blob: 1c41c77a8cfb18233d9191d7ed85b42c6da1e5a0 [file] [log] [blame]
//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
cl::Hidden, cl::init(20));
// According to the LangRef, branching on a poison condition is absolutely
// immediate full UB. However, historically we haven't implemented that
// consistently as we have an important transformation (non-trivial unswitch)
// which introduces instances of branch on poison/undef to otherwise well
// defined programs. This flag exists to let us test optimization benefit
// of exploiting the specified behavior (in combination with enabling the
// unswitch fix.)
static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
cl::Hidden, cl::init(false));
/// Returns the bitwidth of the given scalar or pointer type. For vector types,
/// returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
return DL.getPointerTypeSizeInBits(Ty);
}
namespace {
// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
const DataLayout &DL;
AssumptionCache *AC;
const Instruction *CxtI;
const DominatorTree *DT;
// Unlike the other analyses, this may be a nullptr because not all clients
// provide it currently.
OptimizationRemarkEmitter *ORE;
/// If true, it is safe to use metadata during simplification.
InstrInfoQuery IIQ;
Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo,
OptimizationRemarkEmitter *ORE = nullptr)
: DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
};
} // end anonymous namespace
// Given the provided Value and, potentially, a context instruction, return
// the preferred context instruction (if any).
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
// If we've been provided with a context instruction, then use that (provided
// it has been inserted).
if (CxtI && CxtI->getParent())
return CxtI;
// If the value is really an already-inserted instruction, then use that.
CxtI = dyn_cast<Instruction>(V);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
// If we've been provided with a context instruction, then use that (provided
// it has been inserted).
if (CxtI && CxtI->getParent())
return CxtI;
// If the value is really an already-inserted instruction, then use that.
CxtI = dyn_cast<Instruction>(V1);
if (CxtI && CxtI->getParent())
return CxtI;
CxtI = dyn_cast<Instruction>(V2);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
// The length of scalable vectors is unknown at compile time, thus we
// cannot check their values
if (isa<ScalableVectorType>(Shuf->getType()))
return false;
int NumElts =
cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
if (DemandedElts.isZero())
return true;
// Simple case of a shuffle with zeroinitializer.
if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
DemandedLHS.setBit(0);
return true;
}
for (int i = 0; i != NumMaskElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Shuf->getMaskValue(i);
assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
// For undef elements, we don't know anything about the common state of
// the shuffle result.
if (M == -1)
return false;
if (M < NumElts)
DemandedLHS.setBit(M % NumElts);
else
DemandedRHS.setBit(M % NumElts);
}
return true;
}
static void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q);
static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType())) {
Known.resetAll();
return;
}
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
computeKnownBits(V, DemandedElts, Known, Depth, Q);
}
void llvm::computeKnownBits(const Value *V, KnownBits &Known,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, DemandedElts, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static KnownBits computeKnownBits(const Value *V, unsigned Depth,
const Query &Q);
KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, DemandedElts, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
assert(LHS->getType() == RHS->getType() &&
"LHS and RHS should have the same type");
assert(LHS->getType()->isIntOrIntVectorTy() &&
"LHS and RHS should be integers");
// Look for an inverted mask: (X & ~M) op (Y & M).
Value *M;
if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(RHS, m_c_And(m_Specific(M), m_Value())))
return true;
if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(LHS, m_c_And(m_Specific(M), m_Value())))
return true;
IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
KnownBits LHSKnown(IT->getBitWidth());
KnownBits RHSKnown(IT->getBitWidth());
computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
}
bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
return !I->user_empty() && all_of(I->users(), [](const User *U) {
ICmpInst::Predicate P;
return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
});
}
static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q);
bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
bool OrZero, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownToBeAPowerOfTwo(
V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownNonZero(V, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNonNegative();
}
bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->getValue().isStrictlyPositive();
// TODO: We'd doing two recursive queries here. We should factor this such
// that only a single query is needed.
return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
}
bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNegative();
}
static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
const Query &Q);
bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
return ::isKnownNonEqual(V1, V2, 0,
Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
UseInstrInfo, /*ORE=*/nullptr));
}
static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q);
bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::MaskedValueIsZero(
V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType()))
return 1;
auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
APInt DemandedElts =
FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
return ComputeNumSignBits(V, DemandedElts, Depth, Q);
}
unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::ComputeNumSignBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
unsigned llvm::ComputeMinSignedBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
return V->getType()->getScalarSizeInBits() - SignBits + 1;
}
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
bool NSW, const APInt &DemandedElts,
KnownBits &KnownOut, KnownBits &Known2,
unsigned Depth, const Query &Q) {
computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
// If one operand is unknown and we have no nowrap information,
// the result will be unknown independently of the second operand.
if (KnownOut.isUnknown() && !NSW)
return;
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
}
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth,
const Query &Q) {
computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
// If the multiplication is known not to overflow, compute the sign bit.
if (NSW) {
if (Op0 == Op1) {
// The product of a number with itself is non-negative.
isKnownNonNegative = true;
} else {
bool isKnownNonNegativeOp1 = Known.isNonNegative();
bool isKnownNonNegativeOp0 = Known2.isNonNegative();
bool isKnownNegativeOp1 = Known.isNegative();
bool isKnownNegativeOp0 = Known2.isNegative();
// The product of two numbers with the same sign is non-negative.
isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
(isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
// The product of a negative number and a non-negative number is either
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative =
(isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Known2.isNonZero()) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
}
}
Known = KnownBits::mul(Known, Known2);
// Only make use of no-wrap flags if we failed to compute the sign bit
// directly. This matters if the multiplication always overflows, in
// which case we prefer to follow the result of the direct computation,
// though as the program is invoking undefined behaviour we can choose
// whatever we like here.
