blob: 09fdc2c1907edaedec6ab6457f04b193295bcd85 [file] [log] [blame]
</
//===-- FIROps.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/Utils.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TypeSwitch.h"
namespace {
#include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
} // namespace
using namespace fir;
/// Return true if a sequence type is of some incomplete size or a record type
/// is malformed or contains an incomplete sequence type. An incomplete sequence
/// type is one with more unknown extents in the type than have been provided
/// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
/// definition.
static bool verifyInType(mlir::Type inType,
llvm::SmallVectorImpl<llvm::StringRef> &visited,
unsigned dynamicExtents = 0) {
if (auto st = inType.dyn_cast<fir::SequenceType>()) {
auto shape = st.getShape();
if (shape.size() == 0)
return true;
for (std::size_t i = 0, end{shape.size()}; i < end; ++i) {
if (shape[i] != fir::SequenceType::getUnknownExtent())
continue;
if (dynamicExtents-- == 0)
return true;
}
} else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
// don't recurse if we're already visiting this one
if (llvm::is_contained(visited, rt.getName()))
return false;
// keep track of record types currently being visited
visited.push_back(rt.getName());
for (auto &field : rt.getTypeList())
if (verifyInType(field.second, visited))
return true;
visited.pop_back();
}
return false;
}
static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
auto ty = fir::unwrapSequenceType(inType);
if (numParams > 0) {
if (auto recTy = ty.dyn_cast<fir::RecordType>())
return numParams != recTy.getNumLenParams();
if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
return !(numParams == 1 && chrTy.hasDynamicLen());
return true;
}
if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
return !chrTy.hasConstantLen();
return false;
}
/// Parser shared by Alloca and Allocmem
///
/// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
/// ( `(` $typeparams `)` )? ( `,` $shape )?
/// attr-dict-without-keyword
template <typename FN>
static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type intype;
if (parser.parseType(intype))
return mlir::failure();
auto &builder = parser.getBuilder();
result.addAttribute("in_type", mlir::TypeAttr::get(intype));
llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
llvm::SmallVector<mlir::Type> typeVec;
bool hasOperands = false;
std::int32_t typeparamsSize = 0;
if (!parser.parseOptionalLParen()) {
// parse the LEN params of the derived type. (<params> : <types>)
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
parser.parseColonTypeList(typeVec) || parser.parseRParen())
return mlir::failure();
typeparamsSize = operands.size();
hasOperands = true;
}
std::int32_t shapeSize = 0;
if (!parser.parseOptionalComma()) {
// parse size to scale by, vector of n dimensions of type index
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
return mlir::failure();
shapeSize = operands.size() - typeparamsSize;
auto idxTy = builder.getIndexType();
for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
typeVec.push_back(idxTy);
hasOperands = true;
}
if (hasOperands &&
parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
result.operands))
return mlir::failure();
mlir::Type restype = wrapResultType(intype);
if (!restype) {
parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
return mlir::failure();
}
result.addAttribute("operand_segment_sizes",
builder.getI32VectorAttr({typeparamsSize, shapeSize}));
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.addTypeToList(restype, result.types))
return mlir::failure();
return mlir::success();
}
template <typename OP>
static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
p << ' ' << op.in_type();
if (!op.typeparams().empty()) {
p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')';
}
// print the shape of the allocation (if any); all must be index type
for (auto sh : op.shape()) {
p << ", ";
p.printOperand(sh);
}
p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
}
//===----------------------------------------------------------------------===//
// AllocaOp
//===----------------------------------------------------------------------===//
/// Create a legal memory reference as return type
static mlir::Type wrapAllocaResultType(mlir::Type intype) {
// FIR semantics: memory references to memory references are disallowed
if (intype.isa<ReferenceType>())
return {};
return ReferenceType::get(intype);
}
mlir::Type fir::AllocaOp::getAllocatedType() {
return getType().cast<ReferenceType>().getEleTy();
}
mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
return ReferenceType::get(ty);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
/*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, bool pinned,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
pinned, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr =
uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
auto bindcAttr =
bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
bindcAttr, /*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
bool pinned, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr =
uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
auto bindcAttr =
bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
bindcAttr, pinned, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
/*pinned=*/false, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocaOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
bool pinned, mlir::ValueRange typeparams,
mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
typeparams, shape);
result.addAttributes(attributes);
}
static mlir::LogicalResult verify(fir::AllocaOp &op) {
llvm::SmallVector<llvm::StringRef> visited;
if (verifyInType(op.getInType(), visited, op.numShapeOperands()))
return op.emitOpError("invalid type for allocation");
if (verifyTypeParamCount(op.getInType(), op.numLenParams()))
return op.emitOpError("LEN params do not correspond to type");
mlir::Type outType = op.getType();
if (!outType.isa<fir::ReferenceType>())
return op.emitOpError("must be a !fir.ref type");
if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
return op.emitOpError("cannot allocate !fir.box of unknown rank or type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AllocMemOp
//===----------------------------------------------------------------------===//
/// Create a legal heap reference as return type
static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
// Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
// 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
// FIR semantics: one may not allocate a memory reference value
if (intype.isa<ReferenceType>() || intype.isa<HeapType>() ||
intype.isa<PointerType>() || intype.isa<FunctionType>())
return {};
return HeapType::get(intype);
}
mlir::Type fir::AllocMemOp::getAllocatedType() {
return getType().cast<HeapType>().getEleTy();
}
mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
return HeapType::get(ty);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
llvm::StringRef uniqName, llvm::StringRef bindcName,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
auto nameAttr = builder.getStringAttr(uniqName);
auto bindcAttr = builder.getStringAttr(bindcName);
build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
bindcAttr, typeparams, shape);
result.addAttributes(attributes);
}
void fir::AllocMemOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Type inType,
mlir::ValueRange typeparams, mlir::ValueRange shape,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
typeparams, shape);
result.addAttributes(attributes);
}
static mlir::LogicalResult verify(fir::AllocMemOp op) {
llvm::SmallVector<llvm::StringRef> visited;
if (verifyInType(op.getInType(), visited, op.numShapeOperands()))
return op.emitOpError("invalid type for allocation");
if (verifyTypeParamCount(op.getInType(), op.numLenParams()))
return op.emitOpError("LEN params do not correspond to type");
mlir::Type outType = op.getType();
if (!outType.dyn_cast<fir::HeapType>())
return op.emitOpError("must be a !fir.heap type");
if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
return op.emitOpError("cannot allocate !fir.box of unknown rank or type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayCoorOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ArrayCoorOp op) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return op.emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = op.shape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!op.memref().getType().isa<fir::BoxType>())
return op.emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return op.emitOpError("rank of dimension mismatched");
