLocStrMap[LocStr]; |
| if (!SrcLocStr) { |
| Constant *Initializer = |
| ConstantDataArray::getString(M.getContext(), LocStr); |
| |
| // Look for existing encoding of the location, not needed but minimizes the |
| // difference to the existing solution while we transition. |
| for (GlobalVariable &GV : M.getGlobalList()) |
| if (GV.isConstant() && GV.hasInitializer() && |
| GV.getInitializer() == Initializer) |
| return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr); |
| |
| SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "", |
| /* AddressSpace */ 0, &M); |
| } |
| return SrcLocStr; |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName, |
| StringRef FileName, |
| unsigned Line, |
| unsigned Column) { |
| SmallString<128> Buffer; |
| Buffer.push_back(';'); |
| Buffer.append(FileName); |
| Buffer.push_back(';'); |
| Buffer.append(FunctionName); |
| Buffer.push_back(';'); |
| Buffer.append(std::to_string(Line)); |
| Buffer.push_back(';'); |
| Buffer.append(std::to_string(Column)); |
| Buffer.push_back(';'); |
| Buffer.push_back(';'); |
| return getOrCreateSrcLocStr(Buffer.str()); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateDefaultSrcLocStr() { |
| return getOrCreateSrcLocStr(";unknown;unknown;0;0;;"); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL, Function *F) { |
| DILocation *DIL = DL.get(); |
| if (!DIL) |
| return getOrCreateDefaultSrcLocStr(); |
| StringRef FileName = M.getName(); |
| if (DIFile *DIF = DIL->getFile()) |
| if (Optional<StringRef> Source = DIF->getSource()) |
| FileName = *Source; |
| StringRef Function = DIL->getScope()->getSubprogram()->getName(); |
| if (Function.empty() && F) |
| Function = F->getName(); |
| return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(), |
| DIL->getColumn()); |
| } |
| |
| Constant * |
| OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc) { |
| return getOrCreateSrcLocStr(Loc.DL, Loc.IP.getBlock()->getParent()); |
| } |
| |
| Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) { |
| return Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident, |
| "omp_global_thread_num"); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK, |
| bool ForceSimpleCall, bool CheckCancelFlag) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind, |
| bool ForceSimpleCall, bool CheckCancelFlag) { |
| // Build call __kmpc_cancel_barrier(loc, thread_id) or |
| // __kmpc_barrier(loc, thread_id); |
| |
| IdentFlag BarrierLocFlags; |
| switch (Kind) { |
| case OMPD_for: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR; |
| break; |
| case OMPD_sections: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS; |
| break; |
| case OMPD_single: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE; |
| break; |
| case OMPD_barrier: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL; |
| break; |
| default: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL; |
| break; |
| } |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Args[] = {getOrCreateIdent(SrcLocStr, BarrierLocFlags), |
| getOrCreateThreadID(getOrCreateIdent(SrcLocStr))}; |
| |
| // If we are in a cancellable parallel region, barriers are cancellation |
| // points. |
| // TODO: Check why we would force simple calls or to ignore the cancel flag. |
| bool UseCancelBarrier = |
| !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel); |
| |
| Value *Result = |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr( |
| UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier |
| : OMPRTL___kmpc_barrier), |
| Args); |
| |
| if (UseCancelBarrier && CheckCancelFlag) |
| emitCancelationCheckImpl(Result, OMPD_parallel); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createCancel(const LocationDescription &Loc, |
| Value *IfCondition, |
| omp::Directive CanceledDirective) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // LLVM utilities like blocks with terminators. |
| auto *UI = Builder.CreateUnreachable(); |
| |
| Instruction *ThenTI = UI, *ElseTI = nullptr; |
| if (IfCondition) |
| SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); |
| Builder.SetInsertPoint(ThenTI); |
| |
| Value *CancelKind = nullptr; |
| switch (CanceledDirective) { |
| #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ |
| case DirectiveEnum: \ |
| CancelKind = Builder.getInt32(Value); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| default: |
| llvm_unreachable("Unknown cancel kind!"); |
| } |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; |
| Value *Result = Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args); |
| auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) { |
| if (CanceledDirective == OMPD_parallel) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), |
| omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| } |
| }; |
| |
| // The actual cancel logic is shared with others, e.g., cancel_barriers. |
| emitCancelationCheckImpl(Result, CanceledDirective, ExitCB); |
| |
| // Update the insertion point and remove the terminator we introduced. |
| Builder.SetInsertPoint(UI->getParent()); |
| UI->eraseFromParent(); |
| |
| return Builder.saveIP(); |
| } |
| |
| void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag, |
| omp::Directive CanceledDirective, |
| FinalizeCallbackTy ExitCB) { |
| assert(isLastFinalizationInfoCancellable(CanceledDirective) && |
| "Unexpected cancellation!"); |
| |
| // For a cancel barrier we create two new blocks. |
| BasicBlock *BB = Builder.GetInsertBlock(); |
| BasicBlock *NonCancellationBlock; |
| if (Builder.GetInsertPoint() == BB->end()) { |
| // TODO: This branch will not be needed once we moved to the |
| // OpenMPIRBuilder codegen completely. |
| NonCancellationBlock = BasicBlock::Create( |
| BB->getContext(), BB->getName() + ".cont", BB->getParent()); |
| } else { |
| NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint()); |
| BB->getTerminator()->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| } |
| BasicBlock *CancellationBlock = BasicBlock::Create( |
| BB->getContext(), BB->getName() + ".cncl", BB->getParent()); |
| |
| // Jump to them based on the return value. |
| Value *Cmp = Builder.CreateIsNull(CancelFlag); |
| Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock, |
| /* TODO weight */ nullptr, nullptr); |
| |
| // From the cancellation block we finalize all variables and go to the |
| // post finalization block that is known to the FiniCB callback. |
| Builder.SetInsertPoint(CancellationBlock); |
| if (ExitCB) |
| ExitCB(Builder.saveIP()); |
| auto &FI = FinalizationStack.back(); |
| FI.FiniCB(Builder.saveIP()); |
| |
| // The continuation block is where code generation continues. |
| Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin()); |
| } |
| |
| IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel( |
| const LocationDescription &Loc, InsertPointTy OuterAllocaIP, |
| BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB, |
| FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads, |
| omp::ProcBindKind ProcBind, bool IsCancellable) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadID = getOrCreateThreadID(Ident); |
| |
| if (NumThreads) { |
| // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads) |
| Value *Args[] = { |
| Ident, ThreadID, |
| Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args); |
| } |
| |
| if (ProcBind != OMP_PROC_BIND_default) { |
| // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind) |
| Value *Args[] = { |
| Ident, ThreadID, |
| ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args); |
| } |
| |
| BasicBlock *InsertBB = Builder.GetInsertBlock(); |
| Function *OuterFn = InsertBB->getParent(); |
| |
| // Save the outer alloca block because the insertion iterator may get |
| // invalidated and we still need this later. |
| BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock(); |
| |
| // Vector to remember instructions we used only during the modeling but which |
| // we want to delete at the end. |
| SmallVector<Instruction *, 4> ToBeDeleted; |
| |
| // Change the location to the outer alloca insertion point to create and |
| // initialize the allocas we pass into the parallel region. |
| Builder.restoreIP(OuterAllocaIP); |
| AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr"); |
| AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr"); |
| |
| // If there is an if condition we actually use the TIDAddr and ZeroAddr in the |
| // program, otherwise we only need them for modeling purposes to get the |
| // associated arguments in the outlined function. In the former case, |
| // initialize the allocas properly, in the latter case, delete them later. |
| if (IfCondition) { |
| Builder.CreateStore(Constant::getNullValue(Int32), TIDAddr); |
| Builder.CreateStore(Constant::getNullValue(Int32), ZeroAddr); |
| } else { |
| ToBeDeleted.push_back(TIDAddr); |
| ToBeDeleted.push_back(ZeroAddr); |
| } |
| |
| // Create an artificial insertion point that will also ensure the blocks we |
| // are about to split are not degenerated. |
| auto *UI = new UnreachableInst(Builder.getContext(), InsertBB); |
| |
| Instruction *ThenTI = UI, *ElseTI = nullptr; |
| if (IfCondition) |
| SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); |
| |
| BasicBlock *ThenBB = ThenTI->getParent(); |
| BasicBlock *PRegEntryBB = ThenBB->splitBasicBlock(ThenTI, "omp.par.entry"); |
| BasicBlock *PRegBodyBB = |
| PRegEntryBB->splitBasicBlock(ThenTI, "omp.par.region"); |
| BasicBlock *PRegPreFiniBB = |
| PRegBodyBB->splitBasicBlock(ThenTI, "omp.par.pre_finalize"); |
| BasicBlock *PRegExitBB = |
| PRegPreFiniBB->splitBasicBlock(ThenTI, "omp.par.exit"); |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| // Hide "open-ended" blocks from the given FiniCB by setting the right jump |
| // target to the region exit block. |
| if (IP.getBlock()->end() == IP.getPoint()) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| Instruction *I = Builder.CreateBr(PRegExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| } |
| assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && |
| IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && |
| "Unexpected insertion point for finalization call!"); |
| return FiniCB(IP); |
| }; |
| |
| FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable}); |
| |
| // Generate the privatization allocas in the block that will become the entry |
| // of the outlined function. |
| Builder.SetInsertPoint(PRegEntryBB->getTerminator()); |
| InsertPointTy InnerAllocaIP = Builder.saveIP(); |
| |
| AllocaInst *PrivTIDAddr = |
| Builder.CreateAlloca(Int32, nullptr, "tid.addr.local"); |
| Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid"); |
| |
| // Add some fake uses for OpenMP provided arguments. |
| ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use")); |
| Instruction *ZeroAddrUse = |
| Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use"); |
| ToBeDeleted.push_back(ZeroAddrUse); |
| |
| // ThenBB |
| // | |
| // V |
| // PRegionEntryBB <- Privatization allocas are placed here. |
| // | |
| // V |
| // PRegionBodyBB <- BodeGen is invoked here. |
| // | |
| // V |
| // PRegPreFiniBB <- The block we will start finalization from. |
| // | |
| // V |
| // PRegionExitBB <- A common exit to simplify block collection. |
| // |
| |
| LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n"); |
| |
| // Let the caller create the body. |
| assert(BodyGenCB && "Expected body generation callback!"); |
| InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin()); |
| BodyGenCB(InnerAllocaIP, CodeGenIP, *PRegPreFiniBB); |
| |
| LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n"); |
| |
| FunctionCallee RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call); |
| if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { |
| if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { |
| llvm::LLVMContext &Ctx = F->getContext(); |
| MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the __kmpc_fork_call: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the __kmpc_fork_call are passed to the |
| // callback callee. |
| F->addMetadata( |
| llvm::LLVMContext::MD_callback, |
| *llvm::MDNode::get( |
| Ctx, {MDB.createCallbackEncoding(2, {-1, -1}, |
| /* VarArgsArePassed */ true)})); |
| } |
| } |
| |
| OutlineInfo OI; |
| OI.PostOutlineCB = [=](Function &OutlinedFn) { |
| // Add some known attributes. |
| OutlinedFn.addParamAttr(0, Attribute::NoAlias); |
| OutlinedFn.addParamAttr(1, Attribute::NoAlias); |
| OutlinedFn.addFnAttr(Attribute::NoUnwind); |
| OutlinedFn.addFnAttr(Attribute::NoRecurse); |
| |
| assert(OutlinedFn.arg_size() >= 2 && |
| "Expected at least tid and bounded tid as arguments"); |
| unsigned NumCapturedVars = |
| OutlinedFn.arg_size() - /* tid & bounded tid */ 2; |
| |
| CallInst *CI = cast<CallInst>(OutlinedFn.user_back()); |
| CI->getParent()->setName("omp_parallel"); |
| Builder.SetInsertPoint(CI); |
| |
| // Build call __kmpc_fork_call(Ident, n, microtask, var1, .., varn); |
| Value *ForkCallArgs[] = { |
| Ident, Builder.getInt32(NumCapturedVars), |
| Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)}; |
| |
| SmallVector<Value *, 16> RealArgs; |
| RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs)); |
| RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end()); |
| |
| Builder.CreateCall(RTLFn, RealArgs); |
| |
| LLVM_DEBUG(dbgs() << "With fork_call placed: " |
| << *Builder.GetInsertBlock()->getParent() << "\n"); |
| |
| InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end()); |
| |
| // Initialize the local TID stack location with the argument value. |
| Builder.SetInsertPoint(PrivTID); |
| Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); |
| Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr); |
| |
| // If no "if" clause was present we do not need the call created during |
| // outlining, otherwise we reuse it in the serialized parallel region. |
| if (!ElseTI) { |
| CI->eraseFromParent(); |
| } else { |
| |
| // If an "if" clause was present we are now generating the serialized |
| // version into the "else" branch. |
| Builder.SetInsertPoint(ElseTI); |
| |
| // Build calls __kmpc_serialized_parallel(&Ident, GTid); |
| Value *SerializedParallelCallArgs[] = {Ident, ThreadID}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_serialized_parallel), |
| SerializedParallelCallArgs); |
| |
| // OutlinedFn(>id, &zero, CapturedStruct); |
| CI->removeFromParent(); |
| Builder.Insert(CI); |
| |
| // __kmpc_end_serialized_parallel(&Ident, GTid); |
| Value *EndArgs[] = {Ident, ThreadID}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_serialized_parallel), |
| EndArgs); |
| |
| LLVM_DEBUG(dbgs() << "With serialized parallel region: " |
| << *Builder.GetInsertBlock()->getParent() << "\n"); |
| } |
| |
| for (Instruction *I : ToBeDeleted) |
| I->eraseFromParent(); |
| }; |
| |
| // Adjust the finalization stack, verify the adjustment, and call the |
| // finalize function a last time to finalize values between the pre-fini |
| // block and the exit block if we left the parallel "the normal way". |
| auto FiniInfo = FinalizationStack.pop_back_val(); |
| (void)FiniInfo; |
| assert(FiniInfo.DK == OMPD_parallel && |
| "Unexpected finalization stack state!"); |
| |
| Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator(); |
| |
| InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator()); |
| FiniCB(PreFiniIP); |
| |
| OI.EntryBB = PRegEntryBB; |
| OI.ExitBB = PRegExitBB; |
| |
| SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; |
| SmallVector<BasicBlock *, 32> Blocks; |
| OI.collectBlocks(ParallelRegionBlockSet, Blocks); |
| |
| // Ensure a single exit node for the outlined region by creating one. |
| // We might have multiple incoming edges to the exit now due to finalizations, |
| // e.g., cancel calls that cause the control flow to leave the region. |
| BasicBlock *PRegOutlinedExitBB = PRegExitBB; |
| PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt()); |
| PRegOutlinedExitBB->setName("omp.par.outlined.exit"); |
| Blocks.push_back(PRegOutlinedExitBB); |
| |
| CodeExtractorAnalysisCache CEAC(*OuterFn); |
| CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, |
| /* AggregateArgs */ false, |
| /* BlockFrequencyInfo */ nullptr, |
| /* BranchProbabilityInfo */ nullptr, |
| /* AssumptionCache */ nullptr, |
| /* AllowVarArgs */ true, |
| /* AllowAlloca */ true, |
| /* Suffix */ ".omp_par"); |
| |
| // Find inputs to, outputs from the code region. |
| BasicBlock *CommonExit = nullptr; |
| SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands; |
| Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); |
| Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands); |
| |
| LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n"); |
| |
| FunctionCallee TIDRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num); |
| |
| auto PrivHelper = [&](Value &V) { |
| if (&V == TIDAddr || &V == ZeroAddr) |
| return; |
| |
| SetVector<Use *> Uses; |
| for (Use &U : V.uses()) |
| if (auto *UserI = dyn_cast<Instruction>(U.getUser())) |
| if (ParallelRegionBlockSet.count(UserI->getParent())) |
| Uses.insert(&U); |
| |
| // __kmpc_fork_call expects extra arguments as pointers. If the input |
| // already has a pointer type, everything is fine. Otherwise, store the |
| // value onto stack and load it back inside the to-be-outlined region. This |
| // will ensure only the pointer will be passed to the function. |
| // FIXME: if there are more than 15 trailing arguments, they must be |
| // additionally packed in a struct. |
| Value *Inner = &V; |
| if (!V.getType()->isPointerTy()) { |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n"); |
| |
| Builder.restoreIP(OuterAllocaIP); |
| Value *Ptr = |
| Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded"); |
| |
| // Store to stack at end of the block that currently branches to the entry |
| // block of the to-be-outlined region. |
| Builder.SetInsertPoint(InsertBB, |
| InsertBB->getTerminator()->getIterator()); |
| Builder.CreateStore(&V, Ptr); |
| |
| // Load back next to allocations in the to-be-outlined region. |
| Builder.restoreIP(InnerAllocaIP); |
| Inner = Builder.CreateLoad(V.getType(), Ptr); |
| } |
| |
| Value *ReplacementValue = nullptr; |
| CallInst *CI = dyn_cast<CallInst>(&V); |
| if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) { |
| ReplacementValue = PrivTID; |
| } else { |
| Builder.restoreIP( |
| PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue)); |
| assert(ReplacementValue && |
| "Expected copy/create callback to set replacement value!"); |
| if (ReplacementValue == &V) |
| return; |
| } |
| |
| for (Use *UPtr : Uses) |
| UPtr->set(ReplacementValue); |
| }; |
| |
| // Reset the inner alloca insertion as it will be used for loading the values |
| // wrapped into pointers before passing them into the to-be-outlined region. |
| // Configure it to insert immediately after the fake use of zero address so |
| // that they are available in the generated body and so that the |
| // OpenMP-related values (thread ID and zero address pointers) remain leading |
| // in the argument list. |
| InnerAllocaIP = IRBuilder<>::InsertPoint( |
| ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator()); |
| |
| // Reset the outer alloca insertion point to the entry of the relevant block |
| // in case it was invalidated. |
| OuterAllocaIP = IRBuilder<>::InsertPoint( |
| OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt()); |
| |
| for (Value *Input : Inputs) { |
| LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n"); |
| PrivHelper(*Input); |
| } |
| LLVM_DEBUG({ |
| for (Value *Output : Outputs) |
| LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n"); |
| }); |
| assert(Outputs.empty() && |
| "OpenMP outlining should not produce live-out values!"); |
| |
| LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n"); |
| LLVM_DEBUG({ |
| for (auto *BB : Blocks) |
| dbgs() << " PBR: " << BB->getName() << "\n"; |
| }); |
| |
| // Register the outlined info. |
| addOutlineInfo(std::move(OI)); |
| |
| InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end()); |
| UI->eraseFromParent(); |
| |
| return AfterIP; |
| } |
| |
| void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) { |