if (isKnownNonNegative && !Known.isNegative())
Known.makeNonNegative();
else if (isKnownNegative && !Known.isNonNegative())
Known.makeNegative();
}
void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
KnownBits &Known) {
unsigned BitWidth = Known.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
// The first CommonPrefixBits of all values in Range are equal.
unsigned CommonPrefixBits =
(Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
Known.One &= UnsignedMax & Mask;
Known.Zero &= ~UnsignedMax & Mask;
}
}
static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
SmallVector<const Value *, 16> WorkSet(1, I);
SmallPtrSet<const Value *, 32> Visited;
SmallPtrSet<const Value *, 16> EphValues;
// The instruction defining an assumption's condition itself is always
// considered ephemeral to that assumption (even if it has other
// non-ephemeral users). See r246696's test case for an example.
if (is_contained(I->operands(), E))
return true;
while (!WorkSet.empty()) {
const Value *V = WorkSet.pop_back_val();
if (!Visited.insert(V).second)
continue;
// If all uses of this value are ephemeral, then so is this value.
if (llvm::all_of(V->users(), [&](const User *U) {
return EphValues.count(U);
})) {
if (V == E)
return true;
if (V == I || (isa<Instruction>(V) &&
!cast<Instruction>(V)->mayHaveSideEffects() &&
!cast<Instruction>(V)->isTerminator())) {
EphValues.insert(V);
if (const User *U = dyn_cast<User>(V))
append_range(WorkSet, U->operands());
}
}
}
return false;
}
// Is this an intrinsic that cannot be speculated but also cannot trap?
bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
return CI->isAssumeLikeIntrinsic();
return false;
}
bool llvm::isValidAssumeForContext(const Instruction *Inv,
const Instruction *CxtI,
const DominatorTree *DT) {
// There are two restrictions on the use of an assume:
// 1. The assume must dominate the context (or the control flow must
// reach the assume whenever it reaches the context).
// 2. The context must not be in the assume's set of ephemeral values
// (otherwise we will use the assume to prove that the condition
// feeding the assume is trivially true, thus causing the removal of
// the assume).
if (Inv->getParent() == CxtI->getParent()) {
// If Inv and CtxI are in the same block, check if the assume (Inv) is first
// in the BB.
if (Inv->comesBefore(CxtI))
return true;
// Don't let an assume affect itself - this would cause the problems
// `isEphemeralValueOf` is trying to prevent, and it would also make
// the loop below go out of bounds.
if (Inv == CxtI)
return false;
// The context comes first, but they're both in the same block.
// Make sure there is nothing in between that might interrupt
// the control flow, not even CxtI itself.
// We limit the scan distance between the assume and its context instruction
// to avoid a compile-time explosion. This limit is chosen arbitrarily, so
// it can be adjusted if needed (could be turned into a cl::opt).
auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
return false;
return !isEphemeralValueOf(Inv, CxtI);
}
// Inv and CxtI are in different blocks.
if (DT) {
if (DT->dominates(Inv, CxtI))
return true;
} else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
// We don't have a DT, but this trivially dominates.
return true;
}
return false;
}
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
// v u> y implies v != 0.
if (Pred == ICmpInst::ICMP_UGT)
return true;
// Special-case v != 0 to also handle v != null.
if (Pred == ICmpInst::ICMP_NE)
return match(RHS, m_Zero());
// All other predicates - rely on generic ConstantRange handling.
const APInt *C;
if (!match(RHS, m_APInt(C)))
return false;
ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
}
static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
return false;
if (Q.CxtI && V->getType()->isPointerTy()) {
SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
if (!NullPointerIsDefined(Q.CxtI->getFunction(),
V->getType()->getPointerAddressSpace()))
AttrKinds.push_back(Attribute::Dereferenceable);
if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
return true;
}
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getFunction() == Q.CxtI->getFunction() &&
"Got assumption for the wrong function!");
// Warning: This loop can end up being somewhat performance sensitive.
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *RHS;
CmpInst::Predicate Pred;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
return false;
if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
return true;
}
return false;
}
static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
unsigned Depth, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
return;
unsigned BitWidth = Known.getBitWidth();
// Refine Known set if the pointer alignment is set by assume bundles.
if (V->getType()->isPointerTy()) {
if (RetainedKnowledge RK = getKnowledgeValidInContext(
V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
Known.Zero.setLowBits(Log2_64(RK.ArgValue));
}
}
// Note that the patterns below need to be kept in sync with the code
// in AssumptionCache::updateAffectedValues.
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
"Got assumption for the wrong function!");
// Warning: This loop can end up being somewhat performance sensitive.
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *Arg = I->getArgOperand(0);
if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllOnes();
return;
}
if (match(Arg, m_Not(m_Specific(V))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllZero();
return;
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth == MaxAnalysisRecursionDepth)
continue;
ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
if (!Cmp)
continue;
// We are attempting to compute known bits for the operands of an assume.
// Do not try to use other assumptions for those recursive calls because
// that can lead to mutual recursion and a compile-time explosion.
// An example of the mutual recursion: computeKnownBits can call
// isKnownNonZero which calls computeKnownBitsFromAssume (this function)
// and so on.
Query QueryNoAC = Q;
QueryNoAC.AC = nullptr;
// Note that ptrtoint may change the bitwidth.