if (shapeTyRank != op.indices().size())
return op.emitOpError("number of indices do not match dim rank");
}
if (auto sliceOp = op.slice()) {
if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
if (!sl.substr().empty())
return op.emitOpError("array_coor cannot take a slice with substring");
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return op.emitOpError("rank of dimension in slice mismatched");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayLoadOp
//===----------------------------------------------------------------------===//
static mlir::Type adjustedElementType(mlir::Type t) {
if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
auto eleTy = ty.getEleTy();
if (fir::isa_char(eleTy))
return eleTy;
if (fir::isa_derived(eleTy))
return eleTy;
if (eleTy.isa<fir::SequenceType>())
return eleTy;
}
return t;
}
std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
if (auto sh = shape())
if (auto *op = sh.getDefiningOp()) {
if (auto shOp = dyn_cast<fir::ShapeOp>(op))
return shOp.getExtents();
return cast<fir::ShapeShiftOp>(op).getExtents();
}
return {};
}
static mlir::LogicalResult verify(fir::ArrayLoadOp op) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
if (!arrTy)
return op.emitOpError("must be a reference to an array");
auto arrDim = arrTy.getDimension();
if (auto shapeOp = op.shape()) {
auto shapeTy = shapeOp.getType();
unsigned shapeTyRank = 0;
if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
shapeTyRank = s.getRank();
} else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
shapeTyRank = ss.getRank();
} else {
auto s = shapeTy.cast<fir::ShiftType>();
shapeTyRank = s.getRank();
if (!op.memref().getType().isa<fir::BoxType>())
return op.emitOpError("shift can only be provided with fir.box memref");
}
if (arrDim && arrDim != shapeTyRank)
return op.emitOpError("rank of dimension mismatched");
}
if (auto sliceOp = op.slice()) {
if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
if (!sl.substr().empty())
return op.emitOpError("array_load cannot take a slice with substring");
if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
if (sliceTy.getRank() != arrDim)
return op.emitOpError("rank of dimension in slice mismatched");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayMergeStoreOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) {
if (!isa<ArrayLoadOp>(op.original().getDefiningOp()))
return op.emitOpError("operand #0 must be result of a fir.array_load op");
if (auto sl = op.slice()) {
if (auto sliceOp =
mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
if (!sliceOp.substr().empty())
return op.emitOpError(
"array_merge_store cannot take a slice with substring");
if (!sliceOp.fields().empty()) {
// This is an intra-object merge, where the slice is projecting the
// subfields that are to be overwritten by the merge operation.
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
auto projTy =
fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields());
if (fir::unwrapSequenceType(op.original().getType()) != projTy)
return op.emitOpError(
"type of origin does not match sliced memref type");
if (fir::unwrapSequenceType(op.sequence().getType()) != projTy)
return op.emitOpError(
"type of sequence does not match sliced memref type");
return mlir::success();
}
return op.emitOpError("referenced type is not an array");
}
}
return mlir::success();
}
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType());
if (op.original().getType() != eleTy)
return op.emitOpError("type of origin does not match memref element type");
if (op.sequence().getType() != eleTy)
return op.emitOpError(
"type of sequence does not match memref element type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayFetchOp
//===----------------------------------------------------------------------===//
// Template function used for both array_fetch and array_update verification.
template <typename A>
mlir::Type validArraySubobject(A op) {
auto ty = op.sequence().getType();
return fir::applyPathToType(ty, op.indices());
}
static mlir::LogicalResult verify(fir::ArrayFetchOp op) {
auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
auto indSize = op.indices().size();
if (indSize < arrTy.getDimension())
return op.emitOpError("number of indices != dimension of array");
if (indSize == arrTy.getDimension() &&
::adjustedElementType(op.element().getType()) != arrTy.getEleTy())
return op.emitOpError("return type does not match array");
auto ty = validArraySubobject(op);
if (!ty || ty != ::adjustedElementType(op.getType()))
return op.emitOpError("return type and/or indices do not type check");
if (!isa<fir::ArrayLoadOp>(op.sequence().getDefiningOp()))
return op.emitOpError("argument #0 must be result of fir.array_load");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayUpdateOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ArrayUpdateOp op) {
if (fir::isa_ref_type(op.merge().getType()))
return op.emitOpError("does not support reference type for merge");
auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
auto indSize = op.indices().size();
if (indSize < arrTy.getDimension())
return op.emitOpError("number of indices != dimension of array");
if (indSize == arrTy.getDimension() &&
::adjustedElementType(op.merge().getType()) != arrTy.getEleTy())
return op.emitOpError("merged value does not have element type");
auto ty = validArraySubobject(op);
if (!ty || ty != ::adjustedElementType(op.merge().getType()))
return op.emitOpError("merged value and/or indices do not type check");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ArrayModifyOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ArrayModifyOp op) {
auto arrTy = op.sequence().getType().cast<fir::SequenceType>();
auto indSize = op.indices().size();
if (indSize < arrTy.getDimension())
return op.emitOpError("number of indices must match array dimension");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// BoxAddrOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto v = val().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxOp>(v))
return box.memref();
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.memref();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxCharLenOp
//===----------------------------------------------------------------------===//
mlir::OpFoldResult
fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (auto v = val().getDefiningOp()) {
if (auto box = dyn_cast<fir::EmboxCharOp>(v))
return box.len();
}
return {};
}
//===----------------------------------------------------------------------===//
// BoxDimsOp
//===----------------------------------------------------------------------===//
/// Get the result types packed in a tuple tuple
mlir::Type fir::BoxDimsOp::getTupleType() {
// note: triple, but 4 is nearest power of 2
llvm::SmallVector<mlir::Type> triple{
getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
return mlir::TupleType::get(getContext(), triple);
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::CallOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) {
auto callee = op.callee();
bool isDirect = callee.hasValue();
p << ' ';
if (isDirect)
p << callee.getValue();
else
p << op.getOperand(0);
p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')';
p.printOptionalAttrDict(op->getAttrs(), {"callee"});
auto resultTypes{op.getResultTypes()};
llvm::SmallVector<Type> argTypes(
llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1));
p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes);
}
static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
if (parser.parseOperandList(operands))
return mlir::failure();
mlir::NamedAttrList attrs;
mlir::SymbolRefAttr funcAttr;
bool isDirect = operands.empty();
if (isDirect)
if (parser.parseAttribute(funcAttr, "callee", attrs))
return mlir::failure();
Type type;
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
parser.parseType(type))
return mlir::failure();
auto funcType = type.dyn_cast<mlir::FunctionType>();
if (!funcType)
return parser.emitError(parser.getNameLoc(), "expected function type");
if (isDirect) {
if (parser.resolveOperands(operands, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
} else {
auto funcArgs =
llvm::ArrayRef<mlir::OpAsmParser::OperandType>(operands).drop_front();
if (parser.resolveOperand(operands[0], funcType, result.operands) ||
parser.resolveOperands(funcArgs, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return mlir::failure();
}
result.addTypes(funcType.getResults());
result.attributes = attrs;
return mlir::success();
}
void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::FuncOp callee, mlir::ValueRange operands) {
result.addOperands(operands);
result.addAttribute(getCalleeAttrName(), SymbolRefAttr::get(callee));
