| //===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a model runner using Tensorflow C APIs, allowing the |
| // loading of a model from a command line option. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TF_API) |
| |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" |
| #include "llvm/Analysis/MLInlineAdvisor.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ManagedStatic.h" |
| |
| #include <vector> |
| |
| using namespace llvm; |
| |
| static cl::opt<std::string> TrainingLog( |
| "training-log", cl::Hidden, |
| cl::desc("Path where the development - mode inlining log is saved.")); |
| |
| static cl::opt<std::string> TFModelUnderTrainingPath( |
| "ml-inliner-model-under-training", cl::Hidden, |
| cl::desc(R"(Path to SavedModel from the previous training iteration. |
| The directory is also expected to contain a JSON specification of the |
| outputs expected to be logged, where the first entry must be the |
| inlining decision. The file containing the specification should be |
| called output_spec.json. The expected JSON value is an array of |
| dictionaries. Each dictionary should have 2 keys: |
| |
| - "tensor_spec, followed by the TensorSpec description of the |
| output; and |
| - "logging_name", a string indicating the name to use when |
| logging the output values. |
| |
| Example: |
| [ |
| { |
| "logging_name" : "some_name", |
| "tensor_spec" : { |
| "name" : "model_name", |
| "port" : 0, |
| "shape" : [2, 3], |
| "type" : "float" |
| } |
| } |
| ] |
| |
| The first value must always correspond to the decision.)")); |
| |
| static cl::opt<std::string> TFOutputSpecOverride( |
| "ml-inliner-output-spec-override", cl::Hidden, |
| cl::desc("Override the path to the output spec json file. See " |
| "-ml-inliner-model-under-training documentation for the " |
| "specification of that file.")); |
| |
| static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix", |
| cl::Hidden, cl::init("action_"), |
| cl::desc("Prefix for feature names.")); |
| |
| namespace { |
| /// An InlineEvent, used by TrainingLogger. |
| struct InlineEvent { |
| /// What the default policy's decision would have been. |
| int64_t DefaultDecision = 0; |
| |
| /// What we advised. When training off the default policy, this is the same as |
| /// DefaultDecision. |
| int64_t AdvisedDecision = 0; |
| |
| /// What actually happened. This would be 'false' in the case of an inline |
| /// error, even if AdvisedDecision were true, otherwise it agrees with |
| /// AdvisedDecision. |
| bool Effect = false; |
| |
| /// What the change in size was: size_after - size_before |
| int64_t Reward = 0; |
| }; |
| |
| /// Collect data we may use for training a model, and write it as a textual |
| /// Tensorflow SequenceExample |
| /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) |
| /// protobuf (https://developers.google.com/protocol-buffers). |
| /// Because this is a protobuf, we cannot just stream the events as they come. |
| /// Internally, TrainingLogger stores data in column-major format, because that |
| /// lines up with how TF SequenceExample represents it. |
| class ModelUnderTrainingRunner; |
| class TrainingLogger final { |
| public: |
| TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); |
| |
| /// Log one inlining event. |
| void logInlineEvent(const InlineEvent &Event, |
| const MLModelRunner &ModelRunner); |
| |
| /// Print the stored tensors. |
| void print(); |
| |
| private: |
| StringRef LogFileName; |
| const ModelUnderTrainingRunner *const MUTR; |
| std::unique_ptr<Logger> L; |
| std::vector<bool> Effects; |
| /// There's at least one output. We'll set this to a different value if MUTR |
| /// is avaliable. |
| size_t OutputCount = 1; |
| /// Set these 2 clearly OOB, to make sure we set them later. |
| size_t DefaultDecisionPos = std::numeric_limits<size_t>::max(); |
| size_t DecisionPos = std::numeric_limits<size_t>::max(); |
| }; |
| |
| /// An extension of the MLInlineAdvisor for the 'development' mode, targeting |
| /// the offline training scenario. Note that training happens outside of the |
| /// compiler, this facility is concerned with producing training data ("logs"). |
| /// This InlineAdvisor can operate in the following modes: |
| /// |
| /// 1) collect logs for the default policy. This is useful for bootstrapping |
| /// training, which will be considerably faster by starting from a reasonable |
| /// policy. |
| /// |
| /// 2) collect logs for the ML policy, using a model from a previous |
| /// training. Potentially, that model uses internally some small random |
| /// perturbation of its weights, to induce exploration (setting this up is the |
| /// responsibility of the training algorithm). The logs would then be used to |
| /// retrain and improve on this model. |