| // Build call void __kmpc_flush(ident_t *loc) |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Args[] = {getOrCreateIdent(SrcLocStr)}; |
| |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args); |
| } |
| |
| void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitFlush(Loc); |
| } |
| |
| void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) { |
| // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 |
| // global_tid); |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident)}; |
| |
| // Ignore return result until untied tasks are supported. |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait), |
| Args); |
| } |
| |
| void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitTaskwaitImpl(Loc); |
| } |
| |
| void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) { |
| // Build call __kmpc_omp_taskyield(loc, thread_id, 0); |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Constant *I32Null = ConstantInt::getNullValue(Int32); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null}; |
| |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield), |
| Args); |
| } |
| |
| void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitTaskyieldImpl(Loc); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, |
| ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB, |
| FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| if (IP.getBlock()->end() != IP.getPoint()) |
| return FiniCB(IP); |
| // This must be done otherwise any nested constructs using FinalizeOMPRegion |
| // will fail because that function requires the Finalization Basic Block to |
| // have a terminator, which is already removed by EmitOMPRegionBody. |
| // IP is currently at cancelation block. |
| // We need to backtrack to the condition block to fetch |
| // the exit block and create a branch from cancelation |
| // to exit block. |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| auto *CaseBB = IP.getBlock()->getSinglePredecessor(); |
| auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); |
| auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); |
| Instruction *I = Builder.CreateBr(ExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| return FiniCB(IP); |
| }; |
| |
| FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable}); |
| |
| // Each section is emitted as a switch case |
| // Each finalization callback is handled from clang.EmitOMPSectionDirective() |
| // -> OMP.createSection() which generates the IR for each section |
| // Iterate through all sections and emit a switch construct: |
| // switch (IV) { |
| // case 0: |
| // <SectionStmt[0]>; |
| // break; |
| // ... |
| // case <NumSection> - 1: |
| // <SectionStmt[<NumSection> - 1]>; |
| // break; |
| // } |
| // ... |
| // section_loop.after: |
| // <FiniCB>; |
| auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) { |
| auto *CurFn = CodeGenIP.getBlock()->getParent(); |
| auto *ForIncBB = CodeGenIP.getBlock()->getSingleSuccessor(); |
| auto *ForExitBB = CodeGenIP.getBlock() |
| ->getSinglePredecessor() |
| ->getTerminator() |
| ->getSuccessor(1); |
| SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, ForIncBB); |
| Builder.restoreIP(CodeGenIP); |
| unsigned CaseNumber = 0; |
| for (auto SectionCB : SectionCBs) { |
| auto *CaseBB = BasicBlock::Create(M.getContext(), |
| "omp_section_loop.body.case", CurFn); |
| SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB); |
| Builder.SetInsertPoint(CaseBB); |
| SectionCB(InsertPointTy(), Builder.saveIP(), *ForExitBB); |
| CaseNumber++; |
| } |
| // remove the existing terminator from body BB since there can be no |
| // terminators after switch/case |
| CodeGenIP.getBlock()->getTerminator()->eraseFromParent(); |
| }; |
| // Loop body ends here |
| // LowerBound, UpperBound, and STride for createCanonicalLoop |
| Type *I32Ty = Type::getInt32Ty(M.getContext()); |
| Value *LB = ConstantInt::get(I32Ty, 0); |
| Value *UB = ConstantInt::get(I32Ty, SectionCBs.size()); |
| Value *ST = ConstantInt::get(I32Ty, 1); |
| llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop( |
| Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop"); |
| InsertPointTy AfterIP = |
| applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, true); |
| BasicBlock *LoopAfterBB = AfterIP.getBlock(); |
| Instruction *SplitPos = LoopAfterBB->getTerminator(); |
| if (!isa_and_nonnull<BranchInst>(SplitPos)) |
| SplitPos = new UnreachableInst(Builder.getContext(), LoopAfterBB); |
| // ExitBB after LoopAfterBB because LoopAfterBB is used for FinalizationCB, |
| // which requires a BB with branch |
| BasicBlock *ExitBB = |
| LoopAfterBB->splitBasicBlock(SplitPos, "omp_sections.end"); |
| SplitPos->eraseFromParent(); |
| |
| // Apply the finalization callback in LoopAfterBB |
| auto FiniInfo = FinalizationStack.pop_back_val(); |
| assert(FiniInfo.DK == OMPD_sections && |
| "Unexpected finalization stack state!"); |
| Builder.SetInsertPoint(LoopAfterBB->getTerminator()); |
| FiniInfo.FiniCB(Builder.saveIP()); |
| Builder.SetInsertPoint(ExitBB); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createSection(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| if (IP.getBlock()->end() != IP.getPoint()) |
| return FiniCB(IP); |
| // This must be done otherwise any nested constructs using FinalizeOMPRegion |
| // will fail because that function requires the Finalization Basic Block to |
| // have a terminator, which is already removed by EmitOMPRegionBody. |
| // IP is currently at cancelation block. |
| // We need to backtrack to the condition block to fetch |
| // the exit block and create a branch from cancelation |
| // to exit block. |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| auto *CaseBB = Loc.IP.getBlock(); |
| auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); |
| auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); |
| Instruction *I = Builder.CreateBr(ExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| return FiniCB(IP); |
| }; |
| |
| Directive OMPD = Directive::OMPD_sections; |
| // Since we are using Finalization Callback here, HasFinalize |
| // and IsCancellable have to be true |
| return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper, |
| /*Conditional*/ false, /*hasFinalize*/ true, |
| /*IsCancellable*/ true); |
| } |
| |
| /// Create a function with a unique name and a "void (i8*, i8*)" signature in |
| /// the given module and return it. |
| Function *getFreshReductionFunc(Module &M) { |
| Type *VoidTy = Type::getVoidTy(M.getContext()); |
| Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); |
| auto *FuncTy = |
| FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false); |
| return Function::Create(FuncTy, GlobalVariable::InternalLinkage, |
| M.getDataLayout().getDefaultGlobalsAddressSpace(), |
| ".omp.reduction.func", &M); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, |
| ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) { |
| for (const ReductionInfo &RI : ReductionInfos) { |
| (void)RI; |
| assert(RI.Variable && "expected non-null variable"); |
| assert(RI.PrivateVariable && "expected non-null private variable"); |
| assert(RI.ReductionGen && "expected non-null reduction generator callback"); |
| assert(RI.Variable->getType() == RI.PrivateVariable->getType() && |
| "expected variables and their private equivalents to have the same " |
| "type"); |
| assert(RI.Variable->getType()->isPointerTy() && |
| "expected variables to be pointers"); |
| } |
| |
| if (!updateToLocation(Loc)) |
| return InsertPointTy(); |
| |
| BasicBlock *InsertBlock = Loc.IP.getBlock(); |
| BasicBlock *ContinuationBlock = |
| InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); |
| InsertBlock->getTerminator()->eraseFromParent(); |
| |
| // Create and populate array of type-erased pointers to private reduction |
| // values. |
| unsigned NumReductions = ReductionInfos.size(); |
| Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions); |
| Builder.restoreIP(AllocaIP); |
| Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array"); |
| |
| Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); |
| |
| for (auto En : enumerate(ReductionInfos)) { |
| unsigned Index = En.index(); |
| const ReductionInfo &RI = En.value(); |
| Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index)); |
| Value *Casted = |
| Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(), |
| "private.red.var." + Twine(Index) + ".casted"); |
| Builder.CreateStore(Casted, RedArrayElemPtr); |
| } |
| |
| // Emit a call to the runtime function that orchestrates the reduction. |
| // Declare the reduction function in the process. |
| Function *Func = Builder.GetInsertBlock()->getParent(); |
| Module *Module = Func->getParent(); |
| Value *RedArrayPtr = |
| Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr"); |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| bool CanGenerateAtomic = |
| llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) { |
| return RI.AtomicReductionGen; |
| }); |
| Value *Ident = getOrCreateIdent( |
| SrcLocStr, CanGenerateAtomic ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE |
| : IdentFlag(0)); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Constant *NumVariables = Builder.getInt32(NumReductions); |
| const DataLayout &DL = Module->getDataLayout(); |
| unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy); |
| Constant *RedArraySize = Builder.getInt64(RedArrayByteSize); |
| Function *ReductionFunc = getFreshReductionFunc(*Module); |
| Value *Lock = getOMPCriticalRegionLock(".reduction"); |
| Function *ReduceFunc = getOrCreateRuntimeFunctionPtr( |
| IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait |
| : RuntimeFunction::OMPRTL___kmpc_reduce); |
| CallInst *ReduceCall = |
| Builder.CreateCall(ReduceFunc, |
| {Ident, ThreadId, NumVariables, RedArraySize, |
| RedArrayPtr, ReductionFunc, Lock}, |
| "reduce"); |
| |
| // Create final reduction entry blocks for the atomic and non-atomic case. |
| // Emit IR that dispatches control flow to one of the blocks based on the |
| // reduction supporting the atomic mode. |