result.addTypes(callee.getType().getResults());
}
void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::SymbolRefAttr callee,
llvm::ArrayRef<mlir::Type> results,
mlir::ValueRange operands) {
result.addOperands(operands);
if (callee)
result.addAttribute(getCalleeAttrName(), callee);
result.addTypes(results);
}
//===----------------------------------------------------------------------===//
// CmpOp
//===----------------------------------------------------------------------===//
template <typename OPTY>
static void printCmpOp(OpAsmPrinter &p, OPTY op) {
p << ' ';
auto predSym = mlir::arith::symbolizeCmpFPredicate(
op->template getAttrOfType<mlir::IntegerAttr>(
OPTY::getPredicateAttrName())
.getInt());
assert(predSym.hasValue() && "invalid symbol value for predicate");
p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.getValue()) << '"'
<< ", ";
p.printOperand(op.lhs());
p << ", ";
p.printOperand(op.rhs());
p.printOptionalAttrDict(op->getAttrs(),
/*elidedAttrs=*/{OPTY::getPredicateAttrName()});
p << " : " << op.lhs().getType();
}
template <typename OPTY>
static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::SmallVector<mlir::OpAsmParser::OperandType> ops;
mlir::NamedAttrList attrs;
mlir::Attribute predicateNameAttr;
mlir::Type type;
if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
attrs) ||
parser.parseComma() || parser.parseOperandList(ops, 2) ||
parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
parser.resolveOperands(ops, type, result.operands))
return failure();
if (!predicateNameAttr.isa<mlir::StringAttr>())
return parser.emitError(parser.getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
llvm::StringRef predicateName =
predicateNameAttr.cast<mlir::StringAttr>().getValue();
auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
auto builder = parser.getBuilder();
mlir::Type i1Type = builder.getI1Type();
attrs.set(OPTY::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
result.attributes = attrs;
result.addTypes({i1Type});
return success();
}
//===----------------------------------------------------------------------===//
// CharConvertOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::CharConvertOp op) {
auto unwrap = [&](mlir::Type t) {
t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
return t.dyn_cast<fir::CharacterType>();
};
auto inTy = unwrap(op.from().getType());
auto outTy = unwrap(op.to().getType());
if (!(inTy && outTy))
return op.emitOpError("not a reference to a character");
if (inTy.getFKind() == outTy.getFKind())
return op.emitOpError("buffers must have different KIND values");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// CmpcOp
//===----------------------------------------------------------------------===//
void fir::buildCmpCOp(OpBuilder &builder, OperationState &result,
arith::CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(builder.getI1Type());
result.addAttribute(
fir::CmpcOp::getPredicateAttrName(),
builder.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
mlir::arith::CmpFPredicate
fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
auto pred = mlir::arith::symbolizeCmpFPredicate(name);
assert(pred.hasValue() && "invalid predicate name");
return pred.getValue();
}
static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); }
mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
return parseCmpOp<fir::CmpcOp>(parser, result);
}
//===----------------------------------------------------------------------===//
// ConstcOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
fir::RealAttr realp;
fir::RealAttr imagp;
mlir::Type type;
if (parser.parseLParen() ||
parser.parseAttribute(realp, fir::ConstcOp::realAttrName(),
result.attributes) ||
parser.parseComma() ||
parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(),
result.attributes) ||
parser.parseRParen() || parser.parseColonType(type) ||
parser.addTypesToList(type, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) {
p << '(';
p << op.getOperation()->getAttr(fir::ConstcOp::realAttrName()) << ", ";
p << op.getOperation()->getAttr(fir::ConstcOp::imagAttrName()) << ") : ";
p.printType(op.getType());
}
static mlir::LogicalResult verify(fir::ConstcOp &op) {
if (!op.getType().isa<fir::ComplexType>())
return op.emitOpError("must be a !fir.complex type");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ConvertOp
//===----------------------------------------------------------------------===//
void fir::ConvertOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ConvertConvertOptPattern, RedundantConvertOptPattern,
CombineConvertOptPattern, ForwardConstantConvertPattern>(
context);
}
mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
if (value().getType() == getType())
return value();
if (matchPattern(value(), m_Op<fir::ConvertOp>())) {
auto inner = cast<fir::ConvertOp>(value().getDefiningOp());
// (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
if (auto toTy = getType().dyn_cast<fir::LogicalType>())
if (auto fromTy = inner.value().getType().dyn_cast<fir::LogicalType>())
if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
return inner.value();
// (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
if (auto fromTy = inner.value().getType().dyn_cast<mlir::IntegerType>())
if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
(fromTy.getWidth() == 1))
return inner.value();
}
return {};
}
bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
return ty.isa<mlir::IntegerType>() || ty.isa<mlir::IndexType>() ||
ty.isa<fir::IntegerType>() || ty.isa<fir::LogicalType>();
}
bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
return ty.isa<mlir::FloatType>() || ty.isa<fir::RealType>();
}
bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
return ty.isa<fir::ReferenceType>() || ty.isa<fir::PointerType>() ||
ty.isa<fir::HeapType>() || ty.isa<fir::LLVMPointerType>() ||
ty.isa<mlir::MemRefType>() || ty.isa<mlir::FunctionType>() ||
ty.isa<fir::TypeDescType>();
}
static mlir::LogicalResult verify(fir::ConvertOp &op) {
auto inType = op.value().getType();
auto outType = op.getType();
if (inType == outType)
return mlir::success();
if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) ||
(op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) ||
(op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) ||
(op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) ||
(op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) ||
(op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) ||
(op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) ||
(inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
(fir::isa_complex(inType) && fir::isa_complex(outType)))
return mlir::success();
return op.emitOpError("invalid type conversion");
}
//===----------------------------------------------------------------------===//
// CoordinateOp
//===----------------------------------------------------------------------===//
static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) {
p << ' ' << op.ref() << ", " << op.coor();
p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"});
p << " : ";
p.printFunctionalType(op.getOperandTypes(), op->getResultTypes());
}
static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::OpAsmParser::OperandType memref;
if (parser.parseOperand(memref) || parser.parseComma())
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::OperandType> coorOperands;
if (parser.parseOperandList(coorOperands))
return mlir::failure();
llvm::SmallVector<mlir::OpAsmParser::OperandType> allOperands;
allOperands.push_back(memref);
allOperands.append(coorOperands.begin(), coorOperands.end());
mlir::FunctionType funcTy;
auto loc = parser.getCurrentLocation();
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(funcTy) ||
parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
result.operands))
return failure();
parser.addTypesToList(funcTy.getResults(), result.types);
result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
return mlir::success();
}
static mlir::LogicalResult verify(fir::CoordinateOp op) {
auto refTy = op.ref().getType();
if (fir::isa_ref_type(refTy)) {
auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
if (arrTy.hasUnknownShape())
return op.emitOpError("cannot find coordinate in unknown shape");
if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
return op.emitOpError("cannot find coordinate with unknown extents");
}
if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
fir::isa_char_string(eleTy)))
return op.emitOpError("cannot apply coordinate_of to this type");
}
// Recovering a LEN type parameter only makes sense from a boxed value. For a
// bare reference, the LEN type parameters must be passed as additional
// arguments to `op`.