| /// |
| /// 3) use the provided model, with no logging. This is useful for end to end |
| /// validation - the model, in this case, is a release candidate and shouldn't |
| /// have random perturbations. It is a convenience feature: rather than needing |
| /// to take the release candidate model and compile it in 'release' mode, |
| /// validate it, then potentially discard it, it's easier to just pass the model |
| /// to the compiler, albeit compilation would be slower, as a one-off. Once the |
| /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in |
| /// release mode. The expectation is that a well-trained model provides a good |
| /// policy over a sufficiently diverse codebase, over many changes (i.e. |
| /// training happens seldom). |
| class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { |
| public: |
| DevelopmentModeMLInlineAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::unique_ptr<MLModelRunner> ModelRunner, |
| std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, |
| std::unique_ptr<TrainingLogger> Logger); |
| |
| size_t getTotalSizeEstimate(); |
| |
| virtual ~DevelopmentModeMLInlineAdvisor(); |
| void updateNativeSizeEstimate(int64_t Change) { |
| *CurrentNativeSize += Change; |
| } |
| void resetNativeSize(Function *F) { |
| PreservedAnalyses PA = PreservedAnalyses::all(); |
| PA.abandon<InlineSizeEstimatorAnalysis>(); |
| FAM.invalidate(*F, PA); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; |
| |
| Optional<size_t> getNativeSizeEstimate(const Function &F) const; |
| |
| private: |
| bool isLogging() const { return !!Logger; } |
| std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override; |
| |
| std::function<bool(CallBase &)> GetDefaultAdvice; |
| const bool IsDoingInference; |
| std::unique_ptr<TrainingLogger> Logger; |
| |
| const Optional<int32_t> InitialNativeSize; |
| Optional<int32_t> CurrentNativeSize; |
| }; |
| |
| /// A variant of MLInlineAdvice that tracks all non-trivial inlining |
| /// decisions, for training/logging. |
| class LoggingMLInlineAdvice : public MLInlineAdvice { |
| public: |
| LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, |
| OptimizationRemarkEmitter &ORE, bool Recommendation, |
| TrainingLogger &Logger, |
| Optional<size_t> CallerSizeEstimateBefore, |
| Optional<size_t> CalleeSizeEstimateBefore, |
| bool DefaultDecision, bool Mandatory = false) |
| : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), |
| CallerSizeEstimateBefore(CallerSizeEstimateBefore), |
| CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), |
| DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} |
| |
| virtual ~LoggingMLInlineAdvice() = default; |
| |
| private: |
| DevelopmentModeMLInlineAdvisor *getAdvisor() const { |
| return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor); |
| } |
| void recordInliningImpl() override { |
| MLInlineAdvice::recordInliningImpl(); |
| getAdvisor()->resetNativeSize(Caller); |
| int Reward = std::numeric_limits<int>::max(); |
| if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && |
| !getAdvisor()->isForcedToStop()) { |
| int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + |
| *CalleeSizeEstimateBefore; |
| Reward = NativeSizeAfter - |
| (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); |
| getAdvisor()->updateNativeSizeEstimate(Reward); |
| } |
| log(Reward, /*Success=*/true); |
| } |
| |
| void recordInliningWithCalleeDeletedImpl() override { |
| MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); |
| getAdvisor()->resetNativeSize(Caller); |
| if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && |
| !getAdvisor()->isForcedToStop()) { |
| int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); |
| int Reward = NativeSizeAfter - |
| (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); |
| getAdvisor()->updateNativeSizeEstimate(Reward); |
| log(Reward, /*Success=*/true); |
| } else { |
| log(NoReward, /*Success=*/true); |
| } |
| } |
| |
| void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { |
| MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); |
| log(NoReward, /*Success=*/false); |
| } |
| |
| void recordUnattemptedInliningImpl() override { |
| MLInlineAdvice::recordUnattemptedInliningImpl(); |
| log(NoReward, /*Success=*/false); |
| } |
| |
| void log(int64_t Reward, bool Success) { |
| if (Mandatory) |
| return; |
| InlineEvent Event; |
| Event.AdvisedDecision = isInliningRecommended(); |
| Event.DefaultDecision = DefaultDecision; |
| Event.Effect = Success; |
| Event.Reward = Reward; |
| Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); |
| } |
| |
| static const int64_t NoReward = 0; |
| TrainingLogger &Logger; |
| const Optional<size_t> CallerSizeEstimateBefore; |
| const Optional<size_t> CalleeSizeEstimateBefore; |
| const int64_t DefaultDecision; |
| const int64_t Mandatory; |
| }; |
| |
| /// A pseudo model runner. We use it to store feature values when collecting |
| /// logs for the default policy, but never ask it to 'run'. |
| class NoInferenceModelRunner : public MLModelRunner { |
| public: |
| NoInferenceModelRunner(LLVMContext &Ctx) |
| : MLModelRunner(Ctx), Features(NumberOfFeatures) {} |
| void setFeature(FeatureIndex Index, int64_t Value) override { |
| Features[static_cast<int>(Index)] = Value; |
| } |
| |
| int64_t getFeature(int Index) const override { return Features[Index]; } |
| bool run() override { |
| llvm_unreachable("We shouldn't call run on this model runner."); |
| } |
| |
| private: |
| InlineFeatures Features; |
| }; |
| |
| /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs |
| /// to dynamically load and evaluate a TF SavedModel |
| /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is |
| /// sacrificed for ease of use while training. |
| class ModelUnderTrainingRunner final : public MLModelRunner { |
| public: |
| ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); |
| |
| bool run() override; |
| |
| // Disallows copy and assign. |
| ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; |
| ModelUnderTrainingRunner & |
| operator=(const ModelUnderTrainingRunner &) = delete; |
| |
| void setFeature(FeatureIndex Index, int64_t Value) override; |
| int64_t getFeature(int Index) const override; |
| bool isValid() const { return !!Evaluator; } |
| |
| const std::vector<LoggedFeatureSpec> &outputLoggedFeatureSpecs() const { |
| return OutputSpecs; |
| } |
| |
| const Optional<TFModelEvaluator::EvaluationResult> & |
| lastEvaluationResult() const { |
| return LastEvaluationResult; |
| } |
| |
| private: |
| std::unique_ptr<TFModelEvaluator> Evaluator; |
| std::vector<LoggedFeatureSpec> OutputSpecs; |
| Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult; |
| |
| // The training framework needs some additional features. |
| const std::vector<TensorSpec> TrainingOnlyFeatures{ |
| TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}), |
| TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}), |
| TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}), |
| TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})}; |
| }; |
| } // namespace |
| |
| TrainingLogger::TrainingLogger(StringRef LogFileName, |
| const ModelUnderTrainingRunner *MUTR) |
| : LogFileName(LogFileName), MUTR(MUTR) { |
| // The first output is the inlining decision. |
| if (MUTR) |
| OutputCount = MUTR->outputLoggedFeatureSpecs().size(); |
| std::vector<LoggedFeatureSpec> FT; |
| |
| for (size_t I = 0; I < NumberOfFeatures; ++I) |
| FT.push_back( |
| {TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}), None}); |
| if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1) |
| append_range(FT, drop_begin(MUTR->outputLoggedFeatureSpecs())); |
| |
| DefaultDecisionPos = FT.size(); |
| FT.push_back( |
| {TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}), None}); |
| |
| DecisionPos = FT.size(); |
| FT.push_back({TensorSpec::createSpec<int64_t>(DecisionName, {1}), None}); |
| |
| L = std::make_unique<Logger>( |
| FT, TensorSpec::createSpec<int64_t>(RewardName, {1}), |
| InlineSizeEstimatorAnalysis::isEvaluatorRequested()); |
| } |
| |
| /// Log one inlining event. |
| void TrainingLogger::logInlineEvent(const InlineEvent &Event, |
| const MLModelRunner &ModelRunner) { |
| size_t CurrentFeature = 0; |
| for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) { |
| int64_t F = ModelRunner.getFeature(CurrentFeature); |
| L->logInt64Value(CurrentFeature, &F); |
| } |
| |
| for (size_t I = 1; I < OutputCount; ++I) { |
| const auto &Result = *MUTR->lastEvaluationResult(); |
| const char *RawData = |
| reinterpret_cast<const char *>(Result.getUntypedTensorValue(I)); |
| L->logSpecifiedTensorValue(CurrentFeature, RawData); |
| ++CurrentFeature; |
| } |
| |
| assert(CurrentFeature == DefaultDecisionPos); |
| L->logInt64Value(DefaultDecisionPos, &Event.DefaultDecision); |
| L->logInt64Value(DecisionPos, &Event.AdvisedDecision); |
| if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) |
| L->logInt64Reward(Event.Reward); |
| |
| // For debugging / later use |
| Effects.push_back(Event.Effect); |
| } |
| |
| void TrainingLogger::print() { |
| std::error_code EC; |
| raw_fd_ostream OutFile(LogFileName, EC); |
| L->flush(OutFile); |
| } |
| |
| DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::unique_ptr<MLModelRunner> ModelRunner, |
| std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, |
| std::unique_ptr<TrainingLogger> Logger) |
| : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), |
| GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), |
| Logger(std::move(Logger)), |
| InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), |
| CurrentNativeSize(InitialNativeSize) { |
| // We cannot have the case of neither inference nor logging. |
| assert(IsDoingInference || isLogging()); |
| } |
| |
| DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { |
| if (isLogging()) |
| Logger->print(); |
| } |
| |
| Optional<size_t> |
| DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { |
| if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) |
| return None; |
| auto &R = |
| FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F)); |
| if (!R) { |
| F.getParent()->getContext().emitError( |
| "Native size estimator is not present."); |
| return 0; |
| } |
| return *R; |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { |
| return std::make_unique<LoggingMLInlineAdvice>( |
| /*Advisor=*/this, |
| /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true, |
| /*Logger=*/*Logger, |
| /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), |
| /*CalleeSizeEstimateBefore=*/ |
| getNativeSizeEstimate(*CB.getCalledFunction()), |
| /*DefaultDecision=*/true, /*Mandatory*/ true); |
| } |
| |
| std::unique_ptr<MLInlineAdvice> |
| DevelopmentModeMLInlineAdvisor::getAdviceFromModel( |
| CallBase &CB, OptimizationRemarkEmitter &ORE) { |
| if (IsDoingInference && !isLogging()) |
| return MLInlineAdvisor::getAdviceFromModel(CB, ORE); |
| |
| bool DefaultAdvice = GetDefaultAdvice(CB); |
| auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice; |
| return std::make_unique<LoggingMLInlineAdvice>( |
| /*Advisor=*/this, |
| /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, |
| /*Logger=*/*Logger, |
| /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), |
| /*CalleeSizeEstimateBefore=*/ |
| getNativeSizeEstimate(*CB.getCalledFunction()), |
| /*DefaultDecision=*/DefaultAdvice); |
| } |
| |
| size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { |
| if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) |
| return 0; |
| size_t Ret = 0; |
| for (auto &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| if (isFunctionDeleted(&F)) |
| continue; |
| Ret += *getNativeSizeEstimate(F); |
| } |
| return Ret; |
| } |
| |
| ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, |
| const std::string &ModelPath) |
| : MLModelRunner(Ctx) { |
| std::vector<TensorSpec> InputSpecs; |
| for (size_t I = 0; I < NumberOfFeatures; ++I) |
| InputSpecs.push_back( |
| TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1})); |
| append_range(InputSpecs, TrainingOnlyFeatures); |
| if (auto MaybeOutSpecs = |
| loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride)) |
| OutputSpecs = std::move(*MaybeOutSpecs); |
| else |
| return; |
| |
| Evaluator = std::make_unique<TFModelEvaluator>( |
| ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; }, |
| OutputSpecs.size()); |
| if (!Evaluator || !Evaluator->isValid()) { |
| Ctx.emitError("Failed to create inliner saved model evaluator"); |
| Evaluator.reset(); |
| return; |
| } |
| } |
| |
| bool ModelUnderTrainingRunner::run() { |
| LastEvaluationResult = Evaluator->evaluate(); |
| if (!LastEvaluationResult.hasValue()) { |
| Ctx.emitError("Error evaluating model."); |
| return false; |
| } |
| int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0); |
| return static_cast<bool>(Decision); |
| } |
| |
| int64_t ModelUnderTrainingRunner::getFeature(int Index) const { |
| return *Evaluator->getInput<int64_t>(Index); |
| } |
| |
| void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) { |
| size_t NumericIndex = static_cast<size_t>(Index); |
| *(Evaluator->getInput<int64_t>(NumericIndex)) = Value; |
| } |
| |
| std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor( |
| Module &M, ModuleAnalysisManager &MAM, |
| std::function<bool(CallBase &)> GetDefaultAdvice) { |
| auto &Ctx = M.getContext(); |
| std::unique_ptr<MLModelRunner> Runner; |
| ModelUnderTrainingRunner *MUTRPtr = nullptr; |
| bool IsDoingInference = false; |
| if (TFModelUnderTrainingPath.empty()) |
| Runner.reset(new NoInferenceModelRunner(Ctx)); |
| else { |
| auto MUTR = std::make_unique<ModelUnderTrainingRunner>( |
| Ctx, TFModelUnderTrainingPath); |
| if (!MUTR || !MUTR->isValid()) { |
| Ctx.emitError("Could not load the policy model from the provided path"); |
| return nullptr; |
| } |
| IsDoingInference = true; |
| MUTRPtr = MUTR.get(); |
| Runner = std::move(MUTR); |
| } |
| std::unique_ptr<TrainingLogger> Logger; |
| if (!TrainingLog.empty()) |
| Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr); |
| |
| return std::make_unique<DevelopmentModeMLInlineAdvisor>( |
| M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, |
| std::move(Logger)); |
| } |
| #endif // defined(LLVM_HAVE_TF_API) |