blob: e5f9717c3fbaaeb74b8266115aadb9bc5bfd2f47 [file] [log] [blame]
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library (other than for file I/O), and providing many more
// opportunities for subsequent compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "Utils/CodegenUtils.h"
#include "Utils/SparseTensorDescriptor.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Flatten the given value ranges into a single vector of values.
static SmallVector<Value> flattenValues(ArrayRef<ValueRange> values) {
SmallVector<Value> result;
for (const auto &vals : values)
llvm::append_range(result, vals);
return result;
}
/// Generates a load with proper `index` typing.
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
return builder.create<memref::LoadOp>(loc, mem, idx);
}
/// Generates a store with proper `index` typing and proper value.
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
Value idx) {
idx = genCast(builder, loc, idx, builder.getIndexType());
val = genCast(builder, loc, val,
cast<ShapedType>(mem.getType()).getElementType());
builder.create<memref::StoreOp>(loc, val, mem, idx);
}
/// Creates a straightforward counting for-loop.
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
MutableArrayRef<Value> fields,
Value lower = Value()) {
Type indexType = builder.getIndexType();
if (!lower)
lower = constantZero(builder, loc, indexType);
Value one = constantOne(builder, loc, indexType);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
for (unsigned i = 0, e = fields.size(); i < e; i++)
fields[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
return forOp;
}
/// Creates a push back operation.
static void createPushback(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc,
SparseTensorFieldKind kind, std::optional<Level> lvl,
Value value, Value repeat = Value()) {
Type etp = desc.getMemRefElementType(kind, lvl);
Value field = desc.getMemRefField(kind, lvl);
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
auto pushBackOp = builder.create<PushBackOp>(
loc, desc.getSpecifierField(builder, loc, specFieldKind, lvl), field,
genCast(builder, loc, value, etp), repeat);
desc.setMemRefField(kind, lvl, pushBackOp.getOutBuffer());
desc.setSpecifierField(builder, loc, specFieldKind, lvl,
pushBackOp.getNewSize());
}
/// Generates code that allocates a sparse storage scheme for given rank.
static void allocSchemeForRank(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, Level startLvl) {
const SparseTensorType stt(desc.getRankedTensorType());
Value linear = constantIndex(builder, loc, 1);
const Level lvlRank = stt.getLvlRank();
for (Level lvl = startLvl; lvl < lvlRank; lvl++) {
const auto lt = stt.getLvlType(lvl);
if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
// Append linear x positions, initialized to zero. Since each compressed
// dimension initially already has a single zero entry, this maintains
// the desired "linear + 1" length property at all times. For loose
// compression, we multiply linear by two in order to append both the
// lo/hi positions.
Value posZero = constantZero(builder, loc, stt.getPosType());
if (isLooseCompressedLT(lt)) {
Value two = constantIndex(builder, loc, 2);
linear = builder.create<arith::MulIOp>(loc, linear, two);
}
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
/*value=*/posZero, /*repeat=*/linear);
return;
} else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
return; // nothing to do
}
// Keep compounding the size, but nothing needs to be initialized
// at this level. We will eventually reach a compressed level or
// otherwise the values array for the from-here "all-dense" case.
assert(isDenseLT(lt));
Value size = desc.getLvlSize(builder, loc, lvl);
linear = builder.create<arith::MulIOp>(loc, linear, size);
}
// Reached values array so prepare for an insertion.
Value valZero = constantZero(builder, loc, stt.getElementType());
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, /*value=*/valZero, /*repeat=*/linear);
}
/// Creates allocation operation.
static Value createAllocation(OpBuilder &builder, Location loc,
MemRefType memRefType, Value sz,
bool enableInit) {
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
Type elemType = memRefType.getElementType();
if (enableInit) {
Value fillValue = constantZero(builder, loc, elemType);
builder.create<linalg::FillOp>(loc, fillValue, buffer);
}
return buffer;
}
/// Creates the dim sizes array, filling in from dynamic sizes.
static void createDimSizes(OpBuilder &builder, Location loc,
SparseTensorType stt, ValueRange dynSizes,
/*out*/ SmallVectorImpl<Value> &dimSizesValues) {
const Dimension dimRank = stt.getDimRank();
dimSizesValues.clear();
dimSizesValues.reserve(dimRank);
unsigned i = 0;
for (const Size sz : stt.getDimShape())
dimSizesValues.push_back(ShapedType::isDynamic(sz)
? dynSizes[i++]
: constantIndex(builder, loc, sz));
}
/// Creates allocation for each field in sparse tensor type. Note that
/// for all dynamic memrefs in the sparse tensor stroage layout, the
/// memory size is really the capacity of the "vector", while the actual
/// size resides in the sizes array.
static void createAllocFields(OpBuilder &builder, Location loc,
SparseTensorType stt, bool enableInit,
Value sizeHint,
SmallVectorImpl<Value> &lvlSizesValues,
/*out*/ SmallVectorImpl<Value> &fields) {
Level lvlRank = stt.getLvlRank();
// Set up some heuristic sizes. We try to set the initial
// size based on available information. Otherwise we just
// initialize a few elements to start the reallocation chain.
// TODO: refine this
Value posHeuristic, crdHeuristic, valHeuristic;
if (stt.isAllDense()) {
valHeuristic = lvlSizesValues[0];
for (Level lvl = 1; lvl < lvlRank; lvl++)
valHeuristic =
builder.create<arith::MulIOp>(loc, valHeuristic, lvlSizesValues[lvl]);
} else if (sizeHint) {
if (stt.getAoSCOOStart() == 0) {
posHeuristic = constantIndex(builder, loc, 2);
crdHeuristic = builder.create<arith::MulIOp>(
loc, constantIndex(builder, loc, lvlRank), sizeHint); // AOS
} else if (lvlRank == 2 && stt.isDenseLvl(0) && stt.isCompressedLvl(1)) {
posHeuristic = builder.create<arith::AddIOp>(
loc, sizeHint, constantIndex(builder, loc, 1));
crdHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = constantIndex(builder, loc, 16);
}
valHeuristic = sizeHint;
} else {
posHeuristic = crdHeuristic = valHeuristic =
constantIndex(builder, loc, 16);
}
// Initializes all fields. An initial storage specifier and allocated
// positions/coordinates/values memrefs (with heuristic capacity).
foreachFieldAndTypeInSparseTensor(
stt,
[&builder, &fields, stt, loc, posHeuristic, crdHeuristic, valHeuristic,
enableInit](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, LevelType /*lt*/) -> bool {
assert(fields.size() == fIdx);
Value field;
switch (fKind) {
case SparseTensorFieldKind::StorageSpec:
field = SparseTensorSpecifier::getInitValue(builder, loc, stt);
break;
case SparseTensorFieldKind::PosMemRef:
field = createAllocation(builder, loc, cast<MemRefType>(fType),
posHeuristic, enableInit);
break;
case SparseTensorFieldKind::CrdMemRef:
field = createAllocation(builder, loc, cast<MemRefType>(fType),
crdHeuristic, enableInit);
break;
case SparseTensorFieldKind::ValMemRef:
field = createAllocation(builder, loc, cast<MemRefType>(fType),
valHeuristic, enableInit);
break;
}
assert(field);
fields.push_back(field);
// Returns true to continue the iteration.
return true;
});
// Initialize the storage scheme to an empty tensor. Sets the lvlSizes
// and gives all position fields an initial zero entry, so that it is
// easier to maintain the "linear + 1" length property.