| BasicBlock *NonAtomicRedBlock = |
| BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func); |
| BasicBlock *AtomicRedBlock = |
| BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func); |
| SwitchInst *Switch = |
| Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2); |
| Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock); |
| Switch->addCase(Builder.getInt32(2), AtomicRedBlock); |
| |
| // Populate the non-atomic reduction using the elementwise reduction function. |
| // This loads the elements from the global and private variables and reduces |
| // them before storing back the result to the global variable. |
| Builder.SetInsertPoint(NonAtomicRedBlock); |
| for (auto En : enumerate(ReductionInfos)) { |
| const ReductionInfo &RI = En.value(); |
| Type *ValueType = RI.getElementType(); |
| Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable, |
| "red.value." + Twine(En.index())); |
| Value *PrivateRedValue = |
| Builder.CreateLoad(ValueType, RI.PrivateVariable, |
| "red.private.value." + Twine(En.index())); |
| Value *Reduced; |
| Builder.restoreIP( |
| RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| Builder.CreateStore(Reduced, RI.Variable); |
| } |
| Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr( |
| IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait |
| : RuntimeFunction::OMPRTL___kmpc_end_reduce); |
| Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock}); |
| Builder.CreateBr(ContinuationBlock); |
| |
| // Populate the atomic reduction using the atomic elementwise reduction |
| // function. There are no loads/stores here because they will be happening |
| // inside the atomic elementwise reduction. |
| Builder.SetInsertPoint(AtomicRedBlock); |
| if (CanGenerateAtomic) { |
| for (const ReductionInfo &RI : ReductionInfos) { |
| Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.Variable, |
| RI.PrivateVariable)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| } |
| Builder.CreateBr(ContinuationBlock); |
| } else { |
| Builder.CreateUnreachable(); |
| } |
| |
| // Populate the outlined reduction function using the elementwise reduction |
| // function. Partial values are extracted from the type-erased array of |
| // pointers to private variables. |
| BasicBlock *ReductionFuncBlock = |
| BasicBlock::Create(Module->getContext(), "", ReductionFunc); |
| Builder.SetInsertPoint(ReductionFuncBlock); |
| Value *LHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(0), |
| RedArrayTy->getPointerTo()); |
| Value *RHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(1), |
| RedArrayTy->getPointerTo()); |
| for (auto En : enumerate(ReductionInfos)) { |
| const ReductionInfo &RI = En.value(); |
| Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, LHSArrayPtr, 0, En.index()); |
| Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr); |
| Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType()); |
| Value *LHS = Builder.CreateLoad(RI.getElementType(), LHSPtr); |
| Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, RHSArrayPtr, 0, En.index()); |
| Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr); |
| Value *RHSPtr = |
| Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType()); |
| Value *RHS = Builder.CreateLoad(RI.getElementType(), RHSPtr); |
| Value *Reduced; |
| Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| Builder.CreateStore(Reduced, LHSPtr); |
| } |
| Builder.CreateRetVoid(); |
| |
| Builder.SetInsertPoint(ContinuationBlock); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createMaster(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_master; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createMasked(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, Value *Filter) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_masked; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId, Filter}; |
| Value *ArgsEnd[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, /*hasFinalize*/ true); |
| } |
| |
| CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton( |
| DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore, |
| BasicBlock *PostInsertBefore, const Twine &Name) { |
| Module *M = F->getParent(); |
| LLVMContext &Ctx = M->getContext(); |
| Type *IndVarTy = TripCount->getType(); |
| |
| // Create the basic block structure. |
| BasicBlock *Preheader = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore); |
| BasicBlock *Header = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore); |
| BasicBlock *Cond = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore); |
| BasicBlock *Body = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore); |
| BasicBlock *Latch = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore); |
| BasicBlock *Exit = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore); |
| BasicBlock *After = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore); |
| |
| // Use specified DebugLoc for new instructions. |
| Builder.SetCurrentDebugLocation(DL); |
| |
| Builder.SetInsertPoint(Preheader); |
| Builder.CreateBr(Header); |
| |
| Builder.SetInsertPoint(Header); |
| PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv"); |
| IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader); |
| Builder.CreateBr(Cond); |
| |
| Builder.SetInsertPoint(Cond); |
| Value *Cmp = |
| Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp"); |
| Builder.CreateCondBr(Cmp, Body, Exit); |
| |
| Builder.SetInsertPoint(Body); |
| Builder.CreateBr(Latch); |
| |
| Builder.SetInsertPoint(Latch); |
| Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1), |
| "omp_" + Name + ".next", /*HasNUW=*/true); |
| Builder.CreateBr(Header); |
| IndVarPHI->addIncoming(Next, Latch); |
| |
| Builder.SetInsertPoint(Exit); |
| Builder.CreateBr(After); |
| |
| // Remember and return the canonical control flow. |
| LoopInfos.emplace_front(); |
| CanonicalLoopInfo *CL = &LoopInfos.front(); |
| |
| CL->Preheader = Preheader; |
| CL->Header = Header; |
| CL->Cond = Cond; |
| CL->Body = Body; |
| CL->Latch = Latch; |
| CL->Exit = Exit; |
| CL->After = After; |
| |
| #ifndef NDEBUG |
| CL->assertOK(); |
| #endif |
| return CL; |
| } |
| |
| CanonicalLoopInfo * |
| OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc, |
| LoopBodyGenCallbackTy BodyGenCB, |
| Value *TripCount, const Twine &Name) { |
| BasicBlock *BB = Loc.IP.getBlock(); |
| BasicBlock *NextBB = BB->getNextNode(); |
| |
| CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(), |
| NextBB, NextBB, Name); |
| BasicBlock *After = CL->getAfter(); |
| |
| // If location is not set, don't connect the loop. |
| if (updateToLocation(Loc)) { |
| // Split the loop at the insertion point: Branch to the preheader and move |
| // every following instruction to after the loop (the After BB). Also, the |
| // new successor is the loop's after block. |
| Builder.CreateBr(CL->Preheader); |
| After->getInstList().splice(After->begin(), BB->getInstList(), |
| Builder.GetInsertPoint(), BB->end()); |
| After->replaceSuccessorsPhiUsesWith(BB, After); |
| } |
| |
| // Emit the body content. We do it after connecting the loop to the CFG to |
| // avoid that the callback encounters degenerate BBs. |
| BodyGenCB(CL->getBodyIP(), CL->getIndVar()); |
| |
| #ifndef NDEBUG |
| CL->assertOK(); |
| #endif |
| return CL; |
| } |
| |
| CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop( |
| const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, |
| Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, |
| InsertPointTy ComputeIP, const Twine &Name) { |
| |
| // Consider the following difficulties (assuming 8-bit signed integers): |
| // * Adding \p Step to the loop counter which passes \p Stop may overflow: |
| // DO I = 1, 100, 50 |
| /// * A \p Step of INT_MIN cannot not be normalized to a positive direction: |
| // DO I = 100, 0, -128 |
| |
| // Start, Stop and Step must be of the same integer type. |
| auto *IndVarTy = cast<IntegerType>(Start->getType()); |
| assert(IndVarTy == Stop->getType() && "Stop type mismatch"); |
| assert(IndVarTy == Step->getType() && "Step type mismatch"); |
| |
| LocationDescription ComputeLoc = |
| ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc; |
| updateToLocation(ComputeLoc); |
| |
| ConstantInt *Zero = ConstantInt::get(IndVarTy, 0); |
| ConstantInt *One = ConstantInt::get(IndVarTy, 1); |
| |
| // Like Step, but always positive. |
| Value *Incr = Step; |
| |
| // Distance between Start and Stop; always positive. |
| Value *Span; |
| |
| // Condition whether there are no iterations are executed at all, e.g. because |
| // UB < LB. |
| Value *ZeroCmp; |
| |
| if (IsSigned) { |
| // Ensure that increment is positive. If not, negate and invert LB and UB. |
| Value *IsNeg = Builder.CreateICmpSLT(Step, Zero); |
| Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step); |
| Value *LB = Builder.CreateSelect(IsNeg, Stop, Start); |
| Value *UB = Builder.CreateSelect(IsNeg, Start, Stop); |
| Span = Builder.CreateSub(UB, LB, "", false, true); |
| ZeroCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB); |
| } else { |
| Span = Builder.CreateSub(Stop, Start, "", true); |
| ZeroCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start); |
| } |
| |
| Value *CountIfLooping; |
| if (InclusiveStop) { |
| CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One); |
| } else { |
| // Avoid incrementing past stop since it could overflow. |
| Value *CountIfTwo = Builder.CreateAdd( |
| Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One); |
| Value *OneCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr); |
| CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo); |
| } |
| Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping, |
| "omp_" + Name + ".tripcount"); |
| |
| auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) { |
| Builder.restoreIP(CodeGenIP); |
| Value *Span = Builder.CreateMul(IV, Step); |
| Value *IndVar = Builder.CreateAdd(Span, Start); |
| BodyGenCB(Builder.saveIP(), IndVar); |
| }; |
| LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP(); |
| return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name); |