for (auto co : op.coor())
if (dyn_cast_or_null<fir::LenParamIndexOp>(co.getDefiningOp())) {
if (op.getNumOperands() != 2)
return op.emitOpError("len_param_index must be last argument");
if (!op.ref().getType().isa<BoxType>())
return op.emitOpError("len_param_index must be used on box type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// DispatchOp
//===----------------------------------------------------------------------===//
mlir::FunctionType fir::DispatchOp::getFunctionType() {
return mlir::FunctionType::get(getContext(), getOperandTypes(),
getResultTypes());
}
static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::FunctionType calleeType;
llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
auto calleeLoc = parser.getNameLoc();
llvm::StringRef calleeName;
if (failed(parser.parseOptionalKeyword(&calleeName))) {
mlir::StringAttr calleeAttr;
if (parser.parseAttribute(calleeAttr, fir::DispatchOp::getMethodAttrName(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::DispatchOp::getMethodAttrName(),
parser.getBuilder().getStringAttr(calleeName));
}
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(calleeType) ||
parser.addTypesToList(calleeType.getResults(), result.types) ||
parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
result.operands))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) {
p << ' ' << op.getOperation()->getAttr(fir::DispatchOp::getMethodAttrName())
<< '(';
p.printOperand(op.object());
if (!op.args().empty()) {
p << ", ";
p.printOperands(op.args());
}
p << ") : ";
p.printFunctionalType(op.getOperation()->getOperandTypes(),
op.getOperation()->getResultTypes());
}
//===----------------------------------------------------------------------===//
// DispatchTableOp
//===----------------------------------------------------------------------===//
void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
auto &block = getBlock();
block.getOperations().insert(block.end(), op);
}
static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
// Parse the name as a symbol reference attribute.
SymbolRefAttr nameAttr;
if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
result.attributes))
return failure();
// Convert the parsed name attr into a string attr.
result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
nameAttr.getRootReference());
// Parse the optional table body.
mlir::Region *body = result.addRegion();
OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
if (parseResult.hasValue() && failed(*parseResult))
return mlir::failure();
fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
result.location);
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) {
auto tableName =
op.getOperation()
->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())
.getValue();
p << " @" << tableName;
Region &body = op.getOperation()->getRegion(0);
if (!body.empty())
p.printRegion(body, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
}
static mlir::LogicalResult verify(fir::DispatchTableOp &op) {
for (auto &op : op.getBlock())
if (!(isa<fir::DTEntryOp>(op) || isa<fir::FirEndOp>(op)))
return op.emitOpError("dispatch table must contain dt_entry");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::EmboxOp op) {
auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType());
bool isArray = false;
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
eleTy = seqTy.getEleTy();
isArray = true;
}
if (op.hasLenParams()) {
auto lenPs = op.numLenParams();
if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
if (lenPs != rt.getNumLenParams())
return op.emitOpError("number of LEN params does not correspond"
" to the !fir.type type");
} else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
if (strTy.getLen() != fir::CharacterType::unknownLen())
return op.emitOpError("CHARACTER already has static LEN");
} else {
return op.emitOpError("LEN parameters require CHARACTER or derived type");
}
for (auto lp : op.typeparams())
if (!fir::isa_integer(lp.getType()))
return op.emitOpError("LEN parameters must be integral type");
}
if (op.getShape() && !isArray)
return op.emitOpError("shape must not be provided for a scalar");
if (op.getSlice() && !isArray)
return op.emitOpError("slice must not be provided for a scalar");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxCharOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::EmboxCharOp &op) {
auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType());
if (!eleTy.dyn_cast_or_null<CharacterType>())
return mlir::failure();
return mlir::success();
}
//===----------------------------------------------------------------------===//
// EmboxProcOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::SymbolRefAttr procRef;
if (parser.parseAttribute(procRef, "funcname", result.attributes))
return mlir::failure();
bool hasTuple = false;
mlir::OpAsmParser::OperandType tupleRef;
if (!parser.parseOptionalComma()) {
if (parser.parseOperand(tupleRef))
return mlir::failure();
hasTuple = true;
}
mlir::FunctionType type;
if (parser.parseColon() || parser.parseLParen() || parser.parseType(type))
return mlir::failure();
result.addAttribute("functype", mlir::TypeAttr::get(type));
if (hasTuple) {
mlir::Type tupleType;
if (parser.parseComma() || parser.parseType(tupleType) ||
parser.resolveOperand(tupleRef, tupleType, result.operands))
return mlir::failure();
}
mlir::Type boxType;
if (parser.parseRParen() || parser.parseArrow() ||
parser.parseType(boxType) || parser.addTypesToList(boxType, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) {
p << ' ' << op.getOperation()->getAttr("funcname");
auto h = op.host();
if (h) {
p << ", ";
p.printOperand(h);
}
p << " : (" << op.getOperation()->getAttr("functype");
if (h)
p << ", " << h.getType();
p << ") -> " << op.getType();
}
static mlir::LogicalResult verify(fir::EmboxProcOp &op) {
// host bindings (optional) must be a reference to a tuple
if (auto h = op.host()) {
if (auto r = h.getType().dyn_cast<ReferenceType>()) {
if (!r.getEleTy().dyn_cast<mlir::TupleType>())
return mlir::failure();
} else {
return mlir::failure();
}
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// GenTypeDescOp
//===----------------------------------------------------------------------===//
void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result,
mlir::TypeAttr inty) {
result.addAttribute("in_type", inty);
result.addTypes(TypeDescType::get(inty.getValue()));
}
static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type intype;
if (parser.parseType(intype))
return mlir::failure();
result.addAttribute("in_type", mlir::TypeAttr::get(intype));
mlir::Type restype = TypeDescType::get(intype);
if (parser.addTypeToList(restype, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) {
p << ' ' << op.getOperation()->getAttr("in_type");
p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"});
}
static mlir::LogicalResult verify(fir::GenTypeDescOp &op) {
mlir::Type resultTy = op.getType();
if (auto tdesc = resultTy.dyn_cast<TypeDescType>()) {
if (tdesc.getOfTy() != op.getInType())
return op.emitOpError("wrapped type mismatched");
} else {
return op.emitOpError("must be !fir.tdesc type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// GlobalOp
//===----------------------------------------------------------------------===//
mlir::Type fir::GlobalOp::resultType() {
return wrapAllocaResultType(getType());
}
static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) {
// Parse the optional linkage
llvm::StringRef linkage;
auto &builder = parser.getBuilder();
if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
if (fir::GlobalOp::verifyValidLinkage(linkage))
return mlir::failure();
mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr);
}
// Parse the name as a symbol reference attribute.