MutSparseTensorDescriptor desc(stt, fields);
Value posZero = constantZero(builder, loc, stt.getPosType());
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
desc.setLvlSize(builder, loc, lvl, lvlSizesValues[lvl]);
const auto lt = stt.getLvlType(lvl);
if (isCompressedLT(lt) || isLooseCompressedLT(lt))
createPushback(builder, loc, desc, SparseTensorFieldKind::PosMemRef, lvl,
/*value=*/posZero);
}
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
}
/// Helper method that generates block specific to compressed case:
///
/// // given: parentPos = posCursor[lvl-1]
/// pstart = desc.positions[lvl][parentPos]
/// pstop = desc.positions[lvl][parentPos+1]
/// plast = pstop - 1
/// msz = desc.coordinates[lvl].size()
/// if (pstart < pstop) {
/// isPresent = (desc.coordinates[lvl][plast] == lvlCoords[lvl])
/// } else { // first insertion
/// isPresent = false
/// desc.positions[lvl][parentPos] = msz
/// }
/// if (isPresent) { // coordinate is already present
/// pnext = plast
/// } else {
/// desc.coordinates[lvl].push_back(lvlCoords[lvl])
/// desc.positions[lvl][parentPos+1] = msz+1
/// pnext = msz
/// <prepare level lvl+1>
/// }
/// posCursor[lvl] = pnext
static Value genCompressed(OpBuilder &builder, Location loc,
MutSparseTensorDescriptor desc, ValueRange lvlCoords,
Value /*unused*/, Value parentPos, Level lvl) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
assert(lvl < lvlRank && "Level is out of bounds");
assert(lvlCoords.size() == static_cast<size_t>(lvlRank) &&
"Level-rank mismatch");
SmallVector<Type> types;
Type indexType = builder.getIndexType();
Type boolType = builder.getIntegerType(1);
unsigned crdFidx;
unsigned crdStride;
std::tie(crdFidx, crdStride) = desc.getCrdMemRefIndexAndStride(lvl);
const Value one = constantIndex(builder, loc, 1);
const Value pp1 = builder.create<arith::AddIOp>(loc, parentPos, one);
const Value positionsAtLvl = desc.getPosMemRef(lvl);
const Value pstart = genLoad(builder, loc, positionsAtLvl, parentPos);
const Value pstop = genLoad(builder, loc, positionsAtLvl, pp1);
const Value crdMsz = desc.getCrdMemSize(builder, loc, lvl);
const Value crdStrideC =
crdStride > 1 ? constantIndex(builder, loc, crdStride) : Value();
const Value msz =
crdStrideC ? builder.create<arith::DivUIOp>(loc, crdMsz, crdStrideC)
: crdMsz;
const Value plast = builder.create<arith::SubIOp>(
loc, genCast(builder, loc, pstop, indexType), one);
// Conditional expression.
Value lt = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
pstart, pstop);
types.push_back(boolType);
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
types.pop_back();
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
Value crd =
genLoad(builder, loc, desc.getMemRefField(crdFidx),
crdStrideC ? builder.create<arith::MulIOp>(loc, plast, crdStrideC)
: plast);
Value eq = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, genCast(builder, loc, crd, indexType),
lvlCoords[lvl]);
builder.create<scf::YieldOp>(loc, eq);
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
if (lvl > 0)
genStore(builder, loc, msz, positionsAtLvl, parentPos);
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
builder.setInsertionPointAfter(ifOp1);
// If present construct. Note that for a non-unique dimension level, we
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
//
// TODO: generate less temporary IR?
//
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
types.push_back(desc.getField(i).getType());
types.push_back(indexType);
const Value p = stt.isUniqueLvl(lvl) ? ifOp1.getResult(0)
: constantI1(builder, loc, false);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
// If present (fields unaffected, update pnext to plast).
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
// FIXME: This does not looks like a clean way, but probably the most
// efficient way.
desc.getFields().push_back(plast);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// If !present (changes fields, update pnext).
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
genStore(builder, loc, mszp1, positionsAtLvl, pp1);
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef, lvl,
/*value=*/lvlCoords[lvl]);
// Prepare the next level "as needed".
if ((lvl + 1) < lvlRank)
allocSchemeForRank(builder, loc, desc, lvl + 1);
desc.getFields().push_back(msz);
builder.create<scf::YieldOp>(loc, desc.getFields());
desc.getFields().pop_back();
// Update fields and return next pos.
builder.setInsertionPointAfter(ifOp2);
unsigned o = 0;
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
desc.setField(i, ifOp2.getResult(o++));
return ifOp2.getResult(o);
}
/// Generates insertion finalization code.
static void genEndInsert(OpBuilder &builder, Location loc,
SparseTensorDescriptor desc) {
const SparseTensorType stt(desc.getRankedTensorType());
const Level lvlRank = stt.getLvlRank();
for (Level lvl = 0; lvl < lvlRank; lvl++) {
const auto lt = stt.getLvlType(lvl);
if (isCompressedLT(lt)) {
// Compressed dimensions need a position cleanup for all entries
// that were not visited during the insertion pass.
//
// TODO: avoid cleanup and keep compressed scheme consistent at all
// times?
//
if (lvl > 0) {
Type posType = stt.getPosType();
Value posMemRef = desc.getPosMemRef(lvl);
Value hi = desc.getPosMemSize(builder, loc, lvl);
Value zero = constantIndex(builder, loc, 0);
Value one = constantIndex(builder, loc, 1);
// Vector of only one, but needed by createFor's prototype.