| } |
| |
| // Returns an LLVM function to call for initializing loop bounds using OpenMP |
| // static scheduling depending on `type`. Only i32 and i64 are supported by the |
| // runtime. Always interpret integers as unsigned similarly to |
| // CanonicalLoopInfo. |
| static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M, |
| OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| // Sets the number of loop iterations to the given value. This value must be |
| // valid in the condition block (i.e., defined in the preheader) and is |
| // interpreted as an unsigned integer. |
| void setCanonicalLoopTripCount(CanonicalLoopInfo *CLI, Value *TripCount) { |
| Instruction *CmpI = &CLI->getCond()->front(); |
| assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount"); |
| CmpI->setOperand(1, TripCount); |
| CLI->assertOK(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, |
| InsertPointTy AllocaIP, |
| bool NeedsBarrier, Value *Chunk) { |
| assert(CLI->isValid() && "Requires a valid canonical loop"); |
| |
| // Set up the source location value for OpenMP runtime. |
| Builder.restoreIP(CLI->getPreheaderIP()); |
| Builder.SetCurrentDebugLocation(DL); |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(DL); |
| Value *SrcLoc = getOrCreateIdent(SrcLocStr); |
| |
| // Declare useful OpenMP runtime functions. |
| Value *IV = CLI->getIndVar(); |
| Type *IVTy = IV->getType(); |
| FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this); |
| FunctionCallee StaticFini = |
| getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); |
| |
| // Allocate space for computed loop bounds as expected by the "init" function. |
| Builder.restoreIP(AllocaIP); |
| Type *I32Type = Type::getInt32Ty(M.getContext()); |
| Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); |
| Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); |
| Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); |
| Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); |
| |
| // At the end of the preheader, prepare for calling the "init" function by |
| // storing the current loop bounds into the allocated space. A canonical loop |
| // always iterates from 0 to trip-count with step 1. Note that "init" expects |
| // and produces an inclusive upper bound. |
| Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); |
| Constant *Zero = ConstantInt::get(IVTy, 0); |
| Constant *One = ConstantInt::get(IVTy, 1); |
| Builder.CreateStore(Zero, PLowerBound); |
| Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One); |
| Builder.CreateStore(UpperBound, PUpperBound); |
| Builder.CreateStore(One, PStride); |
| |
| // FIXME: schedule(static) is NOT the same as schedule(static,1) |
| if (!Chunk) |
| Chunk = One; |
| |
| Value *ThreadNum = getOrCreateThreadID(SrcLoc); |
| |
| Constant *SchedulingType = |
| ConstantInt::get(I32Type, static_cast<int>(OMPScheduleType::Static)); |
| |
| // Call the "init" function and update the trip count of the loop with the |
| // value it produced. |
| Builder.CreateCall(StaticInit, |
| {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound, |
| PUpperBound, PStride, One, Chunk}); |
| Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound); |
| Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound); |
| Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound); |
| Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One); |
| setCanonicalLoopTripCount(CLI, TripCount); |
| |
| // Update all uses of the induction variable except the one in the condition |
| // block that compares it with the actual upper bound, and the increment in |
| // the latch block. |
| // TODO: this can eventually move to CanonicalLoopInfo or to a new |
| // CanonicalLoopInfoUpdater interface. |
| Builder.SetInsertPoint(CLI->getBody(), CLI->getBody()->getFirstInsertionPt()); |
| Value *UpdatedIV = Builder.CreateAdd(IV, LowerBound); |
| IV->replaceUsesWithIf(UpdatedIV, [&](Use &U) { |
| auto *Instr = dyn_cast<Instruction>(U.getUser()); |
| return !Instr || |
| (Instr->getParent() != CLI->getCond() && |
| Instr->getParent() != CLI->getLatch() && Instr != UpdatedIV); |
| }); |
| |
| // In the "exit" block, call the "fini" function. |
| Builder.SetInsertPoint(CLI->getExit(), |
| CLI->getExit()->getTerminator()->getIterator()); |
| Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); |
| |
| // Add the barrier if requested. |
| if (NeedsBarrier) |
| createBarrier(LocationDescription(Builder.saveIP(), DL), |
| omp::Directive::OMPD_for, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| |
| InsertPointTy AfterIP = CLI->getAfterIP(); |
| CLI->invalidate(); |
| |
| return AfterIP; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::applyWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, |
| InsertPointTy AllocaIP, bool NeedsBarrier) { |
| // Currently only supports static schedules. |
| return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier); |
| } |
| |
| /// Returns an LLVM function to call for initializing loop bounds using OpenMP |
| /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by |
| /// the runtime. Always interpret integers as unsigned similarly to |
| /// CanonicalLoopInfo. |
| static FunctionCallee |
| getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| /// Returns an LLVM function to call for updating the next loop using OpenMP |
| /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by |
| /// the runtime. Always interpret integers as unsigned similarly to |
| /// CanonicalLoopInfo. |
| static FunctionCallee |
| getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop( |
| DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, |
| OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) { |
| assert(CLI->isValid() && "Requires a valid canonical loop"); |
| |
| // Set up the source location value for OpenMP runtime. |
| Builder.SetCurrentDebugLocation(DL); |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(DL); |
| Value *SrcLoc = getOrCreateIdent(SrcLocStr); |
| |
| // Declare useful OpenMP runtime functions. |
| Value *IV = CLI->getIndVar(); |
| Type *IVTy = IV->getType(); |
| FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this); |
| FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this); |
| |
| // Allocate space for computed loop bounds as expected by the "init" function. |
| Builder.restoreIP(AllocaIP); |
| Type *I32Type = Type::getInt32Ty(M.getContext()); |
| Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); |
| Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); |
| Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); |
| Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); |
| |
| // At the end of the preheader, prepare for calling the "init" function by |
| // storing the current loop bounds into the allocated space. A canonical loop |
| // always iterates from 0 to trip-count with step 1. Note that "init" expects |
| // and produces an inclusive upper bound. |
| BasicBlock *PreHeader = CLI->getPreheader(); |
| Builder.SetInsertPoint(PreHeader->getTerminator()); |
| Constant *One = ConstantInt::get(IVTy, 1); |
| Builder.CreateStore(One, PLowerBound); |
| Value *UpperBound = CLI->getTripCount(); |
| Builder.CreateStore(UpperBound, PUpperBound); |
| Builder.CreateStore(One, PStride); |
| |
| BasicBlock *Header = CLI->getHeader(); |
| BasicBlock *Exit = CLI->getExit(); |
| BasicBlock *Cond = CLI->getCond(); |
| InsertPointTy AfterIP = CLI->getAfterIP(); |
| |
| // The CLI will be "broken" in the code below, as the loop is no longer |
| // a valid canonical loop. |
| |
| if (!Chunk) |
| Chunk = One; |
| |
| Value *ThreadNum = getOrCreateThreadID(SrcLoc); |
| |
| Constant *SchedulingType = |
| ConstantInt::get(I32Type, static_cast<int>(SchedType)); |
| |
| // Call the "init" function. |
| Builder.CreateCall(DynamicInit, |
| {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One, |
| UpperBound, /* step */ One, Chunk}); |
| |
| // An outer loop around the existing one. |
| BasicBlock *OuterCond = BasicBlock::Create( |
| PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond", |
| PreHeader->getParent()); |
| // This needs to be 32-bit always, so can't use the IVTy Zero above. |
| Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt()); |
| Value *Res = |
| Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter, |
| PLowerBound, PUpperBound, PStride}); |
| Constant *Zero32 = ConstantInt::get(I32Type, 0); |
| Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32); |
| Value *LowerBound = |
| Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb"); |
| Builder.CreateCondBr(MoreWork, Header, Exit); |
| |
| // Change PHI-node in loop header to use outer cond rather than preheader, |
| // and set IV to the LowerBound. |
| Instruction *Phi = &Header->front(); |
| auto *PI = cast<PHINode>(Phi); |
| PI->setIncomingBlock(0, OuterCond); |
| PI->setIncomingValue(0, LowerBound); |
| |
| // Then set the pre-header to jump to the OuterCond |
| Instruction *Term = PreHeader->getTerminator(); |
| auto *Br = cast<BranchInst>(Term); |
| Br->setSuccessor(0, OuterCond); |
| |
| // Modify the inner condition: |
| // * Use the UpperBound returned from the DynamicNext call. |
| // * jump to the loop outer loop when done with one of the inner loops. |
| Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt()); |
| UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub"); |
| Instruction *Comp = &*Builder.GetInsertPoint(); |
| auto *CI = cast<CmpInst>(Comp); |
| CI->setOperand(1, UpperBound); |
| // Redirect the inner exit to branch to outer condition. |
| Instruction *Branch = &Cond->back(); |
| auto *BI = cast<BranchInst>(Branch); |
| assert(BI->getSuccessor(1) == Exit); |
| BI->setSuccessor(1, OuterCond); |
| |
| // Add the barrier if requested. |
| if (NeedsBarrier) { |
| Builder.SetInsertPoint(&Exit->back()); |
| createBarrier(LocationDescription(Builder.saveIP(), DL), |
| omp::Directive::OMPD_for, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| } |
| |
| CLI->invalidate(); |
| return AfterIP; |
| } |
| |
| /// Make \p Source branch to \p Target. |