mlir::SymbolRefAttr nameAttr;
if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(),
result.attributes))
return mlir::failure();
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
nameAttr.getRootReference());
bool simpleInitializer = false;
if (mlir::succeeded(parser.parseOptionalLParen())) {
Attribute attr;
if (parser.parseAttribute(attr, "initVal", result.attributes) ||
parser.parseRParen())
return mlir::failure();
simpleInitializer = true;
}
if (succeeded(parser.parseOptionalKeyword("constant"))) {
// if "constant" keyword then mark this as a constant, not a variable
result.addAttribute("constant", builder.getUnitAttr());
}
mlir::Type globalType;
if (parser.parseColonType(globalType))
return mlir::failure();
result.addAttribute(fir::GlobalOp::typeAttrName(result.name),
mlir::TypeAttr::get(globalType));
if (simpleInitializer) {
result.addRegion();
} else {
// Parse the optional initializer body.
auto parseResult = parser.parseOptionalRegion(
*result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None);
if (parseResult.hasValue() && mlir::failed(*parseResult))
return mlir::failure();
}
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) {
if (op.linkName().hasValue())
p << ' ' << op.linkName().getValue();
p << ' ';
p.printAttributeWithoutType(
op.getOperation()->getAttr(fir::GlobalOp::symbolAttrName()));
if (auto val = op.getValueOrNull())
p << '(' << val << ')';
if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrName()))
p << " constant";
p << " : ";
p.printType(op.getType());
if (op.hasInitializationBody())
p.printRegion(op.getOperation()->getRegion(0),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
getBlock().getOperations().push_back(op);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
Attribute initialVal, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
result.addRegion();
result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type));
result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(symbolAttrName(),
SymbolRefAttr::get(builder.getContext(), name));
if (isConstant)
result.addAttribute(constantAttrName(result.name), builder.getUnitAttr());
if (initialVal)
result.addAttribute(initValAttrName(result.name), initialVal);
if (linkage)
result.addAttribute(linkageAttrName(), linkage);
result.attributes.append(attrs.begin(), attrs.end());
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, Attribute initialVal,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
StringAttr linkage, ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type, StringAttr linkage,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, bool isConstant, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, isConstant, type, StringAttr{}, attrs);
}
void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result,
StringRef name, Type type,
ArrayRef<NamedAttribute> attrs) {
build(builder, result, name, /*isConstant=*/false, type, attrs);
}
mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) {
// Supporting only a subset of the LLVM linkage types for now
static const char *validNames[] = {"common", "internal", "linkonce", "weak"};
return mlir::success(llvm::is_contained(validNames, linkage));
}
//===----------------------------------------------------------------------===//
// GlobalLenOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
if (failed(parser.parseOptionalKeyword(&fieldName))) {
mlir::StringAttr fieldAttr;
if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::GlobalLenOp::lenParamAttrName(),
parser.getBuilder().getStringAttr(fieldName));
}
mlir::IntegerAttr constant;
if (parser.parseComma() ||
parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(),
result.attributes))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) {
p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName())
<< ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName());
}
//===----------------------------------------------------------------------===//
// FieldIndexOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
auto &builder = parser.getBuilder();
mlir::Type recty;
if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
parser.parseType(recty))
return mlir::failure();
result.addAttribute(fir::FieldIndexOp::fieldAttrName(),
builder.getStringAttr(fieldName));
if (!recty.dyn_cast<RecordType>())
return mlir::failure();
result.addAttribute(fir::FieldIndexOp::typeAttrName(),
mlir::TypeAttr::get(recty));
if (!parser.parseOptionalLParen()) {
llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
llvm::SmallVector<mlir::Type> types;
auto loc = parser.getNameLoc();
if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
parser.parseColonTypeList(types) || parser.parseRParen() ||
parser.resolveOperands(operands, types, loc, result.operands))
return mlir::failure();
}
mlir::Type fieldType = fir::FieldType::get(builder.getContext());
if (parser.addTypeToList(fieldType, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) {
p << ' '
<< op.getOperation()
->getAttrOfType<mlir::StringAttr>(fir::FieldIndexOp::fieldAttrName())
.getValue()
<< ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName());
if (op.getNumOperands()) {
p << '(';
p.printOperands(op.typeparams());
const auto *sep = ") : ";
for (auto op : op.typeparams()) {
p << sep;
if (op)
p.printType(op.getType());
else
p << "()";
sep = ", ";
}
}
}
void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result,
llvm::StringRef fieldName, mlir::Type recTy,
mlir::ValueRange operands) {
result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName));
result.addAttribute(typeAttrName(), TypeAttr::get(recTy));
result.addOperands(operands);
}
//===----------------------------------------------------------------------===//
// InsertOnRangeOp
//===----------------------------------------------------------------------===//
static ParseResult
parseCustomRangeSubscript(mlir::OpAsmParser &parser,
mlir::DenseIntElementsAttr &coord) {
llvm::SmallVector<int64_t> lbounds;
llvm::SmallVector<int64_t> ubounds;
if (parser.parseKeyword("from") ||
parser.parseCommaSeparatedList(
AsmParser::Delimiter::Paren,
[&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
parser.parseKeyword("to") ||
parser.parseCommaSeparatedList(AsmParser::Delimiter::Paren, [&] {
return parser.parseInteger(ubounds.emplace_back(0));
}))
return failure();
llvm::SmallVector<int64_t> zippedBounds;
for (auto zip : llvm::zip(lbounds, ubounds)) {
zippedBounds.push_back(std::get<0>(zip));
zippedBounds.push_back(std::get<1>(zip));
}
coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
return success();
}
void printCustomRangeSubscript(mlir::OpAsmPrinter &printer, InsertOnRangeOp op,
mlir::DenseIntElementsAttr coord) {
printer << "from (";
auto enumerate = llvm::enumerate(coord.getValues<int64_t>());
// Even entries are the lower bounds.
llvm::interleaveComma(
make_filter_range(
enumerate,
[](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
printer, [&](auto indexed_value) { printer << indexed_value.value(); });
printer << ") to (";
// Odd entries are the upper bounds.