Value *A, *B;
auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
CmpInst::Predicate Pred;
uint64_t C;
switch (Cmp->getPredicate()) {
default:
break;
case ICmpInst::ICMP_EQ:
// assume(v = a)
if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
Known.Zero |= RHSKnown.Zero;
Known.One |= RHSKnown.One;
// assume(v & b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in the mask that are known to be one, we can propagate
// known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & MaskKnown.One;
Known.One |= RHSKnown.One & MaskKnown.One;
// assume(~(v & b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits MaskKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in the mask that are known to be one, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & MaskKnown.One;
Known.One |= RHSKnown.Zero & MaskKnown.One;
// assume(v | b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
// assume(~(v | b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
// assume(v ^ b = a)
} else if (match(Cmp,
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V. For those bits in B that are known to be one,
// we can propagate inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
Known.Zero |= RHSKnown.One & BKnown.One;
Known.One |= RHSKnown.Zero & BKnown.One;
// assume(~(v ^ b) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
KnownBits BKnown =
computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V. For those bits in B that are
// known to be one, we can propagate known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
Known.Zero |= RHSKnown.Zero & BKnown.One;
Known.One |= RHSKnown.One & BKnown.One;
// assume(v << c = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
RHSKnown.Zero.lshrInPlace(C);
Known.Zero |= RHSKnown.Zero;
RHSKnown.One.lshrInPlace(C);
Known.One |= RHSKnown.One;
// assume(~(v << c) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
RHSKnown.One.lshrInPlace(C);
Known.Zero |= RHSKnown.One;
RHSKnown.Zero.lshrInPlace(C);
Known.One |= RHSKnown.Zero;
// assume(v >> c = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
Known.Zero |= RHSKnown.Zero << C;
Known.One |= RHSKnown.One << C;
// assume(~(v >> c) = a)
} else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
Known.Zero |= RHSKnown.One << C;
Known.One |= RHSKnown.Zero << C;
}
break;
case ICmpInst::ICMP_SGE:
// assume(v >=_s c) where c is non-negative
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SGT:
// assume(v >_s c) where c is at least -1.
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
}
break;
case ICmpInst::ICMP_SLE:
// assume(v <=_s c) where c is negative
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_SLT:
// assume(v <_s c) where c is non-positive
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
if (RHSKnown.isZero() || RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
}
break;
case ICmpInst::ICMP_ULE:
// assume(v <=_u c)
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// Whatever high bits in c are zero are known to be zero.
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
case ICmpInst::ICMP_ULT:
// assume(v <_u c)
if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown =
computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
// If the RHS is known zero, then this assumption must be wrong (nothing
// is unsigned less than zero). Signal a conflict and get out of here.
if (RHSKnown.isZero()) {
Known.Zero.setAllBits();
Known.One.setAllBits();
break;
}
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
else
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
break;
}
}
// If assumptions conflict with each other or previous known bits, then we
// have a logical fallacy. It's possible that the assumption is not reachable,
// so this isn't a real bug. On the other hand, the program may have undefined
// behavior, or we might have a bug in the compiler. We can't assert/crash, so
// clear out the known bits, try to warn the user, and hope for the best.
if (Known.Zero.intersects(Known.One)) {
Known.resetAll();
if (Q.ORE)
Q.ORE->emit([&]() {
auto *CxtI = const_cast<Instruction *>(Q.CxtI);
return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
CxtI)
<< "Detected conflicting code assumptions. Program may "
"have undefined behavior, or compiler may have "
"internal error.";
});
}
}
/// Compute known bits from a shift operator, including those with a
/// non-constant shift amount. Known is the output of this function. Known2 is a
/// pre-allocated temporary with the same bit width as Known and on return
/// contains the known bit of the shift value source. KF is an
/// operator-specific function that, given the known-bits and a shift amount,
/// compute the implied known-bits of the shift operator's result respectively
/// for that shift amount. The results from calling KF are conservatively
/// combined for all permitted shift amounts.
static void computeKnownBitsFromShiftOperator(
const Operator *I, const APInt &DemandedElts, KnownBits &Known,
KnownBits &Known2, unsigned Depth, const Query &Q,
function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
unsigned BitWidth = Known.getBitWidth();
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
// Note: We cannot use Known.Zero.getLimitedValue() here, because if
// BitWidth > 64 and any upper bits are known, we'll end up returning the
// limit value (which implies all bits are known).
uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
bool ShiftAmtIsConstant = Known.isConstant();
bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
if (ShiftAmtIsConstant) {
Known = KF(Known2, Known);
// If the known bits conflict, this must be an overflowing left shift, so
// the shift result is poison. We can return anything we want. Choose 0 for
// the best folding opportunity.
if (Known.hasConflict())
Known.setAllZero();
return;
}
// If the shift amount could be greater than or equal to the bit-width of the
// LHS, the value could be poison, but bail out because the check below is
// expensive.
// TODO: Should we just carry on?
if (MaxShiftAmtIsOutOfRange) {
Known.resetAll();
return;
}
// It would be more-clearly correct to use the two temporaries for this
// calculation. Reusing the APInts here to prevent unnecessary allocations.
Known.resetAll();
// If we know the shifter operand is nonzero, we can sometimes infer more
// known bits. However this is expensive to compute, so be lazy about it and
// only compute it when absolutely necessary.
Optional<bool> ShifterOperandIsNonZero;
// Early exit if we can't constrain any well-defined shift amount.
if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
!(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (!*ShifterOperandIsNonZero)
return;
}
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
// Combine the shifted known input bits only for those shift amounts
// compatible with its known constraints.
if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
continue;
if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
continue;
// If we know the shifter is nonzero, we may be able to infer more known
// bits. This check is sunk down as far as possible to avoid the expensive
// call to isKnownNonZero if the cheaper checks above fail.
if (ShiftAmt == 0) {
if (!ShifterOperandIsNonZero.hasValue())
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
if (*ShifterOperandIsNonZero)
continue;
}
Known = KnownBits::commonBits(
Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
}
// If the known bits conflict, the result is poison. Return a 0 and hope the
// caller can further optimize that.
if (Known.hasConflict())
Known.setAllZero();
}
static void computeKnownBitsFromOperator(const Operator *I,
const APInt &DemandedElts,
KnownBits &Known, unsigned Depth,
const Query &Q) {
unsigned BitWidth = Known.getBitWidth();
KnownBits Known2(BitWidth);
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
if (MDNode *MD =
Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known &= Known2;
// and(x, add (x, -1)) is a common idiom that always clears the low bit;
// here we handle the more general case of adding any odd number by
// matching the form add(x, add(x, y)) where y is odd.