| /// |
| /// Handles two situations: |
| /// * \p Source already has an unconditional branch. |
| /// * \p Source is a degenerate block (no terminator because the BB is |
| /// the current head of the IR construction). |
| static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) { |
| if (Instruction *Term = Source->getTerminator()) { |
| auto *Br = cast<BranchInst>(Term); |
| assert(!Br->isConditional() && |
| "BB's terminator must be an unconditional branch (or degenerate)"); |
| BasicBlock *Succ = Br->getSuccessor(0); |
| Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true); |
| Br->setSuccessor(0, Target); |
| return; |
| } |
| |
| auto *NewBr = BranchInst::Create(Target, Source); |
| NewBr->setDebugLoc(DL); |
| } |
| |
| /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is, |
| /// after this \p OldTarget will be orphaned. |
| static void redirectAllPredecessorsTo(BasicBlock *OldTarget, |
| BasicBlock *NewTarget, DebugLoc DL) { |
| for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget))) |
| redirectTo(Pred, NewTarget, DL); |
| } |
| |
| /// Determine which blocks in \p BBs are reachable from outside and remove the |
| /// ones that are not reachable from the function. |
| static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) { |
| SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()}; |
| auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) { |
| for (Use &U : BB->uses()) { |
| auto *UseInst = dyn_cast<Instruction>(U.getUser()); |
| if (!UseInst) |
| continue; |
| if (BBsToErase.count(UseInst->getParent())) |
| continue; |
| return true; |
| } |
| return false; |
| }; |
| |
| while (true) { |
| bool Changed = false; |
| for (BasicBlock *BB : make_early_inc_range(BBsToErase)) { |
| if (HasRemainingUses(BB)) { |
| BBsToErase.erase(BB); |
| Changed = true; |
| } |
| } |
| if (!Changed) |
| break; |
| } |
| |
| SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end()); |
| DeleteDeadBlocks(BBVec); |
| } |
| |
| CanonicalLoopInfo * |
| OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, |
| InsertPointTy ComputeIP) { |
| assert(Loops.size() >= 1 && "At least one loop required"); |
| size_t NumLoops = Loops.size(); |
| |
| // Nothing to do if there is already just one loop. |
| if (NumLoops == 1) |
| return Loops.front(); |
| |
| CanonicalLoopInfo *Outermost = Loops.front(); |
| CanonicalLoopInfo *Innermost = Loops.back(); |
| BasicBlock *OrigPreheader = Outermost->getPreheader(); |
| BasicBlock *OrigAfter = Outermost->getAfter(); |
| Function *F = OrigPreheader->getParent(); |
| |
| // Setup the IRBuilder for inserting the trip count computation. |
| Builder.SetCurrentDebugLocation(DL); |
| if (ComputeIP.isSet()) |
| Builder.restoreIP(ComputeIP); |
| else |
| Builder.restoreIP(Outermost->getPreheaderIP()); |
| |
| // Derive the collapsed' loop trip count. |
| // TODO: Find common/largest indvar type. |
| Value *CollapsedTripCount = nullptr; |
| for (CanonicalLoopInfo *L : Loops) { |
| assert(L->isValid() && |
| "All loops to collapse must be valid canonical loops"); |
| Value *OrigTripCount = L->getTripCount(); |
| if (!CollapsedTripCount) { |
| CollapsedTripCount = OrigTripCount; |
| continue; |
| } |
| |
| // TODO: Enable UndefinedSanitizer to diagnose an overflow here. |
| CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount, |
| {}, /*HasNUW=*/true); |
| } |
| |
| // Create the collapsed loop control flow. |
| CanonicalLoopInfo *Result = |
| createLoopSkeleton(DL, CollapsedTripCount, F, |
| OrigPreheader->getNextNode(), OrigAfter, "collapsed"); |
| |
| // Build the collapsed loop body code. |
| // Start with deriving the input loop induction variables from the collapsed |
| // one, using a divmod scheme. To preserve the original loops' order, the |
| // innermost loop use the least significant bits. |
| Builder.restoreIP(Result->getBodyIP()); |
| |
| Value *Leftover = Result->getIndVar(); |
| SmallVector<Value *> NewIndVars; |
| NewIndVars.set_size(NumLoops); |
| for (int i = NumLoops - 1; i >= 1; --i) { |
| Value *OrigTripCount = Loops[i]->getTripCount(); |
| |
| Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount); |
| NewIndVars[i] = NewIndVar; |
| |
| Leftover = Builder.CreateUDiv(Leftover, OrigTripCount); |
| } |
| // Outermost loop gets all the remaining bits. |
| NewIndVars[0] = Leftover; |
| |
| // Construct the loop body control flow. |
| // We progressively construct the branch structure following in direction of |
| // the control flow, from the leading in-between code, the loop nest body, the |
| // trailing in-between code, and rejoining the collapsed loop's latch. |
| // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If |
| // the ContinueBlock is set, continue with that block. If ContinuePred, use |
| // its predecessors as sources. |
| BasicBlock *ContinueBlock = Result->getBody(); |
| BasicBlock *ContinuePred = nullptr; |
| auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest, |
| BasicBlock *NextSrc) { |
| if (ContinueBlock) |
| redirectTo(ContinueBlock, Dest, DL); |
| else |
| redirectAllPredecessorsTo(ContinuePred, Dest, DL); |
| |
| ContinueBlock = nullptr; |
| ContinuePred = NextSrc; |
| }; |
| |
| // The code before the nested loop of each level. |
| // Because we are sinking it into the nest, it will be executed more often |
| // that the original loop. More sophisticated schemes could keep track of what |
| // the in-between code is and instantiate it only once per thread. |
| for (size_t i = 0; i < NumLoops - 1; ++i) |
| ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader()); |
| |
| // Connect the loop nest body. |
| ContinueWith(Innermost->getBody(), Innermost->getLatch()); |
| |
| // The code after the nested loop at each level. |
| for (size_t i = NumLoops - 1; i > 0; --i) |
| ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch()); |
| |
| // Connect the finished loop to the collapsed loop latch. |
| ContinueWith(Result->getLatch(), nullptr); |
| |
| // Replace the input loops with the new collapsed loop. |
| redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL); |
| redirectTo(Result->getAfter(), Outermost->getAfter(), DL); |
| |
| // Replace the input loop indvars with the derived ones. |
| for (size_t i = 0; i < NumLoops; ++i) |
| Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]); |
| |
| // Remove unused parts of the input loops. |
| SmallVector<BasicBlock *, 12> OldControlBBs; |
| OldControlBBs.reserve(6 * Loops.size()); |
| for (CanonicalLoopInfo *Loop : Loops) |
| Loop->collectControlBlocks(OldControlBBs); |
| removeUnusedBlocksFromParent(OldControlBBs); |
| |
| for (CanonicalLoopInfo *L : Loops) |
| L->invalidate(); |
| |
| #ifndef NDEBUG |
| Result->assertOK(); |
| #endif |
| return Result; |
| } |
| |
| std::vector<CanonicalLoopInfo *> |
| OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, |
| ArrayRef<Value *> TileSizes) { |
| assert(TileSizes.size() == Loops.size() && |
| "Must pass as many tile sizes as there are loops"); |
| int NumLoops = Loops.size(); |
| assert(NumLoops >= 1 && "At least one loop to tile required"); |
| |
| CanonicalLoopInfo *OutermostLoop = Loops.front(); |
| CanonicalLoopInfo *InnermostLoop = Loops.back(); |
| Function *F = OutermostLoop->getBody()->getParent(); |
| BasicBlock *InnerEnter = InnermostLoop->getBody(); |
| BasicBlock *InnerLatch = InnermostLoop->getLatch(); |
| |
| // Collect original trip counts and induction variable to be accessible by |
| // index. Also, the structure of the original loops is not preserved during |
| // the construction of the tiled loops, so do it before we scavenge the BBs of |
| // any original CanonicalLoopInfo. |
| SmallVector<Value *, 4> OrigTripCounts, OrigIndVars; |
| for (CanonicalLoopInfo *L : Loops) { |
| assert(L->isValid() && "All input loops must be valid canonical loops"); |
| OrigTripCounts.push_back(L->getTripCount()); |
| OrigIndVars.push_back(L->getIndVar()); |
| } |
| |
| // Collect the code between loop headers. These may contain SSA definitions |
| // that are used in the loop nest body. To be usable with in the innermost |
| // body, these BasicBlocks will be sunk into the loop nest body. That is, |
| // these instructions may be executed more often than before the tiling. |
| // TODO: It would be sufficient to only sink them into body of the |
| // corresponding tile loop. |
| SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode; |
| for (int i = 0; i < NumLoops - 1; ++i) { |
| CanonicalLoopInfo *Surrounding = Loops[i]; |
| CanonicalLoopInfo *Nested = Loops[i + 1]; |
| |
| BasicBlock *EnterBB = Surrounding->getBody(); |
| BasicBlock *ExitBB = Nested->getHeader(); |
| InbetweenCode.emplace_back(EnterBB, ExitBB); |
| } |
| |
| // Compute the trip counts of the floor loops. |
| Builder.SetCurrentDebugLocation(DL); |
| Builder.restoreIP(OutermostLoop->getPreheaderIP()); |
| SmallVector<Value *, 4> FloorCount, FloorRems; |
| for (int i = 0; i < NumLoops; ++i) { |
| Value *TileSize = TileSizes[i]; |
| Value *OrigTripCount = OrigTripCounts[i]; |
| Type *IVType = OrigTripCount->getType(); |
| |
| Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize); |
| Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize); |
| |
| // 0 if tripcount divides the tilesize, 1 otherwise. |
| // 1 means we need an additional iteration for a partial tile. |
| // |
| // Unfortunately we cannot just use the roundup-formula |
| // (tripcount + tilesize - 1)/tilesize |
| // because the summation might overflow. We do not want introduce undefined |
| // behavior when the untiled loop nest did not. |
| Value *FloorTripOverflow = |
| Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0)); |
| |
| FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType); |
| FloorTripCount = |
| Builder.CreateAdd(FloorTripCount, FloorTripOverflow, |
| "omp_floor" + Twine(i) + ".tripcount", true); |
| |
| // Remember some values for later use. |
| FloorCount.push_back(FloorTripCount); |
| FloorRems.push_back(FloorTripRem); |
| } |
| |
| // Generate the new loop nest, from the outermost to the innermost. |