SmallVector<Value, 1> inits{genLoad(builder, loc, posMemRef, zero)};
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
Value i = loop.getInductionVar();
Value oldv = loop.getRegionIterArg(0);
Value newv = genLoad(builder, loc, posMemRef, i);
Value posZero = constantZero(builder, loc, posType);
Value cond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, newv, posZero);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(posType),
cond, /*else*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
genStore(builder, loc, oldv, posMemRef, i);
builder.create<scf::YieldOp>(loc, oldv);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, newv);
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
builder.setInsertionPointAfter(loop);
}
} else {
assert(isDenseLT(lt) || isLooseCompressedLT(lt) || isSingletonLT(lt) ||
isNOutOfMLT(lt));
}
}
}
/// Generates a subview into the sizes.
static Value genSliceToSize(OpBuilder &builder, Location loc, Value mem,
Value sz) {
auto memTp = llvm::cast<MemRefType>(mem.getType());
// For higher-dimensional memrefs, we assume that the innermost
// dimension is always of the right size.
// TODO: generate complex truncating view here too?
if (memTp.getRank() > 1)
return mem;
// Truncate linear memrefs to given size.
return builder
.create<memref::SubViewOp>(
loc, MemRefType::get({ShapedType::kDynamic}, memTp.getElementType()),
mem, ValueRange{}, ValueRange{sz}, ValueRange{},
ArrayRef<int64_t>{0}, // static offset
ArrayRef<int64_t>{ShapedType::kDynamic}, // dynamic size
ArrayRef<int64_t>{1}) // static stride
.getResult();
}
/// Creates the reassociation array.
static SmallVector<ReassociationIndices>
getReassociationForFlattening(ShapedType srcTp, unsigned batchLvls) {
SmallVector<ReassociationIndices> ret(batchLvls + 1, {});
// Create reassociation in the form:
// {0}, {1}, ..., {batchLvl - 1}, {batchLvl, ..., rank}
for (unsigned i = 0; i < batchLvls; i++)
ret[i].push_back(i);
for (int i = batchLvls, e = srcTp.getRank(); i < e; i++)
ret.back().push_back(i);
return ret;
}
//===----------------------------------------------------------------------===//
// Codegen rules.
//===----------------------------------------------------------------------===//
namespace {
/// Helper class to help lowering sparse_tensor.insert operation.
class SparseInsertGenerator
: public FuncCallOrInlineGenerator<SparseInsertGenerator> {
public:
SparseInsertGenerator(TensorType rtp, TypeRange retTypes, ValueRange params,
bool genCall)
: FuncCallOrInlineGenerator(retTypes, params, genCall), rtp(rtp){};
/// Generates code along an insertion path without the need for a "cursor".
/// This current insertion strategy comes at the expense of some testing
/// overhead for each insertion. The strategy will be optimized later for
/// common insertion patterns. The current insertion strategy also assumes
/// insertions occur in "a reasonable order" that enables building the
/// storage scheme in an appending/inserting kind of fashion (i.e. no
/// in-between insertions that need data movement). The implementation
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
///
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
SmallVector<Value> genImplementation(TypeRange retTypes, ValueRange args,
OpBuilder &builder, Location loc) {
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
const Level lvlRank = stt.getLvlRank();
// Extract fields and coordinates from args.
SmallVector<Value> fields = llvm::to_vector(args.drop_back(lvlRank + 1));
MutSparseTensorDescriptor desc(stt, fields);
const SmallVector<Value> coords =
llvm::to_vector(args.take_back(lvlRank + 1).drop_back());
Value value = args.back();
Value parentPos = constantZero(builder, loc, builder.getIndexType());
// Generate code for every level.
for (Level lvl = 0; lvl < lvlRank; lvl++) {
const auto lt = stt.getLvlType(lvl);
if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
// Create:
// if (!present) {
// coordinates[lvl].push_back(coords[lvl])
// <update positions and prepare level lvl + 1>
// }
// positions[lvl] = coordinates.size() - 1
// <insert @ positions[lvl] at next level lvl + 1>
if (isLooseCompressedLT(lt)) {
Value two = constantIndex(builder, loc, 2);
parentPos = builder.create<arith::MulIOp>(loc, parentPos, two);
}
parentPos =
genCompressed(builder, loc, desc, coords, value, parentPos, lvl);
} else if (isSingletonLT(lt) || isNOutOfMLT(lt)) {
// Create:
// coordinates[lvl].push_back(coords[lvl])
// positions[lvl] = positions[lvl-1]
// <insert @ positions[lvl] at next level lvl + 1>
createPushback(builder, loc, desc, SparseTensorFieldKind::CrdMemRef,
lvl, /*value=*/coords[lvl]);
} else {
assert(isDenseLT(lt));
// Construct the new position as:
// positions[lvl] = size * positions[lvl-1] + coords[lvl]
// <insert @ positions[lvl] at next level lvl + 1>
Value size = desc.getLvlSize(builder, loc, lvl);
Value mult = builder.create<arith::MulIOp>(loc, size, parentPos);
parentPos = builder.create<arith::AddIOp>(loc, mult, coords[lvl]);
}
}
// Reached the actual value append/insert.
if (!stt.isDenseLvl(lvlRank - 1))
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
std::nullopt, value);
else
genStore(builder, loc, value, desc.getValMemRef(), parentPos);
return fields;
}
std::string getMangledFuncName() {
// The mangled name of the function has this format:
// <namePrefix>_<LT>_<shape>_<ordering>_<eltType>_<crdWidth>_<posWidth>
constexpr const char kInsertFuncNamePrefix[] = "_insert_";
const SparseTensorType stt(llvm::cast<RankedTensorType>(rtp));
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
nameOstream << kInsertFuncNamePrefix;
const Level lvlRank = stt.getLvlRank();
for (Level l = 0; l < lvlRank; l++) {
std::string lvlType = toMLIRString(stt.getLvlType(l));
// Replace/remove punctuations in level properties.
std::replace_if(
lvlType.begin(), lvlType.end(),
[](char c) { return c == '(' || c == ','; }, '_');
llvm::erase_if(lvlType, [](char c) { return c == ')' || c == ' '; });
nameOstream << lvlType << "_";
}
// Static dim sizes are used in the generated code while dynamic sizes are
// loaded from the dimSizes buffer. This is the reason for adding the shape
// to the function name.
for (const auto sz : stt.getDimShape())
nameOstream << sz << "_";
// Permutation information is also used in generating insertion.
if (!stt.isIdentity())
nameOstream << stt.getDimToLvl() << "_";
nameOstream << stt.getElementType() << "_";
nameOstream << stt.getCrdWidth() << "_" << stt.getPosWidth();
return nameOstream.str().str();
}
private:
TensorType rtp;
};
/// Sparse tensor storage conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Create a return with the flattened value extracted from sparse tensors.
rewriter.replaceOpWithNewOp<func::ReturnOp>(
op, flattenValues(adaptor.getOperands()));
return success();
}
};
/// Sparse tensor storage conversion rule for calls.