// TODO: This could be generalized to clearing any bit set in y where the
// following bit is known to be unset in y.
Value *X = nullptr, *Y = nullptr;
if (!Known.Zero[0] && !Known.One[0] &&
match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Known2.resetAll();
computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
if (Known2.countMinTrailingOnes() > 0)
Known.Zero.setBit(0);
}
break;
}
case Instruction::Or:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known |= Known2;
break;
case Instruction::Xor:
computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known ^= Known2;
break;
case Instruction::Mul: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
Known, Known2, Depth, Q);
break;
}
case Instruction::UDiv: {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::udiv(Known, Known2);
break;
}
case Instruction::Select: {
const Value *LHS = nullptr, *RHS = nullptr;
SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
if (SelectPatternResult::isMinOrMax(SPF)) {
computeKnownBits(RHS, Known, Depth + 1, Q);
computeKnownBits(LHS, Known2, Depth + 1, Q);
switch (SPF) {
default:
llvm_unreachable("Unhandled select pattern flavor!");
case SPF_SMAX:
Known = KnownBits::smax(Known, Known2);
break;
case SPF_SMIN:
Known = KnownBits::smin(Known, Known2);
break;
case SPF_UMAX:
Known = KnownBits::umax(Known, Known2);
break;
case SPF_UMIN:
Known = KnownBits::umin(Known, Known2);
break;
}
break;
}
computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
// Only known if known in both the LHS and RHS.
Known = KnownBits::commonBits(Known, Known2);
if (SPF == SPF_ABS) {
// RHS from matchSelectPattern returns the negation part of abs pattern.
// If the negate has an NSW flag we can assume the sign bit of the result
// will be 0 because that makes abs(INT_MIN) undefined.
if (match(RHS, m_Neg(m_Specific(LHS))) &&
Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
Known.Zero.setSignBit();
}
break;
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
break; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case Instruction::ZExt:
case Instruction::Trunc: {
Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
Type *ScalarTy = SrcTy->getScalarType();
SrcBitWidth = ScalarTy->isPointerTy() ?
Q.DL.getPointerTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.anyextOrTrunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known = Known.zextOrTrunc(BitWidth);
break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isIntOrPtrTy() &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
// Handle cast from vector integer type to scalar or vector integer.
auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
!I->getType()->isIntOrIntVectorTy())
break;
// Look through a cast from narrow vector elements to wider type.
// Examples: v4i32 -> v2i64, v3i8 -> v24
unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
if (BitWidth % SubBitWidth == 0) {
// Known bits are automatically intersected across demanded elements of a
// vector. So for example, if a bit is computed as known zero, it must be
// zero across all demanded elements of the vector.
//
// For this bitcast, each demanded element of the output is sub-divided
// across a set of smaller vector elements in the source vector. To get
// the known bits for an entire element of the output, compute the known
// bits for each sub-element sequentially. This is done by shifting the
// one-set-bit demanded elements parameter across the sub-elements for
// consecutive calls to computeKnownBits. We are using the demanded
// elements parameter as a mask operator.
//
// The known bits of each sub-element are then inserted into place
// (dependent on endian) to form the full result of known bits.
unsigned NumElts = DemandedElts.getBitWidth();
unsigned SubScale = BitWidth / SubBitWidth;
APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
for (unsigned i = 0; i != NumElts; ++i) {
if (DemandedElts[i])
SubDemandedElts.setBit(i * SubScale);
}
KnownBits KnownSrc(SubBitWidth);
for (unsigned i = 0; i != SubScale; ++i) {
computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
Depth + 1, Q);
unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
}
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Known = Known.trunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
Known = Known.sext(BitWidth);
break;
}
case Instruction::Shl: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
// If this shift has "nsw" keyword, then the result is either a poison
// value or has the same sign bit as the first operand.
if (NSW) {
if (KnownVal.Zero.isSignBitSet())
Result.Zero.setSignBit();
if (KnownVal.One.isSignBitSet())
Result.One.setSignBit();
}
return Result;
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
// Trailing zeros of a right-shifted constant never decrease.
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setLowBits(C->countTrailingZeros());
break;
}
case Instruction::LShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::lshr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
// Leading zeros of a left-shifted constant never decrease.
const APInt *C;
if (match(I->getOperand(0), m_APInt(C)))
Known.Zero.setHighBits(C->countLeadingZeros());
break;
}
case Instruction::AShr: {
auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
return KnownBits::ashr(KnownVal, KnownAmt);
};
computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
KF);
break;
}
case Instruction::Sub: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
DemandedElts, Known, Known2, Depth, Q);
break;
}
case Instruction::SRem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::srem(Known, Known2);
break;
case Instruction::URem:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::urem(Known, Known2);
break;
case Instruction::Alloca:
Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
break;
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
// Accumulate the constant indices in a separate variable
// to minimize the number of calls to computeForAddSub.
APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
// TrailZ can only become smaller, short-circuit if we hit zero.
if (Known.isUnknown())
break;
Value *Index = I->getOperand(i);
// Handle case when index is zero.
Constant *CIndex = dyn_cast<Constant>(Index);
if (CIndex && CIndex->isZeroValue())
continue;
if (StructType *STy = GTI.getStructTypeOrNull()) {
// Handle struct member offset arithmetic.
assert(CIndex &&
"Access to structure field must be known at compile time");
if (CIndex->getType()->isVectorTy())
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
AccConstIndices += Offset;
continue;
}
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) {
Known.resetAll();
break;
}
unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
KnownBits IndexBits(IndexBitWidth);
computeKnownBits(Index, IndexBits, Depth + 1, Q);
TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
KnownBits ScalingFactor(IndexBitWidth);
// Multiply by current sizeof type.
// &A[i] == A + i * sizeof(*A[i]).
if (IndexTypeSize.isScalable()) {
// For scalable types the only thing we know about sizeof is
// that this is a multiple of the minimum size.
ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
} else if (IndexBits.isConstant()) {
APInt IndexConst = IndexBits.getConstant();
APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
IndexConst *= ScalingFactor;
AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
continue;
} else {
ScalingFactor =
KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
}
IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
// If the offsets have a different width from the pointer, according
// to the language reference we need to sign-extend or truncate them
// to the width of the pointer.
IndexBits = IndexBits.sextOrTrunc(BitWidth);
// Note that inbounds does *not* guarantee nsw for the addition, as only
// the offset is signed, while the base address is unsigned.
Known = KnownBits::computeForAddSub(
/*Add=*/true, /*NSW=*/false, Known, IndexBits);
}
if (!Known.isUnknown() && !AccConstIndices.isZero()) {
KnownBits Index = KnownBits::makeConstant(AccConstIndices);
Known = KnownBits::computeForAddSub(
/*Add=*/true, /*NSW=*/false, Known, Index);
}
break;
}
case Instruction::PHI: {
const PHINode *P = cast<PHINode>(I);
BinaryOperator *BO = nullptr;
Value *R = nullptr, *L = nullptr;
if (matchSimpleRecurrence(P, BO, R, L)) {
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
unsigned Opcode = BO->getOpcode();
// If this is a shift recurrence, we know the bits being shifted in.
// We can combine that with information about the start value of the
// recurrence to conclude facts about the result.
if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
Opcode == Instruction::Shl) &&
BO->getOperand(0) == I) {
// We have matched a recurrence of the form:
// %iv = [R, %entry], [%iv.next, %backedge]
// %iv.next = shift_op %iv, L
// Recurse with the phi context to avoid concern about whether facts
// inferred hold at original context instruction. TODO: It may be
// correct to use the original context. IF warranted, explore and
// add sufficient tests to cover.
Query RecQ = Q;
RecQ.CxtI = P;
computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
switch (Opcode) {
case Instruction::Shl:
// A shl recurrence will only increase the tailing zeros
Known.Zero.setLowBits(Known2.countMinTrailingZeros());
break;
case Instruction::LShr:
// A lshr recurrence will preserve the leading zeros of the
// start value
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
break;
case Instruction::AShr:
// An ashr recurrence will extend the initial sign bit
Known.Zero.setHighBits(Known2.countMinLeadingZeros());
Known.One.setHighBits(Known2.countMinLeadingOnes());
break;
};
}
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
// Change the context instruction to the "edge" that flows into the
// phi. This is important because that is where the value is actually
// "evaluated" even though it is used later somewhere else. (see also
// D69571).
Query RecQ = Q;
unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
RecQ.CxtI = RInst;
computeKnownBits(R, Known2, Depth + 1, RecQ);
// We need to take the minimum number of known bits
KnownBits Known3(BitWidth);
RecQ.CxtI = LInst;
computeKnownBits(L, Known3, Depth + 1, RecQ);
Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
Known3.countMinTrailingZeros()));
auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
// If initial value of recurrence is nonnegative, and we are adding
// a nonnegative number with nsw, the result can only be nonnegative
// or poison value regardless of the number of times we execute the
// add in phi recurrence. If initial value is negative and we are
// adding a negative number with nsw, the result can only be
// negative or poison value. Similar arguments apply to sub and mul.
//
// (add non-negative, non-negative) --> non-negative
// (add negative, negative) --> negative
if (Opcode == Instruction::Add) {
if (Known2.isNonNegative() && Known3.isNonNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNegative())
Known.makeNegative();
}
// (sub nsw non-negative, negative) --> non-negative
// (sub nsw negative, non-negative) --> negative
else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
if (Known2.isNonNegative() && Known3.isNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNonNegative())
Known.makeNegative();
}
// (mul nsw non-negative, non-negative) --> non-negative
else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
Known3.isNonNegative())
Known.makeNonNegative();
}
break;
}
}
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
break;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
// Skip if every incoming value references to ourself.
if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
break;
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
Value *IncValue = P->getIncomingValue(u);
// Skip direct self references.
if (IncValue == P) continue;
// Change the context instruction to the "edge" that flows into the
// phi. This is important because that is where the value is actually
// "evaluated" even though it is used later somewhere else. (see also
// D69571).
Query RecQ = Q;
RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
Known2 = KnownBits(BitWidth);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
Known = KnownBits::commonBits(Known, Known2);
// If all bits have been ruled out, there's no need to check
// more operands.
if (Known.isUnknown())
break;
}
}
break;
}
case Instruction::Call:
case Instruction::Invoke:
// If range metadata is attached to this call, set known bits from that,
// and then intersect with known bits based on other properties of the
// function.
if (MDNode *MD =
Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
computeKnownBits(RV, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero;
Known.One |= Known2.One;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::abs: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
Known = Known2.abs(IntMinIsPoison);
break;
}
case Intrinsic::bitreverse:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.reverseBits();
Known.One |= Known2.One.reverseBits();
break;
case Intrinsic::bswap:
computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.byteSwap();
Known.One |= Known2.One.byteSwap();
break;
case Intrinsic::ctlz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleLZ = Known2.countMaxLeadingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleLZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::cttz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleTZ = Known2.countMaxTrailingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleTZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::ctpop: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// We can bound the space the count needs. Also, bits known to be zero
// can't contribute to the population.
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Known.Zero.setBitsFrom(LowBits);
// TODO: we could bound KnownOne using the lower bound on the number
// of bits which might be set provided by popcnt KnownOne2.
break;
}
case Intrinsic::fshr:
case Intrinsic::fshl: {
const APInt *SA;
if (!match(I->getOperand(2), m_APInt(SA)))
break;
// Normalize to funnel shift left.
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
KnownBits Known3(BitWidth);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
Known.Zero =
Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
Known.One =
Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
break;
}
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat: {
bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
// Add: Leading ones of either operand are preserved.