| std::vector<CanonicalLoopInfo *> Result; |
| Result.reserve(NumLoops * 2); |
| |
| // The basic block of the surrounding loop that enters the nest generated |
| // loop. |
| BasicBlock *Enter = OutermostLoop->getPreheader(); |
| |
| // The basic block of the surrounding loop where the inner code should |
| // continue. |
| BasicBlock *Continue = OutermostLoop->getAfter(); |
| |
| // Where the next loop basic block should be inserted. |
| BasicBlock *OutroInsertBefore = InnermostLoop->getExit(); |
| |
| auto EmbeddNewLoop = |
| [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore]( |
| Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * { |
| CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton( |
| DL, TripCount, F, InnerEnter, OutroInsertBefore, Name); |
| redirectTo(Enter, EmbeddedLoop->getPreheader(), DL); |
| redirectTo(EmbeddedLoop->getAfter(), Continue, DL); |
| |
| // Setup the position where the next embedded loop connects to this loop. |
| Enter = EmbeddedLoop->getBody(); |
| Continue = EmbeddedLoop->getLatch(); |
| OutroInsertBefore = EmbeddedLoop->getLatch(); |
| return EmbeddedLoop; |
| }; |
| |
| auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts, |
| const Twine &NameBase) { |
| for (auto P : enumerate(TripCounts)) { |
| CanonicalLoopInfo *EmbeddedLoop = |
| EmbeddNewLoop(P.value(), NameBase + Twine(P.index())); |
| Result.push_back(EmbeddedLoop); |
| } |
| }; |
| |
| EmbeddNewLoops(FloorCount, "floor"); |
| |
| // Within the innermost floor loop, emit the code that computes the tile |
| // sizes. |
| Builder.SetInsertPoint(Enter->getTerminator()); |
| SmallVector<Value *, 4> TileCounts; |
| for (int i = 0; i < NumLoops; ++i) { |
| CanonicalLoopInfo *FloorLoop = Result[i]; |
| Value *TileSize = TileSizes[i]; |
| |
| Value *FloorIsEpilogue = |
| Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]); |
| Value *TileTripCount = |
| Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize); |
| |
| TileCounts.push_back(TileTripCount); |
| } |
| |
| // Create the tile loops. |
| EmbeddNewLoops(TileCounts, "tile"); |
| |
| // Insert the inbetween code into the body. |
| BasicBlock *BodyEnter = Enter; |
| BasicBlock *BodyEntered = nullptr; |
| for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) { |
| BasicBlock *EnterBB = P.first; |
| BasicBlock *ExitBB = P.second; |
| |
| if (BodyEnter) |
| redirectTo(BodyEnter, EnterBB, DL); |
| else |
| redirectAllPredecessorsTo(BodyEntered, EnterBB, DL); |
| |
| BodyEnter = nullptr; |
| BodyEntered = ExitBB; |
| } |
| |
| // Append the original loop nest body into the generated loop nest body. |
| if (BodyEnter) |
| redirectTo(BodyEnter, InnerEnter, DL); |
| else |
| redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL); |
| redirectAllPredecessorsTo(InnerLatch, Continue, DL); |
| |
| // Replace the original induction variable with an induction variable computed |
| // from the tile and floor induction variables. |
| Builder.restoreIP(Result.back()->getBodyIP()); |
| for (int i = 0; i < NumLoops; ++i) { |
| CanonicalLoopInfo *FloorLoop = Result[i]; |
| CanonicalLoopInfo *TileLoop = Result[NumLoops + i]; |
| Value *OrigIndVar = OrigIndVars[i]; |
| Value *Size = TileSizes[i]; |
| |
| Value *Scale = |
| Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true); |
| Value *Shift = |
| Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true); |
| OrigIndVar->replaceAllUsesWith(Shift); |
| } |
| |
| // Remove unused parts of the original loops. |
| SmallVector<BasicBlock *, 12> OldControlBBs; |
| OldControlBBs.reserve(6 * Loops.size()); |
| for (CanonicalLoopInfo *Loop : Loops) |
| Loop->collectControlBlocks(OldControlBBs); |
| removeUnusedBlocksFromParent(OldControlBBs); |
| |
| for (CanonicalLoopInfo *L : Loops) |
| L->invalidate(); |
| |
| #ifndef NDEBUG |
| for (CanonicalLoopInfo *GenL : Result) |
| GenL->assertOK(); |
| #endif |
| return Result; |
| } |
| |
| /// Attach loop metadata \p Properties to the loop described by \p Loop. If the |
| /// loop already has metadata, the loop properties are appended. |
| static void addLoopMetadata(CanonicalLoopInfo *Loop, |
| ArrayRef<Metadata *> Properties) { |
| assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo"); |
| |
| // Nothing to do if no property to attach. |
| if (Properties.empty()) |
| return; |
| |
| LLVMContext &Ctx = Loop->getFunction()->getContext(); |
| SmallVector<Metadata *> NewLoopProperties; |
| NewLoopProperties.push_back(nullptr); |
| |
| // If the loop already has metadata, prepend it to the new metadata. |
| BasicBlock *Latch = Loop->getLatch(); |
| assert(Latch && "A valid CanonicalLoopInfo must have a unique latch"); |
| MDNode *Existing = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop); |
| if (Existing) |
| append_range(NewLoopProperties, drop_begin(Existing->operands(), 1)); |
| |
| append_range(NewLoopProperties, Properties); |
| MDNode *LoopID = MDNode::getDistinct(Ctx, NewLoopProperties); |
| LoopID->replaceOperandWith(0, LoopID); |
| |
| Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); |
| } |
| |
| void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) { |
| LLVMContext &Ctx = Builder.getContext(); |
| addLoopMetadata( |
| Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))}); |
| } |
| |
| void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) { |
| LLVMContext &Ctx = Builder.getContext(); |
| addLoopMetadata( |
| Loop, { |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| }); |
| } |
| |
| /// Create the TargetMachine object to query the backend for optimization |
| /// preferences. |
| /// |
| /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but |
| /// e.g. Clang does not pass it to its CodeGen layer and creates it only when |
| /// needed for the LLVM pass pipline. We use some default options to avoid |
| /// having to pass too many settings from the frontend that probably do not |
| /// matter. |
| /// |
| /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial |
| /// method. If we are going to use TargetMachine for more purposes, especially |
| /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it |
| /// might become be worth requiring front-ends to pass on their TargetMachine, |
| /// or at least cache it between methods. Note that while fontends such as Clang |
| /// have just a single main TargetMachine per translation unit, "target-cpu" and |
| /// "target-features" that determine the TargetMachine are per-function and can |
| /// be overrided using __attribute__((target("OPTIONS"))). |
| static std::unique_ptr<TargetMachine> |
| createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) { |
| Module *M = F->getParent(); |
| |
| StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString(); |
| StringRef Features = F->getFnAttribute("target-features").getValueAsString(); |
| const std::string &Triple = M->getTargetTriple(); |
| |
| std::string Error; |
| const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); |
| if (!TheTarget) |
| return {}; |
| |
| llvm::TargetOptions Options; |
| return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine( |
| Triple, CPU, Features, Options, /*RelocModel=*/None, /*CodeModel=*/None, |
| OptLevel)); |
| } |
| |
| /// Heuristically determine the best-performant unroll factor for \p CLI. This |
| /// depends on the target processor. We are re-using the same heuristics as the |
| /// LoopUnrollPass. |
| static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) { |
| Function *F = CLI->getFunction(); |
| |
| // Assume the user requests the most aggressive unrolling, even if the rest of |
| // the code is optimized using a lower setting. |
| CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive; |
| std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel); |
| |
| FunctionAnalysisManager FAM; |
| FAM.registerPass([]() { return TargetLibraryAnalysis(); }); |
| FAM.registerPass([]() { return AssumptionAnalysis(); }); |
| FAM.registerPass([]() { return DominatorTreeAnalysis(); }); |
| FAM.registerPass([]() { return LoopAnalysis(); }); |
| FAM.registerPass([]() { return ScalarEvolutionAnalysis(); }); |
| FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); |
| TargetIRAnalysis TIRA; |
| if (TM) |
| TIRA = TargetIRAnalysis( |
| [&](const Function &F) { return TM->getTargetTransformInfo(F); }); |
| FAM.registerPass([&]() { return TIRA; }); |
| |
| TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM); |
| ScalarEvolutionAnalysis SEA; |
| ScalarEvolution &&SE = SEA.run(*F, FAM); |
| DominatorTreeAnalysis DTA; |
| DominatorTree &&DT = DTA.run(*F, FAM); |
| LoopAnalysis LIA; |
| LoopInfo &&LI = LIA.run(*F, FAM); |
| AssumptionAnalysis ACT; |
| AssumptionCache &&AC = ACT.run(*F, FAM); |
| OptimizationRemarkEmitter ORE{F}; |
| |
| Loop *L = LI.getLoopFor(CLI->getHeader()); |
| assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop"); |
| |
| TargetTransformInfo::UnrollingPreferences UP = |
| gatherUnrollingPreferences(L, SE, TTI, |
| /*BlockFrequencyInfo=*/nullptr, |
| /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel, |
| /*UserThreshold=*/None, |
| /*UserCount=*/None, |
| /*UserAllowPartial=*/true, |
| /*UserAllowRuntime=*/true, |
| /*UserUpperBound=*/None, |
| /*UserFullUnrollMaxCount=*/None); |
| |
| UP.Force = true; |
| |
| // Account for additional optimizations taking place before the LoopUnrollPass |
| // would unroll the loop. |
| UP.Threshold *= UnrollThresholdFactor; |
| UP.PartialThreshold *= UnrollThresholdFactor; |
| |
| // Use normal unroll factors even if the rest of the code is optimized for |
| // size. |
| UP.OptSizeThreshold = UP.Threshold; |
| UP.PartialOptSizeThreshold = UP.PartialThreshold; |
| |
| LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n" |
| << " Threshold=" << UP.Threshold << "\n" |
| << " PartialThreshold=" << UP.PartialThreshold << "\n" |
| << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n" |
| << " PartialOptSizeThreshold=" |
| << UP.PartialOptSizeThreshold << "\n"); |
| |
| // Disable peeling. |
| TargetTransformInfo::PeelingPreferences PP = |
| gatherPeelingPreferences(L, SE, TTI, |
| /*UserAllowPeeling=*/false, |
| /*UserAllowProfileBasedPeeling=*/false, |
| /*UserUnrollingSpecficValues=*/false); |
| |
| SmallPtrSet<const Value *, 32> EphValues; |
| CodeMetrics::collectEphemeralValues(L, &AC, EphValues); |
| |
| // Assume that reads and writes to stack variables can be eliminated by |
| // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's |
| // size. |
| for (BasicBlock *BB : L->blocks()) { |
| for (Instruction &I : *BB) { |
| Value *Ptr; |
| if (auto *Load = dyn_cast<LoadInst>(&I)) { |
| Ptr = Load->getPointerOperand(); |
| } else if (auto *Store = dyn_cast<StoreInst>(&I)) { |
| Ptr = Store->getPointerOperand(); |
| } else |
| continue; |
| |
| Ptr = Ptr->stripPointerCasts(); |
| |
| if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) { |
| if (Alloca->getParent() == &F->getEntryBlock()) |
| EphValues.insert(&I); |
| } |
| } |
| } |
| |
| unsigned NumInlineCandidates; |
| bool NotDuplicatable; |
| bool Convergent; |
| unsigned LoopSize = |
| ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, |
| TTI, EphValues, UP.BEInsns); |
| LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSize << "\n"); |
| |
| // Loop is not unrollable if the loop contains certain instructions. |
| if (NotDuplicatable || Convergent) { |
| LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n"); |
| return 1; |
| } |
| |
| // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might |
| // be able to use it. |
| int TripCount = 0; |
| int MaxTripCount = 0; |
| bool MaxOrZero = false; |
| unsigned TripMultiple = 0; |
| |
| bool UseUpperBound = false; |
| computeUnrollCount(L, TTI, DT, &LI, SE, EphValues, &ORE, TripCount, |
| MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP, |
| UseUpperBound); |
| unsigned Factor = UP.Count; |
| LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n"); |
| |
| // This function returns 1 to signal to not unroll a loop. |
| if (Factor == 0) |
| return 1; |
| return Factor; |
| } |
| |
| void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop, |
| int32_t Factor, |
| CanonicalLoopInfo **UnrolledCLI) { |
| assert(Factor >= 0 && "Unroll factor must not be negative"); |
| |
| Function *F = Loop->getFunction(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // If the unrolled loop is not used for another loop-associated directive, it |
| // is sufficient to add metadata for the LoopUnrollPass. |
| if (!UnrolledCLI) { |
| SmallVector<Metadata *, 2> LoopMetadata; |
| LoopMetadata.push_back( |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable"))); |
| |
| if (Factor >= 1) { |
| ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); |
| LoopMetadata.push_back(MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})); |
| } |
| |
| addLoopMetadata(Loop, LoopMetadata); |
| return; |
| } |
| |
| // Heuristically determine the unroll factor. |
| if (Factor == 0) |
| Factor = computeHeuristicUnrollFactor(Loop); |
| |
| // No change required with unroll factor 1. |
| if (Factor == 1) { |
| *UnrolledCLI = Loop; |
| return; |
| } |
| |
| assert(Factor >= 2 && |
| "unrolling only makes sense with a factor of 2 or larger"); |
| |
| Type *IndVarTy = Loop->getIndVarType(); |
| |
| // Apply partial unrolling by tiling the loop by the unroll-factor, then fully |
| // unroll the inner loop. |
| Value *FactorVal = |
| ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor, |
| /*isSigned=*/false)); |
| std::vector<CanonicalLoopInfo *> LoopNest = |
| tileLoops(DL, {Loop}, {FactorVal}); |
| assert(LoopNest.size() == 2 && "Expect 2 loops after tiling"); |
| *UnrolledCLI = LoopNest[0]; |
| CanonicalLoopInfo *InnerLoop = LoopNest[1]; |
| |
| // LoopUnrollPass can only fully unroll loops with constant trip count. |
| // Unroll by the unroll factor with a fallback epilog for the remainder |
| // iterations if necessary. |
| ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); |
| addLoopMetadata( |
| InnerLoop, |
| {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})}); |
| |
| #ifndef NDEBUG |
| (*UnrolledCLI)->assertOK(); |
| #endif |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc, |
| llvm::Value *BufSize, llvm::Value *CpyBuf, |
| llvm::Value *CpyFn, llvm::Value *DidIt) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| |
| llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt); |
| |
| Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate); |
| Builder.CreateCall(Fn, Args); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createSingle(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, llvm::Value *DidIt) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // If needed (i.e. not null), initialize `DidIt` with 0 |
| if (DidIt) { |
| Builder.CreateStore(Builder.getInt32(0), DidIt); |
| } |
| |
| Directive OMPD = Directive::OMPD_single; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| // generates the following: |
| // if (__kmpc_single()) { |
| // .... single region ... |
| // __kmpc_end_single |
| // } |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical( |
| const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_critical; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *LockVar = getOMPCriticalRegionLock(CriticalName); |
| Value *Args[] = {Ident, ThreadId, LockVar}; |
| |
| SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args)); |
| Function *RTFn = nullptr; |
| if (HintInst) { |
| // Add Hint to entry Args and create call |
| EnterArgs.push_back(HintInst); |
| RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint); |
| } else { |
| RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical); |
| } |
| Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs); |
| |
| Function *ExitRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ false, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc, |
| InsertPointTy AllocaIP, unsigned NumLoops, |
| ArrayRef<llvm::Value *> StoreValues, |
| const Twine &Name, bool IsDependSource) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // Allocate space for vector and generate alloc instruction. |
| auto *ArrI64Ty = ArrayType::get(Int64, NumLoops); |
| Builder.restoreIP(AllocaIP); |
| AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name); |
| ArgsBase->setAlignment(Align(8)); |
| Builder.restoreIP(Loc.IP); |
| |
| // Store the index value with offset in depend vector. |
| for (unsigned I = 0; I < NumLoops; ++I) { |
| Value *DependAddrGEPIter = Builder.CreateInBoundsGEP( |
| ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)}); |
| Builder.CreateStore(StoreValues[I], DependAddrGEPIter); |
| } |
| |
| Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP( |
| ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)}); |
| |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP}; |
| |
| Function *RTLFn = nullptr; |
| if (IsDependSource) |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post); |
| else |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait); |
| Builder.CreateCall(RTLFn, Args); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd( |
| const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, bool IsThreads) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_ordered; |
| Instruction *EntryCall = nullptr; |
| Instruction *ExitCall = nullptr; |
| |
| if (IsThreads) { |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc); |
| Value *Ident = getOrCreateIdent(SrcLocStr); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered); |
| EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered); |
| ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| } |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ false, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion( |
| Directive OMPD, Instruction *EntryCall, Instruction *ExitCall, |
| BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional, |
| bool HasFinalize, bool IsCancellable) { |
| |
| if (HasFinalize) |
| FinalizationStack.push_back({FiniCB, OMPD, IsCancellable}); |
| |
| // Create inlined region's entry and body blocks, in preparation |
| // for conditional creation |
| BasicBlock *EntryBB = Builder.GetInsertBlock(); |
| Instruction *SplitPos = EntryBB->getTerminator(); |
| if (!isa_and_nonnull<BranchInst>(SplitPos)) |
| SplitPos = new UnreachableInst(Builder.getContext(), EntryBB); |
| BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end"); |
| BasicBlock *FiniBB = |
| EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize"); |
| |
| Builder.SetInsertPoint(EntryBB->getTerminator()); |
| emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional); |
| |
| // generate body |
| BodyGenCB(/* AllocaIP */ InsertPointTy(), |
| /* CodeGenIP */ Builder.saveIP(), *FiniBB); |
| |
| // If we didn't emit a branch to FiniBB during body generation, it means |
| // FiniBB is unreachable (e.g. while(1);). stop generating all the |
| // unreachable blocks, and remove anything we are not going to use. |
| auto SkipEmittingRegion = FiniBB->hasNPredecessors(0); |
| if (SkipEmittingRegion) { |
| FiniBB->eraseFromParent(); |
| ExitCall->eraseFromParent(); |
| // Discard finalization if we have it. |
| if (HasFinalize) { |
| assert(!FinalizationStack.empty() && |
| "Unexpected finalization stack state!"); |
| FinalizationStack.pop_back(); |
| } |
| } else { |
| // emit exit call and do any needed finalization. |
| auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt()); |
| assert(FiniBB->getTerminator()->getNumSuccessors() == 1 && |
| FiniBB->getTerminator()->getSuccessor(0) == ExitBB && |
| "Unexpected control flow graph state!!"); |
| emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize); |
| assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && |
| "Unexpected Control Flow State!"); |
| MergeBlockIntoPredecessor(FiniBB); |
| } |
| |
| // If we are skipping the region of a non conditional, remove the exit |
| // block, and clear the builder's insertion point. |
| assert(SplitPos->getParent() == ExitBB && |
| "Unexpected Insertion point location!"); |
| if (!Conditional && SkipEmittingRegion) { |
| ExitBB->eraseFromParent(); |
| Builder.ClearInsertionPoint(); |
| } else { |
| auto merged = MergeBlock
|