llvm::interleaveComma(
make_filter_range(
enumerate,
[](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
printer, [&](auto indexed_value) { printer << indexed_value.value(); });
printer << ")";
}
/// Range bounds must be nonnegative, and the range must not be empty.
static mlir::LogicalResult verify(fir::InsertOnRangeOp op) {
if (fir::hasDynamicSize(op.seq().getType()))
return op.emitOpError("must have constant shape and size");
mlir::DenseIntElementsAttr coor = op.coor();
if (coor.size() < 2 || coor.size() % 2 != 0)
return op.emitOpError("has uneven number of values in ranges");
bool rangeIsKnownToBeNonempty = false;
for (auto i = coor.getValues<int64_t>().end(),
b = coor.getValues<int64_t>().begin();
i != b;) {
int64_t ub = (*--i);
int64_t lb = (*--i);
if (lb < 0 || ub < 0)
return op.emitOpError("negative range bound");
if (rangeIsKnownToBeNonempty)
continue;
if (lb > ub)
return op.emitOpError("empty range");
rangeIsKnownToBeNonempty = lb < ub;
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// InsertValueOp
//===----------------------------------------------------------------------===//
static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) {
if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
return iattr.getInt() == conVal;
return false;
}
static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
// Undo some complex patterns created in the front-end and turn them back into
// complex ops.
template <typename FltOp, typename CpxOp>
struct UndoComplexPattern : public mlir::RewritePattern {
UndoComplexPattern(mlir::MLIRContext *ctx)
: mlir::RewritePattern("fir.insert_value", 2, ctx) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto insval = dyn_cast_or_null<fir::InsertValueOp>(op);
if (!insval || !insval.getType().isa<fir::ComplexType>())
return mlir::failure();
auto insval2 =
dyn_cast_or_null<fir::InsertValueOp>(insval.adt().getDefiningOp());
if (!insval2 || !isa<fir::UndefOp>(insval2.adt().getDefiningOp()))
return mlir::failure();
auto binf = dyn_cast_or_null<FltOp>(insval.val().getDefiningOp());
auto binf2 = dyn_cast_or_null<FltOp>(insval2.val().getDefiningOp());
if (!binf || !binf2 || insval.coor().size() != 1 ||
!isOne(insval.coor()[0]) || insval2.coor().size() != 1 ||
!isZero(insval2.coor()[0]))
return mlir::failure();
auto eai =
dyn_cast_or_null<fir::ExtractValueOp>(binf.lhs().getDefiningOp());
auto ebi =
dyn_cast_or_null<fir::ExtractValueOp>(binf.rhs().getDefiningOp());
auto ear =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.lhs().getDefiningOp());
auto ebr =
dyn_cast_or_null<fir::ExtractValueOp>(binf2.rhs().getDefiningOp());
if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() ||
ebr.adt() != ebi.adt() || eai.coor().size() != 1 ||
!isOne(eai.coor()[0]) || ebi.coor().size() != 1 ||
!isOne(ebi.coor()[0]) || ear.coor().size() != 1 ||
!isZero(ear.coor()[0]) || ebr.coor().size() != 1 ||
!isZero(ebr.coor()[0]))
return mlir::failure();
rewriter.replaceOpWithNewOp<CpxOp>(op, ear.adt(), ebr.adt());
return mlir::success();
}
};
void fir::InsertValueOp::getCanonicalizationPatterns(
mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
}
//===----------------------------------------------------------------------===//
// IterWhileOp
//===----------------------------------------------------------------------===//
void fir::IterWhileOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step,
mlir::Value iterate, bool finalCountValue,
mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step, iterate});
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(getFinalValueAttrName(), builder.getUnitAttr());
}
result.addTypes(iterate.getType());
result.addOperands(iterArgs);
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
bodyRegion->front().addArgument(builder.getIndexType());
bodyRegion->front().addArgument(iterate.getType());
bodyRegion->front().addArguments(iterArgs.getTypes());
result.addAttributes(attributes);
}
static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) ||
parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
auto i1Type = builder.getIntegerType(1);
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.parseRParen() ||
parser.resolveOperand(step, indexType, result.operands))
return mlir::failure();
mlir::OpAsmParser::OperandType iterateVar, iterateInput;
if (parser.parseKeyword("and") || parser.parseLParen() ||
parser.parseRegionArgument(iterateVar) || parser.parseEqual() ||
parser.parseOperand(iterateInput) || parser.parseRParen() ||
parser.resolveOperand(iterateInput, i1Type, result.operands))
return mlir::failure();
// Parse the initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs;
auto prependCount = false;
// Induction variable.
regionArgs.push_back(inductionVariable);
regionArgs.push_back(iterateVar);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
llvm::SmallVector<mlir::OpAsmParser::OperandType> operands;
llvm::SmallVector<mlir::Type> regionTypes;
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(regionTypes))
return failure();
if (regionTypes.size() == operands.size() + 2)
prependCount = true;
llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
// Resolve input operands.
for (auto operandType : llvm::zip(operands, resTypes))
if (parser.resolveOperand(std::get<0>(operandType),
std::get<1>(operandType), result.operands))
return failure();
if (prependCount) {
result.addTypes(regionTypes);
} else {
result.addTypes(i1Type);
result.addTypes(resTypes);
}
} else if (succeeded(parser.parseOptionalArrow())) {
llvm::SmallVector<mlir::Type> typeList;
if (parser.parseLParen() || parser.parseTypeList(typeList) ||
parser.parseRParen())
return failure();
// Type list must be "(index, i1)".
if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
!typeList[1].isSignlessInteger(1))
return failure();
result.addTypes(typeList);
prependCount = true;
} else {
result.addTypes(i1Type);
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
llvm::SmallVector<mlir::Type> argTypes;
// Induction variable (hidden)
if (prependCount)
result.addAttribute(IterWhileOp::getFinalValueAttrName(),
builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables (including iterate)
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
static mlir::LogicalResult verify(fir::IterWhileOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(1).getType().isInteger(1))
return op.emitOpError(
"expected body second argument to be an index argument for "
"the induction variable");
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (op.finalValue()) {
// Result type must be "(index, i1, ...)".
if (!op.getResult(0).getType().isa<mlir::IndexType>())
return op.emitOpError("result #0 expected to be index");
if (!op.getResult(1).getType().isSignlessInteger(1))
return op.emitOpError("result #1 expected to be i1");
opNumResults--;
} else {
// iterate_while always returns the early exit induction value.
// Result type must be "(i1, ...)"
if (!op.getResult(0).getType().isSignlessInteger(1))
return op.emitOpError("result #0 expected to be i1");
}
if (opNumResults == 0)
return mlir::failure();
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults =
op.finalValue() ? op.getResults().drop_front() : op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) {
p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to "
<< op.upperBound() << " step " << op.step() << ") and (";
assert(op.hasIterOperands());
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
p << regionArgs.front() << " = " << *operands.begin() << ")";
if (regionArgs.size() > 1) {
p << " iter_args(";
llvm::interleaveComma(
llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
[&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
p << ") -> (";
llvm::interleaveComma(
llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p);
p << ")";
} else if (op.finalValue()) {
p << " -> (" << op.getResultTypes() << ')';
}
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
{IterWhileOp::getFinalValueAttrName()});
p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); }
bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) {
return !region().isAncestor(value.getParentRegion());
}
mlir::LogicalResult
fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
for (auto *op : ops)
op->moveBefore(*this);
return success();
}
mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(initArgs()))
if (iterArg == i.value())
return region().front().getArgument(i.index() + 1);
return {};
}
void fir::IterWhileOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = finalValue() ? resultNum + 1 : resultNum;
auto *term = region().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= initArgs().size())
return initArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// LenParamIndexOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef fieldName;
auto &builder = parser.getBuilder();
mlir::Type recty;
if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
parser.parseType(recty))
return mlir::failure();
result.addAttribute(fir::LenParamIndexOp::fieldAttrName(),
builder.getStringAttr(fieldName));
if (!recty.dyn_cast<RecordType>())
return mlir::failure();
result.addAttribute(fir::LenParamIndexOp::typeAttrName(),
mlir::TypeAttr::get(recty));
mlir::Type lenType = fir::LenType::get(builder.getContext());
if (parser.addTypeToList(lenType, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) {
p << ' '
<< op.getOperation()
->getAttrOfType<mlir::StringAttr>(
fir::LenParamIndexOp::fieldAttrName())
.getValue()
<< ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName());
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
mlir::Value refVal) {
if (!refVal) {
mlir::emitError(result.location, "LoadOp has null argument");
return;
}
auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
if (!eleTy) {
mlir::emitError(result.location, "not a memory reference type");
return;
}
result.addOperands(refVal);
result.addTypes(eleTy);
}
mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
if ((ele = fir::dyn_cast_ptrEleTy(ref)))
return mlir::success();
return mlir::failure();
}
static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::Type type;
mlir::OpAsmParser::OperandType oper;
if (parser.parseOperand(oper) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(oper, type, result.operands))
return mlir::failure();
mlir::Type eleTy;
if (fir::LoadOp::getElementOf(eleTy, type) ||
parser.addTypeToList(eleTy, result.types))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) {
p << ' ';
p.printOperand(op.memref());
p.printOptionalAttrDict(op.getOperation()->getAttrs(), {});
p << " : " << op.memref().getType();
}
//===----------------------------------------------------------------------===//
// DoLoopOp
//===----------------------------------------------------------------------===//
void fir::DoLoopOp::build(mlir::OpBuilder &builder,
mlir::OperationState &result, mlir::Value lb,
mlir::Value ub, mlir::Value step, bool unordered,
bool finalCountValue, mlir::ValueRange iterArgs,
llvm::ArrayRef<mlir::NamedAttribute> attributes) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
if (finalCountValue) {
result.addTypes(builder.getIndexType());
result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr());
}
for (auto v : iterArgs)
result.addTypes(v.getType());
mlir::Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block{});
if (iterArgs.empty() && !finalCountValue)
DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
bodyRegion->front().addArgument(builder.getIndexType());
bodyRegion->front().addArguments(iterArgs.getTypes());
if (unordered)
result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr());
result.addAttributes(attributes);
}
static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
auto &builder = parser.getBuilder();
mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return mlir::failure();
// Parse loop bounds.
auto indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
result.addAttribute("unordered", builder.getUnitAttr());
// Parse the optional initial iteration arguments.
llvm::SmallVector<mlir::OpAsmParser::OperandType> regionArgs, operands;
llvm::SmallVector<mlir::Type> argTypes;
auto prependCount = false;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
if (result.types.size() == operands.size() + 1)
prependCount = true;
// Resolve input operands.
llvm::ArrayRef<mlir::Type> resTypes = result.types;
for (auto operand_type :
llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
} else if (succeeded(parser.parseOptionalArrow())) {
if (parser.parseKeyword("index"))
return failure();
result.types.push_back(indexType);
prependCount = true;
}
if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
return mlir::failure();
// Induction variable.
if (prependCount)
result.addAttribute(DoLoopOp::finalValueAttrName(result.name),
builder.getUnitAttr());
else
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
auto *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
DoLoopOp::ensureTerminator(*body, builder, result.location);
return mlir::success();
}
fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
auto ivArg = val.dyn_cast<mlir::BlockArgument>();
if (!ivArg)
return {};
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingInst = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<fir::DoLoopOp>(containingInst);
}
// Lifted from loop.loop
static mlir::LogicalResult verify(fir::DoLoopOp op) {
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
if (op.finalValue()) {
if (op.unordered())
return op.emitOpError("unordered loop has no final value");
opNumResults--;
}
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults =
op.finalValue() ? op.getResults().drop_front() : op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return success();
}
static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) {
bool printBlockTerminators = false;
p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to "
<< op.upperBound() << " step " << op.step();
if (op.unordered())
p << " unordered";
if (op.hasIterOperands()) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ") -> (" << op.getResultTypes() << ')';
printBlockTerminators = true;
} else if (op.finalValue()) {
p << " -> " << op.getResultTypes();
printBlockTerminators = true;
}
p.printOptionalAttrDictWithKeyword(op->getAttrs(),
{"unordered", "finalValue"});
p.printRegion(op.region(), /*printEntryBlockArgs=*/false,
printBlockTerminators);
}
mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); }
bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) {
return !region().isAncestor(value.getParentRegion());
}
mlir::LogicalResult
fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef<mlir::Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
/// Translate a value passed as an iter_arg to the corresponding block
/// argument in the body of the loop.
mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
for (auto i : llvm::enumerate(initArgs()))
if (iterArg == i.value())
return region().front().getArgument(i.index() + 1);
return {};
}
/// Translate the result vector (by index number) to the corresponding value
/// to the `fir.result` Op.
void fir::DoLoopOp::resultToSourceOps(
llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
auto oper = finalValue() ? resultNum + 1 : resultNum;
auto *term = region().front().getTerminator();
if (oper < term->getNumOperands())
results.push_back(term->getOperand(oper));
}
/// Translate the block argument (by index number) to the corresponding value
/// passed as an iter_arg to the parent DoLoopOp.
mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
if (blockArgNum > 0 && blockArgNum <= initArgs().size())
return initArgs()[blockArgNum - 1];
return {};
}
//===----------------------------------------------------------------------===//
// DTEntryOp
//===----------------------------------------------------------------------===//
static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
llvm::StringRef methodName;
// allow `methodName` or `"methodName"`
if (failed(parser.parseOptionalKeyword(&methodName))) {
mlir::StringAttr methodAttr;
if (parser.parseAttribute(methodAttr, fir::DTEntryOp::getMethodAttrName(),
result.attributes))
return mlir::failure();
} else {
result.addAttribute(fir::DTEntryOp::getMethodAttrName(),
parser.getBuilder().getStringAttr(methodName));
}
mlir::SymbolRefAttr calleeAttr;
if (parser.parseComma() ||
parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrName(),
result.attributes))
return mlir::failure();
return mlir::success();
}
static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) {
p << ' ' << op.getOperation()->getAttr(fir::DTEntryOp::getMethodAttrName())
<< ", " << op.getOperation()->getAttr(fir::DTEntryOp::getProcAttrName());
}
//===----------------------------------------------------------------------===//
// ReboxOp
//===----------------------------------------------------------------------===//
/// Get the scalar type related to a fir.box type.
/// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getEleTy();
return eleTy;
}
/// Get the rank from a !fir.box type
static unsigned getBoxRank(mlir::Type boxTy) {
auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
return seqTy.getDimension();
return 0;
}
static mlir::LogicalResult verify(fir::ReboxOp op) {
auto inputBoxTy = op.box().getType();
if (fir::isa_unknown_size_box(inputBoxTy))
return op.emitOpError("box operand must not have unknown rank or type");
auto outBoxTy = op.getType();
if (fir::isa_unknown_size_box(outBoxTy))
return op.emitOpError("result type must not have unknown rank or type");
auto inputRank = getBoxRank(inputBoxTy);
auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
auto outRank = getBoxRank(outBoxTy);
auto outEleTy = getBoxScalarEleTy(outBoxTy);
if (auto slice = op.slice()) {
// Slicing case
if (slice.getType().cast<fir::SliceType>().getRank() != inputRank)
return op.emitOpError("slice operand rank must match box operand rank");
if (auto shape = op.shape()) {
if (auto shiftTy = shape.getType().dyn_cast<fir::ShiftType>()) {
if (shiftTy.getRank() != inputRank)
return op.emitOpError("shape operand and input box ranks must match "
"when there is a slice");
} else {
return op.emitOpError("shape operand must absent or be a fir.shift "
"when there is a slice");
}
}
if (auto sliceOp = slice.getDefiningOp()) {
auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
if (slicedRank != outRank)
return op.emitOpError("result type rank and rank after applying slice "
"operand must match");
}
} else {
// Reshaping case
unsigned shapeRank = inputRank;
if (auto shape = op.shape()) {
auto ty = shape.getType();
if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
shapeRank = shapeTy.getRank();
} else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
shapeRank = shapeShiftTy.getRank();
} else {
auto shiftTy = ty.cast<fir::ShiftType>();
shapeRank = shiftTy.getRank();
if (shapeRank != inputRank)
return op.emitOpError("shape operand and input box ranks must match "
"when the shape is a fir.shift");
}
}
if (shapeRank != outRank)
return op.emitOpError("result type and shape operand ranks must match");
}
if (inputEleTy != outEleTy)
// TODO: check that outBoxTy is a parent type of inputBoxTy for derived
// types.
if (!inputEleTy.isa<fir::RecordType>())
return op.emitOpError(
"op input and output element types must match for intrinsic types");
return mlir::success();
}
//===----------------------------------------------------------------------===//
// ResultOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::ResultOp op) {
auto *parentOp = op->getParentOp();
auto results = parentOp->getResults();
auto operands = op->getOperands();
if (parentOp->getNumResults() != op.getNumOperands())
return op.emitOpError() << "parent of result must have same arity";
for (auto e : llvm::zip(results, operands))
if (std::get<0>(e).getType() != std::get<1>(e).getType())
return op.emitOpError()
<< "types mismatch between result op and its parent";
return success();
}
//===----------------------------------------------------------------------===//
// SaveResultOp
//===----------------------------------------------------------------------===//
static mlir::LogicalResult verify(fir::SaveResultOp op) {
auto resultType = op.value().getType();
if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType()))
return op.emitOpError("value type must match memory reference type");
if (fir::isa_unknown_size_box(resultType))
return op.emitOpError("cannot save !fir.box of unknown rank or type");
if (resultType.isa<fir::BoxType>()) {
if (op.shape() || !op.typeparams().empty())
return op.emitOpError(
"must not have shape or length operands if the value is a fir.box");
return mlir::success();
}
// fir.record or fir.array case.
unsigned shapeTyRank = 0;
if (auto shapeOp = op.shape()) {
auto shapeTy = shapeOp.getType();
if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
shapeTyRank = s.getRank();
else
shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
}
auto eleTy = resultType;
if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
if (seqTy.getDimension() != shapeTyRank)
op.emitOpError("shape operand must be provided and have the value rank "
"when the value is a fir.array");
eleTy = seqTy.getEleTy();
} else {
if (shapeTyRank != 0)
op.emitOpError(
"shape operand should only be provided if the value is a fir.array");
}
if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
if (recTy.getNumLenParams() != op.typeparams().size())
op.emitOpError("length parameters number must match with the value type "
"length parameters");
} else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
if (op.typeparams().size() > 1)
op.emitOpError("no more than one length parameter must be provided for "
"character value");
} else {
if (!op.typeparams().empty())
op.emitOpError(
"length parameters must not be provided for this value type");
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
static constexpr llvm::StringRef getCompareOffsetAttr() {
return "compare_operand_offsets";
}
static constexpr llvm::StringRef getTargetOffsetAttr() {
return "target_operand_offsets";
}
template <typename A, typename... AdditionalArgs>
static A getSubOperands(unsigned pos, A allArgs,
mlir::DenseIntElementsAttr ranges,
AdditionalArgs &&...additionalArgs) {
unsigned start = 0;
for (unsigned i = 0; i < pos; ++i)
start += (*(ranges.begin() + i)).getZExtValue();
return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
std::forward<AdditionalArgs>(additionalArgs)...);
}
static mlir::MutableOperandRange
getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
StringRef offsetAttr) {
Operation *owner = operands.getOwner();
NamedAttribute targetOffsetAttr =
*owner->getAttrDictionary().getNamed(offsetAttr);
return getSubOperands(
pos, operands, targetOffsetAttr.getValue().cast<DenseIntElementsAttr>(),
mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
}
static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
return attr.getNumElements();
}
llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
return {};
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
return {};
}
llvm::Optional<mlir::MutableOperandRange>
fir::SelectOp::getMutableSuccessorOperands(unsigned oper) {
return ::getMutableSuccessorOperands(oper, targetArgsMutable(),
getTargetOffsetAttr());
}
llvm::Optional<llvm::ArrayRef<mlir::Value>>
fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
unsigned oper) {
auto a =
(*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
getOperandSegmentSizeAttr());
return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
}