// Sub: Leading zeros of LHS and leading ones of RHS are preserved
// as leading zeros in the result.
unsigned LeadingKnown;
if (IsAdd)
LeadingKnown = std::max(Known.countMinLeadingOnes(),
Known2.countMinLeadingOnes());
else
LeadingKnown = std::max(Known.countMinLeadingZeros(),
Known2.countMinLeadingOnes());
Known = KnownBits::computeForAddSub(
IsAdd, /* NSW */ false, Known, Known2);
// We select between the operation result and all-ones/zero
// respectively, so we can preserve known ones/zeros.
if (IsAdd) {
Known.One.setHighBits(LeadingKnown);
Known.Zero.clearAllBits();
} else {
Known.Zero.setHighBits(LeadingKnown);
Known.One.clearAllBits();
}
break;
}
case Intrinsic::umin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umin(Known, Known2);
break;
case Intrinsic::umax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::umax(Known, Known2);
break;
case Intrinsic::smin:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smin(Known, Known2);
break;
case Intrinsic::smax:
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
Known = KnownBits::smax(Known, Known2);
break;
case Intrinsic::x86_sse42_crc32_64_64:
Known.Zero.setBitsFrom(32);
break;
case Intrinsic::riscv_vsetvli:
case Intrinsic::riscv_vsetvlimax:
// Assume that VL output is positive and would fit in an int32_t.
// TODO: VLEN might be capped at 16 bits in a future V spec update.
if (BitWidth >= 32)
Known.Zero.setBitsFrom(31);
break;
case Intrinsic::vscale: {
if (!II->getParent() || !II->getFunction() ||
!II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
break;
auto VScaleRange = II->getFunction()
->getFnAttribute(Attribute::VScaleRange)
.getVScaleRangeArgs();
if (VScaleRange.second == 0)
break;
// If vscale min = max then we know the exact value at compile time
// and hence we know the exact bits.
if (VScaleRange.first == VScaleRange.second) {
Known.One = VScaleRange.first;
Known.Zero = VScaleRange.first;
Known.Zero.flipAllBits();
break;
}
unsigned FirstZeroHighBit = 32 - countLeadingZeros(VScaleRange.second);
if (FirstZeroHighBit < BitWidth)
Known.Zero.setBitsFrom(FirstZeroHighBit);
break;
}
}
}
break;
case Instruction::ShuffleVector: {
auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
// FIXME: Do we need to handle ConstantExpr involving shufflevectors?
if (!Shuf) {
Known.resetAll();
return;
}
// For undef elements, we don't know anything about the common state of
// the shuffle result.
APInt DemandedLHS, DemandedRHS;
if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
if (!!DemandedLHS) {
const Value *LHS = Shuf->getOperand(0);
computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
if (!!DemandedRHS) {
const Value *RHS = Shuf->getOperand(1);
computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::InsertElement: {
const Value *Vec = I->getOperand(0);
const Value *Elt = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
// Early out if the index is non-constant or out-of-range.
unsigned NumElts = DemandedElts.getBitWidth();
if (!CIdx || CIdx->getValue().uge(NumElts)) {
Known.resetAll();
return;
}
Known.One.setAllBits();
Known.Zero.setAllBits();
unsigned EltIdx = CIdx->getZExtValue();
// Do we demand the inserted element?
if (DemandedElts[EltIdx]) {
computeKnownBits(Elt, Known, Depth + 1, Q);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
// We don't need the base vector element that has been inserted.
APInt DemandedVecElts = DemandedElts;
DemandedVecElts.clearBit(EltIdx);
if (!!DemandedVecElts) {
computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
Known = KnownBits::commonBits(Known, Known2);
}
break;
}
case Instruction::ExtractElement: {
// Look through extract element. If the index is non-constant or
// out-of-range demand all elements, otherwise just the extracted element.
const Value *Vec = I->getOperand(0);
const Value *Idx = I->getOperand(1);
auto *CIdx = dyn_cast<ConstantInt>(Idx);
if (isa<ScalableVectorType>(Vec->getType())) {
// FIXME: there's probably *something* we can do with scalable vectors
Known.resetAll();
break;
}
unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
APInt DemandedVecElts = APInt::getAllOnes(NumElts);
if (CIdx && CIdx->getValue().ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
break;
}
case Instruction::ExtractValue:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
if (EVI->getNumIndices() != 1) break;
if (EVI->getIndices()[0] == 0) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, DemandedElts,
Known, Known2, Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
DemandedElts, Known, Known2, Depth, Q);
break;
}
}
}
break;
case Instruction::Freeze:
if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
Depth + 1))
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
}
/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, DemandedElts, Known, Depth, Q);
return Known;
}
/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, Known, Depth, Q);
return Known;
}
/// Determine which bits of V are known to be either zero or one and return
/// them in the Known bit set.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the demanded elements in the vector specified by DemandedElts.
void computeKnownBits(const Value *V, const APInt &DemandedElts,
KnownBits &Known, unsigned Depth, const Query &Q) {
if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
// No demanded elts or V is a scalable vector, better to assume we don't
// know anything.
Known.resetAll();
return;
}
assert(V && "No Value?");
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
#ifndef NDEBUG
Type *Ty = V->getType();
unsigned BitWidth = Known.getBitWidth();
assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
"Not integer or pointer type!");
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
assert(
FVTy->getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars");
}
Type *ScalarTy = Ty->getScalarType();
if (ScalarTy->isPointerTy()) {
assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
} else {
assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
"V and Known should have same BitWidth");
}
#endif
const APInt *C;
if (match(V, m_APInt(C))) {
// We know all of the bits for a scalar constant or a splat vector constant!
Known = KnownBits::makeConstant(*C);
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Known.setAllZero();
return;
}
// Handle a constant vector by taking the intersection of the known bits of
// each element.
if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
// We know that CDV must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
APInt Elt = CDV->getElementAsAPInt(i);
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
if (const auto *CV = dyn_cast<ConstantVector>(V)) {
// We know that CV must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Element = CV->getAggregateElement(i);
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI) {
Known.resetAll();
return;
}
const APInt &Elt = ElementCI->getValue();
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
// Start out not knowing anything.