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
public:
// The default CallOp converter can not handle 1:N type conversion.
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::CallOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// In case of:
// sparse_tensor, f, sparse_tensor = call @foo(...)
// ==>
// memref..., f, memref = call @foo(...) replace with
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
SmallVector<Type> finalRetTy;
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
return failure();
// (1) Generates new call with flattened return value.
auto newCall = rewriter.create<func::CallOp>(
loc, op.getCallee(), finalRetTy, flattenValues(adaptor.getOperands()));
// (2) Gather sparse tensor returns.
SmallVector<SmallVector<Value>> packedResultVals;
// Tracks the offset of current return value (of the original call)
// relative to the new call (after sparse tensor flattening);
unsigned retOffset = 0;
// Temporal buffer to hold the flattened list of type for
// a sparse tensor.
SmallVector<Type> sparseFlat;
for (auto ret : op.getResults()) {
assert(retOffset < newCall.getNumResults());
auto retType = ret.getType();
if (failed(typeConverter->convertType(retType, sparseFlat)))
llvm_unreachable("Failed to convert type in sparse tensor codegen");
// Converted types can not be empty when the type conversion succeed.
assert(!sparseFlat.empty());
if (sparseFlat.size() > 1) {
auto flatSize = sparseFlat.size();
packedResultVals.emplace_back();
llvm::append_range(packedResultVals.back(),
newCall.getResults().slice(retOffset, flatSize));
retOffset += flatSize;
} else {
// If this is an 1:1 conversion, no need for casting.
packedResultVals.emplace_back();
packedResultVals.back().push_back(newCall.getResult(retOffset));
retOffset++;
}
sparseFlat.clear();
}
assert(packedResultVals.size() == op.getNumResults());
rewriter.replaceOpWithMultiple(op, std::move(packedResultVals));
return success();
}
};
/// Sparse codegen rule for level accesses.
class SparseLvlOpConverter : public OpConversionPattern<LvlOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LvlOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
std::optional<int64_t> lvl = op.getConstantLvlIndex();
RankedTensorType srcType = op.getSource().getType();
if (!lvl || !getSparseTensorEncoding(srcType))
return failure();
auto desc = getDescriptorFromTensorTuple(adaptor.getSource(), srcType);
auto sz = desc.getLvlSize(rewriter, op.getLoc(), *lvl);
rewriter.replaceOp(op, sz);
return success();
}
};
// TODO: use a new SortCOO operation here instead of reusing convert op.
struct SparseReorderCOOConverter : public OpConversionPattern<ReorderCOOOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReorderCOOOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *ctx = op.getContext();
SparseTensorType srcStt = getSparseTensorType(op.getInputCoo());
SparseTensorType dstStt = getSparseTensorType(op.getResultCoo());
// Should have been verified.
assert(dstStt.isAllOrdered() && !srcStt.isAllOrdered() &&
dstStt.isCOOType() && srcStt.isCOOType());
assert(dstStt.hasSameDimToLvl(srcStt));
// We don't need a mutable descriptor here as we perform sorting in-place.
auto desc = getDescriptorFromTensorTuple(adaptor.getInputCoo(),
op.getInputCoo().getType());
auto nnz = desc.getValMemSize(rewriter, op.getLoc());
auto crd = desc.getAOSMemRef();
auto val = desc.getValMemRef();
// Otherwise we need another data shuffle and a non-identity map.
assert(dstStt.hasSameDimToLvl(srcStt));
(void)dstStt; // to silence warning when assertion is disabled
auto id = AffineMap::getMultiDimIdentityMap(srcStt.getLvlRank(), ctx);
rewriter.create<SortOp>(loc, nnz, crd, ValueRange{val}, id,
rewriter.getIndexAttr(0), op.getAlgorithm());
// Since we do in-place sorting, the destinate tensor will have the same set
// of memrefs as the source tensor.
rewriter.replaceOpWithMultiple(op, {adaptor.getInputCoo()});
return success();
}
};
template <typename Op, StorageSpecifierKind kind>
class SparseSliceGetterOpConverter : public OpConversionPattern<Op> {
public:
using OpConversionPattern<Op>::OpConversionPattern;
using typename OpConversionPattern<Op>::OneToNOpAdaptor;
LogicalResult
matchAndRewrite(Op op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply lowers to specifer.get <field> operation.
auto desc = getDescriptorFromTensorTuple(adaptor.getSlice(),
op.getSlice().getType());
auto v = desc.getSpecifierField(rewriter, op.getLoc(), kind,
op.getDim().getZExtValue());
rewriter.replaceOp(op, v);
return success();
}
};
/// Sparse codegen rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
return success();
}
};
class SparseReMapConverter : public OpConversionPattern<ReinterpretMapOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReinterpretMapOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Simply fold the operation.
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
return success();
}
};
/// Sparse codegen rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorAllocConverter(const TypeConverter &typeConverter,
MLIRContext *context, bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto resType = getSparseTensorType(op);
if (!resType.hasEncoding())
return failure();
Location loc = op.getLoc();
// Deal with copy.
if (op.getCopy()) {
auto desc = getDescriptorFromTensorTuple(
adaptor.getCopy(), cast<RankedTensorType>(op.getCopy().getType()));
SmallVector<Value> fields;
fields.reserve(desc.getNumFields());
// Memcpy on memref fields.
for (auto field : desc.getMemRefFields()) {
auto memrefTp = cast<MemRefType>(field.getType());
auto size = rewriter.create<memref::DimOp>(loc, field, 0);
auto copied =
rewriter.create<memref::AllocOp>(loc, memrefTp, ValueRange{size});
rewriter.create<memref::CopyOp>(loc, field, copied);
fields.push_back(copied);
}
// Reuses specifier.
fields.push_back(desc.getSpecifier());
assert(fields.size() == desc.getNumFields());
rewriter.replaceOpWithMultiple(op, {fields});
return success();
}
if (!resType.isIdentity()) {
return rewriter.notifyMatchFailure(
op, "try run --sparse-reinterpret-map before codegen");
}
// Level size equals to dimension size since lvl2dim map is an identity map.
SmallVector<Value> lvlSizesValues;
createDimSizes(rewriter, loc, resType,
flattenValues(adaptor.getDynamicSizes()),
/*dimSizesValues=*/lvlSizesValues);
// Construct allocation for each field.
Value sizeHint = op.getSizeHint();
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, enableBufferInitialization,
sizeHint, lvlSizesValues, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {fields});
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the empty tensor operator.
class SparseTensorEmptyConverter : public OpConversionPattern<tensor::EmptyOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorEmptyConverter(const TypeConverter &typeConverter,
MLIRContext *context, bool enableInit)
: OpConversionPattern(typeConverter, context),
enableBufferInitialization(enableInit) {}
LogicalResult
matchAndRewrite(tensor::EmptyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
const auto resType = getSparseTensorType(op);
if (!resType.hasEncoding())
return failure();
if (!resType.isIdentity()) {
return rewriter.notifyMatchFailure(
op, "try run --sparse-reinterpret-map before codegen");
}
Location loc = op.getLoc();
// Level size equals to dimension size since lvl2dim map is an identity map.
SmallVector<Value> lvlSizesValues;
createDimSizes(rewriter, loc, resType, adaptor.getDynamicSizes(),
/*dimSizesValues=*/lvlSizesValues);
// Construct allocation for each field.
Value sizeHint; // none
SmallVector<Value> fields;
createAllocFields(rewriter, loc, resType, enableBufferInitialization,
sizeHint, lvlSizesValues, fields);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {fields});
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse codegen rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorDeallocConverter(const TypeConverter &typeConverter,
MLIRContext *context, bool createDeallocs)
: OpConversionPattern(typeConverter, context),
createDeallocs(createDeallocs) {}
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
// If user requests not to deallocate sparse tensors, simply erase the
// operation.
if (createDeallocs) {
// Replace the sparse tensor deallocation with field deallocations.
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(
adaptor.getTensor(),
cast<RankedTensorType>(op.getTensor().getType()));
for (auto input : desc.getMemRefFields())
// Deallocate every buffer used to store the sparse tensor handler.
rewriter.create<memref::DeallocOp>(loc, input);
}
rewriter.eraseOp(op);
return success();
}
private:
const bool createDeallocs;
};
/// Sparse codegen rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Prepare descriptor.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
// Generate optional insertion finalization code.
if (op.getHasInserts())
genEndInsert(rewriter, op.getLoc(), desc);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
return success();
}
};
/// Sparse codegen rule for the expand op.
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!getSparseTensorEncoding(op.getTensor().getType()))
return failure();
Location loc = op->getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
const auto srcType = getSparseTensorType(op.getTensor());
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// level size).
const auto sz = desc.getLvlSize(rewriter, loc, srcType.getLvlRank() - 1);
// Generate a memref for `sz` elements of type `t`.
const auto genAlloc = [&](Type t) {
const auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
};
// Allocate temporary buffers for values/filled-switch and added.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(eltType);
Value filled = genAlloc(boolType);
Value added = genAlloc(idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial coordinate.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, added, zero});
return success();
}
};
/// Sparse codegen rule for the compress operator.
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields,
op.getTensor().getType());
Value values = llvm::getSingleElement(adaptor.getValues());
Value filled = llvm::getSingleElement(adaptor.getFilled());
Value added = llvm::getSingleElement(adaptor.getAdded());
Value count = llvm::getSingleElement(adaptor.getCount());
const SparseTensorType dstType(desc.getRankedTensorType());
Type eltType = dstType.getElementType();
// If the innermost level is ordered, we need to sort the coordinates
// in the "added" array prior to applying the compression.
if (dstType.isOrderedLvl(dstType.getLvlRank() - 1))
rewriter.create<SortOp>(
loc, count, added, ValueRange{}, rewriter.getMultiDimIdentityMap(1),
rewriter.getIndexAttr(0), SparseTensorSortKind::HybridQuickSort);
// While performing the insertions, we also need to reset the elements
// of the values/filled-switch by only iterating over the set elements,
// to ensure that the runtime complexity remains proportional to the
// sparsity of the expanded access pattern.
//
// Generate
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
// crd = added[i];
// value = values[crd];
// insert({lvlCoords, crd}, value);
// new_memrefs = insert(in_memrefs, {lvlCoords, crd}, value);
// values[crd] = 0;
// filled[crd] = false;
// yield new_memrefs
// }
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
Value i = loop.getInductionVar();
Value crd = genLoad(rewriter, loc, added, i);
Value value = genLoad(rewriter, loc, values, crd);
SmallVector<Value> params(desc.getFields().begin(), desc.getFields().end());
SmallVector<Type> flatSpTensorTps = llvm::to_vector(
llvm::map_range(desc.getFields(), [](Value v) { return v.getType(); }));
SmallVector<Value> flatLvlCoords = flattenValues(adaptor.getLvlCoords());
params.append(flatLvlCoords.begin(), flatLvlCoords.end());
params.push_back(crd);
params.push_back(value);
SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> insertRet = insertGen.genCallOrInline(rewriter, loc);
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values, crd);
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, crd);
rewriter.create<scf::YieldOp>(loc, insertRet);
rewriter.setInsertionPointAfter(loop);
// Deallocate the buffers on exit of the full loop nest.
Operation *parent = getTop(op);
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {loop->getResults()});
return success();
}
};
/// Sparse codegen rule for the insert operator.
class SparseInsertConverter : public OpConversionPattern<tensor::InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::InsertOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto stt = getSparseTensorType(op.getDest());
if (!stt.hasEncoding())
return failure();
assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
Location loc = op.getLoc();
auto desc =
getDescriptorFromTensorTuple(adaptor.getDest(), op.getDest().getType());
TypeRange flatSpTensorTps = desc.getFields().getTypes();
SmallVector<Value> params = llvm::to_vector(desc.getFields());
SmallVector<Value> flatIndices = flattenValues(adaptor.getIndices());
params.append(flatIndices.begin(), flatIndices.end());
params.push_back(llvm::getSingleElement(adaptor.getScalar()));
SparseInsertGenerator insertGen(op.getDest().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {ret});
return success();
}
};
/// Sparse codegen rule for position accesses.
class SparseToPositionsConverter : public OpConversionPattern<ToPositionsOp> {
public:
using OpAdaptor = typename ToPositionsOp::Adaptor;
using OpConversionPattern<ToPositionsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPositionsOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested position access with corresponding field.
// The view is restricted to the actual size to ensure clients
// of this operation truly observe size, not capacity!
Location loc = op.getLoc();
Level lvl = op.getLevel();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
auto mem = desc.getPosMemRef(lvl);
auto size = desc.getPosMemSize(rewriter, loc, lvl);
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
return success();
}
};
/// Sparse codegen rule for accessing the coordinates arrays.
class SparseToCoordinatesConverter
: public OpConversionPattern<ToCoordinatesOp> {
public:
using OpAdaptor = typename ToCoordinatesOp::Adaptor;
using OpConversionPattern<ToCoordinatesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The view is restricted to the actual size to ensure clients
// of this operation truly observe size, not capacity!
Location loc = op.getLoc();
Level lvl = op.getLevel();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
auto mem = desc.getCrdMemRefOrView(rewriter, loc, lvl);
if (lvl < getSparseTensorType(op.getTensor()).getAoSCOOStart()) {
auto size = desc.getCrdMemSize(rewriter, loc, lvl);
mem = genSliceToSize(rewriter, loc, mem, size);
}
rewriter.replaceOp(op, mem);
return success();
}
};
/// Sparse codegen rule for accessing the linear coordinates buffer.
class SparseToCoordinatesBufferConverter
: public OpConversionPattern<ToCoordinatesBufferOp> {
public:
using OpAdaptor = typename ToCoordinatesBufferOp::Adaptor;
using OpConversionPattern<ToCoordinatesBufferOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToCoordinatesBufferOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested coordinates access with corresponding field.
// The view is restricted to the actual size to ensure clients
// of this operation truly observe size, not capacity!
Location loc = op.getLoc();
Level lvl = getSparseTensorType(op.getTensor()).getAoSCOOStart();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
auto mem = desc.getAOSMemRef();
auto size = desc.getCrdMemSize(rewriter, loc, lvl);
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
return success();
}
};
/// Sparse codegen rule for value accesses.
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpAdaptor = typename ToValuesOp::Adaptor;
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Replace the requested values access with corresponding field.
// The view is restricted to the actual size to ensure clients
// of this operation truly observe size, not capacity!
Location loc = op.getLoc();
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
auto mem = desc.getValMemRef();
auto size = desc.getValMemSize(rewriter, loc);
rewriter.replaceOp(op, genSliceToSize(rewriter, loc, mem, size));
return success();
}
};
/// Sparse codegen rule for the convert operator.
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConvertOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
SparseTensorEncodingAttr encSrc =
getSparseTensorEncoding(op.getSource().getType());
// The output tensor can not be a slice and those cases should have been
// rejected by ConvertOp::verify() already.
assert(!encDst.isSlice() && "Cannot convert to a sparse tensor slices.");
// Different encoding (except for different bitwidth) should be handled by
// rewriting.
// We need further rewrites if the input tensor is a slice too.
if (encDst.withoutBitWidths() != encSrc.withoutBitWidths() ||
encSrc.isSlice()) {
return failure();
}
Type retElemTp = op.getResult().getType().getElementType();
Type srcElemTp = op.getSource().getType().getElementType();
// Fold the trivial cases.
if (retElemTp == srcElemTp && encDst == encSrc) {
rewriter.replaceOpWithMultiple(op, {adaptor.getSource()});
return success();
}
//
// Do element-wise type conversion without using InsertOp.
//
// for each memref in srcTensor:
// dst = memref.alloc
// if srcMemRefType != dstMemRefType:
// for every dst[i] = cast(src[i])
// else:
// dst = memref.copy(src)
Location loc = op.getLoc();
auto srcDesc = getDescriptorFromTensorTuple(adaptor.getSource(),
op.getSource().getType());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
SparseTensorType(cast<RankedTensorType>(op.getResult().getType())),
[&rewriter, &fields, srcDesc,
loc](Type fTp, FieldIndex fIdx, SparseTensorFieldKind fKind, Level lvl,
LevelType /*lt*/) -> bool {
// Simply reuses the storage specifier as it is an SSA value.
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(srcDesc.getSpecifier());
} else {
// Allocates new memrefs
Value srcMem = srcDesc.getMemRefField(fIdx);
// TODO: We can instead use the actual memSize in specifier, that
// would require a subViewOp to avoid overflow when copying
// values.
Value sz = linalg::createOrFoldDimOp(rewriter, loc, srcMem, 0);
auto dstMem = rewriter.create<memref::AllocOp>(
loc, cast<MemRefType>(fTp), sz);
if (fTp != srcMem.getType()) {
// Converts elements type.
scf::buildLoopNest(
rewriter, loc, constantIndex(rewriter, loc, 0), sz,
constantIndex(rewriter, loc, 1),
[srcMem, &dstMem](OpBuilder &builder, Location loc,
ValueRange ivs) {
Value v = builder.create<memref::LoadOp>(loc, srcMem, ivs);
Value casted = genCast(builder, loc, v,
dstMem.getType().getElementType());
builder.create<memref::StoreOp>(loc, casted, dstMem, ivs);
});
} else {
// TODO: We can even reuse the same memref for the new tensor,
// but that requires a `ref-counting` based memory management
// for shared memrefs between multiple sparse tensors.
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
}
fields.push_back(dstMem);
}
return true;
});
rewriter.replaceOpWithMultiple(op, {fields});
return success();
}
};
class SparseExtractSliceConverter
: public OpConversionPattern<tensor::ExtractSliceOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::ExtractSliceOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *ctx = op.getContext();
auto srcEnc = getSparseTensorEncoding(op.getSourceType());
auto dstEnc = getSparseTensorEncoding(op.getResult().getType());
// TODO: We should check these in ExtractSliceOp::verify.
if (!srcEnc || !dstEnc || !dstEnc.isSlice())
return failure();
assert(srcEnc.withoutDimSlices() == dstEnc.withoutDimSlices());
SmallVector<Value> fields;
auto desc = getMutDescriptorFromTensorTuple(adaptor.getSource(), fields,
op.getSource().getType());
auto newSpec = rewriter.create<StorageSpecifierInitOp>(
loc, StorageSpecifierType::get(ctx, dstEnc), desc.getSpecifier());
desc.setSpecifier(newSpec);
// Fills in slice information.
for (auto [idx, offset, size, stride] : llvm::enumerate(
op.getMixedOffsets(), op.getMixedSizes(), op.getMixedStrides())) {
Dimension dim = idx;
Value offsetV = getValueOrCreateConstantIndexOp(rewriter, loc, offset);
Value sizeV = getValueOrCreateConstantIndexOp(rewriter, loc, size);
Value strideV = getValueOrCreateConstantIndexOp(rewriter, loc, stride);
// TODO: We could probably only set dynamic value here. But it would
// requires us to fill the hole when casting a static slice to dynamic
// slice.
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimOffset,
dim, offsetV);
// FIXME: we need to distinguish level sizes and dimension size for slices
// here. Maybe we should store slice level sizes in a different array
// instead of reusing it.
assert(srcEnc.isIdentity());
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::LvlSize, dim,
sizeV);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::DimStride,
dim, strideV);
}
// NOTE: we can not generate tuples directly from descriptor here, as the
// descriptor is holding the original type, yet we want the slice type
// here (they shared every memref but with an updated specifier).
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
return success();
}
};
/// Sparse codegen rule for number of entries operator.
class SparseNumberOfEntriesConverter
: public OpConversionPattern<NumberOfEntriesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NumberOfEntriesOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Query memSizes for the actually stored values.
// FIXME: the nse value computed in this way might be wrong when there is
// any "loose_compressed" level.
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
rewriter.replaceOp(op, desc.getValMemSize(rewriter, op.getLoc()));
return success();
}
};
struct SparseAssembleOpConverter : public OpConversionPattern<AssembleOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AssembleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto stt = getSparseTensorType(op.getResult());
SmallVector<Value> fields;
foreachFieldAndTypeInSparseTensor(
stt,
[&rewriter, &fields, &op, &stt,
loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind,
Level /*lvl*/, LevelType lt) -> bool {
assert(fields.size() == fIdx);
if (fKind == SparseTensorFieldKind::StorageSpec) {
fields.push_back(
SparseTensorSpecifier::getInitValue(rewriter, loc, stt));
} else {
// Else simply takes the inputs.
Value tensor = fKind == SparseTensorFieldKind::ValMemRef
? op.getValues()
: op.getLevels()[fIdx];
// TODO: handle batch.
TypedValue<BaseMemRefType> mem = genToMemref(rewriter, loc, tensor);
if (mem.getType().getRank() > stt.getBatchLvlRank() + 1) {
// Flattens the buffer to batchLvlRank.
auto reassoc = getReassociationForFlattening(
mem.getType(), stt.getBatchLvlRank());
mem = rewriter.create<memref::CastOp>(
loc, fType,
rewriter.create<memref::CollapseShapeOp>(loc, mem, reassoc));
} else {
mem = rewriter.create<memref::CastOp>(loc, fType, mem);
}
fields.push_back(mem);
}
return true;
});
MutSparseTensorDescriptor desc(stt, fields);
Value c0 = constantIndex(rewriter, loc, 0);
Value c1 = constantIndex(rewriter, loc, 1);
Value c2 = constantIndex(rewriter, loc, 2);
Value posBack = c0; // index to the last value in the position array
Value memSize = c1; // memory size for current array
Level trailCOOStart = stt.getAoSCOOStart();
Level trailCOORank = stt.getLvlRank() - trailCOOStart;
// Sets up SparseTensorSpecifier.
for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
assert(!ShapedType::isDynamic(stt.getDimShape()[lvl]));
// Sets up the level size.
auto lvlSize = constantIndex(rewriter, loc, stt.getLvlShape()[lvl]);
desc.setLvlSize(rewriter, loc, lvl, lvlSize);
// We use a single AOS array to store the trailing COO, so there is only
// one memory size to set for the entire COO section.
if (lvl > trailCOOStart)
continue;
// Sets up the memory size by reading the last value in position array.
LevelType lt = stt.getLvlType(lvl);
// Simply forwards the position index when this is a dense level.
if (lt.isa<LevelFormat::Dense>()) {
memSize = rewriter.create<arith::MulIOp>(loc, lvlSize, memSize);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
continue;
}
if (lt.isa<LevelFormat::Batch>()) {
// Skips batch levels as it is not linearized.
// FIXME: this assumes that every batch has the same number of nse, need
// to be generalized to handle varied-size batches.
continue;
}
if (isWithPosLT(lt)) {
assert(isCompressedLT(lt) || isLooseCompressedLT(lt));
if (isLooseCompressedLT(lt)) {
memSize = rewriter.create<arith::MulIOp>(loc, memSize, c2);
posBack = rewriter.create<arith::SubIOp>(loc, memSize, c1);
} else {
assert(isCompressedLT(lt));
posBack = memSize;
memSize = rewriter.create<arith::AddIOp>(loc, memSize, c1);
}
desc.setPosMemSize(rewriter, loc, lvl, memSize);
// The last value in position array is the memory size for next level.
// FIXME: this assumes that every batch has the same number of nse, need
// to be generalized to handle varied-size batches.
SmallVector<Value> batched(stt.getBatchLvlRank(),
constantIndex(rewriter, loc, 0));
batched.push_back(posBack);
memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), batched);
posBack = rewriter.create<arith::SubIOp>(loc, posBack, c1);
}
assert(isWithCrdLT(lt) && lvl <= trailCOOStart);
// FIXME: This seems to be unnecessarily complex, can we simplify it?
if (lvl == trailCOOStart) {
Value cooSz = rewriter.create<arith::MulIOp>(
loc, memSize, constantIndex(rewriter, loc, trailCOORank));
desc.setCrdMemSize(rewriter, loc, lvl, cooSz);
} else {
desc.setCrdMemSize(rewriter, loc, lvl, memSize);
}
}
desc.setValMemSize(rewriter, loc, memSize);
rewriter.replaceOpWithMultiple(op, {desc.getFields()});
return success();
}
};
struct SparseDisassembleOpConverter
: public OpConversionPattern<DisassembleOp> {
using OpConversionPattern::OpConversionPattern;
SparseDisassembleOpConverter(const TypeConverter &typeConverter,
MLIRContext *context)
: OpConversionPattern(typeConverter, context) {}
LogicalResult
matchAndRewrite(DisassembleOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor(),
op.getTensor().getType());
Location loc = op.getLoc();
SmallVector<Value> retMem;
SmallVector<Value> retLen;
desc.getLayout().foreachField([desc, loc, &rewriter, &op, &retMem,
&retLen](FieldIndex fid,
SparseTensorFieldKind fKind,
Level lvl, LevelType lt) -> bool {
if (fKind == SparseTensorFieldKind::StorageSpec)
return true;
SparseTensorType stt(desc.getRankedTensorType());
Value sz, src;
TypedValue<BaseMemRefType> dst;
if (fKind == SparseTensorFieldKind::ValMemRef) {
sz = desc.getValMemSize(rewriter, loc);
src = desc.getValMemRef();
dst = genToMemref(rewriter, loc, op.getOutValues());
retMem.push_back(dst);
Type valLenTp = op.getValLen().getType();
retLen.push_back(genScalarToTensor(rewriter, loc, sz, valLenTp));
} else {
assert(fKind == SparseTensorFieldKind::PosMemRef ||
fKind == SparseTensorFieldKind::CrdMemRef);
sz = fKind == SparseTensorFieldKind::PosMemRef
? desc.getPosMemSize(rewriter, loc, lvl)
: desc.getCrdMemSize(rewriter, loc, lvl);
src = desc.getMemRefField(fid);
dst = genToMemref(rewriter, loc, op.getOutLevels()[fid]);
retMem.push_back(dst);
// Retrieves the corresponding level length type.
Type lvlLenTp = op.getLvlLens().getTypes()[retLen.size()];
retLen.push_back(genScalarToTensor(rewriter, loc, sz, lvlLenTp));
}
Value flatOut = dst;
if (dst.getType().getRank() > stt.getBatchLvlRank() + 1) {
auto reassoc =
getReassociationForFlattening(dst.getType(), stt.getBatchLvlRank());
flatOut = rewriter.create<memref::CollapseShapeOp>(loc, dst, reassoc);
}
Value dstMem = genSliceToSize(rewriter, loc, flatOut, sz);
Value srcMem = genSliceToSize(rewriter, loc, src, sz);
rewriter.create<memref::CopyOp>(loc, srcMem, dstMem);
return true;
});
// Converts MemRefs back to Tensors.
SmallVector<Value> retValues = llvm::to_vector(
llvm::map_range(retMem, [&rewriter, loc](Value v) -> Value {
return rewriter.create<bufferization::ToTensorOp>(loc, v);
}));
// Appends the actual memory length used in each buffer returned.
retValues.append(retLen.begin(), retLen.end());
rewriter.replaceOp(op, retValues);
return success();
}
};
struct SparseNewConverter : public OpConversionPattern<NewOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
const auto dstTp = getSparseTensorType(op.getResult());
// Creating COO with NewOp is handled by direct IR codegen. All other cases
// are handled by rewriting.
if (!dstTp.hasEncoding() || dstTp.getAoSCOOStart() != 0)
return failure();
// Implement as follows:
// %reader = @createCheckedSparseTensorReader(%filename)
// %nse = @getSparseTensorNSE(%reader)
// %coo = bufferization.alloc_tensor an ordered COO with
// dst dim ordering, size_hint = %nse
// %coordinates = sparse_tensor.coordinates_buffer(%coo)
// %values = sparse_tensor.values(%coo)
// %isSorted = @sparseTensorReaderReadToBuffers(%coordinates, %values)
// if (! %isSorted) sparse_tensor.sort_coo(%nse, %coordinates, %values)
// update storage specifier
// @delSparseTensorReader(%reader)
SmallVector<Value> dimSizesValues;
Value dimSizesBuffer;
Value reader = genReader(rewriter, loc, dstTp, adaptor.getOperands()[0],
dimSizesValues, dimSizesBuffer);
// Get the number of stored entries.
const Type indexTp = rewriter.getIndexType();
Value nse = createFuncCall(rewriter, loc, "getSparseTensorReaderNSE",
{indexTp}, {reader}, EmitCInterface::Off)
.getResult(0);
// Construct the lvl sizes and the dim2lvl/lvl2dim buffers.
SmallVector<Value> lvlSizesValues;
Value dim2lvlBuffer;
Value lvl2dimBuffer;
genMapBuffers(rewriter, loc, dstTp, dimSizesValues, dimSizesBuffer,
lvlSizesValues, dim2lvlBuffer, lvl2dimBuffer);
// Construct allocation for each field.
Value sizeHint = nse;
SmallVector<Value> fields;
createAllocFields(rewriter, loc, dstTp, /*enableInit=*/false, sizeHint,
lvlSizesValues, fields);
// Read the COO tensor data.
MutSparseTensorDescriptor desc(dstTp, fields);
Value xs = desc.getAOSMemRef();
Value ys = desc.getValMemRef();
const Type boolTp = rewriter.getIntegerType(1);
const Type elemTp = dstTp.getElementType();
const Type crdTp = dstTp.getCrdType();
SmallString<32> readToBuffersFuncName{"getSparseTensorReaderReadToBuffers",
overheadTypeFunctionSuffix(crdTp),
primaryTypeFunctionSuffix(elemTp)};
Value isSorted =
createFuncCall(rewriter, loc, readToBuffersFuncName, {boolTp},
{reader, dim2lvlBuffer, lvl2dimBuffer, xs, ys},
EmitCInterface::On)
.getResult(0);
// If the destination tensor is a sorted COO, we need to sort the COO tensor
// data if the input elements aren't sorted yet.
const Level lvlRank = dstTp.getLvlRank();
if (dstTp.isOrderedLvl(lvlRank - 1)) {
Value kFalse = constantI1(rewriter, loc, false);
Value notSorted = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, isSorted, kFalse);
scf::IfOp ifOp =
rewriter.create<scf::IfOp>(loc, notSorted, /*else*/ false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
auto xPerm = rewriter.getMultiDimIdentityMap(lvlRank);
rewriter.create<SortOp>(loc, nse, xs, ValueRange{ys}, xPerm,
rewriter.getIndexAttr(0),
SparseTensorSortKind::HybridQuickSort);
rewriter.setInsertionPointAfter(ifOp);
}
// Set PosMemRef0[1] = nse.
const Value c1 = constantIndex(rewriter, loc, 1);
const Value posMemref0 = desc.getPosMemRef(0);
const Type posTp = dstTp.getPosType();
const Value posNse = genCast(rewriter, loc, nse, posTp);
rewriter.create<memref::StoreOp>(loc, posNse, posMemref0, c1);
// Update storage specifier.
Value coordinatesSize = rewriter.create<arith::MulIOp>(
loc, nse, constantIndex(rewriter, loc, lvlRank));
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::CrdMemSize, 0,
coordinatesSize);
desc.setSpecifierField(rewriter, loc, StorageSpecifierKind::ValMemSize,
std::nullopt, nse);
// Release the sparse tensor reader.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
// Replace operation with resulting memrefs.
rewriter.replaceOpWithMultiple(op, {fields});
return success();
}
};
struct SparseHasRuntimeLibraryConverter
: public OpConversionPattern<HasRuntimeLibraryOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i1Type = rewriter.getI1Type();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, i1Type, rewriter.getIntegerAttr(i1Type, 0));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(
const TypeConverter &typeConverter, RewritePatternSet &patterns,
bool createSparseDeallocs, bool enableBufferInitialization) {
patterns.add<
SparseAssembleOpConverter, SparseDisassembleOpConverter,
SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter, SparseCompressConverter,
SparseInsertConverter, SparseReorderCOOConverter, SparseReMapConverter,
SparseSliceGetterOpConverter<ToSliceOffsetOp,
StorageSpecifierKind::DimOffset>,
SparseSliceGetterOpConverter<ToSliceStrideOp,
StorageSpecifierKind::DimStride>,
SparseToPositionsConverter, SparseToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNewConverter,
SparseNumberOfEntriesConverter, SparseHasRuntimeLibraryConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorDeallocConverter>(
typeConverter, patterns.getContext(), createSparseDeallocs);
patterns.add<SparseTensorAllocConverter, SparseTensorEmptyConverter>(
typeConverter, patterns.getContext(), enableBufferInitialization);
}