Known.resetAll();
// We can't imply anything about undefs.
if (isa<UndefValue>(V))
return;
// There's no point in looking through other users of ConstantData for
// assumptions. Confirm that we've handled them all.
assert(!isa<ConstantData>(V) && "Unhandled constant data!");
// All recursive calls that increase depth must come after this.
if (Depth == MaxAnalysisRecursionDepth)
return;
// A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
// the bits of its aliasee.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable())
computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
return;
}
if (const Operator *I = dyn_cast<Operator>(V))
computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
// Aligned pointers have trailing zeros - refine Known.Zero set
if (isa<PointerType>(V->getType())) {
Align Alignment = V->getPointerAlignment(Q.DL);
Known.Zero.setLowBits(Log2(Alignment));
}
// computeKnownBitsFromAssume strictly refines Known.
// Therefore, we run them after computeKnownBitsFromOperator.
// Check whether a nearby assume intrinsic can determine some known bits.
computeKnownBitsFromAssume(V, Known, Depth, Q);
assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}
/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q) {
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
// Attempt to match against constants.
if (OrZero && match(V, m_Power2OrZero()))
return true;
if (match(V, m_Power2()))
return true;
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
if (match(V, m_Shl(m_One(), m_Value())))
return true;
// (signmask) >>l X is clearly a power of two if the one is not shifted off
// the bottom. If it is shifted off the bottom then the result is undefined.
if (match(V, m_LShr(m_SignMask(), m_Value())))
return true;
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxAnalysisRecursionDepth)
return false;
Value *X = nullptr, *Y = nullptr;
// A shift left or a logical shift right of a power of two is a power of two
// or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_LShr(m_Value(X), m_Value()))))
return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (const SelectInst *SI = dyn_cast<SelectInst>(V))
return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
// Peek through min/max.
if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
}
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
return true;
return false;
}
// Adding a power-of-two or zero to the same power-of-two or zero yields
// either the original power-of-two, a larger power-of-two or zero.
if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
Q.IIQ.hasNoSignedWrap(VOBO)) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
KnownBits LHSBits(BitWidth);
computeKnownBits(X, LHSBits, Depth, Q);
KnownBits RHSBits(BitWidth);
computeKnownBits(Y, RHSBits, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
// If OrZero isn't set, we cannot give back a zero result.
// Make sure either the LHS or RHS has a bit set.
if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
return true;
}
}
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
// copying a sign bit (sdiv int_min, 2).
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Depth, Q);
}
return false;
}
/// Test whether a GEP's result is known to be non-null.
///
/// Uses properties inherent in a GEP to try to determine whether it is known
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
const Query &Q) {
const Function *F = nullptr;
if (const Instruction *I = dyn_cast<Instruction>(GEP))
F = I->getFunction();
if (!GEP->isInBounds() ||
NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
return false;
// FIXME: Support vector-GEPs.
assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
// If the base pointer is non-null, we cannot walk to a null address with an
// inbounds GEP in address space zero.
if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
return true;
// Walk the GEP operands and see if any operand introduces a non-zero offset.
// If so, then the GEP cannot produce a null pointer, as doing so would
// inherently violate the inbounds contract within address space zero.
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
// Struct types are easy -- they must always be indexed by a constant.
if (StructType *STy = GTI.getStructTypeOrNull()) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
continue;
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
// increment Depth when just zipping down an all-constant GEP.
if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
if (!OpC->isZero())
return true;
continue;
}
// We post-increment Depth here because while isKnownNonZero increments it
// as well, when we pop back up that increment won't persist. We don't want
// to recurse 10k times just because we have 10k GEP operands. We don't
// bail completely out because we want to handle constant GEPs regardless
// of depth.
if (Depth++ >= MaxAnalysisRecursionDepth)
continue;
if (isKnownNonZero(GTI.getOperand(), Depth, Q))
return true;
}
return false;
}
static bool isKnownNonNullFromDominatingCondition(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT) {
if (isa<Constant>(V))
return false;
if (!CtxI || !DT)
return false;
unsigned NumUsesExplored = 0;
for (auto *U : V->users()) {
// Avoid massive lists
if (NumUsesExplored >= DomConditionsMaxUses)
break;
NumUsesExplored++;
// If the value is used as an argument to a call or invoke, then argument
// attributes may provide an answer about null-ness.
if (const auto *CB = dyn_cast<CallBase>(U))
if (auto *CalledFunc = CB->getCalledFunction())
for (const Argument &Arg : CalledFunc->args())
if (CB->getArgOperand(Arg.getArgNo()) == V &&
Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
DT->dominates(CB, CtxI))
return true;
// If the value is used as a load/store, then the pointer must be non null.
if (V == getLoadStorePointerOperand(U)) {
const Instruction *I = cast<Instruction>(U);
if (!NullPointerIsDefined(I->getFunction(),
V->getType()->getPointerAddressSpace()) &&
DT->dominates(I, CtxI))
return true;
}
// Consider only compare instructions uniquely controlling a branch
Value *RHS;
CmpInst::Predicate Pred;
if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
continue;
bool NonNullIfTrue;
if (cmpExcludesZero(Pred, RHS))
NonNullIfTrue = true;
else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
NonNullIfTrue = false;
else
continue;
SmallVector<const User *, 4> WorkList;
SmallPtrSet<const User *, 4> Visited;
for (auto *CmpU : U->users()) {
assert(WorkList.empty() && "Should be!");
if (Visited.insert(CmpU).second)
WorkList.push_back(CmpU);
while (!WorkList.empty()) {
auto *Curr = WorkList.pop_back_val();
// If a user is an AND, add all its users to the work list. We only
// propagate "pred != null" condition through AND because it is only
// correct to assume that all conditions of AND are met in true branch.
// TODO: Support similar logic of OR and EQ predicate?
if (NonNullIfTrue)
if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
for (auto *CurrU : Curr->users())
if (Visited.insert(CurrU).second)
WorkList.push_back(CurrU);
continue;
}
if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
assert(BI->isConditional() && "uses a comparison!");
BasicBlock *NonNullSuccessor =
BI->getSuccessor(NonNullIfTrue ? 0 : 1);
BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
return true;
} else if (NonNullIfTrue && isGuard(Curr) &&
DT->dominates(cast<Instruction>(Curr), CtxI)) {
return true;
}
}
}
}
return false;
}
/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value? 'RangeType' is
/// is the type of the value described by the range.
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.contains(Value))
return false;
}
return true;
}
/// Try to detect a recurrence that monotonically increases/decreases from a
/// non-zero starting value. These are common as induction variables.
static bool isNonZeroRecurrence(const PHINode *PN) {
BinaryOperator *BO = nullptr;
Value *Start = nullptr, *Step = nullptr;
const APInt *StartC, *StepC;
if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
!match(Start, m_APInt(StartC)) || StartC->isZero())
return false;
switch (BO->getOpcode()) {
case Instruction::Add:
// Starting from non-zero and stepping away from zero can never wrap back
// to zero.
return BO->hasNoUnsignedWrap() ||
(BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
StartC->isNegative() == StepC->isNegative());
case Instruction::Mul:
return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
match(Step, m_APInt(StepC)) && !StepC->isZero();
case Instruction::Shl:
return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
case Instruction::AShr:
case Instruction::LShr:
return BO->isExact();
default:
return false;
}
}
/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every demanded element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
const Query &Q) {
// FIXME: We currently have no way to represent the DemandedElts of a scalable
// vector
if (isa<ScalableVectorType>(V->getType()))
return false;
if (auto *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
// Must be non-zero due to null test above.
return true;
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
// See the comment for IntToPtr/PtrToInt instructions below.
if (CE->getOpcode() == Instruction::IntToPtr ||
CE->getOpcode() == Instruction::PtrToInt)
if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
.getFixedSize() <=
Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
return isKnownNonZero(CE->getOperand(0), Depth, Q);
}
// For constant vectors, check that all elements are undefined or known
// non-zero to determine that the whole vector is known non-zero.
if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
if (!DemandedElts[i])
continue;
Constant *Elt = C->getAggregateElement(i);
if (!Elt || Elt->isNullValue())
return false;
if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
return false;
}
return true;
}
// A global variable in address space 0 is non null unless extern weak
// or an absolute symbol reference. Other address spaces may have null as a
// valid address for a global, so we can't assume anything.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
GV->getType()->getAddressSpace() == 0)
return true;
} else
return false;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
// If the possible ranges don't contain zero, then the value is
// definitely non-zero.
if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
const APInt ZeroValue(Ty->getBitWidth(), 0);
if (rangeMetadataExcludesValue(Ranges, ZeroValue))
return true;
}
}
}
if (isKnownNonZeroFromAssume(V, Q))
return true;
// Some of the tests below are recursive, so bail out if we hit the limit.
if (Depth++ >= MaxAnalysisRecursionDepth)
return false;
// Check for pointer simplifications.
if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
return true;
// A byval, inalloca may not be null in a non-default addres space. A
// nonnull argument is assumed never 0.
if (const Argument *A = dyn_cast<Argument>(V)) {
if (((A->hasPassPointeeByValueCopyAttr() &&
!NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
A->hasNonNullAttr()))
return true;
}
// A Load tagged with nonnull metadata is never null.
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
return true;
if (const auto *Call = dyn_cast<CallBase>(V)) {
if (Call->isReturnNonNull())
return true;
if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
return isKnownNonZero(RP, Depth, Q);
}
}
if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
return true;
// Check for recursive pointer simplifications.
if (V->getType()->isPointerTy()) {
// Look through bitcast operations, GEPs, and int2ptr instructions as they
// do not alter the value, or at least not the nullness property of the
// value, e.g., int2ptr is allowed to zero/sign extend the value.
//
// Note that we have to take special care to avoid looking through
// truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
// as casts that can alter the value, e.g., AddrSpaceCasts.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
return isGEPKnownNonNull(GEP, Depth, Q);
if (auto *BCO = dyn_cast<BitCastOperator>(V))
return isKnownNonZero(BCO->getOperand(0), Depth, Q);
if (auto *I2P = dyn_cast<IntToPtrInst>(V))
if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
return isKnownNonZero(I2P->getOperand(0), Depth, Q);
}
// Similar to int2ptr above, we can look through ptr2int here if the cast
// is a no-op or an extend and not a truncate.
if (auto *P2I = dyn_cast<PtrToIntInst>(V))
if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
return isKnownNonZero(P2I->getOperand(0), Depth, Q);
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (Q.IIQ.hasNoUnsignedWrap(BO))
return isKnownNonZero(X, Depth, Q);
KnownBits Known(BitWidth);
computeKnownBits(X, DemandedElts, Known, Depth, Q);
if (Known.One[0])
return true;
}
// shr X, Y != 0 if X is negative. Note that the value of the shift is not
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, Depth, Q);
KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
if (Known.isNegative())
return true;
// If the shifter operand is a constant, and all of the bits shifted
// out are known to be zero, and X is known non-zero then at least one
// non-zero bit must remain.
if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
// Is there a known one in the portion not shifted out?
if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
return true;
// Are all the bits to be shifted out known zero?
if (Known.countMinTrailingZeros() >= ShiftVal)
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
return isKnownNonZero(X, DemandedElts, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnown.isNonNegative() && YKnown.isNonNegative())
if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
isKnownNonZero(Y, DemandedElts, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
// zero unless both X and Y equal INT_MIN.
if (XKnown.isNegative() && YKnown.isNegative()) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
if (XKnown.One.intersects(Mask))
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal</