|  | //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the X86 implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86InstrFoldTables.h" | 
|  | #include "X86MachineFunctionInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LivePhysRegs.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <optional> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-instr-info" | 
|  |  | 
|  | #define GET_INSTRINFO_CTOR_DTOR | 
|  | #include "X86GenInstrInfo.inc" | 
|  |  | 
|  | extern cl::opt<bool> X86EnableAPXForRelocation; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | NoFusing("disable-spill-fusing", | 
|  | cl::desc("Disable fusing of spill code into instructions"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | PrintFailedFusing("print-failed-fuse-candidates", | 
|  | cl::desc("Print instructions that the allocator wants to" | 
|  | " fuse, but the X86 backend currently can't"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> | 
|  | ReMatPICStubLoad("remat-pic-stub-load", | 
|  | cl::desc("Re-materialize load from stub in PIC mode"), | 
|  | cl::init(false), cl::Hidden); | 
|  | static cl::opt<unsigned> | 
|  | PartialRegUpdateClearance("partial-reg-update-clearance", | 
|  | cl::desc("Clearance between two register writes " | 
|  | "for inserting XOR to avoid partial " | 
|  | "register update"), | 
|  | cl::init(64), cl::Hidden); | 
|  | static cl::opt<unsigned> UndefRegClearance( | 
|  | "undef-reg-clearance", | 
|  | cl::desc("How many idle instructions we would like before " | 
|  | "certain undef register reads"), | 
|  | cl::init(128), cl::Hidden); | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void X86InstrInfo::anchor() {} | 
|  |  | 
|  | X86InstrInfo::X86InstrInfo(X86Subtarget &STI) | 
|  | : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 | 
|  | : X86::ADJCALLSTACKDOWN32), | 
|  | (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 | 
|  | : X86::ADJCALLSTACKUP32), | 
|  | X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)), | 
|  | Subtarget(STI), RI(STI.getTargetTriple()) {} | 
|  |  | 
|  | const TargetRegisterClass * | 
|  | X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MachineFunction &MF) const { | 
|  | auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF); | 
|  | // If the target does not have egpr, then r16-r31 will be resereved for all | 
|  | // instructions. | 
|  | if (!RC || !Subtarget.hasEGPR()) | 
|  | return RC; | 
|  |  | 
|  | if (X86II::canUseApxExtendedReg(MCID)) | 
|  | return RC; | 
|  |  | 
|  | const X86RegisterInfo *RI = Subtarget.getRegisterInfo(); | 
|  | return RI->constrainRegClassToNonRex2(RC); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, | 
|  | Register &SrcReg, Register &DstReg, | 
|  | unsigned &SubIdx) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | if (!Subtarget.is64Bit()) | 
|  | // It's not always legal to reference the low 8-bit of the larger | 
|  | // register in 32-bit mode. | 
|  | return false; | 
|  | [[fallthrough]]; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | case X86::MOVSX64rr32: { | 
|  | if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
|  | // Be conservative. | 
|  | return false; | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVSX16rr8: | 
|  | case X86::MOVZX16rr8: | 
|  | case X86::MOVSX32rr8: | 
|  | case X86::MOVZX32rr8: | 
|  | case X86::MOVSX64rr8: | 
|  | SubIdx = X86::sub_8bit; | 
|  | break; | 
|  | case X86::MOVSX32rr16: | 
|  | case X86::MOVZX32rr16: | 
|  | case X86::MOVSX64rr16: | 
|  | SubIdx = X86::sub_16bit; | 
|  | break; | 
|  | case X86::MOVSX64rr32: | 
|  | SubIdx = X86::sub_32bit; | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { | 
|  | if (MI.mayLoad() || MI.mayStore()) | 
|  | return false; | 
|  |  | 
|  | // Some target-independent operations that trivially lower to data-invariant | 
|  | // instructions. | 
|  | if (MI.isCopyLike() || MI.isInsertSubreg()) | 
|  | return true; | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | using namespace X86; | 
|  | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | // However, they set flags and are perhaps the most surprisingly constant | 
|  | // time operations so we call them out here separately. | 
|  | if (isIMUL(Opcode)) | 
|  | return true; | 
|  | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | // constant time as they scan across bits and do other fairly complex | 
|  | // operations like popcnt, but are believed to be constant time on x86. | 
|  | // However, these set flags. | 
|  | if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || | 
|  | isTZCNT(Opcode)) | 
|  | return true; | 
|  | // Bit manipulation instructions are effectively combinations of basic | 
|  | // arithmetic ops, and should still execute in constant time. These also | 
|  | // set flags. | 
|  | if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || | 
|  | isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || | 
|  | isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || | 
|  | isTZMSK(Opcode)) | 
|  | return true; | 
|  | // Bit extracting and clearing instructions should execute in constant time, | 
|  | // and set flags. | 
|  | if (isBEXTR(Opcode) || isBZHI(Opcode)) | 
|  | return true; | 
|  | // Shift and rotate. | 
|  | if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || | 
|  | isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) | 
|  | return true; | 
|  | // Basic arithmetic is constant time on the input but does set flags. | 
|  | if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || | 
|  | isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) | 
|  | return true; | 
|  | // Arithmetic with just 32-bit and 64-bit variants and no immediates. | 
|  | if (isANDN(Opcode)) | 
|  | return true; | 
|  | // Unary arithmetic operations. | 
|  | if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) | 
|  | return true; | 
|  | // Unlike other arithmetic, NOT doesn't set EFLAGS. | 
|  | if (isNOT(Opcode)) | 
|  | return true; | 
|  | // Various move instructions used to zero or sign extend things. Note that we | 
|  | // intentionally don't support the _NOREX variants as we can't handle that | 
|  | // register constraint anyways. | 
|  | if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) | 
|  | return true; | 
|  | // Arithmetic instructions that are both constant time and don't set flags. | 
|  | if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) | 
|  | return true; | 
|  | // LEA doesn't actually access memory, and its arithmetic is constant time. | 
|  | if (isLEA(Opcode)) | 
|  | return true; | 
|  | // By default, assume that the instruction is not data invariant. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // By default, assume that the load will immediately leak. | 
|  | return false; | 
|  |  | 
|  | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | // However, they set flags and are perhaps the most surprisingly constant | 
|  | // time operations so we call them out here separately. | 
|  | case X86::IMUL16rm: | 
|  | case X86::IMUL16rmi: | 
|  | case X86::IMUL32rm: | 
|  | case X86::IMUL32rmi: | 
|  | case X86::IMUL64rm: | 
|  | case X86::IMUL64rmi32: | 
|  |  | 
|  | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | // constant time as they scan across bits and do other fairly complex | 
|  | // operations like popcnt, but are believed to be constant time on x86. | 
|  | // However, these set flags. | 
|  | case X86::BSF16rm: | 
|  | case X86::BSF32rm: | 
|  | case X86::BSF64rm: | 
|  | case X86::BSR16rm: | 
|  | case X86::BSR32rm: | 
|  | case X86::BSR64rm: | 
|  | case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rm: | 
|  | case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rm: | 
|  | case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rm: | 
|  |  | 
|  | // Bit manipulation instructions are effectively combinations of basic | 
|  | // arithmetic ops, and should still execute in constant time. These also | 
|  | // set flags. | 
|  | case X86::BLCFILL32rm: | 
|  | case X86::BLCFILL64rm: | 
|  | case X86::BLCI32rm: | 
|  | case X86::BLCI64rm: | 
|  | case X86::BLCIC32rm: | 
|  | case X86::BLCIC64rm: | 
|  | case X86::BLCMSK32rm: | 
|  | case X86::BLCMSK64rm: | 
|  | case X86::BLCS32rm: | 
|  | case X86::BLCS64rm: | 
|  | case X86::BLSFILL32rm: | 
|  | case X86::BLSFILL64rm: | 
|  | case X86::BLSI32rm: | 
|  | case X86::BLSI64rm: | 
|  | case X86::BLSIC32rm: | 
|  | case X86::BLSIC64rm: | 
|  | case X86::BLSMSK32rm: | 
|  | case X86::BLSMSK64rm: | 
|  | case X86::BLSR32rm: | 
|  | case X86::BLSR64rm: | 
|  | case X86::TZMSK32rm: | 
|  | case X86::TZMSK64rm: | 
|  |  | 
|  | // Bit extracting and clearing instructions should execute in constant time, | 
|  | // and set flags. | 
|  | case X86::BEXTR32rm: | 
|  | case X86::BEXTR64rm: | 
|  | case X86::BEXTRI32mi: | 
|  | case X86::BEXTRI64mi: | 
|  | case X86::BZHI32rm: | 
|  | case X86::BZHI64rm: | 
|  |  | 
|  | // Basic arithmetic is constant time on the input but does set flags. | 
|  | case X86::ADC8rm: | 
|  | case X86::ADC16rm: | 
|  | case X86::ADC32rm: | 
|  | case X86::ADC64rm: | 
|  | case X86::ADD8rm: | 
|  | case X86::ADD16rm: | 
|  | case X86::ADD32rm: | 
|  | case X86::ADD64rm: | 
|  | case X86::AND8rm: | 
|  | case X86::AND16rm: | 
|  | case X86::AND32rm: | 
|  | case X86::AND64rm: | 
|  | case X86::ANDN32rm: | 
|  | case X86::ANDN64rm: | 
|  | case X86::OR8rm: | 
|  | case X86::OR16rm: | 
|  | case X86::OR32rm: | 
|  | case X86::OR64rm: | 
|  | case X86::SBB8rm: | 
|  | case X86::SBB16rm: | 
|  | case X86::SBB32rm: | 
|  | case X86::SBB64rm: | 
|  | case X86::SUB8rm: | 
|  | case X86::SUB16rm: | 
|  | case X86::SUB32rm: | 
|  | case X86::SUB64rm: | 
|  | case X86::XOR8rm: | 
|  | case X86::XOR16rm: | 
|  | case X86::XOR32rm: | 
|  | case X86::XOR64rm: | 
|  |  | 
|  | // Integer multiply w/o affecting flags is still believed to be constant | 
|  | // time on x86. Called out separately as this is among the most surprising | 
|  | // instructions to exhibit that behavior. | 
|  | case X86::MULX32rm: | 
|  | case X86::MULX64rm: | 
|  |  | 
|  | // Arithmetic instructions that are both constant time and don't set flags. | 
|  | case X86::RORX32mi: | 
|  | case X86::RORX64mi: | 
|  | case X86::SARX32rm: | 
|  | case X86::SARX64rm: | 
|  | case X86::SHLX32rm: | 
|  | case X86::SHLX64rm: | 
|  | case X86::SHRX32rm: | 
|  | case X86::SHRX64rm: | 
|  |  | 
|  | // Conversions are believed to be constant time and don't set flags. | 
|  | case X86::CVTTSD2SI64rm: | 
|  | case X86::VCVTTSD2SI64rm: | 
|  | case X86::VCVTTSD2SI64Zrm: | 
|  | case X86::CVTTSD2SIrm: | 
|  | case X86::VCVTTSD2SIrm: | 
|  | case X86::VCVTTSD2SIZrm: | 
|  | case X86::CVTTSS2SI64rm: | 
|  | case X86::VCVTTSS2SI64rm: | 
|  | case X86::VCVTTSS2SI64Zrm: | 
|  | case X86::CVTTSS2SIrm: | 
|  | case X86::VCVTTSS2SIrm: | 
|  | case X86::VCVTTSS2SIZrm: | 
|  | case X86::CVTSI2SDrm: | 
|  | case X86::VCVTSI2SDrm: | 
|  | case X86::VCVTSI2SDZrm: | 
|  | case X86::CVTSI2SSrm: | 
|  | case X86::VCVTSI2SSrm: | 
|  | case X86::VCVTSI2SSZrm: | 
|  | case X86::CVTSI642SDrm: | 
|  | case X86::VCVTSI642SDrm: | 
|  | case X86::VCVTSI642SDZrm: | 
|  | case X86::CVTSI642SSrm: | 
|  | case X86::VCVTSI642SSrm: | 
|  | case X86::VCVTSI642SSZrm: | 
|  | case X86::CVTSS2SDrm: | 
|  | case X86::VCVTSS2SDrm: | 
|  | case X86::VCVTSS2SDZrm: | 
|  | case X86::CVTSD2SSrm: | 
|  | case X86::VCVTSD2SSrm: | 
|  | case X86::VCVTSD2SSZrm: | 
|  | // AVX512 added unsigned integer conversions. | 
|  | case X86::VCVTTSD2USI64Zrm: | 
|  | case X86::VCVTTSD2USIZrm: | 
|  | case X86::VCVTTSS2USI64Zrm: | 
|  | case X86::VCVTTSS2USIZrm: | 
|  | case X86::VCVTUSI2SDZrm: | 
|  | case X86::VCVTUSI642SDZrm: | 
|  | case X86::VCVTUSI2SSZrm: | 
|  | case X86::VCVTUSI642SSZrm: | 
|  |  | 
|  | // Loads to register don't set flags. | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::MOVSX16rm8: | 
|  | case X86::MOVSX32rm16: | 
|  | case X86::MOVSX32rm8: | 
|  | case X86::MOVSX32rm8_NOREX: | 
|  | case X86::MOVSX64rm16: | 
|  | case X86::MOVSX64rm32: | 
|  | case X86::MOVSX64rm8: | 
|  | case X86::MOVZX16rm8: | 
|  | case X86::MOVZX32rm16: | 
|  | case X86::MOVZX32rm8: | 
|  | case X86::MOVZX32rm8_NOREX: | 
|  | case X86::MOVZX64rm16: | 
|  | case X86::MOVZX64rm8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { | 
|  | const MachineFunction *MF = MI.getParent()->getParent(); | 
|  | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
|  |  | 
|  | if (isFrameInstr(MI)) { | 
|  | int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); | 
|  | SPAdj -= getFrameAdjustment(MI); | 
|  | if (!isFrameSetup(MI)) | 
|  | SPAdj = -SPAdj; | 
|  | return SPAdj; | 
|  | } | 
|  |  | 
|  | // To know whether a call adjusts the stack, we need information | 
|  | // that is bound to the following ADJCALLSTACKUP pseudo. | 
|  | // Look for the next ADJCALLSTACKUP that follows the call. | 
|  | if (MI.isCall()) { | 
|  | const MachineBasicBlock *MBB = MI.getParent(); | 
|  | auto I = ++MachineBasicBlock::const_iterator(MI); | 
|  | for (auto E = MBB->end(); I != E; ++I) { | 
|  | if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we could not find a frame destroy opcode, then it has already | 
|  | // been simplified, so we don't care. | 
|  | if (I->getOpcode() != getCallFrameDestroyOpcode()) | 
|  | return 0; | 
|  |  | 
|  | return -(I->getOperand(1).getImm()); | 
|  | } | 
|  |  | 
|  | // Currently handle only PUSHes we can reasonably expect to see | 
|  | // in call sequences | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return 0; | 
|  | case X86::PUSH32r: | 
|  | case X86::PUSH32rmm: | 
|  | case X86::PUSH32rmr: | 
|  | case X86::PUSH32i: | 
|  | return 4; | 
|  | case X86::PUSH64r: | 
|  | case X86::PUSH64rmm: | 
|  | case X86::PUSH64rmr: | 
|  | case X86::PUSH64i32: | 
|  | return 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true and the FrameIndex if the specified | 
|  | /// operand and follow operands form a reference to the stack frame. | 
|  | bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, | 
|  | int &FrameIndex) const { | 
|  | if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && | 
|  | MI.getOperand(Op + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(Op + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(Op + X86::AddrDisp).isImm() && | 
|  | MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && | 
|  | MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && | 
|  | MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { | 
|  | FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isFrameLoadOpcode(int Opcode, TypeSize &MemBytes) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::KMOVBkm: | 
|  | case X86::KMOVBkm_EVEX: | 
|  | MemBytes = TypeSize::getFixed(1); | 
|  | return true; | 
|  | case X86::MOV16rm: | 
|  | case X86::KMOVWkm: | 
|  | case X86::KMOVWkm_EVEX: | 
|  | case X86::VMOVSHZrm: | 
|  | case X86::VMOVSHZrm_alt: | 
|  | MemBytes = TypeSize::getFixed(2); | 
|  | return true; | 
|  | case X86::MOV32rm: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSSrm_alt: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSSrm_alt: | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSSZrm_alt: | 
|  | case X86::KMOVDkm: | 
|  | case X86::KMOVDkm_EVEX: | 
|  | MemBytes = TypeSize::getFixed(4); | 
|  | return true; | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVSDrm_alt: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVSDrm_alt: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVSDZrm_alt: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::KMOVQkm: | 
|  | case X86::KMOVQkm_EVEX: | 
|  | MemBytes = TypeSize::getFixed(8); | 
|  | return true; | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | MemBytes = TypeSize::getFixed(16); | 
|  | return true; | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | MemBytes = TypeSize::getFixed(32); | 
|  | return true; | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | MemBytes = TypeSize::getFixed(64); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isFrameStoreOpcode(int Opcode, TypeSize &MemBytes) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8mr: | 
|  | case X86::KMOVBmk: | 
|  | case X86::KMOVBmk_EVEX: | 
|  | MemBytes = TypeSize::getFixed(1); | 
|  | return true; | 
|  | case X86::MOV16mr: | 
|  | case X86::KMOVWmk: | 
|  | case X86::KMOVWmk_EVEX: | 
|  | case X86::VMOVSHZmr: | 
|  | MemBytes = TypeSize::getFixed(2); | 
|  | return true; | 
|  | case X86::MOV32mr: | 
|  | case X86::MOVSSmr: | 
|  | case X86::VMOVSSmr: | 
|  | case X86::VMOVSSZmr: | 
|  | case X86::KMOVDmk: | 
|  | case X86::KMOVDmk_EVEX: | 
|  | MemBytes = TypeSize::getFixed(4); | 
|  | return true; | 
|  | case X86::MOV64mr: | 
|  | case X86::ST_FpP64m: | 
|  | case X86::MOVSDmr: | 
|  | case X86::VMOVSDmr: | 
|  | case X86::VMOVSDZmr: | 
|  | case X86::MMX_MOVD64mr: | 
|  | case X86::MMX_MOVQ64mr: | 
|  | case X86::MMX_MOVNTQmr: | 
|  | case X86::KMOVQmk: | 
|  | case X86::KMOVQmk_EVEX: | 
|  | MemBytes = TypeSize::getFixed(8); | 
|  | return true; | 
|  | case X86::MOVAPSmr: | 
|  | case X86::MOVUPSmr: | 
|  | case X86::MOVAPDmr: | 
|  | case X86::MOVUPDmr: | 
|  | case X86::MOVDQAmr: | 
|  | case X86::MOVDQUmr: | 
|  | case X86::VMOVAPSmr: | 
|  | case X86::VMOVUPSmr: | 
|  | case X86::VMOVAPDmr: | 
|  | case X86::VMOVUPDmr: | 
|  | case X86::VMOVDQAmr: | 
|  | case X86::VMOVDQUmr: | 
|  | case X86::VMOVUPSZ128mr: | 
|  | case X86::VMOVAPSZ128mr: | 
|  | case X86::VMOVUPSZ128mr_NOVLX: | 
|  | case X86::VMOVAPSZ128mr_NOVLX: | 
|  | case X86::VMOVUPDZ128mr: | 
|  | case X86::VMOVAPDZ128mr: | 
|  | case X86::VMOVDQA32Z128mr: | 
|  | case X86::VMOVDQU32Z128mr: | 
|  | case X86::VMOVDQA64Z128mr: | 
|  | case X86::VMOVDQU64Z128mr: | 
|  | case X86::VMOVDQU8Z128mr: | 
|  | case X86::VMOVDQU16Z128mr: | 
|  | MemBytes = TypeSize::getFixed(16); | 
|  | return true; | 
|  | case X86::VMOVUPSYmr: | 
|  | case X86::VMOVAPSYmr: | 
|  | case X86::VMOVUPDYmr: | 
|  | case X86::VMOVAPDYmr: | 
|  | case X86::VMOVDQUYmr: | 
|  | case X86::VMOVDQAYmr: | 
|  | case X86::VMOVUPSZ256mr: | 
|  | case X86::VMOVAPSZ256mr: | 
|  | case X86::VMOVUPSZ256mr_NOVLX: | 
|  | case X86::VMOVAPSZ256mr_NOVLX: | 
|  | case X86::VMOVUPDZ256mr: | 
|  | case X86::VMOVAPDZ256mr: | 
|  | case X86::VMOVDQU8Z256mr: | 
|  | case X86::VMOVDQU16Z256mr: | 
|  | case X86::VMOVDQA32Z256mr: | 
|  | case X86::VMOVDQU32Z256mr: | 
|  | case X86::VMOVDQA64Z256mr: | 
|  | case X86::VMOVDQU64Z256mr: | 
|  | MemBytes = TypeSize::getFixed(32); | 
|  | return true; | 
|  | case X86::VMOVUPSZmr: | 
|  | case X86::VMOVAPSZmr: | 
|  | case X86::VMOVUPDZmr: | 
|  | case X86::VMOVAPDZmr: | 
|  | case X86::VMOVDQU8Zmr: | 
|  | case X86::VMOVDQU16Zmr: | 
|  | case X86::VMOVDQA32Zmr: | 
|  | case X86::VMOVDQU32Zmr: | 
|  | case X86::VMOVDQA64Zmr: | 
|  | case X86::VMOVDQU64Zmr: | 
|  | MemBytes = TypeSize::getFixed(64); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | TypeSize Dummy = TypeSize::getZero(); | 
|  | return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex, | 
|  | TypeSize &MemBytes) const { | 
|  | if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) | 
|  | if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) | 
|  | return MI.getOperand(0).getReg(); | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | TypeSize Dummy = TypeSize::getZero(); | 
|  | if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { | 
|  | if (Register Reg = isLoadFromStackSlot(MI, FrameIndex)) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (hasLoadFromStackSlot(MI, Accesses)) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return MI.getOperand(0).getReg(); | 
|  | } | 
|  | } | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | TypeSize Dummy = TypeSize::getZero(); | 
|  | return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex, | 
|  | TypeSize &MemBytes) const { | 
|  | if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) | 
|  | if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && | 
|  | isFrameOperand(MI, 0, FrameIndex)) | 
|  | return MI.getOperand(X86::AddrNumOperands).getReg(); | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, | 
|  | int &FrameIndex) const { | 
|  | TypeSize Dummy = TypeSize::getZero(); | 
|  | if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { | 
|  | if (Register Reg = isStoreToStackSlot(MI, FrameIndex)) | 
|  | return Reg; | 
|  | // Check for post-frame index elimination operations | 
|  | SmallVector<const MachineMemOperand *, 1> Accesses; | 
|  | if (hasStoreToStackSlot(MI, Accesses)) { | 
|  | FrameIndex = | 
|  | cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) | 
|  | ->getFrameIndex(); | 
|  | return MI.getOperand(X86::AddrNumOperands).getReg(); | 
|  | } | 
|  | } | 
|  | return Register(); | 
|  | } | 
|  |  | 
|  | /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. | 
|  | static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { | 
|  | // Don't waste compile time scanning use-def chains of physregs. | 
|  | if (!BaseReg.isVirtual()) | 
|  | return false; | 
|  | bool isPICBase = false; | 
|  | for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) { | 
|  | if (DefMI.getOpcode() != X86::MOVPC32r) | 
|  | return false; | 
|  | assert(!isPICBase && "More than one PIC base?"); | 
|  | isPICBase = true; | 
|  | } | 
|  | return isPICBase; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isReallyTriviallyReMaterializable( | 
|  | const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | // This function should only be called for opcodes with the ReMaterializable | 
|  | // flag set. | 
|  | llvm_unreachable("Unknown rematerializable operation!"); | 
|  | break; | 
|  | case X86::IMPLICIT_DEF: | 
|  | // Defer to generic logic. | 
|  | break; | 
|  | case X86::LOAD_STACK_GUARD: | 
|  | case X86::LD_Fp032: | 
|  | case X86::LD_Fp064: | 
|  | case X86::LD_Fp080: | 
|  | case X86::LD_Fp132: | 
|  | case X86::LD_Fp164: | 
|  | case X86::LD_Fp180: | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX512_512_SET0: | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SH: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0F128: | 
|  | case X86::AVX_SET0: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::FsFLD0SH: | 
|  | case X86::FsFLD0F128: | 
|  | case X86::KSET0D: | 
|  | case X86::KSET0Q: | 
|  | case X86::KSET0W: | 
|  | case X86::KSET1D: | 
|  | case X86::KSET1Q: | 
|  | case X86::KSET1W: | 
|  | case X86::MMX_SET0: | 
|  | case X86::MOV32ImmSExti8: | 
|  | case X86::MOV32r0: | 
|  | case X86::MOV32r1: | 
|  | case X86::MOV32r_1: | 
|  | case X86::MOV32ri64: | 
|  | case X86::MOV64ImmSExti8: | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::MOV16ri: | 
|  | case X86::MOV32ri: | 
|  | case X86::MOV64ri: | 
|  | case X86::MOV64ri32: | 
|  | case X86::MOV8ri: | 
|  | case X86::PTILEZEROV: | 
|  | return true; | 
|  |  | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV8rm_NOREX: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSSrm_alt: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVSDrm_alt: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSSrm_alt: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVSDrm_alt: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::VBROADCASTSSrm: | 
|  | case X86::VBROADCASTSSYrm: | 
|  | case X86::VBROADCASTSDYrm: | 
|  | // AVX-512 | 
|  | case X86::VPBROADCASTBZ128rm: | 
|  | case X86::VPBROADCASTBZ256rm: | 
|  | case X86::VPBROADCASTBZrm: | 
|  | case X86::VBROADCASTF32X2Z256rm: | 
|  | case X86::VBROADCASTF32X2Zrm: | 
|  | case X86::VBROADCASTI32X2Z128rm: | 
|  | case X86::VBROADCASTI32X2Z256rm: | 
|  | case X86::VBROADCASTI32X2Zrm: | 
|  | case X86::VPBROADCASTWZ128rm: | 
|  | case X86::VPBROADCASTWZ256rm: | 
|  | case X86::VPBROADCASTWZrm: | 
|  | case X86::VPBROADCASTDZ128rm: | 
|  | case X86::VPBROADCASTDZ256rm: | 
|  | case X86::VPBROADCASTDZrm: | 
|  | case X86::VBROADCASTSSZ128rm: | 
|  | case X86::VBROADCASTSSZ256rm: | 
|  | case X86::VBROADCASTSSZrm: | 
|  | case X86::VPBROADCASTQZ128rm: | 
|  | case X86::VPBROADCASTQZ256rm: | 
|  | case X86::VPBROADCASTQZrm: | 
|  | case X86::VBROADCASTSDZ256rm: | 
|  | case X86::VBROADCASTSDZrm: | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSSZrm_alt: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVSDZrm_alt: | 
|  | case X86::VMOVSHZrm: | 
|  | case X86::VMOVSHZrm_alt: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZrm: { | 
|  | // Loads from constant pools are trivially rematerializable. | 
|  | if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && | 
|  | MI.isDereferenceableInvariantLoad()) { | 
|  | Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0 || BaseReg == X86::RIP) | 
|  | return true; | 
|  | // Allow re-materialization of PIC load. | 
|  | if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) { | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | if (regIsPICBase(BaseReg, MRI)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64r: { | 
|  | if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).isReg() && | 
|  | MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && | 
|  | !MI.getOperand(1 + X86::AddrDisp).isReg()) { | 
|  | // lea fi#, lea GV, etc. are all rematerializable. | 
|  | if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) | 
|  | return true; | 
|  | Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); | 
|  | if (BaseReg == 0) | 
|  | return true; | 
|  | // Allow re-materialization of lea PICBase + x. | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | if (regIsPICBase(BaseReg, MRI)) | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | Register DestReg, unsigned SubIdx, | 
|  | const MachineInstr &Orig, | 
|  | const TargetRegisterInfo &TRI) const { | 
|  | bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); | 
|  | if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != | 
|  | MachineBasicBlock::LQR_Dead) { | 
|  | // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side | 
|  | // effects. | 
|  | int Value; | 
|  | switch (Orig.getOpcode()) { | 
|  | case X86::MOV32r0: | 
|  | Value = 0; | 
|  | break; | 
|  | case X86::MOV32r1: | 
|  | Value = 1; | 
|  | break; | 
|  | case X86::MOV32r_1: | 
|  | Value = -1; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected instruction!"); | 
|  | } | 
|  |  | 
|  | const DebugLoc &DL = Orig.getDebugLoc(); | 
|  | BuildMI(MBB, I, DL, get(X86::MOV32ri)) | 
|  | .add(Orig.getOperand(0)) | 
|  | .addImm(Value); | 
|  | } else { | 
|  | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); | 
|  | MBB.insert(I, MI); | 
|  | } | 
|  |  | 
|  | MachineInstr &NewMI = *std::prev(I); | 
|  | NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
|  | } | 
|  |  | 
|  | /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. | 
|  | bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && | 
|  | !MO.isDead()) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether the shift count for a machine operand is non-zero. | 
|  | inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, | 
|  | unsigned ShiftAmtOperandIdx) { | 
|  | // The shift count is six bits with the REX.W prefix and five bits without. | 
|  | unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; | 
|  | unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); | 
|  | return Imm & ShiftCountMask; | 
|  | } | 
|  |  | 
|  | /// Check whether the given shift count is appropriate | 
|  | /// can be represented by a LEA instruction. | 
|  | inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { | 
|  | // Left shift instructions can be transformed into load-effective-address | 
|  | // instructions if we can encode them appropriately. | 
|  | // A LEA instruction utilizes a SIB byte to encode its scale factor. | 
|  | // The SIB.scale field is two bits wide which means that we can encode any | 
|  | // shift amount less than 4. | 
|  | return ShAmt < 4 && ShAmt > 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, | 
|  | const MachineRegisterInfo *MRI, MachineInstr **AndInstr, | 
|  | const TargetRegisterInfo *TRI, const X86Subtarget &ST, | 
|  | bool &NoSignFlag, bool &ClearsOverflowFlag) { | 
|  | if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG && | 
|  | CmpInstr.getOpcode() == X86::TEST64rr) && | 
|  | !(CmpValDefInstr.getOpcode() == X86::COPY && | 
|  | CmpInstr.getOpcode() == X86::TEST16rr)) | 
|  | return false; | 
|  |  | 
|  | // CmpInstr is a TEST16rr/TEST64rr instruction, and | 
|  | // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two | 
|  | // registers are identical. | 
|  | assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && | 
|  | "CmpInstr is an analyzable TEST16rr/TEST64rr, and " | 
|  | "`X86InstrInfo::analyzeCompare` requires two reg operands are the" | 
|  | "same."); | 
|  |  | 
|  | // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that | 
|  | // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case | 
|  | // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is | 
|  | // redundant. | 
|  | assert( | 
|  | (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && | 
|  | "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr " | 
|  | "is a user of COPY sub16bit."); | 
|  | MachineInstr *VregDefInstr = nullptr; | 
|  | if (CmpInstr.getOpcode() == X86::TEST16rr) { | 
|  | if (!CmpValDefInstr.getOperand(1).getReg().isVirtual()) | 
|  | return false; | 
|  | VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg()); | 
|  | if (!VregDefInstr) | 
|  | return false; | 
|  | // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit | 
|  | // size, others 32/64 bit ops would test higher bits which test16rr don't | 
|  | // want to. | 
|  | if (!((VregDefInstr->getOpcode() == X86::AND32ri || | 
|  | VregDefInstr->getOpcode() == X86::AND64ri32) && | 
|  | isUInt<16>(VregDefInstr->getOperand(2).getImm()))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CmpInstr.getOpcode() == X86::TEST64rr) { | 
|  | // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is | 
|  | // typically 0. | 
|  | if (CmpValDefInstr.getOperand(1).getImm() != 0) | 
|  | return false; | 
|  |  | 
|  | // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically | 
|  | // sub_32bit or sub_xmm. | 
|  | if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit) | 
|  | return false; | 
|  |  | 
|  | VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg()); | 
|  | } | 
|  |  | 
|  | assert(VregDefInstr && "Must have a definition (SSA)"); | 
|  |  | 
|  | // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB | 
|  | // to simplify the subsequent analysis. | 
|  | // | 
|  | // FIXME: If `VregDefInstr->getParent()` is the only predecessor of | 
|  | // `CmpValDefInstr.getParent()`, this could be handled. | 
|  | if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) | 
|  | return false; | 
|  |  | 
|  | if (X86::isAND(VregDefInstr->getOpcode()) && | 
|  | (!ST.hasNF() || VregDefInstr->modifiesRegister(X86::EFLAGS, TRI))) { | 
|  | // Get a sequence of instructions like | 
|  | //   %reg = and* ...                    // Set EFLAGS | 
|  | //   ...                                // EFLAGS not changed | 
|  | //   %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit | 
|  | //   test64rr %extended_reg, %extended_reg, implicit-def $eflags | 
|  | // or | 
|  | //   %reg = and32* ... | 
|  | //   ...                         // EFLAGS not changed. | 
|  | //   %src_reg = copy %reg.sub_16bit:gr32 | 
|  | //   test16rr %src_reg, %src_reg, implicit-def $eflags | 
|  | // | 
|  | // If subsequent readers use a subset of bits that don't change | 
|  | // after `and*` instructions, it's likely that the test64rr could | 
|  | // be optimized away. | 
|  | for (const MachineInstr &Instr : | 
|  | make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)), | 
|  | MachineBasicBlock::iterator(CmpValDefInstr))) { | 
|  | // There are instructions between 'VregDefInstr' and | 
|  | // 'CmpValDefInstr' that modifies EFLAGS. | 
|  | if (Instr.modifiesRegister(X86::EFLAGS, TRI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *AndInstr = VregDefInstr; | 
|  |  | 
|  | // AND instruction will essentially update SF and clear OF, so | 
|  | // NoSignFlag should be false in the sense that SF is modified by `AND`. | 
|  | // | 
|  | // However, the implementation artifically sets `NoSignFlag` to true | 
|  | // to poison the SF bit; that is to say, if SF is looked at later, the | 
|  | // optimization (to erase TEST64rr) will be disabled. | 
|  | // | 
|  | // The reason to poison SF bit is that SF bit value could be different | 
|  | // in the `AND` and `TEST` operation; signed bit is not known for `AND`, | 
|  | // and is known to be 0 as a result of `TEST64rr`. | 
|  | // | 
|  | // FIXME: As opposed to poisoning the SF bit directly, consider peeking into | 
|  | // the AND instruction and using the static information to guide peephole | 
|  | // optimization if possible. For example, it's possible to fold a | 
|  | // conditional move into a copy if the relevant EFLAG bits could be deduced | 
|  | // from an immediate operand of and operation. | 
|  | // | 
|  | NoSignFlag = true; | 
|  | // ClearsOverflowFlag is true for AND operation (no surprise). | 
|  | ClearsOverflowFlag = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, | 
|  | unsigned Opc, bool AllowSP, Register &NewSrc, | 
|  | unsigned &NewSrcSubReg, bool &isKill, | 
|  | MachineOperand &ImplicitOp, LiveVariables *LV, | 
|  | LiveIntervals *LIS) const { | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const TargetRegisterClass *RC; | 
|  | if (AllowSP) { | 
|  | RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; | 
|  | } else { | 
|  | RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; | 
|  | } | 
|  | Register SrcReg = Src.getReg(); | 
|  | unsigned SubReg = Src.getSubReg(); | 
|  | isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr); | 
|  |  | 
|  | NewSrcSubReg = X86::NoSubRegister; | 
|  |  | 
|  | // For both LEA64 and LEA32 the register already has essentially the right | 
|  | // type (32-bit or 64-bit) we may just need to forbid SP. | 
|  | if (Opc != X86::LEA64_32r) { | 
|  | NewSrc = SrcReg; | 
|  | NewSrcSubReg = SubReg; | 
|  | assert(!Src.isUndef() && "Undef op doesn't need optimization"); | 
|  |  | 
|  | if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is for an LEA64_32r and incoming registers are 32-bit. One way or | 
|  | // another we need to add 64-bit registers to the final MI. | 
|  | if (SrcReg.isPhysical()) { | 
|  | ImplicitOp = Src; | 
|  | ImplicitOp.setImplicit(); | 
|  |  | 
|  | NewSrc = getX86SubSuperRegister(SrcReg, 64); | 
|  | assert(!SubReg && "no superregister for source"); | 
|  | assert(NewSrc.isValid() && "Invalid Operand"); | 
|  | assert(!Src.isUndef() && "Undef op doesn't need optimization"); | 
|  | } else { | 
|  | // Virtual register of the wrong class, we have to create a temporary 64-bit | 
|  | // vreg to feed into the LEA. | 
|  | NewSrc = MF.getRegInfo().createVirtualRegister(RC); | 
|  | NewSrcSubReg = X86::NoSubRegister; | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) | 
|  | .addReg(SrcReg, getKillRegState(isKill), SubReg); | 
|  |  | 
|  | // Which is obviously going to be dead after we're done with it. | 
|  | isKill = true; | 
|  |  | 
|  | if (LV) | 
|  | LV->replaceKillInstruction(SrcReg, MI, *Copy); | 
|  |  | 
|  | if (LIS) { | 
|  | SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy); | 
|  | SlotIndex Idx = LIS->getInstructionIndex(MI); | 
|  | LiveInterval &LI = LIS->getInterval(SrcReg); | 
|  | LiveRange::Segment *S = LI.getSegmentContaining(Idx); | 
|  | if (S->end.getBaseIndex() == Idx) | 
|  | S->end = CopyIdx.getRegSlot(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We've set all the parameters without issue. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, | 
|  | MachineInstr &MI, | 
|  | LiveVariables *LV, | 
|  | LiveIntervals *LIS, | 
|  | bool Is8BitOp) const { | 
|  | // We handle 8-bit adds and various 16-bit opcodes in the switch below. | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); | 
|  | assert((Is8BitOp || | 
|  | RegInfo.getTargetRegisterInfo()->getRegSizeInBits( | 
|  | *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && | 
|  | "Unexpected type for LEA transform"); | 
|  |  | 
|  | // TODO: For a 32-bit target, we need to adjust the LEA variables with | 
|  | // something like this: | 
|  | //   Opcode = X86::LEA32r; | 
|  | //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | //   OutRegLEA = | 
|  | //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) | 
|  | //                : RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | if (!Subtarget.is64Bit()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned Opcode = X86::LEA64_32r; | 
|  | Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | Register InRegLEA2; | 
|  |  | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // we will be shifting and then extracting the lower 8/16-bits. | 
|  | // This has the potential to cause partial register stall. e.g. | 
|  | //   movw    (%rbp,%rcx,2), %dx | 
|  | //   leal    -65(%rdx), %esi | 
|  | // But testing has shown this *does* help performance in 64-bit mode (at | 
|  | // least on modern x86 machines). | 
|  | MachineBasicBlock::iterator MBBI = MI.getIterator(); | 
|  | Register Dest = MI.getOperand(0).getReg(); | 
|  | Register Src = MI.getOperand(1).getReg(); | 
|  | unsigned SrcSubReg = MI.getOperand(1).getSubReg(); | 
|  | Register Src2; | 
|  | unsigned Src2SubReg; | 
|  | bool IsDead = MI.getOperand(0).isDead(); | 
|  | bool IsKill = MI.getOperand(1).isKill(); | 
|  | unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; | 
|  | assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); | 
|  | MachineInstr *ImpDef = | 
|  | BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); | 
|  | MachineInstr *InsMI = | 
|  | BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(InRegLEA, RegState::Define, SubReg) | 
|  | .addReg(Src, getKillRegState(IsKill), SrcSubReg); | 
|  | MachineInstr *ImpDef2 = nullptr; | 
|  | MachineInstr *InsMI2 = nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); | 
|  | #define CASE_NF(OP)                                                            \ | 
|  | case X86::OP:                                                                \ | 
|  | case X86::OP##_NF: | 
|  | switch (MIOpc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | CASE_NF(SHL8ri) | 
|  | CASE_NF(SHL16ri) { | 
|  | unsigned ShAmt = MI.getOperand(2).getImm(); | 
|  | MIB.addReg(0) | 
|  | .addImm(1LL << ShAmt) | 
|  | .addReg(InRegLEA, RegState::Kill) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | break; | 
|  | } | 
|  | CASE_NF(INC8r) | 
|  | CASE_NF(INC16r) | 
|  | addRegOffset(MIB, InRegLEA, true, 1); | 
|  | break; | 
|  | CASE_NF(DEC8r) | 
|  | CASE_NF(DEC16r) | 
|  | addRegOffset(MIB, InRegLEA, true, -1); | 
|  | break; | 
|  | CASE_NF(ADD8ri) | 
|  | CASE_NF(ADD16ri) | 
|  | case X86::ADD8ri_DB: | 
|  | case X86::ADD16ri_DB: | 
|  | addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); | 
|  | break; | 
|  | CASE_NF(ADD8rr) | 
|  | CASE_NF(ADD16rr) | 
|  | case X86::ADD8rr_DB: | 
|  | case X86::ADD16rr_DB: { | 
|  | Src2 = MI.getOperand(2).getReg(); | 
|  | Src2SubReg = MI.getOperand(2).getSubReg(); | 
|  | bool IsKill2 = MI.getOperand(2).isKill(); | 
|  | assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); | 
|  | if (Src == Src2) { | 
|  | // ADD8rr/ADD16rr killed %reg1028, %reg1028 | 
|  | // just a single insert_subreg. | 
|  | addRegReg(MIB, InRegLEA, true, X86::NoSubRegister, InRegLEA, false, | 
|  | X86::NoSubRegister); | 
|  | } else { | 
|  | if (Subtarget.is64Bit()) | 
|  | InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | else | 
|  | InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); | 
|  | // Build and insert into an implicit UNDEF value. This is OK because | 
|  | // we will be shifting and then extracting the lower 8/16-bits. | 
|  | ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), | 
|  | InRegLEA2); | 
|  | InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(InRegLEA2, RegState::Define, SubReg) | 
|  | .addReg(Src2, getKillRegState(IsKill2), Src2SubReg); | 
|  | addRegReg(MIB, InRegLEA, true, X86::NoSubRegister, InRegLEA2, true, | 
|  | X86::NoSubRegister); | 
|  | } | 
|  | if (LV && IsKill2 && InsMI2) | 
|  | LV->replaceKillInstruction(Src2, MI, *InsMI2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr *NewMI = MIB; | 
|  | MachineInstr *ExtMI = | 
|  | BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) | 
|  | .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) | 
|  | .addReg(OutRegLEA, RegState::Kill, SubReg); | 
|  |  | 
|  | if (LV) { | 
|  | // Update live variables. | 
|  | LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); | 
|  | if (InRegLEA2) | 
|  | LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI); | 
|  | LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); | 
|  | if (IsKill) | 
|  | LV->replaceKillInstruction(Src, MI, *InsMI); | 
|  | if (IsDead) | 
|  | LV->replaceKillInstruction(Dest, MI, *ExtMI); | 
|  | } | 
|  |  | 
|  | if (LIS) { | 
|  | LIS->InsertMachineInstrInMaps(*ImpDef); | 
|  | SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI); | 
|  | if (ImpDef2) | 
|  | LIS->InsertMachineInstrInMaps(*ImpDef2); | 
|  | SlotIndex Ins2Idx; | 
|  | if (InsMI2) | 
|  | Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2); | 
|  | SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI); | 
|  | SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI); | 
|  | LIS->getInterval(InRegLEA); | 
|  | LIS->getInterval(OutRegLEA); | 
|  | if (InRegLEA2) | 
|  | LIS->getInterval(InRegLEA2); | 
|  |  | 
|  | // Move the use of Src up to InsMI. | 
|  | LiveInterval &SrcLI = LIS->getInterval(Src); | 
|  | LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx); | 
|  | if (SrcSeg->end == NewIdx.getRegSlot()) | 
|  | SrcSeg->end = InsIdx.getRegSlot(); | 
|  |  | 
|  | if (InsMI2) { | 
|  | // Move the use of Src2 up to InsMI2. | 
|  | LiveInterval &Src2LI = LIS->getInterval(Src2); | 
|  | LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx); | 
|  | if (Src2Seg->end == NewIdx.getRegSlot()) | 
|  | Src2Seg->end = Ins2Idx.getRegSlot(); | 
|  | } | 
|  |  | 
|  | // Move the definition of Dest down to ExtMI. | 
|  | LiveInterval &DestLI = LIS->getInterval(Dest); | 
|  | LiveRange::Segment *DestSeg = | 
|  | DestLI.getSegmentContaining(NewIdx.getRegSlot()); | 
|  | assert(DestSeg->start == NewIdx.getRegSlot() && | 
|  | DestSeg->valno->def == NewIdx.getRegSlot()); | 
|  | DestSeg->start = ExtIdx.getRegSlot(); | 
|  | DestSeg->valno->def = ExtIdx.getRegSlot(); | 
|  | } | 
|  |  | 
|  | return ExtMI; | 
|  | } | 
|  |  | 
|  | /// This method must be implemented by targets that | 
|  | /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target | 
|  | /// may be able to convert a two-address instruction into a true | 
|  | /// three-address instruction on demand.  This allows the X86 target (for | 
|  | /// example) to convert ADD and SHL instructions into LEA instructions if they | 
|  | /// would require register copies due to two-addressness. | 
|  | /// | 
|  | /// This method returns a null pointer if the transformation cannot be | 
|  | /// performed, otherwise it returns the new instruction. | 
|  | /// | 
|  | MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, | 
|  | LiveVariables *LV, | 
|  | LiveIntervals *LIS) const { | 
|  | // The following opcodes also sets the condition code register(s). Only | 
|  | // convert them to equivalent lea if the condition code register def's | 
|  | // are dead! | 
|  | if (hasLiveCondCodeDef(MI)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | // All instructions input are two-addr instructions.  Get the known operands. | 
|  | const MachineOperand &Dest = MI.getOperand(0); | 
|  | const MachineOperand &Src = MI.getOperand(1); | 
|  |  | 
|  | // Ideally, operations with undef should be folded before we get here, but we | 
|  | // can't guarantee it. Bail out because optimizing undefs is a waste of time. | 
|  | // Without this, we have to forward undef state to new register operands to | 
|  | // avoid machine verifier errors. | 
|  | if (Src.isUndef()) | 
|  | return nullptr; | 
|  | if (MI.getNumOperands() > 2) | 
|  | if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  | Register SrcReg, SrcReg2; | 
|  | unsigned SrcSubReg, SrcSubReg2; | 
|  | bool Is64Bit = Subtarget.is64Bit(); | 
|  |  | 
|  | bool Is8BitOp = false; | 
|  | unsigned NumRegOperands = 2; | 
|  | unsigned MIOpc = MI.getOpcode(); | 
|  | switch (MIOpc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | CASE_NF(SHL64ri) { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) | 
|  | return nullptr; | 
|  |  | 
|  | // LEA can't handle RSP. | 
|  | if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( | 
|  | Src.getReg(), &X86::GR64_NOSPRegClass)) | 
|  | return nullptr; | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .addImm(1LL << ShAmt) | 
|  | .add(Src) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | break; | 
|  | } | 
|  | CASE_NF(SHL32ri) { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | // LEA can't handle ESP. | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(0) | 
|  | .addImm(1LL << ShAmt) | 
|  | .addReg(SrcReg, getKillRegState(isKill), SrcSubReg) | 
|  | .addImm(0) | 
|  | .addReg(0); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  | NewMI = MIB; | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | CASE_NF(SHL8ri) | 
|  | Is8BitOp = true; | 
|  | [[fallthrough]]; | 
|  | CASE_NF(SHL16ri) { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (!isTruncatedShiftCountForLEA(ShAmt)) | 
|  | return nullptr; | 
|  | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); | 
|  | } | 
|  | CASE_NF(INC64r) | 
|  | CASE_NF(INC32r) { | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); | 
|  | unsigned Opc = (MIOpc == X86::INC64r || MIOpc == X86::INC64r_NF) | 
|  | ? X86::LEA64r | 
|  | : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, 1); | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | CASE_NF(DEC64r) | 
|  | CASE_NF(DEC32r) { | 
|  | assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); | 
|  | unsigned Opc = (MIOpc == X86::DEC64r || MIOpc == X86::DEC64r_NF) | 
|  | ? X86::LEA64r | 
|  | : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); | 
|  |  | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getKillRegState(isKill)); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, -1); | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | CASE_NF(DEC8r) | 
|  | CASE_NF(INC8r) | 
|  | Is8BitOp = true; | 
|  | [[fallthrough]]; | 
|  | CASE_NF(DEC16r) | 
|  | CASE_NF(INC16r) | 
|  | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); | 
|  | CASE_NF(ADD64rr) | 
|  | CASE_NF(ADD32rr) | 
|  | case X86::ADD64rr_DB: | 
|  | case X86::ADD32rr_DB: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc; | 
|  | if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_NF || | 
|  | MIOpc == X86::ADD64rr_DB) | 
|  | Opc = X86::LEA64r; | 
|  | else | 
|  | Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | const MachineOperand &Src2 = MI.getOperand(2); | 
|  | bool isKill2; | 
|  | MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, SrcSubReg2, | 
|  | isKill2, ImplicitOp2, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (Src.getReg() == Src2.getReg()) { | 
|  | // Don't call classify LEAReg a second time on the same register, in case | 
|  | // the first call inserted a COPY from Src2 and marked it as killed. | 
|  | isKill = isKill2; | 
|  | SrcReg = SrcReg2; | 
|  | SrcSubReg = SrcSubReg2; | 
|  | } else { | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  | if (ImplicitOp2.getReg() != 0) | 
|  | MIB.add(ImplicitOp2); | 
|  |  | 
|  | NewMI = | 
|  | addRegReg(MIB, SrcReg, isKill, SrcSubReg, SrcReg2, isKill2, SrcSubReg2); | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV) { | 
|  | if (SrcReg2 != Src2.getReg()) | 
|  | LV->getVarInfo(SrcReg2).Kills.push_back(NewMI); | 
|  | if (SrcReg != SrcReg2 && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | } | 
|  | NumRegOperands = 3; | 
|  | break; | 
|  | } | 
|  | CASE_NF(ADD8rr) | 
|  | case X86::ADD8rr_DB: | 
|  | Is8BitOp = true; | 
|  | [[fallthrough]]; | 
|  | CASE_NF(ADD16rr) | 
|  | case X86::ADD16rr_DB: | 
|  | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); | 
|  | CASE_NF(ADD64ri32) | 
|  | case X86::ADD64ri32_DB: | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | NewMI = addOffset( | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), | 
|  | MI.getOperand(2)); | 
|  | break; | 
|  | CASE_NF(ADD32ri) | 
|  | case X86::ADD32ri_DB: { | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getKillRegState(isKill), SrcSubReg); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, MI.getOperand(2)); | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  | CASE_NF(ADD8ri) | 
|  | case X86::ADD8ri_DB: | 
|  | Is8BitOp = true; | 
|  | [[fallthrough]]; | 
|  | CASE_NF(ADD16ri) | 
|  | case X86::ADD16ri_DB: | 
|  | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); | 
|  | CASE_NF(SUB8ri) | 
|  | CASE_NF(SUB16ri) | 
|  | /// FIXME: Support these similar to ADD8ri/ADD16ri*. | 
|  | return nullptr; | 
|  | CASE_NF(SUB32ri) { | 
|  | if (!MI.getOperand(2).isImm()) | 
|  | return nullptr; | 
|  | int64_t Imm = MI.getOperand(2).getImm(); | 
|  | if (!isInt<32>(-Imm)) | 
|  | return nullptr; | 
|  |  | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); | 
|  | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; | 
|  |  | 
|  | bool isKill; | 
|  | MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); | 
|  | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, SrcSubReg, | 
|  | isKill, ImplicitOp, LV, LIS)) | 
|  | return nullptr; | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .addReg(SrcReg, getKillRegState(isKill), SrcSubReg); | 
|  | if (ImplicitOp.getReg() != 0) | 
|  | MIB.add(ImplicitOp); | 
|  |  | 
|  | NewMI = addOffset(MIB, -Imm); | 
|  |  | 
|  | // Add kills if classifyLEAReg created a new register. | 
|  | if (LV && SrcReg != Src.getReg()) | 
|  | LV->getVarInfo(SrcReg).Kills.push_back(NewMI); | 
|  | break; | 
|  | } | 
|  |  | 
|  | CASE_NF(SUB64ri32) { | 
|  | if (!MI.getOperand(2).isImm()) | 
|  | return nullptr; | 
|  | int64_t Imm = MI.getOperand(2).getImm(); | 
|  | if (!isInt<32>(-Imm)) | 
|  | return nullptr; | 
|  |  | 
|  | assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); | 
|  |  | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src); | 
|  | NewMI = addOffset(MIB, -Imm); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::VMOVDQU8Z128rmk: | 
|  | case X86::VMOVDQU8Z256rmk: | 
|  | case X86::VMOVDQU8Zrmk: | 
|  | case X86::VMOVDQU16Z128rmk: | 
|  | case X86::VMOVDQU16Z256rmk: | 
|  | case X86::VMOVDQU16Zrmk: | 
|  | case X86::VMOVDQU32Z128rmk: | 
|  | case X86::VMOVDQA32Z128rmk: | 
|  | case X86::VMOVDQU32Z256rmk: | 
|  | case X86::VMOVDQA32Z256rmk: | 
|  | case X86::VMOVDQU32Zrmk: | 
|  | case X86::VMOVDQA32Zrmk: | 
|  | case X86::VMOVDQU64Z128rmk: | 
|  | case X86::VMOVDQA64Z128rmk: | 
|  | case X86::VMOVDQU64Z256rmk: | 
|  | case X86::VMOVDQA64Z256rmk: | 
|  | case X86::VMOVDQU64Zrmk: | 
|  | case X86::VMOVDQA64Zrmk: | 
|  | case X86::VMOVUPDZ128rmk: | 
|  | case X86::VMOVAPDZ128rmk: | 
|  | case X86::VMOVUPDZ256rmk: | 
|  | case X86::VMOVAPDZ256rmk: | 
|  | case X86::VMOVUPDZrmk: | 
|  | case X86::VMOVAPDZrmk: | 
|  | case X86::VMOVUPSZ128rmk: | 
|  | case X86::VMOVAPSZ128rmk: | 
|  | case X86::VMOVUPSZ256rmk: | 
|  | case X86::VMOVAPSZ256rmk: | 
|  | case X86::VMOVUPSZrmk: | 
|  | case X86::VMOVAPSZrmk: | 
|  | case X86::VBROADCASTSDZ256rmk: | 
|  | case X86::VBROADCASTSDZrmk: | 
|  | case X86::VBROADCASTSSZ128rmk: | 
|  | case X86::VBROADCASTSSZ256rmk: | 
|  | case X86::VBROADCASTSSZrmk: | 
|  | case X86::VPBROADCASTDZ128rmk: | 
|  | case X86::VPBROADCASTDZ256rmk: | 
|  | case X86::VPBROADCASTDZrmk: | 
|  | case X86::VPBROADCASTQZ128rmk: | 
|  | case X86::VPBROADCASTQZ256rmk: | 
|  | case X86::VPBROADCASTQZrmk: { | 
|  | unsigned Opc; | 
|  | switch (MIOpc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::VMOVDQU8Z128rmk: | 
|  | Opc = X86::VPBLENDMBZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQU8Z256rmk: | 
|  | Opc = X86::VPBLENDMBZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQU8Zrmk: | 
|  | Opc = X86::VPBLENDMBZrmk; | 
|  | break; | 
|  | case X86::VMOVDQU16Z128rmk: | 
|  | Opc = X86::VPBLENDMWZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQU16Z256rmk: | 
|  | Opc = X86::VPBLENDMWZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQU16Zrmk: | 
|  | Opc = X86::VPBLENDMWZrmk; | 
|  | break; | 
|  | case X86::VMOVDQU32Z128rmk: | 
|  | Opc = X86::VPBLENDMDZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQU32Z256rmk: | 
|  | Opc = X86::VPBLENDMDZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQU32Zrmk: | 
|  | Opc = X86::VPBLENDMDZrmk; | 
|  | break; | 
|  | case X86::VMOVDQU64Z128rmk: | 
|  | Opc = X86::VPBLENDMQZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQU64Z256rmk: | 
|  | Opc = X86::VPBLENDMQZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQU64Zrmk: | 
|  | Opc = X86::VPBLENDMQZrmk; | 
|  | break; | 
|  | case X86::VMOVUPDZ128rmk: | 
|  | Opc = X86::VBLENDMPDZ128rmk; | 
|  | break; | 
|  | case X86::VMOVUPDZ256rmk: | 
|  | Opc = X86::VBLENDMPDZ256rmk; | 
|  | break; | 
|  | case X86::VMOVUPDZrmk: | 
|  | Opc = X86::VBLENDMPDZrmk; | 
|  | break; | 
|  | case X86::VMOVUPSZ128rmk: | 
|  | Opc = X86::VBLENDMPSZ128rmk; | 
|  | break; | 
|  | case X86::VMOVUPSZ256rmk: | 
|  | Opc = X86::VBLENDMPSZ256rmk; | 
|  | break; | 
|  | case X86::VMOVUPSZrmk: | 
|  | Opc = X86::VBLENDMPSZrmk; | 
|  | break; | 
|  | case X86::VMOVDQA32Z128rmk: | 
|  | Opc = X86::VPBLENDMDZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQA32Z256rmk: | 
|  | Opc = X86::VPBLENDMDZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQA32Zrmk: | 
|  | Opc = X86::VPBLENDMDZrmk; | 
|  | break; | 
|  | case X86::VMOVDQA64Z128rmk: | 
|  | Opc = X86::VPBLENDMQZ128rmk; | 
|  | break; | 
|  | case X86::VMOVDQA64Z256rmk: | 
|  | Opc = X86::VPBLENDMQZ256rmk; | 
|  | break; | 
|  | case X86::VMOVDQA64Zrmk: | 
|  | Opc = X86::VPBLENDMQZrmk; | 
|  | break; | 
|  | case X86::VMOVAPDZ128rmk: | 
|  | Opc = X86::VBLENDMPDZ128rmk; | 
|  | break; | 
|  | case X86::VMOVAPDZ256rmk: | 
|  | Opc = X86::VBLENDMPDZ256rmk; | 
|  | break; | 
|  | case X86::VMOVAPDZrmk: | 
|  | Opc = X86::VBLENDMPDZrmk; | 
|  | break; | 
|  | case X86::VMOVAPSZ128rmk: | 
|  | Opc = X86::VBLENDMPSZ128rmk; | 
|  | break; | 
|  | case X86::VMOVAPSZ256rmk: | 
|  | Opc = X86::VBLENDMPSZ256rmk; | 
|  | break; | 
|  | case X86::VMOVAPSZrmk: | 
|  | Opc = X86::VBLENDMPSZrmk; | 
|  | break; | 
|  | case X86::VBROADCASTSDZ256rmk: | 
|  | Opc = X86::VBLENDMPDZ256rmbk; | 
|  | break; | 
|  | case X86::VBROADCASTSDZrmk: | 
|  | Opc = X86::VBLENDMPDZrmbk; | 
|  | break; | 
|  | case X86::VBROADCASTSSZ128rmk: | 
|  | Opc = X86::VBLENDMPSZ128rmbk; | 
|  | break; | 
|  | case X86::VBROADCASTSSZ256rmk: | 
|  | Opc = X86::VBLENDMPSZ256rmbk; | 
|  | break; | 
|  | case X86::VBROADCASTSSZrmk: | 
|  | Opc = X86::VBLENDMPSZrmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTDZ128rmk: | 
|  | Opc = X86::VPBLENDMDZ128rmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTDZ256rmk: | 
|  | Opc = X86::VPBLENDMDZ256rmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTDZrmk: | 
|  | Opc = X86::VPBLENDMDZrmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTQZ128rmk: | 
|  | Opc = X86::VPBLENDMQZ128rmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTQZ256rmk: | 
|  | Opc = X86::VPBLENDMQZ256rmbk; | 
|  | break; | 
|  | case X86::VPBROADCASTQZrmk: | 
|  | Opc = X86::VPBLENDMQZrmbk; | 
|  | break; | 
|  | } | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(Src) | 
|  | .add(MI.getOperand(3)) | 
|  | .add(MI.getOperand(4)) | 
|  | .add(MI.getOperand(5)) | 
|  | .add(MI.getOperand(6)) | 
|  | .add(MI.getOperand(7)); | 
|  | NumRegOperands = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86::VMOVDQU8Z128rrk: | 
|  | case X86::VMOVDQU8Z256rrk: | 
|  | case X86::VMOVDQU8Zrrk: | 
|  | case X86::VMOVDQU16Z128rrk: | 
|  | case X86::VMOVDQU16Z256rrk: | 
|  | case X86::VMOVDQU16Zrrk: | 
|  | case X86::VMOVDQU32Z128rrk: | 
|  | case X86::VMOVDQA32Z128rrk: | 
|  | case X86::VMOVDQU32Z256rrk: | 
|  | case X86::VMOVDQA32Z256rrk: | 
|  | case X86::VMOVDQU32Zrrk: | 
|  | case X86::VMOVDQA32Zrrk: | 
|  | case X86::VMOVDQU64Z128rrk: | 
|  | case X86::VMOVDQA64Z128rrk: | 
|  | case X86::VMOVDQU64Z256rrk: | 
|  | case X86::VMOVDQA64Z256rrk: | 
|  | case X86::VMOVDQU64Zrrk: | 
|  | case X86::VMOVDQA64Zrrk: | 
|  | case X86::VMOVUPDZ128rrk: | 
|  | case X86::VMOVAPDZ128rrk: | 
|  | case X86::VMOVUPDZ256rrk: | 
|  | case X86::VMOVAPDZ256rrk: | 
|  | case X86::VMOVUPDZrrk: | 
|  | case X86::VMOVAPDZrrk: | 
|  | case X86::VMOVUPSZ128rrk: | 
|  | case X86::VMOVAPSZ128rrk: | 
|  | case X86::VMOVUPSZ256rrk: | 
|  | case X86::VMOVAPSZ256rrk: | 
|  | case X86::VMOVUPSZrrk: | 
|  | case X86::VMOVAPSZrrk: { | 
|  | unsigned Opc; | 
|  | switch (MIOpc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::VMOVDQU8Z128rrk: | 
|  | Opc = X86::VPBLENDMBZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQU8Z256rrk: | 
|  | Opc = X86::VPBLENDMBZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQU8Zrrk: | 
|  | Opc = X86::VPBLENDMBZrrk; | 
|  | break; | 
|  | case X86::VMOVDQU16Z128rrk: | 
|  | Opc = X86::VPBLENDMWZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQU16Z256rrk: | 
|  | Opc = X86::VPBLENDMWZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQU16Zrrk: | 
|  | Opc = X86::VPBLENDMWZrrk; | 
|  | break; | 
|  | case X86::VMOVDQU32Z128rrk: | 
|  | Opc = X86::VPBLENDMDZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQU32Z256rrk: | 
|  | Opc = X86::VPBLENDMDZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQU32Zrrk: | 
|  | Opc = X86::VPBLENDMDZrrk; | 
|  | break; | 
|  | case X86::VMOVDQU64Z128rrk: | 
|  | Opc = X86::VPBLENDMQZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQU64Z256rrk: | 
|  | Opc = X86::VPBLENDMQZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQU64Zrrk: | 
|  | Opc = X86::VPBLENDMQZrrk; | 
|  | break; | 
|  | case X86::VMOVUPDZ128rrk: | 
|  | Opc = X86::VBLENDMPDZ128rrk; | 
|  | break; | 
|  | case X86::VMOVUPDZ256rrk: | 
|  | Opc = X86::VBLENDMPDZ256rrk; | 
|  | break; | 
|  | case X86::VMOVUPDZrrk: | 
|  | Opc = X86::VBLENDMPDZrrk; | 
|  | break; | 
|  | case X86::VMOVUPSZ128rrk: | 
|  | Opc = X86::VBLENDMPSZ128rrk; | 
|  | break; | 
|  | case X86::VMOVUPSZ256rrk: | 
|  | Opc = X86::VBLENDMPSZ256rrk; | 
|  | break; | 
|  | case X86::VMOVUPSZrrk: | 
|  | Opc = X86::VBLENDMPSZrrk; | 
|  | break; | 
|  | case X86::VMOVDQA32Z128rrk: | 
|  | Opc = X86::VPBLENDMDZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQA32Z256rrk: | 
|  | Opc = X86::VPBLENDMDZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQA32Zrrk: | 
|  | Opc = X86::VPBLENDMDZrrk; | 
|  | break; | 
|  | case X86::VMOVDQA64Z128rrk: | 
|  | Opc = X86::VPBLENDMQZ128rrk; | 
|  | break; | 
|  | case X86::VMOVDQA64Z256rrk: | 
|  | Opc = X86::VPBLENDMQZ256rrk; | 
|  | break; | 
|  | case X86::VMOVDQA64Zrrk: | 
|  | Opc = X86::VPBLENDMQZrrk; | 
|  | break; | 
|  | case X86::VMOVAPDZ128rrk: | 
|  | Opc = X86::VBLENDMPDZ128rrk; | 
|  | break; | 
|  | case X86::VMOVAPDZ256rrk: | 
|  | Opc = X86::VBLENDMPDZ256rrk; | 
|  | break; | 
|  | case X86::VMOVAPDZrrk: | 
|  | Opc = X86::VBLENDMPDZrrk; | 
|  | break; | 
|  | case X86::VMOVAPSZ128rrk: | 
|  | Opc = X86::VBLENDMPSZ128rrk; | 
|  | break; | 
|  | case X86::VMOVAPSZ256rrk: | 
|  | Opc = X86::VBLENDMPSZ256rrk; | 
|  | break; | 
|  | case X86::VMOVAPSZrrk: | 
|  | Opc = X86::VBLENDMPSZrrk; | 
|  | break; | 
|  | } | 
|  |  | 
|  | NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) | 
|  | .add(Dest) | 
|  | .add(MI.getOperand(2)) | 
|  | .add(Src) | 
|  | .add(MI.getOperand(3)); | 
|  | NumRegOperands = 4; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #undef CASE_NF | 
|  |  | 
|  | if (!NewMI) | 
|  | return nullptr; | 
|  |  | 
|  | if (LV) { // Update live variables | 
|  | for (unsigned I = 0; I < NumRegOperands; ++I) { | 
|  | MachineOperand &Op = MI.getOperand(I); | 
|  | if (Op.isReg() && (Op.isDead() || Op.isKill())) | 
|  | LV->replaceKillInstruction(Op.getReg(), MI, *NewMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | MBB.insert(MI.getIterator(), NewMI); // Insert the new inst | 
|  |  | 
|  | if (LIS) { | 
|  | LIS->ReplaceMachineInstrInMaps(MI, *NewMI); | 
|  | if (SrcReg) | 
|  | LIS->getInterval(SrcReg); | 
|  | if (SrcReg2) | 
|  | LIS->getInterval(SrcReg2); | 
|  | } | 
|  |  | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | /// This determines which of three possible cases of a three source commute | 
|  | /// the source indexes correspond to taking into account any mask operands. | 
|  | /// All prevents commuting a passthru operand. Returns -1 if the commute isn't | 
|  | /// possible. | 
|  | /// Case 0 - Possible to commute the first and second operands. | 
|  | /// Case 1 - Possible to commute the first and third operands. | 
|  | /// Case 2 - Possible to commute the second and third operands. | 
|  | static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, | 
|  | unsigned SrcOpIdx2) { | 
|  | // Put the lowest index to SrcOpIdx1 to simplify the checks below. | 
|  | if (SrcOpIdx1 > SrcOpIdx2) | 
|  | std::swap(SrcOpIdx1, SrcOpIdx2); | 
|  |  | 
|  | unsigned Op1 = 1, Op2 = 2, Op3 = 3; | 
|  | if (X86II::isKMasked(TSFlags)) { | 
|  | Op2++; | 
|  | Op3++; | 
|  | } | 
|  |  | 
|  | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) | 
|  | return 0; | 
|  | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) | 
|  | return 1; | 
|  | if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) | 
|  | return 2; | 
|  | llvm_unreachable("Unknown three src commute case."); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( | 
|  | const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, | 
|  | const X86InstrFMA3Group &FMA3Group) const { | 
|  |  | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | // TODO: Commuting the 1st operand of FMA*_Int requires some additional | 
|  | // analysis. The commute optimization is legal only if all users of FMA*_Int | 
|  | // use only the lowest element of the FMA*_Int instruction. Such analysis are | 
|  | // not implemented yet. So, just return 0 in that case. | 
|  | // When such analysis are available this place will be the right place for | 
|  | // calling it. | 
|  | assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && | 
|  | "Intrinsic instructions can't commute operand 1"); | 
|  |  | 
|  | // Determine which case this commute is or if it can't be done. | 
|  | unsigned Case = | 
|  | getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); | 
|  | assert(Case < 3 && "Unexpected case number!"); | 
|  |  | 
|  | // Define the FMA forms mapping array that helps to map input FMA form | 
|  | // to output FMA form to preserve the operation semantics after | 
|  | // commuting the operands. | 
|  | const unsigned Form132Index = 0; | 
|  | const unsigned Form213Index = 1; | 
|  | const unsigned Form231Index = 2; | 
|  | static const unsigned FormMapping[][3] = { | 
|  | // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; | 
|  | // FMA132 A, C, b; ==> FMA231 C, A, b; | 
|  | // FMA213 B, A, c; ==> FMA213 A, B, c; | 
|  | // FMA231 C, A, b; ==> FMA132 A, C, b; | 
|  | {Form231Index, Form213Index, Form132Index}, | 
|  | // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; | 
|  | // FMA132 A, c, B; ==> FMA132 B, c, A; | 
|  | // FMA213 B, a, C; ==> FMA231 C, a, B; | 
|  | // FMA231 C, a, B; ==> FMA213 B, a, C; | 
|  | {Form132Index, Form231Index, Form213Index}, | 
|  | // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; | 
|  | // FMA132 a, C, B; ==> FMA213 a, B, C; | 
|  | // FMA213 b, A, C; ==> FMA132 b, C, A; | 
|  | // FMA231 c, A, B; ==> FMA231 c, B, A; | 
|  | {Form213Index, Form132Index, Form231Index}}; | 
|  |  | 
|  | unsigned FMAForms[3]; | 
|  | FMAForms[0] = FMA3Group.get132Opcode(); | 
|  | FMAForms[1] = FMA3Group.get213Opcode(); | 
|  | FMAForms[2] = FMA3Group.get231Opcode(); | 
|  |  | 
|  | // Everything is ready, just adjust the FMA opcode and return it. | 
|  | for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) | 
|  | if (Opc == FMAForms[FormIndex]) | 
|  | return FMAForms[FormMapping[Case][FormIndex]]; | 
|  |  | 
|  | llvm_unreachable("Illegal FMA3 format"); | 
|  | } | 
|  |  | 
|  | static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, | 
|  | unsigned SrcOpIdx2) { | 
|  | // Determine which case this commute is or if it can't be done. | 
|  | unsigned Case = | 
|  | getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); | 
|  | assert(Case < 3 && "Unexpected case value!"); | 
|  |  | 
|  | // For each case we need to swap two pairs of bits in the final immediate. | 
|  | static const uint8_t SwapMasks[3][4] = { | 
|  | {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5. | 
|  | {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6. | 
|  | {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6. | 
|  | }; | 
|  |  | 
|  | uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); | 
|  | // Clear out the bits we are swapping. | 
|  | uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | | 
|  | SwapMasks[Case][2] | SwapMasks[Case][3]); | 
|  | // If the immediate had a bit of the pair set, then set the opposite bit. | 
|  | if (Imm & SwapMasks[Case][0]) | 
|  | NewImm |= SwapMasks[Case][1]; | 
|  | if (Imm & SwapMasks[Case][1]) | 
|  | NewImm |= SwapMasks[Case][0]; | 
|  | if (Imm & SwapMasks[Case][2]) | 
|  | NewImm |= SwapMasks[Case][3]; | 
|  | if (Imm & SwapMasks[Case][3]) | 
|  | NewImm |= SwapMasks[Case][2]; | 
|  | MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm); | 
|  | } | 
|  |  | 
|  | // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be | 
|  | // commuted. | 
|  | static bool isCommutableVPERMV3Instruction(unsigned Opcode) { | 
|  | #define VPERM_CASES(Suffix)                                                    \ | 
|  | case X86::VPERMI2##Suffix##Z128rr:                                           \ | 
|  | case X86::VPERMT2##Suffix##Z128rr:                                           \ | 
|  | case X86::VPERMI2##Suffix##Z256rr:                                           \ | 
|  | case X86::VPERMT2##Suffix##Z256rr:                                           \ | 
|  | case X86::VPERMI2##Suffix##Zrr:                                              \ | 
|  | case X86::VPERMT2##Suffix##Zrr:                                              \ | 
|  | case X86::VPERMI2##Suffix##Z128rm:                                           \ | 
|  | case X86::VPERMT2##Suffix##Z128rm:                                           \ | 
|  | case X86::VPERMI2##Suffix##Z256rm:                                           \ | 
|  | case X86::VPERMT2##Suffix##Z256rm:                                           \ | 
|  | case X86::VPERMI2##Suffix##Zrm:                                              \ | 
|  | case X86::VPERMT2##Suffix##Zrm:                                              \ | 
|  | case X86::VPERMI2##Suffix##Z128rrkz:                                         \ | 
|  | case X86::VPERMT2##Suffix##Z128rrkz:                                         \ | 
|  | case X86::VPERMI2##Suffix##Z256rrkz:                                         \ | 
|  | case X86::VPERMT2##Suffix##Z256rrkz:                                         \ | 
|  | case X86::VPERMI2##Suffix##Zrrkz:                                            \ | 
|  | case X86::VPERMT2##Suffix##Zrrkz:                                            \ | 
|  | case X86::VPERMI2##Suffix##Z128rmkz:                                         \ | 
|  | case X86::VPERMT2##Suffix##Z128rmkz:                                         \ | 
|  | case X86::VPERMI2##Suffix##Z256rmkz:                                         \ | 
|  | case X86::VPERMT2##Suffix##Z256rmkz:                                         \ | 
|  | case X86::VPERMI2##Suffix##Zrmkz:                                            \ | 
|  | case X86::VPERMT2##Suffix##Zrmkz: | 
|  |  | 
|  | #define VPERM_CASES_BROADCAST(Suffix)                                          \ | 
|  | VPERM_CASES(Suffix)                                                          \ | 
|  | case X86::VPERMI2##Suffix##Z128rmb:                                          \ | 
|  | case X86::VPERMT2##Suffix##Z128rmb:                                          \ | 
|  | case X86::VPERMI2##Suffix##Z256rmb:                                          \ | 
|  | case X86::VPERMT2##Suffix##Z256rmb:                                          \ | 
|  | case X86::VPERMI2##Suffix##Zrmb:                                             \ | 
|  | case X86::VPERMT2##Suffix##Zrmb:                                             \ | 
|  | case X86::VPERMI2##Suffix##Z128rmbkz:                                        \ | 
|  | case X86::VPERMT2##Suffix##Z128rmbkz:                                        \ | 
|  | case X86::VPERMI2##Suffix##Z256rmbkz:                                        \ | 
|  | case X86::VPERMT2##Suffix##Z256rmbkz:                                        \ | 
|  | case X86::VPERMI2##Suffix##Zrmbkz:                                           \ | 
|  | case X86::VPERMT2##Suffix##Zrmbkz: | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | VPERM_CASES(B) | 
|  | VPERM_CASES_BROADCAST(D) | 
|  | VPERM_CASES_BROADCAST(PD) | 
|  | VPERM_CASES_BROADCAST(PS) | 
|  | VPERM_CASES_BROADCAST(Q) | 
|  | VPERM_CASES(W) | 
|  | return true; | 
|  | } | 
|  | #undef VPERM_CASES_BROADCAST | 
|  | #undef VPERM_CASES | 
|  | } | 
|  |  | 
|  | // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching | 
|  | // from the I opcode to the T opcode and vice versa. | 
|  | static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { | 
|  | #define VPERM_CASES(Orig, New)                                                 \ | 
|  | case X86::Orig##Z128rr:                                                      \ | 
|  | return X86::New##Z128rr;                                                   \ | 
|  | case X86::Orig##Z128rrkz:                                                    \ | 
|  | return X86::New##Z128rrkz;                                                 \ | 
|  | case X86::Orig##Z128rm:                                                      \ | 
|  | return X86::New##Z128rm;                                                   \ | 
|  | case X86::Orig##Z128rmkz:                                                    \ | 
|  | return X86::New##Z128rmkz;                                                 \ | 
|  | case X86::Orig##Z256rr:                                                      \ | 
|  | return X86::New##Z256rr;                                                   \ | 
|  | case X86::Orig##Z256rrkz:                                                    \ | 
|  | return X86::New##Z256rrkz;                                                 \ | 
|  | case X86::Orig##Z256rm:                                                      \ | 
|  | return X86::New##Z256rm;                                                   \ | 
|  | case X86::Orig##Z256rmkz:                                                    \ | 
|  | return X86::New##Z256rmkz;                                                 \ | 
|  | case X86::Orig##Zrr:                                                         \ | 
|  | return X86::New##Zrr;                                                      \ | 
|  | case X86::Orig##Zrrkz:                                                       \ | 
|  | return X86::New##Zrrkz;                                                    \ | 
|  | case X86::Orig##Zrm:                                                         \ | 
|  | return X86::New##Zrm;                                                      \ | 
|  | case X86::Orig##Zrmkz:                                                       \ | 
|  | return X86::New##Zrmkz; | 
|  |  | 
|  | #define VPERM_CASES_BROADCAST(Orig, New)                                       \ | 
|  | VPERM_CASES(Orig, New)                                                       \ | 
|  | case X86::Orig##Z128rmb:                                                     \ | 
|  | return X86::New##Z128rmb;                                                  \ | 
|  | case X86::Orig##Z128rmbkz:                                                   \ | 
|  | return X86::New##Z128rmbkz;                                                \ | 
|  | case X86::Orig##Z256rmb:                                                     \ | 
|  | return X86::New##Z256rmb;                                                  \ | 
|  | case X86::Orig##Z256rmbkz:                                                   \ | 
|  | return X86::New##Z256rmbkz;                                                \ | 
|  | case X86::Orig##Zrmb:                                                        \ | 
|  | return X86::New##Zrmb;                                                     \ | 
|  | case X86::Orig##Zrmbkz:                                                      \ | 
|  | return X86::New##Zrmbkz; | 
|  |  | 
|  | switch (Opcode) { | 
|  | VPERM_CASES(VPERMI2B, VPERMT2B) | 
|  | VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) | 
|  | VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) | 
|  | VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) | 
|  | VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) | 
|  | VPERM_CASES(VPERMI2W, VPERMT2W) | 
|  | VPERM_CASES(VPERMT2B, VPERMI2B) | 
|  | VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) | 
|  | VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) | 
|  | VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) | 
|  | VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) | 
|  | VPERM_CASES(VPERMT2W, VPERMI2W) | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unreachable!"); | 
|  | #undef VPERM_CASES_BROADCAST | 
|  | #undef VPERM_CASES | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, | 
|  | unsigned OpIdx1, | 
|  | unsigned OpIdx2) const { | 
|  | auto CloneIfNew = [&](MachineInstr &MI) { | 
|  | return std::exchange(NewMI, false) | 
|  | ? MI.getParent()->getParent()->CloneMachineInstr(&MI) | 
|  | : &MI; | 
|  | }; | 
|  | MachineInstr *WorkingMI = nullptr; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | #define CASE_ND(OP)                                                            \ | 
|  | case X86::OP:                                                                \ | 
|  | case X86::OP##_ND: | 
|  |  | 
|  | switch (Opc) { | 
|  | // SHLD B, C, I <-> SHRD C, B, (BitWidth - I) | 
|  | CASE_ND(SHRD16rri8) | 
|  | CASE_ND(SHLD16rri8) | 
|  | CASE_ND(SHRD32rri8) | 
|  | CASE_ND(SHLD32rri8) | 
|  | CASE_ND(SHRD64rri8) | 
|  | CASE_ND(SHLD64rri8) { | 
|  | unsigned Size; | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | #define FROM_TO_SIZE(A, B, S)                                                  \ | 
|  | case X86::A:                                                                 \ | 
|  | Opc = X86::B;                                                              \ | 
|  | Size = S;                                                                  \ | 
|  | break;                                                                     \ | 
|  | case X86::A##_ND:                                                            \ | 
|  | Opc = X86::B##_ND;                                                         \ | 
|  | Size = S;                                                                  \ | 
|  | break;                                                                     \ | 
|  | case X86::B:                                                                 \ | 
|  | Opc = X86::A;                                                              \ | 
|  | Size = S;                                                                  \ | 
|  | break;                                                                     \ | 
|  | case X86::B##_ND:                                                            \ | 
|  | Opc = X86::A##_ND;                                                         \ | 
|  | Size = S;                                                                  \ | 
|  | break; | 
|  |  | 
|  | FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16) | 
|  | FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32) | 
|  | FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64) | 
|  | #undef FROM_TO_SIZE | 
|  | } | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(Opc)); | 
|  | WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm()); | 
|  | break; | 
|  | } | 
|  | case X86::PFSUBrr: | 
|  | case X86::PFSUBRrr: | 
|  | // PFSUB  x, y: x = x - y | 
|  | // PFSUBR x, y: x = y - x | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc( | 
|  | get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr)); | 
|  | break; | 
|  | case X86::BLENDPDrri: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VBLENDPDrri: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VBLENDPDYrri: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDrri: | 
|  | case X86::VPBLENDWrri: | 
|  | case X86::VPBLENDDYrri: | 
|  | case X86::VPBLENDWYrri: { | 
|  | int8_t Mask; | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::BLENDPDrri: | 
|  | Mask = (int8_t)0x03; | 
|  | break; | 
|  | case X86::BLENDPSrri: | 
|  | Mask = (int8_t)0x0F; | 
|  | break; | 
|  | case X86::PBLENDWrri: | 
|  | Mask = (int8_t)0xFF; | 
|  | break; | 
|  | case X86::VBLENDPDrri: | 
|  | Mask = (int8_t)0x03; | 
|  | break; | 
|  | case X86::VBLENDPSrri: | 
|  | Mask = (int8_t)0x0F; | 
|  | break; | 
|  | case X86::VBLENDPDYrri: | 
|  | Mask = (int8_t)0x0F; | 
|  | break; | 
|  | case X86::VBLENDPSYrri: | 
|  | Mask = (int8_t)0xFF; | 
|  | break; | 
|  | case X86::VPBLENDDrri: | 
|  | Mask = (int8_t)0x0F; | 
|  | break; | 
|  | case X86::VPBLENDWrri: | 
|  | Mask = (int8_t)0xFF; | 
|  | break; | 
|  | case X86::VPBLENDDYrri: | 
|  | Mask = (int8_t)0xFF; | 
|  | break; | 
|  | case X86::VPBLENDWYrri: | 
|  | Mask = (int8_t)0xFF; | 
|  | break; | 
|  | } | 
|  | // Only the least significant bits of Imm are used. | 
|  | // Using int8_t to ensure it will be sign extended to the int64_t that | 
|  | // setImm takes in order to match isel behavior. | 
|  | int8_t Imm = MI.getOperand(3).getImm() & Mask; | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->getOperand(3).setImm(Mask ^ Imm); | 
|  | break; | 
|  | } | 
|  | case X86::INSERTPSrri: | 
|  | case X86::VINSERTPSrri: | 
|  | case X86::VINSERTPSZrri: { | 
|  | unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); | 
|  | unsigned ZMask = Imm & 15; | 
|  | unsigned DstIdx = (Imm >> 4) & 3; | 
|  | unsigned SrcIdx = (Imm >> 6) & 3; | 
|  |  | 
|  | // We can commute insertps if we zero 2 of the elements, the insertion is | 
|  | // "inline" and we don't override the insertion with a zero. | 
|  | if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && | 
|  | llvm::popcount(ZMask) == 2) { | 
|  | unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15); | 
|  | assert(AltIdx < 4 && "Illegal insertion index"); | 
|  | unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm); | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | case X86::MOVSDrr: | 
|  | case X86::MOVSSrr: | 
|  | case X86::VMOVSDrr: | 
|  | case X86::VMOVSSrr: { | 
|  | // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. | 
|  | if (Subtarget.hasSSE41()) { | 
|  | unsigned Mask; | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVSDrr: | 
|  | Opc = X86::BLENDPDrri; | 
|  | Mask = 0x02; | 
|  | break; | 
|  | case X86::MOVSSrr: | 
|  | Opc = X86::BLENDPSrri; | 
|  | Mask = 0x0E; | 
|  | break; | 
|  | case X86::VMOVSDrr: | 
|  | Opc = X86::VBLENDPDrri; | 
|  | Mask = 0x02; | 
|  | break; | 
|  | case X86::VMOVSSrr: | 
|  | Opc = X86::VBLENDPSrri; | 
|  | Mask = 0x0E; | 
|  | break; | 
|  | } | 
|  |  | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(Opc)); | 
|  | WorkingMI->addOperand(MachineOperand::CreateImm(Mask)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Opc == X86::MOVSDrr && "Only MOVSD can commute to SHUFPD"); | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(X86::SHUFPDrri)); | 
|  | WorkingMI->addOperand(MachineOperand::CreateImm(0x02)); | 
|  | break; | 
|  | } | 
|  | case X86::SHUFPDrri: { | 
|  | // Commute to MOVSD. | 
|  | assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(X86::MOVSDrr)); | 
|  | WorkingMI->removeOperand(3); | 
|  | break; | 
|  | } | 
|  | case X86::PCLMULQDQrri: | 
|  | case X86::VPCLMULQDQrri: | 
|  | case X86::VPCLMULQDQYrri: | 
|  | case X86::VPCLMULQDQZrri: | 
|  | case X86::VPCLMULQDQZ128rri: | 
|  | case X86::VPCLMULQDQZ256rri: { | 
|  | // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] | 
|  | // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] | 
|  | unsigned Imm = MI.getOperand(3).getImm(); | 
|  | unsigned Src1Hi = Imm & 0x01; | 
|  | unsigned Src2Hi = Imm & 0x10; | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); | 
|  | break; | 
|  | } | 
|  | case X86::VPCMPBZ128rri: | 
|  | case X86::VPCMPUBZ128rri: | 
|  | case X86::VPCMPBZ256rri: | 
|  | case X86::VPCMPUBZ256rri: | 
|  | case X86::VPCMPBZrri: | 
|  | case X86::VPCMPUBZrri: | 
|  | case X86::VPCMPDZ128rri: | 
|  | case X86::VPCMPUDZ128rri: | 
|  | case X86::VPCMPDZ256rri: | 
|  | case X86::VPCMPUDZ256rri: | 
|  | case X86::VPCMPDZrri: | 
|  | case X86::VPCMPUDZrri: | 
|  | case X86::VPCMPQZ128rri: | 
|  | case X86::VPCMPUQZ128rri: | 
|  | case X86::VPCMPQZ256rri: | 
|  | case X86::VPCMPUQZ256rri: | 
|  | case X86::VPCMPQZrri: | 
|  | case X86::VPCMPUQZrri: | 
|  | case X86::VPCMPWZ128rri: | 
|  | case X86::VPCMPUWZ128rri: | 
|  | case X86::VPCMPWZ256rri: | 
|  | case X86::VPCMPUWZ256rri: | 
|  | case X86::VPCMPWZrri: | 
|  | case X86::VPCMPUWZrri: | 
|  | case X86::VPCMPBZ128rrik: | 
|  | case X86::VPCMPUBZ128rrik: | 
|  | case X86::VPCMPBZ256rrik: | 
|  | case X86::VPCMPUBZ256rrik: | 
|  | case X86::VPCMPBZrrik: | 
|  | case X86::VPCMPUBZrrik: | 
|  | case X86::VPCMPDZ128rrik: | 
|  | case X86::VPCMPUDZ128rrik: | 
|  | case X86::VPCMPDZ256rrik: | 
|  | case X86::VPCMPUDZ256rrik: | 
|  | case X86::VPCMPDZrrik: | 
|  | case X86::VPCMPUDZrrik: | 
|  | case X86::VPCMPQZ128rrik: | 
|  | case X86::VPCMPUQZ128rrik: | 
|  | case X86::VPCMPQZ256rrik: | 
|  | case X86::VPCMPUQZ256rrik: | 
|  | case X86::VPCMPQZrrik: | 
|  | case X86::VPCMPUQZrrik: | 
|  | case X86::VPCMPWZ128rrik: | 
|  | case X86::VPCMPUWZ128rrik: | 
|  | case X86::VPCMPWZ256rrik: | 
|  | case X86::VPCMPUWZ256rrik: | 
|  | case X86::VPCMPWZrrik: | 
|  | case X86::VPCMPUWZrrik: | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | // Flip comparison mode immediate (if necessary). | 
|  | WorkingMI->getOperand(MI.getNumOperands() - 1) | 
|  | .setImm(X86::getSwappedVPCMPImm( | 
|  | MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7)); | 
|  | break; | 
|  | case X86::VPCOMBri: | 
|  | case X86::VPCOMUBri: | 
|  | case X86::VPCOMDri: | 
|  | case X86::VPCOMUDri: | 
|  | case X86::VPCOMQri: | 
|  | case X86::VPCOMUQri: | 
|  | case X86::VPCOMWri: | 
|  | case X86::VPCOMUWri: | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | // Flip comparison mode immediate (if necessary). | 
|  | WorkingMI->getOperand(3).setImm( | 
|  | X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7)); | 
|  | break; | 
|  | case X86::VCMPSDZrri: | 
|  | case X86::VCMPSSZrri: | 
|  | case X86::VCMPPDZrri: | 
|  | case X86::VCMPPSZrri: | 
|  | case X86::VCMPSHZrri: | 
|  | case X86::VCMPPHZrri: | 
|  | case X86::VCMPPHZ128rri: | 
|  | case X86::VCMPPHZ256rri: | 
|  | case X86::VCMPPDZ128rri: | 
|  | case X86::VCMPPSZ128rri: | 
|  | case X86::VCMPPDZ256rri: | 
|  | case X86::VCMPPSZ256rri: | 
|  | case X86::VCMPPDZrrik: | 
|  | case X86::VCMPPSZrrik: | 
|  | case X86::VCMPPDZ128rrik: | 
|  | case X86::VCMPPSZ128rrik: | 
|  | case X86::VCMPPDZ256rrik: | 
|  | case X86::VCMPPSZ256rrik: | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->getOperand(MI.getNumExplicitOperands() - 1) | 
|  | .setImm(X86::getSwappedVCMPImm( | 
|  | MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f)); | 
|  | break; | 
|  | case X86::VPERM2F128rri: | 
|  | case X86::VPERM2I128rri: | 
|  | // Flip permute source immediate. | 
|  | // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. | 
|  | // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22); | 
|  | break; | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VUNPCKHPDrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | case X86::VUNPCKHPDZ128rr: | 
|  | assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::MOVHLPSrr: | 
|  | Opc = X86::UNPCKHPDrr; | 
|  | break; | 
|  | case X86::UNPCKHPDrr: | 
|  | Opc = X86::MOVHLPSrr; | 
|  | break; | 
|  | case X86::VMOVHLPSrr: | 
|  | Opc = X86::VUNPCKHPDrr; | 
|  | break; | 
|  | case X86::VUNPCKHPDrr: | 
|  | Opc = X86::VMOVHLPSrr; | 
|  | break; | 
|  | case X86::VMOVHLPSZrr: | 
|  | Opc = X86::VUNPCKHPDZ128rr; | 
|  | break; | 
|  | case X86::VUNPCKHPDZ128rr: | 
|  | Opc = X86::VMOVHLPSZrr; | 
|  | break; | 
|  | } | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(Opc)); | 
|  | break; | 
|  | CASE_ND(CMOV16rr) | 
|  | CASE_ND(CMOV32rr) | 
|  | CASE_ND(CMOV64rr) { | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | unsigned OpNo = MI.getDesc().getNumOperands() - 1; | 
|  | X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); | 
|  | WorkingMI->getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); | 
|  | break; | 
|  | } | 
|  | case X86::VPTERNLOGDZrri: | 
|  | case X86::VPTERNLOGDZrmi: | 
|  | case X86::VPTERNLOGDZ128rri: | 
|  | case X86::VPTERNLOGDZ128rmi: | 
|  | case X86::VPTERNLOGDZ256rri: | 
|  | case X86::VPTERNLOGDZ256rmi: | 
|  | case X86::VPTERNLOGQZrri: | 
|  | case X86::VPTERNLOGQZrmi: | 
|  | case X86::VPTERNLOGQZ128rri: | 
|  | case X86::VPTERNLOGQZ128rmi: | 
|  | case X86::VPTERNLOGQZ256rri: | 
|  | case X86::VPTERNLOGQZ256rmi: | 
|  | case X86::VPTERNLOGDZrrik: | 
|  | case X86::VPTERNLOGDZ128rrik: | 
|  | case X86::VPTERNLOGDZ256rrik: | 
|  | case X86::VPTERNLOGQZrrik: | 
|  | case X86::VPTERNLOGQZ128rrik: | 
|  | case X86::VPTERNLOGQZ256rrik: | 
|  | case X86::VPTERNLOGDZrrikz: | 
|  | case X86::VPTERNLOGDZrmikz: | 
|  | case X86::VPTERNLOGDZ128rrikz: | 
|  | case X86::VPTERNLOGDZ128rmikz: | 
|  | case X86::VPTERNLOGDZ256rrikz: | 
|  | case X86::VPTERNLOGDZ256rmikz: | 
|  | case X86::VPTERNLOGQZrrikz: | 
|  | case X86::VPTERNLOGQZrmikz: | 
|  | case X86::VPTERNLOGQZ128rrikz: | 
|  | case X86::VPTERNLOGQZ128rmikz: | 
|  | case X86::VPTERNLOGQZ256rrikz: | 
|  | case X86::VPTERNLOGQZ256rmikz: | 
|  | case X86::VPTERNLOGDZ128rmbi: | 
|  | case X86::VPTERNLOGDZ256rmbi: | 
|  | case X86::VPTERNLOGDZrmbi: | 
|  | case X86::VPTERNLOGQZ128rmbi: | 
|  | case X86::VPTERNLOGQZ256rmbi: | 
|  | case X86::VPTERNLOGQZrmbi: | 
|  | case X86::VPTERNLOGDZ128rmbikz: | 
|  | case X86::VPTERNLOGDZ256rmbikz: | 
|  | case X86::VPTERNLOGDZrmbikz: | 
|  | case X86::VPTERNLOGQZ128rmbikz: | 
|  | case X86::VPTERNLOGQZ256rmbikz: | 
|  | case X86::VPTERNLOGQZrmbikz: { | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | if (isCommutableVPERMV3Instruction(Opc)) { | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) { | 
|  | WorkingMI = CloneIfNew(MI); | 
|  | WorkingMI->setDesc( | 
|  | get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group))); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2, | 
|  | bool IsIntrinsic) const { | 
|  | uint64_t TSFlags = MI.getDesc().TSFlags; | 
|  |  | 
|  | unsigned FirstCommutableVecOp = 1; | 
|  | unsigned LastCommutableVecOp = 3; | 
|  | unsigned KMaskOp = -1U; | 
|  | if (X86II::isKMasked(TSFlags)) { | 
|  | // For k-zero-masked operations it is Ok to commute the first vector | 
|  | // operand. Unless this is an intrinsic instruction. | 
|  | // For regular k-masked operations a conservative choice is done as the | 
|  | // elements of the first vector operand, for which the corresponding bit | 
|  | // in the k-mask operand is set to 0, are copied to the result of the | 
|  | // instruction. | 
|  | // TODO/FIXME: The commute still may be legal if it is known that the | 
|  | // k-mask operand is set to either all ones or all zeroes. | 
|  | // It is also Ok to commute the 1st operand if all users of MI use only | 
|  | // the elements enabled by the k-mask operand. For example, | 
|  | //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] | 
|  | //                                                     : v1[i]; | 
|  | //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> | 
|  | //                                  // Ok, to commute v1 in FMADD213PSZrk. | 
|  |  | 
|  | // The k-mask operand has index = 2 for masked and zero-masked operations. | 
|  | KMaskOp = 2; | 
|  |  | 
|  | // The operand with index = 1 is used as a source for those elements for | 
|  | // which the corresponding bit in the k-mask is set to 0. | 
|  | if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) | 
|  | FirstCommutableVecOp = 3; | 
|  |  | 
|  | LastCommutableVecOp++; | 
|  | } else if (IsIntrinsic) { | 
|  | // Commuting the first operand of an intrinsic instruction isn't possible | 
|  | // unless we can prove that only the lowest element of the result is used. | 
|  | FirstCommutableVecOp = 2; | 
|  | } | 
|  |  | 
|  | if (isMem(MI, LastCommutableVecOp)) | 
|  | LastCommutableVecOp--; | 
|  |  | 
|  | // Only the first RegOpsNum operands are commutable. | 
|  | // Also, the value 'CommuteAnyOperandIndex' is valid here as it means | 
|  | // that the operand is not specified/fixed. | 
|  | if (SrcOpIdx1 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || | 
|  | SrcOpIdx1 == KMaskOp)) | 
|  | return false; | 
|  | if (SrcOpIdx2 != CommuteAnyOperandIndex && | 
|  | (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || | 
|  | SrcOpIdx2 == KMaskOp)) | 
|  | return false; | 
|  |  | 
|  | // Look for two different register operands assumed to be commutable | 
|  | // regardless of the FMA opcode. The FMA opcode is adjusted later. | 
|  | if (SrcOpIdx1 == CommuteAnyOperandIndex || | 
|  | SrcOpIdx2 == CommuteAnyOperandIndex) { | 
|  | unsigned CommutableOpIdx2 = SrcOpIdx2; | 
|  |  | 
|  | // At least one of operands to be commuted is not specified and | 
|  | // this method is free to choose appropriate commutable operands. | 
|  | if (SrcOpIdx1 == SrcOpIdx2) | 
|  | // Both of operands are not fixed. By default set one of commutable | 
|  | // operands to the last register operand of the instruction. | 
|  | CommutableOpIdx2 = LastCommutableVecOp; | 
|  | else if (SrcOpIdx2 == CommuteAnyOperandIndex) | 
|  | // Only one of operands is not fixed. | 
|  | CommutableOpIdx2 = SrcOpIdx1; | 
|  |  | 
|  | // CommutableOpIdx2 is well defined now. Let's choose another commutable | 
|  | // operand and assign its index to CommutableOpIdx1. | 
|  | Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); | 
|  |  | 
|  | unsigned CommutableOpIdx1; | 
|  | for (CommutableOpIdx1 = LastCommutableVecOp; | 
|  | CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { | 
|  | // Just ignore and skip the k-mask operand. | 
|  | if (CommutableOpIdx1 == KMaskOp) | 
|  | continue; | 
|  |  | 
|  | // The commuted operands must have different registers. | 
|  | // Otherwise, the commute transformation does not change anything and | 
|  | // is useless then. | 
|  | if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // No appropriate commutable operands were found. | 
|  | if (CommutableOpIdx1 < FirstCommutableVecOp) | 
|  | return false; | 
|  |  | 
|  | // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 | 
|  | // to return those values. | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, | 
|  | CommutableOpIdx2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, | 
|  | unsigned &SrcOpIdx1, | 
|  | unsigned &SrcOpIdx2) const { | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | if (!Desc.isCommutable()) | 
|  | return false; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::CMPSDrri: | 
|  | case X86::CMPSSrri: | 
|  | case X86::CMPPDrri: | 
|  | case X86::CMPPSrri: | 
|  | case X86::VCMPSDrri: | 
|  | case X86::VCMPSSrri: | 
|  | case X86::VCMPPDrri: | 
|  | case X86::VCMPPSrri: | 
|  | case X86::VCMPPDYrri: | 
|  | case X86::VCMPPSYrri: | 
|  | case X86::VCMPSDZrri: | 
|  | case X86::VCMPSSZrri: | 
|  | case X86::VCMPPDZrri: | 
|  | case X86::VCMPPSZrri: | 
|  | case X86::VCMPSHZrri: | 
|  | case X86::VCMPPHZrri: | 
|  | case X86::VCMPPHZ128rri: | 
|  | case X86::VCMPPHZ256rri: | 
|  | case X86::VCMPPDZ128rri: | 
|  | case X86::VCMPPSZ128rri: | 
|  | case X86::VCMPPDZ256rri: | 
|  | case X86::VCMPPSZ256rri: | 
|  | case X86::VCMPPDZrrik: | 
|  | case X86::VCMPPSZrrik: | 
|  | case X86::VCMPPDZ128rrik: | 
|  | case X86::VCMPPSZ128rrik: | 
|  | case X86::VCMPPDZ256rrik: | 
|  | case X86::VCMPPSZ256rrik: { | 
|  | unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; | 
|  |  | 
|  | // Float comparison can be safely commuted for | 
|  | // Ordered/Unordered/Equal/NotEqual tests | 
|  | unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; | 
|  | switch (Imm) { | 
|  | default: | 
|  | // EVEX versions can be commuted. | 
|  | if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) | 
|  | break; | 
|  | return false; | 
|  | case 0x00: // EQUAL | 
|  | case 0x03: // UNORDERED | 
|  | case 0x04: // NOT EQUAL | 
|  | case 0x07: // ORDERED | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The indices of the commutable operands are 1 and 2 (or 2 and 3 | 
|  | // when masked). | 
|  | // Assign them to the returned operand indices here. | 
|  | return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, | 
|  | 2 + OpOffset); | 
|  | } | 
|  | case X86::MOVSSrr: | 
|  | // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can | 
|  | // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since | 
|  | // AVX implies sse4.1. | 
|  | if (Subtarget.hasSSE41()) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return false; | 
|  | case X86::SHUFPDrri: | 
|  | // We can commute this to MOVSD. | 
|  | if (MI.getOperand(3).getImm() == 0x02) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return false; | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VUNPCKHPDrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | case X86::VUNPCKHPDZ128rr: | 
|  | if (Subtarget.hasSSE2()) | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | return false; | 
|  | case X86::VPTERNLOGDZrri: | 
|  | case X86::VPTERNLOGDZrmi: | 
|  | case X86::VPTERNLOGDZ128rri: | 
|  | case X86::VPTERNLOGDZ128rmi: | 
|  | case X86::VPTERNLOGDZ256rri: | 
|  | case X86::VPTERNLOGDZ256rmi: | 
|  | case X86::VPTERNLOGQZrri: | 
|  | case X86::VPTERNLOGQZrmi: | 
|  | case X86::VPTERNLOGQZ128rri: | 
|  | case X86::VPTERNLOGQZ128rmi: | 
|  | case X86::VPTERNLOGQZ256rri: | 
|  | case X86::VPTERNLOGQZ256rmi: | 
|  | case X86::VPTERNLOGDZrrik: | 
|  | case X86::VPTERNLOGDZ128rrik: | 
|  | case X86::VPTERNLOGDZ256rrik: | 
|  | case X86::VPTERNLOGQZrrik: | 
|  | case X86::VPTERNLOGQZ128rrik: | 
|  | case X86::VPTERNLOGQZ256rrik: | 
|  | case X86::VPTERNLOGDZrrikz: | 
|  | case X86::VPTERNLOGDZrmikz: | 
|  | case X86::VPTERNLOGDZ128rrikz: | 
|  | case X86::VPTERNLOGDZ128rmikz: | 
|  | case X86::VPTERNLOGDZ256rrikz: | 
|  | case X86::VPTERNLOGDZ256rmikz: | 
|  | case X86::VPTERNLOGQZrrikz: | 
|  | case X86::VPTERNLOGQZrmikz: | 
|  | case X86::VPTERNLOGQZ128rrikz: | 
|  | case X86::VPTERNLOGQZ128rmikz: | 
|  | case X86::VPTERNLOGQZ256rrikz: | 
|  | case X86::VPTERNLOGQZ256rmikz: | 
|  | case X86::VPTERNLOGDZ128rmbi: | 
|  | case X86::VPTERNLOGDZ256rmbi: | 
|  | case X86::VPTERNLOGDZrmbi: | 
|  | case X86::VPTERNLOGQZ128rmbi: | 
|  | case X86::VPTERNLOGQZ256rmbi: | 
|  | case X86::VPTERNLOGQZrmbi: | 
|  | case X86::VPTERNLOGDZ128rmbikz: | 
|  | case X86::VPTERNLOGDZ256rmbikz: | 
|  | case X86::VPTERNLOGDZrmbikz: | 
|  | case X86::VPTERNLOGQZ128rmbikz: | 
|  | case X86::VPTERNLOGQZ256rmbikz: | 
|  | case X86::VPTERNLOGQZrmbikz: | 
|  | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | case X86::VPDPWSSDYrr: | 
|  | case X86::VPDPWSSDrr: | 
|  | case X86::VPDPWSSDSYrr: | 
|  | case X86::VPDPWSSDSrr: | 
|  | case X86::VPDPWUUDrr: | 
|  | case X86::VPDPWUUDYrr: | 
|  | case X86::VPDPWUUDSrr: | 
|  | case X86::VPDPWUUDSYrr: | 
|  | case X86::VPDPBSSDSrr: | 
|  | case X86::VPDPBSSDSYrr: | 
|  | case X86::VPDPBSSDrr: | 
|  | case X86::VPDPBSSDYrr: | 
|  | case X86::VPDPBUUDSrr: | 
|  | case X86::VPDPBUUDSYrr: | 
|  | case X86::VPDPBUUDrr: | 
|  | case X86::VPDPBUUDYrr: | 
|  | case X86::VPDPBSSDSZ128r: | 
|  | case X86::VPDPBSSDSZ128rk: | 
|  | case X86::VPDPBSSDSZ128rkz: | 
|  | case X86::VPDPBSSDSZ256r: | 
|  | case X86::VPDPBSSDSZ256rk: | 
|  | case X86::VPDPBSSDSZ256rkz: | 
|  | case X86::VPDPBSSDSZr: | 
|  | case X86::VPDPBSSDSZrk: | 
|  | case X86::VPDPBSSDSZrkz: | 
|  | case X86::VPDPBSSDZ128r: | 
|  | case X86::VPDPBSSDZ128rk: | 
|  | case X86::VPDPBSSDZ128rkz: | 
|  | case X86::VPDPBSSDZ256r: | 
|  | case X86::VPDPBSSDZ256rk: | 
|  | case X86::VPDPBSSDZ256rkz: | 
|  | case X86::VPDPBSSDZr: | 
|  | case X86::VPDPBSSDZrk: | 
|  | case X86::VPDPBSSDZrkz: | 
|  | case X86::VPDPBUUDSZ128r: | 
|  | case X86::VPDPBUUDSZ128rk: | 
|  | case X86::VPDPBUUDSZ128rkz: | 
|  | case X86::VPDPBUUDSZ256r: | 
|  | case X86::VPDPBUUDSZ256rk: | 
|  | case X86::VPDPBUUDSZ256rkz: | 
|  | case X86::VPDPBUUDSZr: | 
|  | case X86::VPDPBUUDSZrk: | 
|  | case X86::VPDPBUUDSZrkz: | 
|  | case X86::VPDPBUUDZ128r: | 
|  | case X86::VPDPBUUDZ128rk: | 
|  | case X86::VPDPBUUDZ128rkz: | 
|  | case X86::VPDPBUUDZ256r: | 
|  | case X86::VPDPBUUDZ256rk: | 
|  | case X86::VPDPBUUDZ256rkz: | 
|  | case X86::VPDPBUUDZr: | 
|  | case X86::VPDPBUUDZrk: | 
|  | case X86::VPDPBUUDZrkz: | 
|  | case X86::VPDPWSSDZ128r: | 
|  | case X86::VPDPWSSDZ128rk: | 
|  | case X86::VPDPWSSDZ128rkz: | 
|  | case X86::VPDPWSSDZ256r: | 
|  | case X86::VPDPWSSDZ256rk: | 
|  | case X86::VPDPWSSDZ256rkz: | 
|  | case X86::VPDPWSSDZr: | 
|  | case X86::VPDPWSSDZrk: | 
|  | case X86::VPDPWSSDZrkz: | 
|  | case X86::VPDPWSSDSZ128r: | 
|  | case X86::VPDPWSSDSZ128rk: | 
|  | case X86::VPDPWSSDSZ128rkz: | 
|  | case X86::VPDPWSSDSZ256r: | 
|  | case X86::VPDPWSSDSZ256rk: | 
|  | case X86::VPDPWSSDSZ256rkz: | 
|  | case X86::VPDPWSSDSZr: | 
|  | case X86::VPDPWSSDSZrk: | 
|  | case X86::VPDPWSSDSZrkz: | 
|  | case X86::VPDPWUUDZ128r: | 
|  | case X86::VPDPWUUDZ128rk: | 
|  | case X86::VPDPWUUDZ128rkz: | 
|  | case X86::VPDPWUUDZ256r: | 
|  | case X86::VPDPWUUDZ256rk: | 
|  | case X86::VPDPWUUDZ256rkz: | 
|  | case X86::VPDPWUUDZr: | 
|  | case X86::VPDPWUUDZrk: | 
|  | case X86::VPDPWUUDZrkz: | 
|  | case X86::VPDPWUUDSZ128r: | 
|  | case X86::VPDPWUUDSZ128rk: | 
|  | case X86::VPDPWUUDSZ128rkz: | 
|  | case X86::VPDPWUUDSZ256r: | 
|  | case X86::VPDPWUUDSZ256rk: | 
|  | case X86::VPDPWUUDSZ256rkz: | 
|  | case X86::VPDPWUUDSZr: | 
|  | case X86::VPDPWUUDSZrk: | 
|  | case X86::VPDPWUUDSZrkz: | 
|  | case X86::VPMADD52HUQrr: | 
|  | case X86::VPMADD52HUQYrr: | 
|  | case X86::VPMADD52HUQZ128r: | 
|  | case X86::VPMADD52HUQZ128rk: | 
|  | case X86::VPMADD52HUQZ128rkz: | 
|  | case X86::VPMADD52HUQZ256r: | 
|  | case X86::VPMADD52HUQZ256rk: | 
|  | case X86::VPMADD52HUQZ256rkz: | 
|  | case X86::VPMADD52HUQZr: | 
|  | case X86::VPMADD52HUQZrk: | 
|  | case X86::VPMADD52HUQZrkz: | 
|  | case X86::VPMADD52LUQrr: | 
|  | case X86::VPMADD52LUQYrr: | 
|  | case X86::VPMADD52LUQZ128r: | 
|  | case X86::VPMADD52LUQZ128rk: | 
|  | case X86::VPMADD52LUQZ128rkz: | 
|  | case X86::VPMADD52LUQZ256r: | 
|  | case X86::VPMADD52LUQZ256rk: | 
|  | case X86::VPMADD52LUQZ256rkz: | 
|  | case X86::VPMADD52LUQZr: | 
|  | case X86::VPMADD52LUQZrk: | 
|  | case X86::VPMADD52LUQZrkz: | 
|  | case X86::VFMADDCPHZr: | 
|  | case X86::VFMADDCPHZrk: | 
|  | case X86::VFMADDCPHZrkz: | 
|  | case X86::VFMADDCPHZ128r: | 
|  | case X86::VFMADDCPHZ128rk: | 
|  | case X86::VFMADDCPHZ128rkz: | 
|  | case X86::VFMADDCPHZ256r: | 
|  | case X86::VFMADDCPHZ256rk: | 
|  | case X86::VFMADDCPHZ256rkz: | 
|  | case X86::VFMADDCSHZr: | 
|  | case X86::VFMADDCSHZrk: | 
|  | case X86::VFMADDCSHZrkz: { | 
|  | unsigned CommutableOpIdx1 = 2; | 
|  | unsigned CommutableOpIdx2 = 3; | 
|  | if (X86II::isKMasked(Desc.TSFlags)) { | 
|  | // Skip the mask register. | 
|  | ++CommutableOpIdx1; | 
|  | ++CommutableOpIdx2; | 
|  | } | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, | 
|  | CommutableOpIdx2)) | 
|  | return false; | 
|  | if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | default: | 
|  | const X86InstrFMA3Group *FMA3Group = | 
|  | getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags); | 
|  | if (FMA3Group) | 
|  | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, | 
|  | FMA3Group->isIntrinsic()); | 
|  |  | 
|  | // Handled masked instructions since we need to skip over the mask input | 
|  | // and the preserved input. | 
|  | if (X86II::isKMasked(Desc.TSFlags)) { | 
|  | // First assume that the first input is the mask operand and skip past it. | 
|  | unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; | 
|  | unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; | 
|  | // Check if the first input is tied. If there isn't one then we only | 
|  | // need to skip the mask operand which we did above. | 
|  | if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), | 
|  | MCOI::TIED_TO) != -1)) { | 
|  | // If this is zero masking instruction with a tied operand, we need to | 
|  | // move the first index back to the first input since this must | 
|  | // be a 3 input instruction and we want the first two non-mask inputs. | 
|  | // Otherwise this is a 2 input instruction with a preserved input and | 
|  | // mask, so we need to move the indices to skip one more input. | 
|  | if (X86II::isKMergeMasked(Desc.TSFlags)) { | 
|  | ++CommutableOpIdx1; | 
|  | ++CommutableOpIdx2; | 
|  | } else { | 
|  | --CommutableOpIdx1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, | 
|  | CommutableOpIdx2)) | 
|  | return false; | 
|  |  | 
|  | if (!MI.getOperand(SrcOpIdx1).isReg() || | 
|  | !MI.getOperand(SrcOpIdx2).isReg()) | 
|  | // No idea. | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isConvertibleLEA(MachineInstr *MI) { | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && | 
|  | Opcode != X86::LEA64_32r) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); | 
|  | const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); | 
|  | const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); | 
|  |  | 
|  | if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || | 
|  | Scale.getImm() > 1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { | 
|  | // Currently we're interested in following sequence only. | 
|  | //   r3 = lea r1, r2 | 
|  | //   r5 = add r3, r4 | 
|  | // Both r3 and r4 are killed in add, we hope the add instruction has the | 
|  | // operand order | 
|  | //   r5 = add r4, r3 | 
|  | // So later in X86FixupLEAs the lea instruction can be rewritten as add. | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) | 
|  | return false; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | Register Reg1 = MI.getOperand(1).getReg(); | 
|  | Register Reg2 = MI.getOperand(2).getReg(); | 
|  |  | 
|  | // Check if Reg1 comes from LEA in the same MBB. | 
|  | if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { | 
|  | if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { | 
|  | Commute = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if Reg2 comes from LEA in the same MBB. | 
|  | if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { | 
|  | if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { | 
|  | Commute = false; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { | 
|  | unsigned Opcode = MCID.getOpcode(); | 
|  | if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isSETZUCC(Opcode) || | 
|  | X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) || | 
|  | X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode))) | 
|  | return -1; | 
|  | // Assume that condition code is always the last use operand. | 
|  | unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); | 
|  | return NumUses - 1; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { | 
|  | const MCInstrDesc &MCID = MI.getDesc(); | 
|  | int CondNo = getCondSrcNoFromDesc(MCID); | 
|  | if (CondNo < 0) | 
|  | return X86::COND_INVALID; | 
|  | CondNo += MCID.getNumDefs(); | 
|  | return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm()); | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { | 
|  | return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI) | 
|  | : X86::COND_INVALID; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { | 
|  | return X86::isSETCC(MI.getOpcode()) || X86::isSETZUCC(MI.getOpcode()) | 
|  | ? X86::getCondFromMI(MI) | 
|  | : X86::COND_INVALID; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { | 
|  | return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) | 
|  | : X86::COND_INVALID; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) { | 
|  | return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) | 
|  | : X86::COND_INVALID; | 
|  | } | 
|  |  | 
|  | X86::CondCode X86::getCondFromCCMP(const MachineInstr &MI) { | 
|  | return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode()) | 
|  | ? X86::getCondFromMI(MI) | 
|  | : X86::COND_INVALID; | 
|  | } | 
|  |  | 
|  | int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC) { | 
|  | // CCMP/CTEST has two conditional operands: | 
|  | // - SCC: source conditonal code (same as CMOV) | 
|  | // - DCF: destination conditional flags, which has 4 valid bits | 
|  | // | 
|  | // +----+----+----+----+ | 
|  | // | OF | SF | ZF | CF | | 
|  | // +----+----+----+----+ | 
|  | // | 
|  | // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates | 
|  | // the conditional flags by as follows: | 
|  | // | 
|  | // OF = DCF.OF | 
|  | // SF = DCF.SF | 
|  | // ZF = DCF.ZF | 
|  | // CF = DCF.CF | 
|  | // PF = DCF.CF | 
|  | // AF = 0 (Auxiliary Carry Flag) | 
|  | // | 
|  | // Otherwise, the CMP or TEST is executed and it updates the | 
|  | // CSPAZO flags normally. | 
|  | // | 
|  | // NOTE: | 
|  | // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value. | 
|  | // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value. | 
|  |  | 
|  | enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF }; | 
|  |  | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_NO: | 
|  | case X86::COND_NE: | 
|  | case X86::COND_GE: | 
|  | case X86::COND_G: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_A: | 
|  | case X86::COND_NS: | 
|  | case X86::COND_NP: | 
|  | return 0; | 
|  | case X86::COND_O: | 
|  | return OF; | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | return CF; | 
|  | break; | 
|  | case X86::COND_E: | 
|  | case X86::COND_LE: | 
|  | return ZF; | 
|  | case X86::COND_S: | 
|  | case X86::COND_L: | 
|  | return SF; | 
|  | case X86::COND_P: | 
|  | return PF; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define GET_X86_NF_TRANSFORM_TABLE | 
|  | #define GET_X86_ND2NONND_TABLE | 
|  | #include "X86GenInstrMapping.inc" | 
|  |  | 
|  | static unsigned getNewOpcFromTable(ArrayRef<X86TableEntry> Table, | 
|  | unsigned Opc) { | 
|  | const auto I = llvm::lower_bound(Table, Opc); | 
|  | return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc; | 
|  | } | 
|  | unsigned X86::getNFVariant(unsigned Opc) { | 
|  | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) | 
|  | // Make sure the tables are sorted. | 
|  | static std::atomic<bool> NFTableChecked(false); | 
|  | if (!NFTableChecked.load(std::memory_order_relaxed)) { | 
|  | assert(llvm::is_sorted(X86NFTransformTable) && | 
|  | "X86NFTransformTable is not sorted!"); | 
|  | NFTableChecked.store(true, std::memory_order_relaxed); | 
|  | } | 
|  | #endif | 
|  | return getNewOpcFromTable(X86NFTransformTable, Opc); | 
|  | } | 
|  |  | 
|  | unsigned X86::getNonNDVariant(unsigned Opc) { | 
|  | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) | 
|  | // Make sure the tables are sorted. | 
|  | static std::atomic<bool> NDTableChecked(false); | 
|  | if (!NDTableChecked.load(std::memory_order_relaxed)) { | 
|  | assert(llvm::is_sorted(X86ND2NonNDTable) && | 
|  | "X86ND2NonNDTableis not sorted!"); | 
|  | NDTableChecked.store(true, std::memory_order_relaxed); | 
|  | } | 
|  | #endif | 
|  | return getNewOpcFromTable(X86ND2NonNDTable, Opc); | 
|  | } | 
|  |  | 
|  | /// Return the inverse of the specified condition, | 
|  | /// e.g. turning COND_E to COND_NE. | 
|  | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Illegal condition code!"); | 
|  | case X86::COND_E: | 
|  | return X86::COND_NE; | 
|  | case X86::COND_NE: | 
|  | return X86::COND_E; | 
|  | case X86::COND_L: | 
|  | return X86::COND_GE; | 
|  | case X86::COND_LE: | 
|  | return X86::COND_G; | 
|  | case X86::COND_G: | 
|  | return X86::COND_LE; | 
|  | case X86::COND_GE: | 
|  | return X86::COND_L; | 
|  | case X86::COND_B: | 
|  | return X86::COND_AE; | 
|  | case X86::COND_BE: | 
|  | return X86::COND_A; | 
|  | case X86::COND_A: | 
|  | return X86::COND_BE; | 
|  | case X86::COND_AE: | 
|  | return X86::COND_B; | 
|  | case X86::COND_S: | 
|  | return X86::COND_NS; | 
|  | case X86::COND_NS: | 
|  | return X86::COND_S; | 
|  | case X86::COND_P: | 
|  | return X86::COND_NP; | 
|  | case X86::COND_NP: | 
|  | return X86::COND_P; | 
|  | case X86::COND_O: | 
|  | return X86::COND_NO; | 
|  | case X86::COND_NO: | 
|  | return X86::COND_O; | 
|  | case X86::COND_NE_OR_P: | 
|  | return X86::COND_E_AND_NP; | 
|  | case X86::COND_E_AND_NP: | 
|  | return X86::COND_NE_OR_P; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Assuming the flags are set by MI(a,b), return the condition code if we | 
|  | /// modify the instructions such that flags are set by MI(b,a). | 
|  | static X86::CondCode getSwappedCondition(X86::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: | 
|  | return X86::COND_INVALID; | 
|  | case X86::COND_E: | 
|  | return X86::COND_E; | 
|  | case X86::COND_NE: | 
|  | return X86::COND_NE; | 
|  | case X86::COND_L: | 
|  | return X86::COND_G; | 
|  | case X86::COND_LE: | 
|  | return X86::COND_GE; | 
|  | case X86::COND_G: | 
|  | return X86::COND_L; | 
|  | case X86::COND_GE: | 
|  | return X86::COND_LE; | 
|  | case X86::COND_B: | 
|  | return X86::COND_A; | 
|  | case X86::COND_BE: | 
|  | return X86::COND_AE; | 
|  | case X86::COND_A: | 
|  | return X86::COND_B; | 
|  | case X86::COND_AE: | 
|  | return X86::COND_BE; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<X86::CondCode, bool> | 
|  | X86::getX86ConditionCode(CmpInst::Predicate Predicate) { | 
|  | X86::CondCode CC = X86::COND_INVALID; | 
|  | bool NeedSwap = false; | 
|  | switch (Predicate) { | 
|  | default: | 
|  | break; | 
|  | // Floating-point Predicates | 
|  | case CmpInst::FCMP_UEQ: | 
|  | CC = X86::COND_E; | 
|  | break; | 
|  | case CmpInst::FCMP_OLT: | 
|  | NeedSwap = true; | 
|  | [[fallthrough]]; | 
|  | case CmpInst::FCMP_OGT: | 
|  | CC = X86::COND_A; | 
|  | break; | 
|  | case CmpInst::FCMP_OLE: | 
|  | NeedSwap = true; | 
|  | [[fallthrough]]; | 
|  | case CmpInst::FCMP_OGE: | 
|  | CC = X86::COND_AE; | 
|  | break; | 
|  | case CmpInst::FCMP_UGT: | 
|  | NeedSwap = true; | 
|  | [[fallthrough]]; | 
|  | case CmpInst::FCMP_ULT: | 
|  | CC = X86::COND_B; | 
|  | break; | 
|  | case CmpInst::FCMP_UGE: | 
|  | NeedSwap = true; | 
|  | [[fallthrough]]; | 
|  | case CmpInst::FCMP_ULE: | 
|  | CC = X86::COND_BE; | 
|  | break; | 
|  | case CmpInst::FCMP_ONE: | 
|  | CC = X86::COND_NE; | 
|  | break; | 
|  | case CmpInst::FCMP_UNO: | 
|  | CC = X86::COND_P; | 
|  | break; | 
|  | case CmpInst::FCMP_ORD: | 
|  | CC = X86::COND_NP; | 
|  | break; | 
|  | case CmpInst::FCMP_OEQ: | 
|  | [[fallthrough]]; | 
|  | case CmpInst::FCMP_UNE: | 
|  | CC = X86::COND_INVALID; | 
|  | break; | 
|  |  | 
|  | // Integer Predicates | 
|  | case CmpInst::ICMP_EQ: | 
|  | CC = X86::COND_E; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | CC = X86::COND_NE; | 
|  | break; | 
|  | case CmpInst::ICMP_UGT: | 
|  | CC = X86::COND_A; | 
|  | break; | 
|  | case CmpInst::ICMP_UGE: | 
|  | CC = X86::COND_AE; | 
|  | break; | 
|  | case CmpInst::ICMP_ULT: | 
|  | CC = X86::COND_B; | 
|  | break; | 
|  | case CmpInst::ICMP_ULE: | 
|  | CC = X86::COND_BE; | 
|  | break; | 
|  | case CmpInst::ICMP_SGT: | 
|  | CC = X86::COND_G; | 
|  | break; | 
|  | case CmpInst::ICMP_SGE: | 
|  | CC = X86::COND_GE; | 
|  | break; | 
|  | case CmpInst::ICMP_SLT: | 
|  | CC = X86::COND_L; | 
|  | break; | 
|  | case CmpInst::ICMP_SLE: | 
|  | CC = X86::COND_LE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(CC, NeedSwap); | 
|  | } | 
|  |  | 
|  | /// Return a cmov opcode for the given register size in bytes, and operand type. | 
|  | unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand, | 
|  | bool HasNDD) { | 
|  | switch (RegBytes) { | 
|  | default: | 
|  | llvm_unreachable("Illegal register size!"); | 
|  | #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC) | 
|  | case 2: | 
|  | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm) | 
|  | : GET_ND_IF_ENABLED(X86::CMOV16rr); | 
|  | case 4: | 
|  | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm) | 
|  | : GET_ND_IF_ENABLED(X86::CMOV32rr); | 
|  | case 8: | 
|  | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm) | 
|  | : GET_ND_IF_ENABLED(X86::CMOV64rr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the VPCMP immediate for the given condition. | 
|  | unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected SETCC condition"); | 
|  | case ISD::SETNE: | 
|  | return 4; | 
|  | case ISD::SETEQ: | 
|  | return 0; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: | 
|  | return 1; | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETGT: | 
|  | return 6; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: | 
|  | return 5; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get the VPCMP immediate if the operands are swapped. | 
|  | unsigned X86::getSwappedVPCMPImm(unsigned Imm) { | 
|  | switch (Imm) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case 0x01: | 
|  | Imm = 0x06; | 
|  | break; // LT  -> NLE | 
|  | case 0x02: | 
|  | Imm = 0x05; | 
|  | break; // LE  -> NLT | 
|  | case 0x05: | 
|  | Imm = 0x02; | 
|  | break; // NLT -> LE | 
|  | case 0x06: | 
|  | Imm = 0x01; | 
|  | break;   // NLE -> LT | 
|  | case 0x00: // EQ | 
|  | case 0x03: // FALSE | 
|  | case 0x04: // NE | 
|  | case 0x07: // TRUE | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | /// Get the VPCOM immediate if the operands are swapped. | 
|  | unsigned X86::getSwappedVPCOMImm(unsigned Imm) { | 
|  | switch (Imm) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case 0x00: | 
|  | Imm = 0x02; | 
|  | break; // LT -> GT | 
|  | case 0x01: | 
|  | Imm = 0x03; | 
|  | break; // LE -> GE | 
|  | case 0x02: | 
|  | Imm = 0x00; | 
|  | break; // GT -> LT | 
|  | case 0x03: | 
|  | Imm = 0x01; | 
|  | break;   // GE -> LE | 
|  | case 0x04: // EQ | 
|  | case 0x05: // NE | 
|  | case 0x06: // FALSE | 
|  | case 0x07: // TRUE | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | /// Get the VCMP immediate if the operands are swapped. | 
|  | unsigned X86::getSwappedVCMPImm(unsigned Imm) { | 
|  | // Only need the lower 2 bits to distinquish. | 
|  | switch (Imm & 0x3) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case 0x00: | 
|  | case 0x03: | 
|  | // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. | 
|  | break; | 
|  | case 0x01: | 
|  | case 0x02: | 
|  | // Need to toggle bits 3:0. Bit 4 stays the same. | 
|  | Imm ^= 0xf; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) { | 
|  | if (Info.RegClass == X86::VR128RegClassID || | 
|  | Info.RegClass == X86::VR128XRegClassID) | 
|  | return 128; | 
|  | if (Info.RegClass == X86::VR256RegClassID || | 
|  | Info.RegClass == X86::VR256XRegClassID) | 
|  | return 256; | 
|  | if (Info.RegClass == X86::VR512RegClassID) | 
|  | return 512; | 
|  | llvm_unreachable("Unknown register class!"); | 
|  | } | 
|  |  | 
|  | /// Return true if the Reg is X87 register. | 
|  | static bool isX87Reg(Register Reg) { | 
|  | return (Reg == X86::FPCW || Reg == X86::FPSW || | 
|  | (Reg >= X86::ST0 && Reg <= X86::ST7)); | 
|  | } | 
|  |  | 
|  | /// check if the instruction is X87 instruction | 
|  | bool X86::isX87Instruction(MachineInstr &MI) { | 
|  | // Call and inlineasm defs X87 register, so we special case it here because | 
|  | // otherwise calls are incorrectly flagged as x87 instructions | 
|  | // as a result. | 
|  | if (MI.isCall() || MI.isInlineAsm()) | 
|  | return false; | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | if (isX87Reg(MO.getReg())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int X86::getFirstAddrOperandIdx(const MachineInstr &MI) { | 
|  | auto IsMemOp = [](const MCOperandInfo &OpInfo) { | 
|  | return OpInfo.OperandType == MCOI::OPERAND_MEMORY; | 
|  | }; | 
|  |  | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  |  | 
|  | // Directly invoke the MC-layer routine for real (i.e., non-pseudo) | 
|  | // instructions (fast case). | 
|  | if (!X86II::isPseudo(Desc.TSFlags)) { | 
|  | int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (MemRefIdx >= 0) | 
|  | return MemRefIdx + X86II::getOperandBias(Desc); | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | assert(none_of(Desc.operands(), IsMemOp) && | 
|  | "Got false negative from X86II::getMemoryOperandNo()!"); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Otherwise, handle pseudo instructions by examining the type of their | 
|  | // operands (slow case). An instruction cannot have a memory reference if it | 
|  | // has fewer than AddrNumOperands (= 5) explicit operands. | 
|  | unsigned NumOps = Desc.getNumOperands(); | 
|  | if (NumOps < X86::AddrNumOperands) { | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | assert(none_of(Desc.operands(), IsMemOp) && | 
|  | "Expected no operands to have OPERAND_MEMORY type!"); | 
|  | #endif | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // The first operand with type OPERAND_MEMORY indicates the start of a memory | 
|  | // reference. We expect the following AddrNumOperand-1 operands to also have | 
|  | // OPERAND_MEMORY type. | 
|  | for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) { | 
|  | if (IsMemOp(Desc.operands()[I])) { | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | assert(std::all_of(Desc.operands().begin() + I, | 
|  | Desc.operands().begin() + I + X86::AddrNumOperands, | 
|  | IsMemOp) && | 
|  | "Expected all five operands in the memory reference to have " | 
|  | "OPERAND_MEMORY type!"); | 
|  | #endif | 
|  | return I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const Constant *X86::getConstantFromPool(const MachineInstr &MI, | 
|  | unsigned OpNo) { | 
|  | assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) && | 
|  | "Unexpected number of operands!"); | 
|  |  | 
|  | const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg); | 
|  | if (!Index.isReg() || Index.getReg() != X86::NoRegister) | 
|  | return nullptr; | 
|  |  | 
|  | const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp); | 
|  | if (!Disp.isCPI() || Disp.getOffset() != 0) | 
|  | return nullptr; | 
|  |  | 
|  | ArrayRef<MachineConstantPoolEntry> Constants = | 
|  | MI.getParent()->getParent()->getConstantPool()->getConstants(); | 
|  | const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()]; | 
|  |  | 
|  | // Bail if this is a machine constant pool entry, we won't be able to dig out | 
|  | // anything useful. | 
|  | if (ConstantEntry.isMachineConstantPoolEntry()) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantEntry.Val.ConstVal; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::TCRETURNdi: | 
|  | case X86::TCRETURNri: | 
|  | case X86::TCRETURNmi: | 
|  | case X86::TCRETURNdi64: | 
|  | case X86::TCRETURNri64: | 
|  | case X86::TCRETURNri64_ImpCall: | 
|  | case X86::TCRETURNmi64: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::canMakeTailCallConditional( | 
|  | SmallVectorImpl<MachineOperand> &BranchCond, | 
|  | const MachineInstr &TailCall) const { | 
|  |  | 
|  | const MachineFunction *MF = TailCall.getMF(); | 
|  |  | 
|  | if (MF->getTarget().getCodeModel() == CodeModel::Kernel) { | 
|  | // Kernel patches thunk calls in runtime, these should never be conditional. | 
|  | const MachineOperand &Target = TailCall.getOperand(0); | 
|  | if (Target.isSymbol()) { | 
|  | StringRef Symbol(Target.getSymbolName()); | 
|  | // this is currently only relevant to r11/kernel indirect thunk. | 
|  | if (Symbol == "__x86_indirect_thunk_r11") | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (TailCall.getOpcode() != X86::TCRETURNdi && | 
|  | TailCall.getOpcode() != X86::TCRETURNdi64) { | 
|  | // Only direct calls can be done with a conditional branch. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { | 
|  | // Conditional tail calls confuse the Win64 unwinder. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(BranchCond.size() == 1); | 
|  | if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { | 
|  | // Can't make a conditional tail call with this condition. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | if (X86FI->getTCReturnAddrDelta() != 0 || | 
|  | TailCall.getOperand(1).getImm() != 0) { | 
|  | // A conditional tail call cannot do any stack adjustment. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::replaceBranchWithTailCall( | 
|  | MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, | 
|  | const MachineInstr &TailCall) const { | 
|  | assert(canMakeTailCallConditional(BranchCond, TailCall)); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  | if (!I->isBranch()) | 
|  | assert(0 && "Can't find the branch to replace!"); | 
|  |  | 
|  | X86::CondCode CC = X86::getCondFromBranch(*I); | 
|  | assert(BranchCond.size() == 1); | 
|  | if (CC != BranchCond[0].getImm()) | 
|  | continue; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc | 
|  | : X86::TCRETURNdi64cc; | 
|  |  | 
|  | auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); | 
|  | MIB->addOperand(TailCall.getOperand(0)); // Destination. | 
|  | MIB.addImm(0);                           // Stack offset (not used). | 
|  | MIB->addOperand(BranchCond[0]);          // Condition. | 
|  | MIB.copyImplicitOps(TailCall);           // Regmask and (imp-used) parameters. | 
|  |  | 
|  | // Add implicit uses and defs of all live regs potentially clobbered by the | 
|  | // call. This way they still appear live across the call. | 
|  | LivePhysRegs LiveRegs(getRegisterInfo()); | 
|  | LiveRegs.addLiveOuts(MBB); | 
|  | SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; | 
|  | LiveRegs.stepForward(*MIB, Clobbers); | 
|  | for (const auto &C : Clobbers) { | 
|  | MIB.addReg(C.first, RegState::Implicit); | 
|  | MIB.addReg(C.first, RegState::Implicit | RegState::Define); | 
|  | } | 
|  |  | 
|  | I->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may | 
|  | // not be a fallthrough MBB now due to layout changes). Return nullptr if the | 
|  | // fallthrough MBB cannot be identified. | 
|  | static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *TBB) { | 
|  | // Look for non-EHPad successors other than TBB. If we find exactly one, it | 
|  | // is the fallthrough MBB. If we find zero, then TBB is both the target MBB | 
|  | // and fallthrough MBB. If we find more than one, we cannot identify the | 
|  | // fallthrough MBB and should return nullptr. | 
|  | MachineBasicBlock *FallthroughBB = nullptr; | 
|  | for (MachineBasicBlock *Succ : MBB->successors()) { | 
|  | if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) | 
|  | continue; | 
|  | // Return a nullptr if we found more than one fallthrough successor. | 
|  | if (FallthroughBB && FallthroughBB != TBB) | 
|  | return nullptr; | 
|  | FallthroughBB = Succ; | 
|  | } | 
|  | return FallthroughBB; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeBranchImpl( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { | 
|  |  | 
|  | // Start from the bottom of the block and work up, examining the | 
|  | // terminator instructions. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | MachineBasicBlock::iterator UnCondBrIter = MBB.end(); | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | // Working from the bottom, when we see a non-terminator instruction, we're | 
|  | // done. | 
|  | if (!isUnpredicatedTerminator(*I)) | 
|  | break; | 
|  |  | 
|  | // A terminator that isn't a branch can't easily be handled by this | 
|  | // analysis. | 
|  | if (!I->isBranch()) | 
|  | return true; | 
|  |  | 
|  | // Handle unconditional branches. | 
|  | if (I->getOpcode() == X86::JMP_1) { | 
|  | UnCondBrIter = I; | 
|  |  | 
|  | if (!AllowModify) { | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the block has any instructions after a JMP, delete them. | 
|  | MBB.erase(std::next(I), MBB.end()); | 
|  |  | 
|  | Cond.clear(); | 
|  | FBB = nullptr; | 
|  |  | 
|  | // Delete the JMP if it's equivalent to a fall-through. | 
|  | if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { | 
|  | TBB = nullptr; | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | UnCondBrIter = MBB.end(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // TBB is used to indicate the unconditional destination. | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle conditional branches. | 
|  | X86::CondCode BranchCode = X86::getCondFromBranch(*I); | 
|  | if (BranchCode == X86::COND_INVALID) | 
|  | return true; // Can't handle indirect branch. | 
|  |  | 
|  | // In practice we should never have an undef eflags operand, if we do | 
|  | // abort here as we are not prepared to preserve the flag. | 
|  | if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef()) | 
|  | return true; | 
|  |  | 
|  | // Working from the bottom, handle the first conditional branch. | 
|  | if (Cond.empty()) { | 
|  | FBB = TBB; | 
|  | TBB = I->getOperand(0).getMBB(); | 
|  | Cond.push_back(MachineOperand::CreateImm(BranchCode)); | 
|  | CondBranches.push_back(&*I); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle subsequent conditional branches. Only handle the case where all | 
|  | // conditional branches branch to the same destination and their condition | 
|  | // opcodes fit one of the special multi-branch idioms. | 
|  | assert(Cond.size() == 1); | 
|  | assert(TBB); | 
|  |  | 
|  | // If the conditions are the same, we can leave them alone. | 
|  | X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); | 
|  | auto NewTBB = I->getOperand(0).getMBB(); | 
|  | if (OldBranchCode == BranchCode && TBB == NewTBB) | 
|  | continue; | 
|  |  | 
|  | // If they differ, see if they fit one of the known patterns. Theoretically, | 
|  | // we could handle more patterns here, but we shouldn't expect to see them | 
|  | // if instruction selection has done a reasonable job. | 
|  | if (TBB == NewTBB && | 
|  | ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { | 
|  | BranchCode = X86::COND_NE_OR_P; | 
|  | } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || | 
|  | (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { | 
|  | if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) | 
|  | return true; | 
|  |  | 
|  | // X86::COND_E_AND_NP usually has two different branch destinations. | 
|  | // | 
|  | // JP B1 | 
|  | // JE B2 | 
|  | // JMP B1 | 
|  | // B1: | 
|  | // B2: | 
|  | // | 
|  | // Here this condition branches to B2 only if NP && E. It has another | 
|  | // equivalent form: | 
|  | // | 
|  | // JNE B1 | 
|  | // JNP B2 | 
|  | // JMP B1 | 
|  | // B1: | 
|  | // B2: | 
|  | // | 
|  | // Similarly it branches to B2 only if E && NP. That is why this condition | 
|  | // is named with COND_E_AND_NP. | 
|  | BranchCode = X86::COND_E_AND_NP; | 
|  | } else | 
|  | return true; | 
|  |  | 
|  | // Update the MachineOperand. | 
|  | Cond[0].setImm(BranchCode); | 
|  | CondBranches.push_back(&*I); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const { | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); | 
|  | } | 
|  |  | 
|  | static int getJumpTableIndexFromAddr(const MachineInstr &MI) { | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | assert(MemRefBegin >= 0 && "instr should have memory operand"); | 
|  | MemRefBegin += X86II::getOperandBias(Desc); | 
|  |  | 
|  | const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp); | 
|  | if (!MO.isJTI()) | 
|  | return -1; | 
|  |  | 
|  | return MO.getIndex(); | 
|  | } | 
|  |  | 
|  | static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, | 
|  | Register Reg) { | 
|  | if (!Reg.isVirtual()) | 
|  | return -1; | 
|  | MachineInstr *MI = MRI.getUniqueVRegDef(Reg); | 
|  | if (MI == nullptr) | 
|  | return -1; | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | if (Opcode != X86::LEA64r && Opcode != X86::LEA32r) | 
|  | return -1; | 
|  | return getJumpTableIndexFromAddr(*MI); | 
|  | } | 
|  |  | 
|  | int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | // Switch-jump pattern for non-PIC code looks like: | 
|  | //   JMP64m $noreg, 8, %X, %jump-table.X, $noreg | 
|  | if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) { | 
|  | return getJumpTableIndexFromAddr(MI); | 
|  | } | 
|  | // The pattern for PIC code looks like: | 
|  | //   %0 = LEA64r $rip, 1, $noreg, %jump-table.X | 
|  | //   %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg | 
|  | //   %2 = ADD64rr %1, %0 | 
|  | //   JMP64r %2 | 
|  | if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) { | 
|  | Register Reg = MI.getOperand(0).getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | return -1; | 
|  | const MachineFunction &MF = *MI.getParent()->getParent(); | 
|  | const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | MachineInstr *Add = MRI.getUniqueVRegDef(Reg); | 
|  | if (Add == nullptr) | 
|  | return -1; | 
|  | if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr) | 
|  | return -1; | 
|  | int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg()); | 
|  | if (JTI1 >= 0) | 
|  | return JTI1; | 
|  | int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg()); | 
|  | if (JTI2 >= 0) | 
|  | return JTI2; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, | 
|  | MachineBranchPredicate &MBP, | 
|  | bool AllowModify) const { | 
|  | using namespace std::placeholders; | 
|  |  | 
|  | SmallVector<MachineOperand, 4> Cond; | 
|  | SmallVector<MachineInstr *, 4> CondBranches; | 
|  | if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, | 
|  | AllowModify)) | 
|  | return true; | 
|  |  | 
|  | if (Cond.size() != 1) | 
|  | return true; | 
|  |  | 
|  | assert(MBP.TrueDest && "expected!"); | 
|  |  | 
|  | if (!MBP.FalseDest) | 
|  | MBP.FalseDest = MBB.getNextNode(); | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | MachineInstr *ConditionDef = nullptr; | 
|  | bool SingleUseCondition = true; | 
|  |  | 
|  | for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) { | 
|  | if (MI.modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | ConditionDef = &MI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (MI.readsRegister(X86::EFLAGS, TRI)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | if (!ConditionDef) | 
|  | return true; | 
|  |  | 
|  | if (SingleUseCondition) { | 
|  | for (auto *Succ : MBB.successors()) | 
|  | if (Succ->isLiveIn(X86::EFLAGS)) | 
|  | SingleUseCondition = false; | 
|  | } | 
|  |  | 
|  | MBP.ConditionDef = ConditionDef; | 
|  | MBP.SingleUseCondition = SingleUseCondition; | 
|  |  | 
|  | // Currently we only recognize the simple pattern: | 
|  | // | 
|  | //   test %reg, %reg | 
|  | //   je %label | 
|  | // | 
|  | const unsigned TestOpcode = | 
|  | Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; | 
|  |  | 
|  | if (ConditionDef->getOpcode() == TestOpcode && | 
|  | ConditionDef->getNumOperands() == 3 && | 
|  | ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && | 
|  | (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { | 
|  | MBP.LHS = ConditionDef->getOperand(0); | 
|  | MBP.RHS = MachineOperand::CreateImm(0); | 
|  | MBP.Predicate = Cond[0].getImm() == X86::COND_NE | 
|  | ? MachineBranchPredicate::PRED_NE | 
|  | : MachineBranchPredicate::PRED_EQ; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved) const { | 
|  | assert(!BytesRemoved && "code size not handled"); | 
|  |  | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | unsigned Count = 0; | 
|  |  | 
|  | while (I != MBB.begin()) { | 
|  | --I; | 
|  | if (I->isDebugInstr()) | 
|  | continue; | 
|  | if (I->getOpcode() != X86::JMP_1 && | 
|  | X86::getCondFromBranch(*I) == X86::COND_INVALID) | 
|  | break; | 
|  | // Remove the branch. | 
|  | I->eraseFromParent(); | 
|  | I = MBB.end(); | 
|  | ++Count; | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, int *BytesAdded) const { | 
|  | // Shouldn't be a fall through. | 
|  | assert(TBB && "insertBranch must not be told to insert a fallthrough"); | 
|  | assert((Cond.size() == 1 || Cond.size() == 0) && | 
|  | "X86 branch conditions have one component!"); | 
|  | assert(!BytesAdded && "code size not handled"); | 
|  |  | 
|  | if (Cond.empty()) { | 
|  | // Unconditional branch? | 
|  | assert(!FBB && "Unconditional branch with multiple successors!"); | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // If FBB is null, it is implied to be a fall-through block. | 
|  | bool FallThru = FBB == nullptr; | 
|  |  | 
|  | // Conditional branch. | 
|  | unsigned Count = 0; | 
|  | X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); | 
|  | switch (CC) { | 
|  | case X86::COND_NE_OR_P: | 
|  | // Synthesize NE_OR_P with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); | 
|  | ++Count; | 
|  | break; | 
|  | case X86::COND_E_AND_NP: | 
|  | // Use the next block of MBB as FBB if it is null. | 
|  | if (FBB == nullptr) { | 
|  | FBB = getFallThroughMBB(&MBB, TBB); | 
|  | assert(FBB && "MBB cannot be the last block in function when the false " | 
|  | "body is a fall-through."); | 
|  | } | 
|  | // Synthesize COND_E_AND_NP with two branches. | 
|  | BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); | 
|  | ++Count; | 
|  | BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); | 
|  | ++Count; | 
|  | break; | 
|  | default: { | 
|  | BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); | 
|  | ++Count; | 
|  | } | 
|  | } | 
|  | if (!FallThru) { | 
|  | // Two-way Conditional branch. Insert the second branch. | 
|  | BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); | 
|  | ++Count; | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, | 
|  | ArrayRef<MachineOperand> Cond, | 
|  | Register DstReg, Register TrueReg, | 
|  | Register FalseReg, int &CondCycles, | 
|  | int &TrueCycles, int &FalseCycles) const { | 
|  | // Not all subtargets have cmov instructions. | 
|  | if (!Subtarget.canUseCMOV()) | 
|  | return false; | 
|  | if (Cond.size() != 1) | 
|  | return false; | 
|  | // We cannot do the composite conditions, at least not in SSA form. | 
|  | if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) | 
|  | return false; | 
|  |  | 
|  | // Check register classes. | 
|  | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); | 
|  | if (!RC) | 
|  | return false; | 
|  |  | 
|  | // We have cmov instructions for 16, 32, and 64 bit general purpose registers. | 
|  | if (X86::GR16RegClass.hasSubClassEq(RC) || | 
|  | X86::GR32RegClass.hasSubClassEq(RC) || | 
|  | X86::GR64RegClass.hasSubClassEq(RC)) { | 
|  | // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy | 
|  | // Bridge. Probably Ivy Bridge as well. | 
|  | CondCycles = 2; | 
|  | TrueCycles = 2; | 
|  | FalseCycles = 2; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Can't do vectors. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, Register DstReg, | 
|  | ArrayRef<MachineOperand> Cond, Register TrueReg, | 
|  | Register FalseReg) const { | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); | 
|  | assert(Cond.size() == 1 && "Invalid Cond array"); | 
|  | unsigned Opc = | 
|  | X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, | 
|  | false /*HasMemoryOperand*/, Subtarget.hasNDD()); | 
|  | BuildMI(MBB, I, DL, get(Opc), DstReg) | 
|  | .addReg(FalseReg) | 
|  | .addReg(TrueReg) | 
|  | .addImm(Cond[0].getImm()); | 
|  | } | 
|  |  | 
|  | /// Test if the given register is a physical h register. | 
|  | static bool isHReg(Register Reg) { | 
|  | return X86::GR8_ABCD_HRegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | // Try and copy between VR128/VR64 and GR64 registers. | 
|  | static unsigned CopyToFromAsymmetricReg(Register DestReg, Register SrcReg, | 
|  | const X86Subtarget &Subtarget) { | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasAVX512 = Subtarget.hasAVX512(); | 
|  | bool HasEGPR = Subtarget.hasEGPR(); | 
|  |  | 
|  | // SrcReg(MaskReg) -> DestReg(GR64) | 
|  | // SrcReg(MaskReg) -> DestReg(GR32) | 
|  |  | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against | 
|  | // anyone. | 
|  | if (X86::VK16RegClass.contains(SrcReg)) { | 
|  | if (X86::GR64RegClass.contains(DestReg)) { | 
|  | assert(Subtarget.hasBWI()); | 
|  | return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk; | 
|  | } | 
|  | if (X86::GR32RegClass.contains(DestReg)) | 
|  | return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk) | 
|  | : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk); | 
|  | } | 
|  |  | 
|  | // SrcReg(GR64) -> DestReg(MaskReg) | 
|  | // SrcReg(GR32) -> DestReg(MaskReg) | 
|  |  | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against | 
|  | // anyone. | 
|  | if (X86::VK16RegClass.contains(DestReg)) { | 
|  | if (X86::GR64RegClass.contains(SrcReg)) { | 
|  | assert(Subtarget.hasBWI()); | 
|  | return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr; | 
|  | } | 
|  | if (X86::GR32RegClass.contains(SrcReg)) | 
|  | return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr) | 
|  | : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr); | 
|  | } | 
|  |  | 
|  | // SrcReg(VR128) -> DestReg(GR64) | 
|  | // SrcReg(VR64)  -> DestReg(GR64) | 
|  | // SrcReg(GR64)  -> DestReg(VR128) | 
|  | // SrcReg(GR64)  -> DestReg(VR64) | 
|  |  | 
|  | if (X86::GR64RegClass.contains(DestReg)) { | 
|  | if (X86::VR128XRegClass.contains(SrcReg)) | 
|  | // Copy from a VR128 register to a GR64 register. | 
|  | return HasAVX512 ? X86::VMOVPQIto64Zrr | 
|  | : HasAVX  ? X86::VMOVPQIto64rr | 
|  | : X86::MOVPQIto64rr; | 
|  | if (X86::VR64RegClass.contains(SrcReg)) | 
|  | // Copy from a VR64 register to a GR64 register. | 
|  | return X86::MMX_MOVD64from64rr; | 
|  | } else if (X86::GR64RegClass.contains(SrcReg)) { | 
|  | // Copy from a GR64 register to a VR128 register. | 
|  | if (X86::VR128XRegClass.contains(DestReg)) | 
|  | return HasAVX512 ? X86::VMOV64toPQIZrr | 
|  | : HasAVX  ? X86::VMOV64toPQIrr | 
|  | : X86::MOV64toPQIrr; | 
|  | // Copy from a GR64 register to a VR64 register. | 
|  | if (X86::VR64RegClass.contains(DestReg)) | 
|  | return X86::MMX_MOVD64to64rr; | 
|  | } | 
|  |  | 
|  | // SrcReg(VR128) -> DestReg(GR32) | 
|  | // SrcReg(GR32)  -> DestReg(VR128) | 
|  |  | 
|  | if (X86::GR32RegClass.contains(DestReg) && | 
|  | X86::VR128XRegClass.contains(SrcReg)) | 
|  | // Copy from a VR128 register to a GR32 register. | 
|  | return HasAVX512 ? X86::VMOVPDI2DIZrr | 
|  | : HasAVX  ? X86::VMOVPDI2DIrr | 
|  | : X86::MOVPDI2DIrr; | 
|  |  | 
|  | if (X86::VR128XRegClass.contains(DestReg) && | 
|  | X86::GR32RegClass.contains(SrcReg)) | 
|  | // Copy from a VR128 register to a VR128 register. | 
|  | return HasAVX512 ? X86::VMOVDI2PDIZrr | 
|  | : HasAVX  ? X86::VMOVDI2PDIrr | 
|  | : X86::MOVDI2PDIrr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | const DebugLoc &DL, Register DestReg, | 
|  | Register SrcReg, bool KillSrc, | 
|  | bool RenamableDest, bool RenamableSrc) const { | 
|  | // First deal with the normal symmetric copies. | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | bool HasEGPR = Subtarget.hasEGPR(); | 
|  | unsigned Opc = 0; | 
|  | if (X86::GR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV64rr; | 
|  | else if (X86::GR32RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV32rr; | 
|  | else if (X86::GR16RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MOV16rr; | 
|  | else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { | 
|  | Opc = X86::MOV8rr_NOREX; | 
|  | // Both operands must be encodable without an REX prefix. | 
|  | assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && | 
|  | "8-bit H register can not be copied outside GR8_NOREX"); | 
|  | } else | 
|  | Opc = X86::MOV8rr; | 
|  | } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::MMX_MOVQ64rr; | 
|  | else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { | 
|  | if (HasVLX) | 
|  | Opc = X86::VMOVAPSZ128rr; | 
|  | else if (X86::VR128RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; | 
|  | else { | 
|  | // If this an extended register and we don't have VLX we need to use a | 
|  | // 512-bit move. | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | DestReg = | 
|  | TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass); | 
|  | SrcReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); | 
|  | } | 
|  | } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { | 
|  | if (HasVLX) | 
|  | Opc = X86::VMOVAPSZ256rr; | 
|  | else if (X86::VR256RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::VMOVAPSYrr; | 
|  | else { | 
|  | // If this an extended register and we don't have VLX we need to use a | 
|  | // 512-bit move. | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | DestReg = | 
|  | TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass); | 
|  | SrcReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); | 
|  | } | 
|  | } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = X86::VMOVAPSZrr; | 
|  | // All KMASK RegClasses hold the same k registers, can be tested against | 
|  | // anyone. | 
|  | else if (X86::VK16RegClass.contains(DestReg, SrcReg)) | 
|  | Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk) | 
|  | : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk); | 
|  | if (!Opc) | 
|  | Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); | 
|  |  | 
|  | if (Opc) { | 
|  | BuildMI(MBB, MI, DL, get(Opc), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { | 
|  | // FIXME: We use a fatal error here because historically LLVM has tried | 
|  | // lower some of these physreg copies and we want to ensure we get | 
|  | // reasonable bug reports if someone encounters a case no other testing | 
|  | // found. This path should be removed after the LLVM 7 release. | 
|  | report_fatal_error("Unable to copy EFLAGS physical register!"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " | 
|  | << RI.getName(DestReg) << '\n'); | 
|  | report_fatal_error("Cannot emit physreg copy instruction"); | 
|  | } | 
|  |  | 
|  | std::optional<DestSourcePair> | 
|  | X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { | 
|  | if (MI.isMoveReg()) { | 
|  | // FIXME: Dirty hack for apparent invariant that doesn't hold when | 
|  | // subreg_to_reg is coalesced with ordinary copies, such that the bits that | 
|  | // were asserted as 0 are now undef. | 
|  | if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg()) | 
|  | return std::nullopt; | 
|  |  | 
|  | return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) { | 
|  | if (STI.hasFP16()) | 
|  | return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; | 
|  | if (Load) | 
|  | return STI.hasAVX512() ? X86::VMOVSSZrm | 
|  | : STI.hasAVX()  ? X86::VMOVSSrm | 
|  | : X86::MOVSSrm; | 
|  | else | 
|  | return STI.hasAVX512() ? X86::VMOVSSZmr | 
|  | : STI.hasAVX()  ? X86::VMOVSSmr | 
|  | : X86::MOVSSmr; | 
|  | } | 
|  |  | 
|  | static unsigned getLoadStoreRegOpcode(Register Reg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool IsStackAligned, | 
|  | const X86Subtarget &STI, bool Load) { | 
|  | bool HasAVX = STI.hasAVX(); | 
|  | bool HasAVX512 = STI.hasAVX512(); | 
|  | bool HasVLX = STI.hasVLX(); | 
|  | bool HasEGPR = STI.hasEGPR(); | 
|  |  | 
|  | assert(RC != nullptr && "Invalid target register class"); | 
|  | switch (STI.getRegisterInfo()->getSpillSize(*RC)) { | 
|  | default: | 
|  | llvm_unreachable("Unknown spill size"); | 
|  | case 1: | 
|  | assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); | 
|  | if (STI.is64Bit()) | 
|  | // Copying to or from a physical H register on x86-64 requires a NOREX | 
|  | // move.  Otherwise use a normal move. | 
|  | if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; | 
|  | return Load ? X86::MOV8rm : X86::MOV8mr; | 
|  | case 2: | 
|  | if (X86::VK16RegClass.hasSubClassEq(RC)) | 
|  | return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm) | 
|  | : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk); | 
|  | assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); | 
|  | return Load ? X86::MOV16rm : X86::MOV16mr; | 
|  | case 4: | 
|  | if (X86::GR32RegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::MOV32rm : X86::MOV32mr; | 
|  | if (X86::FR32XRegClass.hasSubClassEq(RC)) | 
|  | return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt | 
|  | : HasAVX  ? X86::VMOVSSrm_alt | 
|  | : X86::MOVSSrm_alt) | 
|  | : (HasAVX512 ? X86::VMOVSSZmr | 
|  | : HasAVX  ? X86::VMOVSSmr | 
|  | : X86::MOVSSmr); | 
|  | if (X86::RFP32RegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::LD_Fp32m : X86::ST_Fp32m; | 
|  | if (X86::VK32RegClass.hasSubClassEq(RC)) { | 
|  | assert(STI.hasBWI() && "KMOVD requires BWI"); | 
|  | return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm) | 
|  | : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk); | 
|  | } | 
|  | // All of these mask pair classes have the same spill size, the same kind | 
|  | // of kmov instructions can be used with all of them. | 
|  | if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || | 
|  | X86::VK2PAIRRegClass.hasSubClassEq(RC) || | 
|  | X86::VK4PAIRRegClass.hasSubClassEq(RC) || | 
|  | X86::VK8PAIRRegClass.hasSubClassEq(RC) || | 
|  | X86::VK16PAIRRegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; | 
|  | if (X86::FR16RegClass.hasSubClassEq(RC) || | 
|  | X86::FR16XRegClass.hasSubClassEq(RC)) | 
|  | return getLoadStoreOpcodeForFP16(Load, STI); | 
|  | llvm_unreachable("Unknown 4-byte regclass"); | 
|  | case 8: | 
|  | if (X86::GR64RegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::MOV64rm : X86::MOV64mr; | 
|  | if (X86::FR64XRegClass.hasSubClassEq(RC)) | 
|  | return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt | 
|  | : HasAVX  ? X86::VMOVSDrm_alt | 
|  | : X86::MOVSDrm_alt) | 
|  | : (HasAVX512 ? X86::VMOVSDZmr | 
|  | : HasAVX  ? X86::VMOVSDmr | 
|  | : X86::MOVSDmr); | 
|  | if (X86::VR64RegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; | 
|  | if (X86::RFP64RegClass.hasSubClassEq(RC)) | 
|  | return Load ? X86::LD_Fp64m : X86::ST_Fp64m; | 
|  | if (X86::VK64RegClass.hasSubClassEq(RC)) { | 
|  | assert(STI.hasBWI() && "KMOVQ requires BWI"); | 
|  | return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm) | 
|  | : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk); | 
|  | } | 
|  | llvm_unreachable("Unknown 8-byte regclass"); | 
|  | case 10: | 
|  | assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); | 
|  | return Load ? X86::LD_Fp80m : X86::ST_FpP80m; | 
|  | case 16: { | 
|  | if (X86::VR128XRegClass.hasSubClassEq(RC)) { | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (IsStackAligned) | 
|  | return Load ? (HasVLX      ? X86::VMOVAPSZ128rm | 
|  | : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX | 
|  | : HasAVX    ? X86::VMOVAPSrm | 
|  | : X86::MOVAPSrm) | 
|  | : (HasVLX      ? X86::VMOVAPSZ128mr | 
|  | : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX | 
|  | : HasAVX    ? X86::VMOVAPSmr | 
|  | : X86::MOVAPSmr); | 
|  | else | 
|  | return Load ? (HasVLX      ? X86::VMOVUPSZ128rm | 
|  | : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX | 
|  | : HasAVX    ? X86::VMOVUPSrm | 
|  | : X86::MOVUPSrm) | 
|  | : (HasVLX      ? X86::VMOVUPSZ128mr | 
|  | : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX | 
|  | : HasAVX    ? X86::VMOVUPSmr | 
|  | : X86::MOVUPSmr); | 
|  | } | 
|  | llvm_unreachable("Unknown 16-byte regclass"); | 
|  | } | 
|  | case 32: | 
|  | assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); | 
|  | // If stack is realigned we can use aligned stores. | 
|  | if (IsStackAligned) | 
|  | return Load ? (HasVLX      ? X86::VMOVAPSZ256rm | 
|  | : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX | 
|  | : X86::VMOVAPSYrm) | 
|  | : (HasVLX      ? X86::VMOVAPSZ256mr | 
|  | : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX | 
|  | : X86::VMOVAPSYmr); | 
|  | else | 
|  | return Load ? (HasVLX      ? X86::VMOVUPSZ256rm | 
|  | : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX | 
|  | : X86::VMOVUPSYrm) | 
|  | : (HasVLX      ? X86::VMOVUPSZ256mr | 
|  | : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX | 
|  | : X86::VMOVUPSYmr); | 
|  | case 64: | 
|  | assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); | 
|  | assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); | 
|  | if (IsStackAligned) | 
|  | return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; | 
|  | else | 
|  | return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; | 
|  | case 1024: | 
|  | assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass"); | 
|  | assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE"); | 
|  | #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC) | 
|  | return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD) | 
|  | : GET_EGPR_IF_ENABLED(X86::TILESTORED); | 
|  | #undef GET_EGPR_IF_ENABLED | 
|  | case 2048: | 
|  | assert(X86::TILEPAIRRegClass.hasSubClassEq(RC) && | 
|  | "Unknown 2048-byte regclass"); | 
|  | assert(STI.hasAMXTILE() && "Using 2048-bit register requires AMX-TILE"); | 
|  | return Load ? X86::PTILEPAIRLOAD : X86::PTILEPAIRSTORE; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::optional<ExtAddrMode> | 
|  | X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MCInstrDesc &Desc = MemI.getDesc(); | 
|  | int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (MemRefBegin < 0) | 
|  | return std::nullopt; | 
|  |  | 
|  | MemRefBegin += X86II::getOperandBias(Desc); | 
|  |  | 
|  | auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); | 
|  | if (!BaseOp.isReg()) // Can be an MO_FrameIndex | 
|  | return std::nullopt; | 
|  |  | 
|  | const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); | 
|  | // Displacement can be symbolic | 
|  | if (!DispMO.isImm()) | 
|  | return std::nullopt; | 
|  |  | 
|  | ExtAddrMode AM; | 
|  | AM.BaseReg = BaseOp.getReg(); | 
|  | AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); | 
|  | AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); | 
|  | AM.Displacement = DispMO.getImm(); | 
|  | return AM; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, | 
|  | StringRef &ErrInfo) const { | 
|  | std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr); | 
|  | if (!AMOrNone) | 
|  | return true; | 
|  |  | 
|  | ExtAddrMode AM = *AMOrNone; | 
|  | assert(AM.Form == ExtAddrMode::Formula::Basic); | 
|  | if (AM.ScaledReg != X86::NoRegister) { | 
|  | switch (AM.Scale) { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | break; | 
|  | default: | 
|  | ErrInfo = "Scale factor in address must be 1, 2, 4 or 8"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!isInt<32>(AM.Displacement)) { | 
|  | ErrInfo = "Displacement in address must fit into 32-bit signed " | 
|  | "integer"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, | 
|  | const Register Reg, | 
|  | int64_t &ImmVal) const { | 
|  | Register MovReg = Reg; | 
|  | const MachineInstr *MovMI = &MI; | 
|  |  | 
|  | // Follow use-def for SUBREG_TO_REG to find the real move immediate | 
|  | // instruction. It is quite common for x86-64. | 
|  | if (MI.isSubregToReg()) { | 
|  | // We use following pattern to setup 64b immediate. | 
|  | //      %8:gr32 = MOV32r0 implicit-def dead $eflags | 
|  | //      %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit | 
|  | if (!MI.getOperand(1).isImm()) | 
|  | return false; | 
|  | unsigned FillBits = MI.getOperand(1).getImm(); | 
|  | unsigned SubIdx = MI.getOperand(3).getImm(); | 
|  | MovReg = MI.getOperand(2).getReg(); | 
|  | if (SubIdx != X86::sub_32bit || FillBits != 0) | 
|  | return false; | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | MovMI = MRI.getUniqueVRegDef(MovReg); | 
|  | if (!MovMI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (MovMI->getOpcode() == X86::MOV32r0 && | 
|  | MovMI->getOperand(0).getReg() == MovReg) { | 
|  | ImmVal = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (MovMI->getOpcode() != X86::MOV32ri && | 
|  | MovMI->getOpcode() != X86::MOV64ri && | 
|  | MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri) | 
|  | return false; | 
|  | // Mov Src can be a global address. | 
|  | if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg) | 
|  | return false; | 
|  | ImmVal = MovMI->getOperand(1).getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::preservesZeroValueInReg( | 
|  | const MachineInstr *MI, const Register NullValueReg, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | if (!MI->modifiesRegister(NullValueReg, TRI)) | 
|  | return true; | 
|  | switch (MI->getOpcode()) { | 
|  | // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax | 
|  | // X. | 
|  | case X86::SHR64ri: | 
|  | case X86::SHR32ri: | 
|  | case X86::SHL64ri: | 
|  | case X86::SHL32ri: | 
|  | assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && | 
|  | "expected for shift opcode!"); | 
|  | return MI->getOperand(0).getReg() == NullValueReg && | 
|  | MI->getOperand(1).getReg() == NullValueReg; | 
|  | // Zero extend of a sub-reg of NullValueReg into itself does not change the | 
|  | // null value. | 
|  | case X86::MOV32rr: | 
|  | return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { | 
|  | return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); | 
|  | }); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("Should be handled above!"); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::getMemOperandsWithOffsetWidth( | 
|  | const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, | 
|  | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MCInstrDesc &Desc = MemOp.getDesc(); | 
|  | int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | if (MemRefBegin < 0) | 
|  | return false; | 
|  |  | 
|  | MemRefBegin += X86II::getOperandBias(Desc); | 
|  |  | 
|  | const MachineOperand *BaseOp = | 
|  | &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); | 
|  | if (!BaseOp->isReg()) // Can be an MO_FrameIndex | 
|  | return false; | 
|  |  | 
|  | if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) | 
|  | return false; | 
|  |  | 
|  | if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != | 
|  | X86::NoRegister) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); | 
|  |  | 
|  | // Displacement can be symbolic | 
|  | if (!DispMO.isImm()) | 
|  | return false; | 
|  |  | 
|  | Offset = DispMO.getImm(); | 
|  |  | 
|  | if (!BaseOp->isReg()) | 
|  | return false; | 
|  |  | 
|  | OffsetIsScalable = false; | 
|  | // FIXME: Relying on memoperands() may not be right thing to do here. Check | 
|  | // with X86 maintainers, and fix it accordingly. For now, it is ok, since | 
|  | // there is no use of `Width` for X86 back-end at the moment. | 
|  | Width = !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() | 
|  | : LocationSize::precise(0); | 
|  | BaseOps.push_back(BaseOp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned getStoreRegOpcode(Register SrcReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool IsStackAligned, | 
|  | const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); | 
|  | } | 
|  |  | 
|  | static unsigned getLoadRegOpcode(Register DestReg, | 
|  | const TargetRegisterClass *RC, | 
|  | bool IsStackAligned, const X86Subtarget &STI) { | 
|  | return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); | 
|  | } | 
|  |  | 
|  | static bool isAMXOpcode(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | return false; | 
|  | case X86::TILELOADD: | 
|  | case X86::TILESTORED: | 
|  | case X86::TILELOADD_EVEX: | 
|  | case X86::TILESTORED_EVEX: | 
|  | case X86::PTILEPAIRLOAD: | 
|  | case X86::PTILEPAIRSTORE: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned Opc, Register Reg, int FrameIdx, | 
|  | bool isKill) const { | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected special opcode!"); | 
|  | case X86::TILESTORED: | 
|  | case X86::TILESTORED_EVEX: | 
|  | case X86::PTILEPAIRSTORE: { | 
|  | // tilestored %tmm, (%sp, %idx) | 
|  | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); | 
|  | Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); | 
|  | MachineInstr *NewMI = | 
|  | addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) | 
|  | .addReg(Reg, getKillRegState(isKill)); | 
|  | MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg); | 
|  | MO.setReg(VirtReg); | 
|  | MO.setIsKill(true); | 
|  | break; | 
|  | } | 
|  | case X86::TILELOADD: | 
|  | case X86::TILELOADD_EVEX: | 
|  | case X86::PTILEPAIRLOAD: { | 
|  | // tileloadd (%sp, %idx), %tmm | 
|  | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); | 
|  | Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); | 
|  | BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); | 
|  | MachineInstr *NewMI = addFrameReference( | 
|  | BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx); | 
|  | MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg); | 
|  | MO.setReg(VirtReg); | 
|  | MO.setIsKill(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::storeRegToStackSlot( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, | 
|  | bool isKill, int FrameIdx, const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI, Register VReg, | 
|  | MachineInstr::MIFlag Flags) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && | 
|  | "Stack slot too small for store"); | 
|  |  | 
|  | unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || | 
|  | (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); | 
|  |  | 
|  | unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); | 
|  | if (isAMXOpcode(Opc)) | 
|  | loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill); | 
|  | else | 
|  | addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) | 
|  | .addReg(SrcReg, getKillRegState(isKill)) | 
|  | .setMIFlag(Flags); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::loadRegFromStackSlot( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, | 
|  | int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, | 
|  | Register VReg, MachineInstr::MIFlag Flags) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && | 
|  | "Load size exceeds stack slot"); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); | 
|  | bool isAligned = | 
|  | (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || | 
|  | (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); | 
|  |  | 
|  | unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); | 
|  | if (isAMXOpcode(Opc)) | 
|  | loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx); | 
|  | else | 
|  | addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx) | 
|  | .setMIFlag(Flags); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, | 
|  | Register &SrcReg2, int64_t &CmpMask, | 
|  | int64_t &CmpValue) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP8ri: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = 0; | 
|  | if (MI.getOperand(1).isImm()) { | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI.getOperand(1).getImm(); | 
|  | } else { | 
|  | CmpMask = CmpValue = 0; | 
|  | } | 
|  | return true; | 
|  | // A SUB can be used to perform comparison. | 
|  | CASE_ND(SUB64rm) | 
|  | CASE_ND(SUB32rm) | 
|  | CASE_ND(SUB16rm) | 
|  | CASE_ND(SUB8rm) | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | CASE_ND(SUB64rr) | 
|  | CASE_ND(SUB32rr) | 
|  | CASE_ND(SUB16rr) | 
|  | CASE_ND(SUB8rr) | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = MI.getOperand(2).getReg(); | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | CASE_ND(SUB64ri32) | 
|  | CASE_ND(SUB32ri) | 
|  | CASE_ND(SUB16ri) | 
|  | CASE_ND(SUB8ri) | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | SrcReg2 = 0; | 
|  | if (MI.getOperand(2).isImm()) { | 
|  | CmpMask = ~0; | 
|  | CmpValue = MI.getOperand(2).getImm(); | 
|  | } else { | 
|  | CmpMask = CmpValue = 0; | 
|  | } | 
|  | return true; | 
|  | case X86::CMP64rr: | 
|  | case X86::CMP32rr: | 
|  | case X86::CMP16rr: | 
|  | case X86::CMP8rr: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | SrcReg2 = MI.getOperand(1).getReg(); | 
|  | CmpMask = 0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | case X86::TEST8rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST64rr: | 
|  | SrcReg = MI.getOperand(0).getReg(); | 
|  | if (MI.getOperand(1).getReg() != SrcReg) | 
|  | return false; | 
|  | // Compare against zero. | 
|  | SrcReg2 = 0; | 
|  | CmpMask = ~0; | 
|  | CmpValue = 0; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, | 
|  | Register SrcReg, Register SrcReg2, | 
|  | int64_t ImmMask, int64_t ImmValue, | 
|  | const MachineInstr &OI, bool *IsSwapped, | 
|  | int64_t *ImmDelta) const { | 
|  | switch (OI.getOpcode()) { | 
|  | case X86::CMP64rr: | 
|  | case X86::CMP32rr: | 
|  | case X86::CMP16rr: | 
|  | case X86::CMP8rr: | 
|  | CASE_ND(SUB64rr) | 
|  | CASE_ND(SUB32rr) | 
|  | CASE_ND(SUB16rr) | 
|  | CASE_ND(SUB8rr) { | 
|  | Register OISrcReg; | 
|  | Register OISrcReg2; | 
|  | int64_t OIMask; | 
|  | int64_t OIValue; | 
|  | if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) || | 
|  | OIMask != ImmMask || OIValue != ImmValue) | 
|  | return false; | 
|  | if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { | 
|  | *IsSwapped = false; | 
|  | return true; | 
|  | } | 
|  | if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { | 
|  | *IsSwapped = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP8ri: | 
|  | CASE_ND(SUB64ri32) | 
|  | CASE_ND(SUB32ri) | 
|  | CASE_ND(SUB16ri) | 
|  | CASE_ND(SUB8ri) | 
|  | case X86::TEST64rr: | 
|  | case X86::TEST32rr: | 
|  | case X86::TEST16rr: | 
|  | case X86::TEST8rr: { | 
|  | if (ImmMask != 0) { | 
|  | Register OISrcReg; | 
|  | Register OISrcReg2; | 
|  | int64_t OIMask; | 
|  | int64_t OIValue; | 
|  | if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) && | 
|  | SrcReg == OISrcReg && ImmMask == OIMask) { | 
|  | if (OIValue == ImmValue) { | 
|  | *ImmDelta = 0; | 
|  | return true; | 
|  | } else if (static_cast<uint64_t>(ImmValue) == | 
|  | static_cast<uint64_t>(OIValue) - 1) { | 
|  | *ImmDelta = -1; | 
|  | return true; | 
|  | } else if (static_cast<uint64_t>(ImmValue) == | 
|  | static_cast<uint64_t>(OIValue) + 1) { | 
|  | *ImmDelta = 1; | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return FlagI.isIdenticalTo(OI); | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether the definition can be converted | 
|  | /// to remove a comparison against zero. | 
|  | inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, | 
|  | bool &ClearsOverflowFlag) { | 
|  | NoSignFlag = false; | 
|  | ClearsOverflowFlag = false; | 
|  |  | 
|  | // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and | 
|  | // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during | 
|  | // Initial Exec to Local Exec relaxation. In these cases, we must not depend | 
|  | // on the EFLAGS modification of ADD actually happening in the final binary. | 
|  | if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) { | 
|  | unsigned Flags = MI.getOperand(5).getTargetFlags(); | 
|  | if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF || | 
|  | Flags == X86II::MO_GOTNTPOFF) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  |  | 
|  | // The shift instructions only modify ZF if their shift count is non-zero. | 
|  | // N.B.: The processor truncates the shift count depending on the encoding. | 
|  | CASE_ND(SAR8ri) | 
|  | CASE_ND(SAR16ri) | 
|  | CASE_ND(SAR32ri) | 
|  | CASE_ND(SAR64ri) | 
|  | CASE_ND(SHR8ri) | 
|  | CASE_ND(SHR16ri) | 
|  | CASE_ND(SHR32ri) | 
|  | CASE_ND(SHR64ri) | 
|  | return getTruncatedShiftCount(MI, 2) != 0; | 
|  |  | 
|  | // Some left shift instructions can be turned into LEA instructions but only | 
|  | // if their flags aren't used. Avoid transforming such instructions. | 
|  | CASE_ND(SHL8ri) | 
|  | CASE_ND(SHL16ri) | 
|  | CASE_ND(SHL32ri) | 
|  | CASE_ND(SHL64ri) { | 
|  | unsigned ShAmt = getTruncatedShiftCount(MI, 2); | 
|  | if (isTruncatedShiftCountForLEA(ShAmt)) | 
|  | return false; | 
|  | return ShAmt != 0; | 
|  | } | 
|  |  | 
|  | CASE_ND(SHRD16rri8) | 
|  | CASE_ND(SHRD32rri8) | 
|  | CASE_ND(SHRD64rri8) | 
|  | CASE_ND(SHLD16rri8) | 
|  | CASE_ND(SHLD32rri8) | 
|  | CASE_ND(SHLD64rri8) | 
|  | return getTruncatedShiftCount(MI, 3) != 0; | 
|  |  | 
|  | CASE_ND(SUB64ri32) | 
|  | CASE_ND(SUB32ri) | 
|  | CASE_ND(SUB16ri) | 
|  | CASE_ND(SUB8ri) | 
|  | CASE_ND(SUB64rr) | 
|  | CASE_ND(SUB32rr) | 
|  | CASE_ND(SUB16rr) | 
|  | CASE_ND(SUB8rr) | 
|  | CASE_ND(SUB64rm) | 
|  | CASE_ND(SUB32rm) | 
|  | CASE_ND(SUB16rm) | 
|  | CASE_ND(SUB8rm) | 
|  | CASE_ND(DEC64r) | 
|  | CASE_ND(DEC32r) | 
|  | CASE_ND(DEC16r) | 
|  | CASE_ND(DEC8r) | 
|  | CASE_ND(ADD64ri32) | 
|  | CASE_ND(ADD32ri) | 
|  | CASE_ND(ADD16ri) | 
|  | CASE_ND(ADD8ri) | 
|  | CASE_ND(ADD64rr) | 
|  | CASE_ND(ADD32rr) | 
|  | CASE_ND(ADD16rr) | 
|  | CASE_ND(ADD8rr) | 
|  | CASE_ND(ADD64rm) | 
|  | CASE_ND(ADD32rm) | 
|  | CASE_ND(ADD16rm) | 
|  | CASE_ND(ADD8rm) | 
|  | CASE_ND(INC64r) | 
|  | CASE_ND(INC32r) | 
|  | CASE_ND(INC16r) | 
|  | CASE_ND(INC8r) | 
|  | CASE_ND(ADC64ri32) | 
|  | CASE_ND(ADC32ri) | 
|  | CASE_ND(ADC16ri) | 
|  | CASE_ND(ADC8ri) | 
|  | CASE_ND(ADC64rr) | 
|  | CASE_ND(ADC32rr) | 
|  | CASE_ND(ADC16rr) | 
|  | CASE_ND(ADC8rr) | 
|  | CASE_ND(ADC64rm) | 
|  | CASE_ND(ADC32rm) | 
|  | CASE_ND(ADC16rm) | 
|  | CASE_ND(ADC8rm) | 
|  | CASE_ND(SBB64ri32) | 
|  | CASE_ND(SBB32ri) | 
|  | CASE_ND(SBB16ri) | 
|  | CASE_ND(SBB8ri) | 
|  | CASE_ND(SBB64rr) | 
|  | CASE_ND(SBB32rr) | 
|  | CASE_ND(SBB16rr) | 
|  | CASE_ND(SBB8rr) | 
|  | CASE_ND(SBB64rm) | 
|  | CASE_ND(SBB32rm) | 
|  | CASE_ND(SBB16rm) | 
|  | CASE_ND(SBB8rm) | 
|  | CASE_ND(NEG8r) | 
|  | CASE_ND(NEG16r) | 
|  | CASE_ND(NEG32r) | 
|  | CASE_ND(NEG64r) | 
|  | case X86::LZCNT16rr: | 
|  | case X86::LZCNT16rm: | 
|  | case X86::LZCNT32rr: | 
|  | case X86::LZCNT32rm: | 
|  | case X86::LZCNT64rr: | 
|  | case X86::LZCNT64rm: | 
|  | case X86::POPCNT16rr: | 
|  | case X86::POPCNT16rm: | 
|  | case X86::POPCNT32rr: | 
|  | case X86::POPCNT32rm: | 
|  | case X86::POPCNT64rr: | 
|  | case X86::POPCNT64rm: | 
|  | case X86::TZCNT16rr: | 
|  | case X86::TZCNT16rm: | 
|  | case X86::TZCNT32rr: | 
|  | case X86::TZCNT32rm: | 
|  | case X86::TZCNT64rr: | 
|  | case X86::TZCNT64rm: | 
|  | return true; | 
|  | CASE_ND(AND64ri32) | 
|  | CASE_ND(AND32ri) | 
|  | CASE_ND(AND16ri) | 
|  | CASE_ND(AND8ri) | 
|  | CASE_ND(AND64rr) | 
|  | CASE_ND(AND32rr) | 
|  | CASE_ND(AND16rr) | 
|  | CASE_ND(AND8rr) | 
|  | CASE_ND(AND64rm) | 
|  | CASE_ND(AND32rm) | 
|  | CASE_ND(AND16rm) | 
|  | CASE_ND(AND8rm) | 
|  | CASE_ND(XOR64ri32) | 
|  | CASE_ND(XOR32ri) | 
|  | CASE_ND(XOR16ri) | 
|  | CASE_ND(XOR8ri) | 
|  | CASE_ND(XOR64rr) | 
|  | CASE_ND(XOR32rr) | 
|  | CASE_ND(XOR16rr) | 
|  | CASE_ND(XOR8rr) | 
|  | CASE_ND(XOR64rm) | 
|  | CASE_ND(XOR32rm) | 
|  | CASE_ND(XOR16rm) | 
|  | CASE_ND(XOR8rm) | 
|  | CASE_ND(OR64ri32) | 
|  | CASE_ND(OR32ri) | 
|  | CASE_ND(OR16ri) | 
|  | CASE_ND(OR8ri) | 
|  | CASE_ND(OR64rr) | 
|  | CASE_ND(OR32rr) | 
|  | CASE_ND(OR16rr) | 
|  | CASE_ND(OR8rr) | 
|  | CASE_ND(OR64rm) | 
|  | CASE_ND(OR32rm) | 
|  | CASE_ND(OR16rm) | 
|  | CASE_ND(OR8rm) | 
|  | case X86::ANDN32rr: | 
|  | case X86::ANDN32rm: | 
|  | case X86::ANDN64rr: | 
|  | case X86::ANDN64rm: | 
|  | case X86::BLSI32rr: | 
|  | case X86::BLSI32rm: | 
|  | case X86::BLSI64rr: | 
|  | case X86::BLSI64rm: | 
|  | case X86::BLSMSK32rr: | 
|  | case X86::BLSMSK32rm: | 
|  | case X86::BLSMSK64rr: | 
|  | case X86::BLSMSK64rm: | 
|  | case X86::BLSR32rr: | 
|  | case X86::BLSR32rm: | 
|  | case X86::BLSR64rr: | 
|  | case X86::BLSR64rm: | 
|  | case X86::BLCFILL32rr: | 
|  | case X86::BLCFILL32rm: | 
|  | case X86::BLCFILL64rr: | 
|  | case X86::BLCFILL64rm: | 
|  | case X86::BLCI32rr: | 
|  | case X86::BLCI32rm: | 
|  | case X86::BLCI64rr: | 
|  | case X86::BLCI64rm: | 
|  | case X86::BLCIC32rr: | 
|  | case X86::BLCIC32rm: | 
|  | case X86::BLCIC64rr: | 
|  | case X86::BLCIC64rm: | 
|  | case X86::BLCMSK32rr: | 
|  | case X86::BLCMSK32rm: | 
|  | case X86::BLCMSK64rr: | 
|  | case X86::BLCMSK64rm: | 
|  | case X86::BLCS32rr: | 
|  | case X86::BLCS32rm: | 
|  | case X86::BLCS64rr: | 
|  | case X86::BLCS64rm: | 
|  | case X86::BLSFILL32rr: | 
|  | case X86::BLSFILL32rm: | 
|  | case X86::BLSFILL64rr: | 
|  | case X86::BLSFILL64rm: | 
|  | case X86::BLSIC32rr: | 
|  | case X86::BLSIC32rm: | 
|  | case X86::BLSIC64rr: | 
|  | case X86::BLSIC64rm: | 
|  | case X86::BZHI32rr: | 
|  | case X86::BZHI32rm: | 
|  | case X86::BZHI64rr: | 
|  | case X86::BZHI64rm: | 
|  | case X86::T1MSKC32rr: | 
|  | case X86::T1MSKC32rm: | 
|  | case X86::T1MSKC64rr: | 
|  | case X86::T1MSKC64rm: | 
|  | case X86::TZMSK32rr: | 
|  | case X86::TZMSK32rm: | 
|  | case X86::TZMSK64rr: | 
|  | case X86::TZMSK64rm: | 
|  | // These instructions clear the overflow flag just like TEST. | 
|  | // FIXME: These are not the only instructions in this switch that clear the | 
|  | // overflow flag. | 
|  | ClearsOverflowFlag = true; | 
|  | return true; | 
|  | case X86::BEXTR32rr: | 
|  | case X86::BEXTR64rr: | 
|  | case X86::BEXTR32rm: | 
|  | case X86::BEXTR64rm: | 
|  | case X86::BEXTRI32ri: | 
|  | case X86::BEXTRI32mi: | 
|  | case X86::BEXTRI64ri: | 
|  | case X86::BEXTRI64mi: | 
|  | // BEXTR doesn't update the sign flag so we can't use it. It does clear | 
|  | // the overflow flag, but that's not useful without the sign flag. | 
|  | NoSignFlag = true; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether the use can be converted to remove a comparison against zero. | 
|  | /// Returns the EFLAGS condition and the operand that we are comparing against zero. | 
|  | static std::pair<X86::CondCode, unsigned> isUseDefConvertible(const MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return std::make_pair(X86::COND_INVALID, ~0U); | 
|  | CASE_ND(NEG8r) | 
|  | CASE_ND(NEG16r) | 
|  | CASE_ND(NEG32r) | 
|  | CASE_ND(NEG64r) | 
|  | return std::make_pair(X86::COND_AE, 1U); | 
|  | case X86::LZCNT16rr: | 
|  | case X86::LZCNT32rr: | 
|  | case X86::LZCNT64rr: | 
|  | return std::make_pair(X86::COND_B, 1U); | 
|  | case X86::POPCNT16rr: | 
|  | case X86::POPCNT32rr: | 
|  | case X86::POPCNT64rr: | 
|  | return std::make_pair(X86::COND_E, 1U); | 
|  | case X86::TZCNT16rr: | 
|  | case X86::TZCNT32rr: | 
|  | case X86::TZCNT64rr: | 
|  | return std::make_pair(X86::COND_B, 1U); | 
|  | case X86::BSF16rr: | 
|  | case X86::BSF32rr: | 
|  | case X86::BSF64rr: | 
|  | case X86::BSR16rr: | 
|  | case X86::BSR32rr: | 
|  | case X86::BSR64rr: | 
|  | return std::make_pair(X86::COND_E, 2U); | 
|  | case X86::BLSI32rr: | 
|  | case X86::BLSI64rr: | 
|  | return std::make_pair(X86::COND_AE, 1U); | 
|  | case X86::BLSR32rr: | 
|  | case X86::BLSR64rr: | 
|  | case X86::BLSMSK32rr: | 
|  | case X86::BLSMSK64rr: | 
|  | return std::make_pair(X86::COND_B, 1U); | 
|  | // TODO: TBM instructions. | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if there exists an earlier instruction that | 
|  | /// operates on the same source operands and sets flags in the same way as | 
|  | /// Compare; remove Compare if possible. | 
|  | bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, | 
|  | Register SrcReg2, int64_t CmpMask, | 
|  | int64_t CmpValue, | 
|  | const MachineRegisterInfo *MRI) const { | 
|  | // Check whether we can replace SUB with CMP. | 
|  | switch (CmpInstr.getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | CASE_ND(SUB64ri32) | 
|  | CASE_ND(SUB32ri) | 
|  | CASE_ND(SUB16ri) | 
|  | CASE_ND(SUB8ri) | 
|  | CASE_ND(SUB64rm) | 
|  | CASE_ND(SUB32rm) | 
|  | CASE_ND(SUB16rm) | 
|  | CASE_ND(SUB8rm) | 
|  | CASE_ND(SUB64rr) | 
|  | CASE_ND(SUB32rr) | 
|  | CASE_ND(SUB16rr) | 
|  | CASE_ND(SUB8rr) { | 
|  | if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) | 
|  | return false; | 
|  | // There is no use of the destination register, we can replace SUB with CMP. | 
|  | unsigned NewOpcode = 0; | 
|  | #define FROM_TO(A, B)                                                          \ | 
|  | CASE_ND(A) NewOpcode = X86::B;                                               \ | 
|  | break; | 
|  | switch (CmpInstr.getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | FROM_TO(SUB64rm, CMP64rm) | 
|  | FROM_TO(SUB32rm, CMP32rm) | 
|  | FROM_TO(SUB16rm, CMP16rm) | 
|  | FROM_TO(SUB8rm, CMP8rm) | 
|  | FROM_TO(SUB64rr, CMP64rr) | 
|  | FROM_TO(SUB32rr, CMP32rr) | 
|  | FROM_TO(SUB16rr, CMP16rr) | 
|  | FROM_TO(SUB8rr, CMP8rr) | 
|  | FROM_TO(SUB64ri32, CMP64ri32) | 
|  | FROM_TO(SUB32ri, CMP32ri) | 
|  | FROM_TO(SUB16ri, CMP16ri) | 
|  | FROM_TO(SUB8ri, CMP8ri) | 
|  | } | 
|  | #undef FROM_TO | 
|  | CmpInstr.setDesc(get(NewOpcode)); | 
|  | CmpInstr.removeOperand(0); | 
|  | // Mutating this instruction invalidates any debug data associated with it. | 
|  | CmpInstr.dropDebugNumber(); | 
|  | // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. | 
|  | if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || | 
|  | NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The following code tries to remove the comparison by re-using EFLAGS | 
|  | // from earlier instructions. | 
|  |  | 
|  | bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); | 
|  |  | 
|  | // Transformation currently requires SSA values. | 
|  | if (SrcReg2.isPhysical()) | 
|  | return false; | 
|  | MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); | 
|  | assert(SrcRegDef && "Must have a definition (SSA)"); | 
|  |  | 
|  | MachineInstr *MI = nullptr; | 
|  | MachineInstr *Sub = nullptr; | 
|  | MachineInstr *Movr0Inst = nullptr; | 
|  | SmallVector<std::pair<MachineInstr *, unsigned>, 4> InstsToUpdate; | 
|  | bool NoSignFlag = false; | 
|  | bool ClearsOverflowFlag = false; | 
|  | bool ShouldUpdateCC = false; | 
|  | bool IsSwapped = false; | 
|  | bool HasNF = Subtarget.hasNF(); | 
|  | unsigned OpNo = 0; | 
|  | X86::CondCode NewCC = X86::COND_INVALID; | 
|  | int64_t ImmDelta = 0; | 
|  |  | 
|  | // Search backward from CmpInstr for the next instruction defining EFLAGS. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); | 
|  | MachineBasicBlock::reverse_iterator From = | 
|  | std::next(MachineBasicBlock::reverse_iterator(CmpInstr)); | 
|  | for (MachineBasicBlock *MBB = &CmpMBB;;) { | 
|  | for (MachineInstr &Inst : make_range(From, MBB->rend())) { | 
|  | // Try to use EFLAGS from the instruction defining %SrcReg. Example: | 
|  | //     %eax = addl ... | 
|  | //     ...                // EFLAGS not changed | 
|  | //     testl %eax, %eax   // <-- can be removed | 
|  | if (&Inst == SrcRegDef) { | 
|  | if (IsCmpZero && | 
|  | isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) { | 
|  | MI = &Inst; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Look back for the following pattern, in which case the | 
|  | // test16rr/test64rr instruction could be erased. | 
|  | // | 
|  | // Example for test16rr: | 
|  | //  %reg = and32ri %in_reg, 5 | 
|  | //  ...                         // EFLAGS not changed. | 
|  | //  %src_reg = copy %reg.sub_16bit:gr32 | 
|  | //  test16rr %src_reg, %src_reg, implicit-def $eflags | 
|  | // Example for test64rr: | 
|  | //  %reg = and32ri %in_reg, 5 | 
|  | //  ...                         // EFLAGS not changed. | 
|  | //  %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index | 
|  | //  test64rr %src_reg, %src_reg, implicit-def $eflags | 
|  | MachineInstr *AndInstr = nullptr; | 
|  | if (IsCmpZero && | 
|  | findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI, | 
|  | Subtarget, NoSignFlag, ClearsOverflowFlag)) { | 
|  | assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); | 
|  | MI = AndInstr; | 
|  | break; | 
|  | } | 
|  | // Cannot find other candidates before definition of SrcReg. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Inst.modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | // Try to use EFLAGS produced by an instruction reading %SrcReg. | 
|  | // Example: | 
|  | //      %eax = ... | 
|  | //      ... | 
|  | //      popcntl %eax | 
|  | //      ...                 // EFLAGS not changed | 
|  | //      testl %eax, %eax    // <-- can be removed | 
|  | if (IsCmpZero) { | 
|  | std::tie(NewCC, OpNo) = isUseDefConvertible(Inst); | 
|  | if (NewCC != X86::COND_INVALID && Inst.getOperand(OpNo).isReg() && | 
|  | Inst.getOperand(OpNo).getReg() == SrcReg) { | 
|  | ShouldUpdateCC = true; | 
|  | MI = &Inst; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to use EFLAGS from an instruction with similar flag results. | 
|  | // Example: | 
|  | //     sub x, y  or  cmp x, y | 
|  | //     ...           // EFLAGS not changed | 
|  | //     cmp x, y      // <-- can be removed | 
|  | if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, | 
|  | Inst, &IsSwapped, &ImmDelta)) { | 
|  | Sub = &Inst; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // MOV32r0 is implemented with xor which clobbers condition code. It is | 
|  | // safe to move up, if the definition to EFLAGS is dead and earlier | 
|  | // instructions do not read or write EFLAGS. | 
|  | if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && | 
|  | Inst.registerDefIsDead(X86::EFLAGS, TRI)) { | 
|  | Movr0Inst = &Inst; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // For the instructions are ADDrm/ADDmr with relocation, we'll skip the | 
|  | // optimization for replacing non-NF with NF. This is to keep backward | 
|  | // compatiblity with old version of linkers without APX relocation type | 
|  | // support on Linux OS. | 
|  | bool IsWithReloc = X86EnableAPXForRelocation | 
|  | ? false | 
|  | : isAddMemInstrWithRelocation(Inst); | 
|  |  | 
|  | // Try to replace non-NF with NF instructions. | 
|  | if (HasNF && Inst.registerDefIsDead(X86::EFLAGS, TRI) && !IsWithReloc) { | 
|  | unsigned NewOp = X86::getNFVariant(Inst.getOpcode()); | 
|  | if (!NewOp) | 
|  | return false; | 
|  |  | 
|  | InstsToUpdate.push_back(std::make_pair(&Inst, NewOp)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Cannot do anything for any other EFLAG changes. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MI || Sub) | 
|  | break; | 
|  |  | 
|  | // Reached begin of basic block. Continue in predecessor if there is | 
|  | // exactly one. | 
|  | if (MBB->pred_size() != 1) | 
|  | return false; | 
|  | MBB = *MBB->pred_begin(); | 
|  | From = MBB->rbegin(); | 
|  | } | 
|  |  | 
|  | // Scan forward from the instruction after CmpInstr for uses of EFLAGS. | 
|  | // It is safe to remove CmpInstr if EFLAGS is redefined or killed. | 
|  | // If we are done with the basic block, we need to check whether EFLAGS is | 
|  | // live-out. | 
|  | bool FlagsMayLiveOut = true; | 
|  | SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate; | 
|  | MachineBasicBlock::iterator AfterCmpInstr = | 
|  | std::next(MachineBasicBlock::iterator(CmpInstr)); | 
|  | for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) { | 
|  | bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); | 
|  | bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); | 
|  | // We should check the usage if this instruction uses and updates EFLAGS. | 
|  | if (!UseEFLAGS && ModifyEFLAGS) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again. | 
|  | FlagsMayLiveOut = false; | 
|  | break; | 
|  | } | 
|  | if (!UseEFLAGS && !ModifyEFLAGS) | 
|  | continue; | 
|  |  | 
|  | // EFLAGS is used by this instruction. | 
|  | X86::CondCode OldCC = X86::getCondFromMI(Instr); | 
|  | if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID) | 
|  | return false; | 
|  |  | 
|  | X86::CondCode ReplacementCC = X86::COND_INVALID; | 
|  | if (MI) { | 
|  | switch (OldCC) { | 
|  | default: | 
|  | break; | 
|  | case X86::COND_A: | 
|  | case X86::COND_AE: | 
|  | case X86::COND_B: | 
|  | case X86::COND_BE: | 
|  | // CF is used, we can't perform this optimization. | 
|  | return false; | 
|  | case X86::COND_G: | 
|  | case X86::COND_GE: | 
|  | case X86::COND_L: | 
|  | case X86::COND_LE: | 
|  | // If SF is used, but the instruction doesn't update the SF, then we | 
|  | // can't do the optimization. | 
|  | if (NoSignFlag) | 
|  | return false; | 
|  | [[fallthrough]]; | 
|  | case X86::COND_O: | 
|  | case X86::COND_NO: | 
|  | // If OF is used, the instruction needs to clear it like CmpZero does. | 
|  | if (!ClearsOverflowFlag) | 
|  | return false; | 
|  | break; | 
|  | case X86::COND_S: | 
|  | case X86::COND_NS: | 
|  | // If SF is used, but the instruction doesn't update the SF, then we | 
|  | // can't do the optimization. | 
|  | if (NoSignFlag) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we're updating the condition code check if we have to reverse the | 
|  | // condition. | 
|  | if (ShouldUpdateCC) | 
|  | switch (OldCC) { | 
|  | default: | 
|  | return false; | 
|  | case X86::COND_E: | 
|  | ReplacementCC = NewCC; | 
|  | break; | 
|  | case X86::COND_NE: | 
|  | ReplacementCC = GetOppositeBranchCondition(NewCC); | 
|  | break; | 
|  | } | 
|  | } else if (IsSwapped) { | 
|  | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs | 
|  | // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. | 
|  | // We swap the condition code and synthesize the new opcode. | 
|  | ReplacementCC = getSwappedCondition(OldCC); | 
|  | if (ReplacementCC == X86::COND_INVALID) | 
|  | return false; | 
|  | ShouldUpdateCC = true; | 
|  | } else if (ImmDelta != 0) { | 
|  | unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg)); | 
|  | // Shift amount for min/max constants to adjust for 8/16/32 instruction | 
|  | // sizes. | 
|  | switch (OldCC) { | 
|  | case X86::COND_L: // x <s (C + 1)  -->  x <=s C | 
|  | if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_LE; | 
|  | break; | 
|  | case X86::COND_B: // x <u (C + 1)  -->  x <=u C | 
|  | if (ImmDelta != 1 || CmpValue == 0) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_BE; | 
|  | break; | 
|  | case X86::COND_GE: // x >=s (C + 1)  -->  x >s C | 
|  | if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_G; | 
|  | break; | 
|  | case X86::COND_AE: // x >=u (C + 1)  -->  x >u C | 
|  | if (ImmDelta != 1 || CmpValue == 0) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_A; | 
|  | break; | 
|  | case X86::COND_G: // x >s (C - 1)  -->  x >=s C | 
|  | if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_GE; | 
|  | break; | 
|  | case X86::COND_A: // x >u (C - 1)  -->  x >=u C | 
|  | if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_AE; | 
|  | break; | 
|  | case X86::COND_LE: // x <=s (C - 1)  -->  x <s C | 
|  | if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_L; | 
|  | break; | 
|  | case X86::COND_BE: // x <=u (C - 1)  -->  x <u C | 
|  | if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) | 
|  | return false; | 
|  | ReplacementCC = X86::COND_B; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | ShouldUpdateCC = true; | 
|  | } | 
|  |  | 
|  | if (ShouldUpdateCC && ReplacementCC != OldCC) { | 
|  | // Push the MachineInstr to OpsToUpdate. | 
|  | // If it is safe to remove CmpInstr, the condition code of these | 
|  | // instructions will be modified. | 
|  | OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC)); | 
|  | } | 
|  | if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { | 
|  | // It is safe to remove CmpInstr if EFLAGS is updated again or killed. | 
|  | FlagsMayLiveOut = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have to update users but EFLAGS is live-out abort, since we cannot | 
|  | // easily find all of the users. | 
|  | if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) { | 
|  | for (MachineBasicBlock *Successor : CmpMBB.successors()) | 
|  | if (Successor->isLiveIn(X86::EFLAGS)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The instruction to be updated is either Sub or MI. | 
|  | assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set"); | 
|  | Sub = MI != nullptr ? MI : Sub; | 
|  | MachineBasicBlock *SubBB = Sub->getParent(); | 
|  | // Move Movr0Inst to the appropriate place before Sub. | 
|  | if (Movr0Inst) { | 
|  | // Only move within the same block so we don't accidentally move to a | 
|  | // block with higher execution frequency. | 
|  | if (&CmpMBB != SubBB) | 
|  | return false; | 
|  | // Look backwards until we find a def that doesn't use the current EFLAGS. | 
|  | MachineBasicBlock::reverse_iterator InsertI = Sub, | 
|  | InsertE = Sub->getParent()->rend(); | 
|  | for (; InsertI != InsertE; ++InsertI) { | 
|  | MachineInstr *Instr = &*InsertI; | 
|  | if (!Instr->readsRegister(X86::EFLAGS, TRI) && | 
|  | Instr->modifiesRegister(X86::EFLAGS, TRI)) { | 
|  | Movr0Inst->getParent()->remove(Movr0Inst); | 
|  | Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), | 
|  | Movr0Inst); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InsertI == InsertE) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Replace non-NF with NF instructions. | 
|  | for (auto &Inst : InstsToUpdate) { | 
|  | Inst.first->setDesc(get(Inst.second)); | 
|  | Inst.first->removeOperand( | 
|  | Inst.first->findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr)); | 
|  | } | 
|  |  | 
|  | // Make sure Sub instruction defines EFLAGS and mark the def live. | 
|  | MachineOperand *FlagDef = | 
|  | Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  | assert(FlagDef && "Unable to locate a def EFLAGS operand"); | 
|  | FlagDef->setIsDead(false); | 
|  |  | 
|  | CmpInstr.eraseFromParent(); | 
|  |  | 
|  | // Modify the condition code of instructions in OpsToUpdate. | 
|  | for (auto &Op : OpsToUpdate) { | 
|  | Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) | 
|  | .setImm(Op.second); | 
|  | } | 
|  | // Add EFLAGS to block live-ins between CmpBB and block of flags producer. | 
|  | for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; | 
|  | MBB = *MBB->pred_begin()) { | 
|  | assert(MBB->pred_size() == 1 && "Expected exactly one predecessor"); | 
|  | if (!MBB->isLiveIn(X86::EFLAGS)) | 
|  | MBB->addLiveIn(X86::EFLAGS); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \returns true if the instruction can be changed to COPY when imm is 0. | 
|  | static bool canConvert2Copy(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | return false; | 
|  | CASE_ND(ADD64ri32) | 
|  | CASE_ND(SUB64ri32) | 
|  | CASE_ND(OR64ri32) | 
|  | CASE_ND(XOR64ri32) | 
|  | CASE_ND(ADD32ri) | 
|  | CASE_ND(SUB32ri) | 
|  | CASE_ND(OR32ri) | 
|  | CASE_ND(XOR32ri) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as | 
|  | ///     ADD32rr  ==>  ADD32ri | 
|  | static unsigned convertALUrr2ALUri(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | return 0; | 
|  | #define FROM_TO(FROM, TO)                                                      \ | 
|  | case X86::FROM:                                                              \ | 
|  | return X86::TO;                                                            \ | 
|  | case X86::FROM##_ND:                                                         \ | 
|  | return X86::TO##_ND; | 
|  | FROM_TO(ADD64rr, ADD64ri32) | 
|  | FROM_TO(ADC64rr, ADC64ri32) | 
|  | FROM_TO(SUB64rr, SUB64ri32) | 
|  | FROM_TO(SBB64rr, SBB64ri32) | 
|  | FROM_TO(AND64rr, AND64ri32) | 
|  | FROM_TO(OR64rr, OR64ri32) | 
|  | FROM_TO(XOR64rr, XOR64ri32) | 
|  | FROM_TO(SHR64rCL, SHR64ri) | 
|  | FROM_TO(SHL64rCL, SHL64ri) | 
|  | FROM_TO(SAR64rCL, SAR64ri) | 
|  | FROM_TO(ROL64rCL, ROL64ri) | 
|  | FROM_TO(ROR64rCL, ROR64ri) | 
|  | FROM_TO(RCL64rCL, RCL64ri) | 
|  | FROM_TO(RCR64rCL, RCR64ri) | 
|  | FROM_TO(ADD32rr, ADD32ri) | 
|  | FROM_TO(ADC32rr, ADC32ri) | 
|  | FROM_TO(SUB32rr, SUB32ri) | 
|  | FROM_TO(SBB32rr, SBB32ri) | 
|  | FROM_TO(AND32rr, AND32ri) | 
|  | FROM_TO(OR32rr, OR32ri) | 
|  | FROM_TO(XOR32rr, XOR32ri) | 
|  | FROM_TO(SHR32rCL, SHR32ri) | 
|  | FROM_TO(SHL32rCL, SHL32ri) | 
|  | FROM_TO(SAR32rCL, SAR32ri) | 
|  | FROM_TO(ROL32rCL, ROL32ri) | 
|  | FROM_TO(ROR32rCL, ROR32ri) | 
|  | FROM_TO(RCL32rCL, RCL32ri) | 
|  | FROM_TO(RCR32rCL, RCR32ri) | 
|  | #undef FROM_TO | 
|  | #define FROM_TO(FROM, TO)                                                      \ | 
|  | case X86::FROM:                                                              \ | 
|  | return X86::TO; | 
|  | FROM_TO(TEST64rr, TEST64ri32) | 
|  | FROM_TO(CTEST64rr, CTEST64ri32) | 
|  | FROM_TO(CMP64rr, CMP64ri32) | 
|  | FROM_TO(CCMP64rr, CCMP64ri32) | 
|  | FROM_TO(TEST32rr, TEST32ri) | 
|  | FROM_TO(CTEST32rr, CTEST32ri) | 
|  | FROM_TO(CMP32rr, CMP32ri) | 
|  | FROM_TO(CCMP32rr, CCMP32ri) | 
|  | #undef FROM_TO | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Reg is assigned ImmVal in DefMI, and is used in UseMI. | 
|  | /// If MakeChange is true, this function tries to replace Reg by ImmVal in | 
|  | /// UseMI. If MakeChange is false, just check if folding is possible. | 
|  | // | 
|  | /// \returns true if folding is successful or possible. | 
|  | bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, | 
|  | Register Reg, int64_t ImmVal, | 
|  | MachineRegisterInfo *MRI, | 
|  | bool MakeChange) const { | 
|  | bool Modified = false; | 
|  |  | 
|  | // 64 bit operations accept sign extended 32 bit immediates. | 
|  | // 32 bit operations accept all 32 bit immediates, so we don't need to check | 
|  | // them. | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (Reg.isVirtual()) | 
|  | RC = MRI->getRegClass(Reg); | 
|  | if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) || | 
|  | (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) { | 
|  | if (!isInt<32>(ImmVal)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg()) | 
|  | return false; | 
|  | // Immediate has larger code size than register. So avoid folding the | 
|  | // immediate if it has more than 1 use and we are optimizing for size. | 
|  | if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() && | 
|  | !MRI->hasOneNonDBGUse(Reg)) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = UseMI.getOpcode(); | 
|  | unsigned NewOpc; | 
|  | if (Opc == TargetOpcode::COPY) { | 
|  | Register ToReg = UseMI.getOperand(0).getReg(); | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (ToReg.isVirtual()) | 
|  | RC = MRI->getRegClass(ToReg); | 
|  | bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) || | 
|  | (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg)); | 
|  | bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) || | 
|  | (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg)); | 
|  | bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) || | 
|  | (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg)); | 
|  |  | 
|  | if (ImmVal == 0) { | 
|  | // We have MOV32r0 only. | 
|  | if (!GR32Reg) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (GR64Reg) { | 
|  | if (isUInt<32>(ImmVal)) | 
|  | NewOpc = X86::MOV32ri64; | 
|  | else | 
|  | NewOpc = X86::MOV64ri; | 
|  | } else if (GR32Reg) { | 
|  | NewOpc = X86::MOV32ri; | 
|  | if (ImmVal == 0) { | 
|  | // MOV32r0 clobbers EFLAGS. | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (UseMI.getParent()->computeRegisterLiveness( | 
|  | TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead) | 
|  | return false; | 
|  |  | 
|  | // MOV32r0 is different than other cases because it doesn't encode the | 
|  | // immediate in the instruction. So we directly modify it here. | 
|  | if (!MakeChange) | 
|  | return true; | 
|  | UseMI.setDesc(get(X86::MOV32r0)); | 
|  | UseMI.removeOperand( | 
|  | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); | 
|  | UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true, | 
|  | /*isImp=*/true, | 
|  | /*isKill=*/false, | 
|  | /*isDead=*/true)); | 
|  | Modified = true; | 
|  | } | 
|  | } else if (GR8Reg) | 
|  | NewOpc = X86::MOV8ri; | 
|  | else | 
|  | return false; | 
|  | } else | 
|  | NewOpc = convertALUrr2ALUri(Opc); | 
|  |  | 
|  | if (!NewOpc) | 
|  | return false; | 
|  |  | 
|  | // For SUB instructions the immediate can only be the second source operand. | 
|  | if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri || | 
|  | NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri || | 
|  | NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND || | 
|  | NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) && | 
|  | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2) | 
|  | return false; | 
|  | // For CMP instructions the immediate can only be at index 1. | 
|  | if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) || | 
|  | (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) && | 
|  | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1) | 
|  | return false; | 
|  |  | 
|  | using namespace X86; | 
|  | if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) || | 
|  | isRCL(Opc) || isRCR(Opc)) { | 
|  | unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); | 
|  | if (RegIdx < 2) | 
|  | return false; | 
|  | if (!isInt<8>(ImmVal)) | 
|  | return false; | 
|  | assert(Reg == X86::CL); | 
|  |  | 
|  | if (!MakeChange) | 
|  | return true; | 
|  | UseMI.setDesc(get(NewOpc)); | 
|  | UseMI.removeOperand(RegIdx); | 
|  | UseMI.addOperand(MachineOperand::CreateImm(ImmVal)); | 
|  | // Reg is physical register $cl, so we don't know if DefMI is dead through | 
|  | // MRI. Let the caller handle it, or pass dead-mi-elimination can delete | 
|  | // the dead physical register define instruction. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!MakeChange) | 
|  | return true; | 
|  |  | 
|  | if (!Modified) { | 
|  | // Modify the instruction. | 
|  | if (ImmVal == 0 && canConvert2Copy(NewOpc) && | 
|  | UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) { | 
|  | //          %100 = add %101, 0 | 
|  | //    ==> | 
|  | //          %100 = COPY %101 | 
|  | UseMI.setDesc(get(TargetOpcode::COPY)); | 
|  | UseMI.removeOperand( | 
|  | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); | 
|  | UseMI.removeOperand( | 
|  | UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr)); | 
|  | UseMI.untieRegOperand(0); | 
|  | UseMI.clearFlag(MachineInstr::MIFlag::NoSWrap); | 
|  | UseMI.clearFlag(MachineInstr::MIFlag::NoUWrap); | 
|  | } else { | 
|  | unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; | 
|  | unsigned ImmOpNum = 2; | 
|  | if (!UseMI.getOperand(0).isDef()) { | 
|  | Op1 = 0; // TEST, CMP, CTEST, CCMP | 
|  | ImmOpNum = 1; | 
|  | } | 
|  | if (Opc == TargetOpcode::COPY) | 
|  | ImmOpNum = 1; | 
|  | if (findCommutedOpIndices(UseMI, Op1, Op2) && | 
|  | UseMI.getOperand(Op1).getReg() == Reg) | 
|  | commuteInstruction(UseMI); | 
|  |  | 
|  | assert(UseMI.getOperand(ImmOpNum).getReg() == Reg); | 
|  | UseMI.setDesc(get(NewOpc)); | 
|  | UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg)) | 
|  | DefMI->eraseFromBundle(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// foldImmediate - 'Reg' is known to be defined by a move immediate | 
|  | /// instruction, try to fold the immediate into the use instruction. | 
|  | bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, | 
|  | Register Reg, MachineRegisterInfo *MRI) const { | 
|  | int64_t ImmVal; | 
|  | if (!getConstValDefinedInReg(DefMI, Reg, ImmVal)) | 
|  | return false; | 
|  |  | 
|  | return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true); | 
|  | } | 
|  |  | 
|  | /// Expand a single-def pseudo instruction to a two-addr | 
|  | /// instruction with two undef reads of the register being defined. | 
|  | /// This is used for mapping: | 
|  | ///   %xmm4 = V_SET0 | 
|  | /// to: | 
|  | ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4 | 
|  | /// | 
|  | static bool Expand2AddrUndef(MachineInstrBuilder &MIB, | 
|  | const MCInstrDesc &Desc) { | 
|  | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
|  | Register Reg = MIB.getReg(0); | 
|  | MIB->setDesc(Desc); | 
|  |  | 
|  | // MachineInstr::addOperand() will insert explicit operands before any | 
|  | // implicit operands. | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | // But we don't trust that. | 
|  | assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Expand a single-def pseudo instruction to a two-addr | 
|  | /// instruction with two %k0 reads. | 
|  | /// This is used for mapping: | 
|  | ///   %k4 = K_SET1 | 
|  | /// to: | 
|  | ///   %k4 = KXNORrr %k0, %k0 | 
|  | static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, | 
|  | Register Reg) { | 
|  | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); | 
|  | MIB->setDesc(Desc); | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, | 
|  | bool MinusOne) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | const DebugLoc &DL = MIB->getDebugLoc(); | 
|  | Register Reg = MIB.getReg(0); | 
|  |  | 
|  | // Insert the XOR. | 
|  | BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  |  | 
|  | // Turn the pseudo into an INC or DEC. | 
|  | MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); | 
|  | MIB.addReg(Reg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, | 
|  | const TargetInstrInfo &TII, | 
|  | const X86Subtarget &Subtarget) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | const DebugLoc &DL = MIB->getDebugLoc(); | 
|  | int64_t Imm = MIB->getOperand(1).getImm(); | 
|  | assert(Imm != 0 && "Using push/pop for 0 is not efficient."); | 
|  | MachineBasicBlock::iterator I = MIB.getInstr(); | 
|  |  | 
|  | int StackAdjustment; | 
|  |  | 
|  | if (Subtarget.is64Bit()) { | 
|  | assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || | 
|  | MIB->getOpcode() == X86::MOV32ImmSExti8); | 
|  |  | 
|  | // Can't use push/pop lowering if the function might write to the red zone. | 
|  | X86MachineFunctionInfo *X86FI = | 
|  | MBB.getParent()->getInfo<X86MachineFunctionInfo>(); | 
|  | if (X86FI->getUsesRedZone()) { | 
|  | MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8 | 
|  | ? X86::MOV32ri | 
|  | : X86::MOV64ri)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and | 
|  | // widen the register if necessary. | 
|  | StackAdjustment = 8; | 
|  | BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm); | 
|  | MIB->setDesc(TII.get(X86::POP64r)); | 
|  | MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); | 
|  | } else { | 
|  | assert(MIB->getOpcode() == X86::MOV32ImmSExti8); | 
|  | StackAdjustment = 4; | 
|  | BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm); | 
|  | MIB->setDesc(TII.get(X86::POP32r)); | 
|  | } | 
|  | MIB->removeOperand(1); | 
|  | MIB->addImplicitDefUseOperands(*MBB.getParent()); | 
|  |  | 
|  | // Build CFI if necessary. | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | const X86FrameLowering *TFL = Subtarget.getFrameLowering(); | 
|  | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); | 
|  | bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); | 
|  | bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; | 
|  | if (EmitCFI) { | 
|  | TFL->BuildCFI( | 
|  | MBB, I, DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); | 
|  | TFL->BuildCFI( | 
|  | MBB, std::next(I), DL, | 
|  | MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LoadStackGuard has so far only been implemented for 64-bit MachO. Different | 
|  | // code sequence is needed for other targets. | 
|  | static void expandLoadStackGuard(MachineInstrBuilder &MIB, | 
|  | const TargetInstrInfo &TII) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | const DebugLoc &DL = MIB->getDebugLoc(); | 
|  | Register Reg = MIB.getReg(0); | 
|  | const GlobalValue *GV = | 
|  | cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); | 
|  | auto Flags = MachineMemOperand::MOLoad | | 
|  | MachineMemOperand::MODereferenceable | | 
|  | MachineMemOperand::MOInvariant; | 
|  | MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( | 
|  | MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); | 
|  | MachineBasicBlock::iterator I = MIB.getInstr(); | 
|  |  | 
|  | BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(1) | 
|  | .addReg(0) | 
|  | .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL) | 
|  | .addReg(0) | 
|  | .addMemOperand(MMO); | 
|  | MIB->setDebugLoc(DL); | 
|  | MIB->setDesc(TII.get(X86::MOV64rm)); | 
|  | MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); | 
|  | } | 
|  |  | 
|  | static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); | 
|  | const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); | 
|  | unsigned XorOp = | 
|  | MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; | 
|  | MIB->setDesc(TII.get(XorOp)); | 
|  | MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is used to handle spills for 128/256-bit registers when we have AVX512, | 
|  | // but not VLX. If it uses an extended register we need to use an instruction | 
|  | // that loads the lower 128/256-bit, but is available with only AVX512F. | 
|  | static bool expandNOVLXLoad(MachineInstrBuilder &MIB, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MCInstrDesc &LoadDesc, | 
|  | const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { | 
|  | Register DestReg = MIB.getReg(0); | 
|  | // Check if DestReg is XMM16-31 or YMM16-31. | 
|  | if (TRI->getEncodingValue(DestReg) < 16) { | 
|  | // We can use a normal VEX encoded load. | 
|  | MIB->setDesc(LoadDesc); | 
|  | } else { | 
|  | // Use a 128/256-bit VBROADCAST instruction. | 
|  | MIB->setDesc(BroadcastDesc); | 
|  | // Change the destination to a 512-bit register. | 
|  | DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); | 
|  | MIB->getOperand(0).setReg(DestReg); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is used to handle spills for 128/256-bit registers when we have AVX512, | 
|  | // but not VLX. If it uses an extended register we need to use an instruction | 
|  | // that stores the lower 128/256-bit, but is available with only AVX512F. | 
|  | static bool expandNOVLXStore(MachineInstrBuilder &MIB, | 
|  | const TargetRegisterInfo *TRI, | 
|  | const MCInstrDesc &StoreDesc, | 
|  | const MCInstrDesc &ExtractDesc, unsigned SubIdx) { | 
|  | Register SrcReg = MIB.getReg(X86::AddrNumOperands); | 
|  | // Check if DestReg is XMM16-31 or YMM16-31. | 
|  | if (TRI->getEncodingValue(SrcReg) < 16) { | 
|  | // We can use a normal VEX encoded store. | 
|  | MIB->setDesc(StoreDesc); | 
|  | } else { | 
|  | // Use a VEXTRACTF instruction. | 
|  | MIB->setDesc(ExtractDesc); | 
|  | // Change the destination to a 512-bit register. | 
|  | SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); | 
|  | MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); | 
|  | MIB.addImm(0x0); // Append immediate to extract from the lower bits. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { | 
|  | MIB->setDesc(Desc); | 
|  | int64_t ShiftAmt = MIB->getOperand(2).getImm(); | 
|  | // Temporarily remove the immediate so we can add another source register. | 
|  | MIB->removeOperand(2); | 
|  | // Add the register. Don't copy the kill flag if there is one. | 
|  | MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef())); | 
|  | // Add back the immediate. | 
|  | MIB.addImm(ShiftAmt); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { | 
|  | bool HasAVX = Subtarget.hasAVX(); | 
|  | MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::MOV32r0: | 
|  | return Expand2AddrUndef(MIB, get(X86::XOR32rr)); | 
|  | case X86::MOV32r1: | 
|  | return expandMOV32r1(MIB, *this, /*MinusOne=*/false); | 
|  | case X86::MOV32r_1: | 
|  | return expandMOV32r1(MIB, *this, /*MinusOne=*/true); | 
|  | case X86::MOV32ImmSExti8: | 
|  | case X86::MOV64ImmSExti8: | 
|  | return ExpandMOVImmSExti8(MIB, *this, Subtarget); | 
|  | case X86::SETB_C32r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB32rr)); | 
|  | case X86::SETB_C64r: | 
|  | return Expand2AddrUndef(MIB, get(X86::SBB64rr)); | 
|  | case X86::MMX_SET0: | 
|  | return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr)); | 
|  | case X86::V_SET0: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::FsFLD0SH: | 
|  | case X86::FsFLD0F128: | 
|  | return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); | 
|  | case X86::AVX_SET0: { | 
|  | assert(HasAVX && "AVX not supported"); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | Register SrcReg = MIB.getReg(0); | 
|  | Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); | 
|  | MIB->getOperand(0).setReg(XReg); | 
|  | Expand2AddrUndef(MIB, get(X86::VXORPSrr)); | 
|  | MIB.addReg(SrcReg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::AVX512_FsFLD0SH: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0F128: { | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | Register SrcReg = MIB.getReg(0); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) | 
|  | return Expand2AddrUndef(MIB, | 
|  | get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); | 
|  | // Extended register without VLX. Use a larger XOR. | 
|  | SrcReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); | 
|  | MIB->getOperand(0).setReg(SrcReg); | 
|  | return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | 
|  | } | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX512_512_SET0: { | 
|  | bool HasVLX = Subtarget.hasVLX(); | 
|  | Register SrcReg = MIB.getReg(0); | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  | if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { | 
|  | Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); | 
|  | MIB->getOperand(0).setReg(XReg); | 
|  | Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); | 
|  | MIB.addReg(SrcReg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  | if (MI.getOpcode() == X86::AVX512_256_SET0) { | 
|  | // No VLX so we must reference a zmm. | 
|  | MCRegister ZReg = | 
|  | TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); | 
|  | MIB->getOperand(0).setReg(ZReg); | 
|  | } | 
|  | return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); | 
|  | } | 
|  | case X86::V_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, | 
|  | get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); | 
|  | case X86::AVX2_SETALLONES: | 
|  | return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); | 
|  | case X86::AVX1_SETALLONES: { | 
|  | Register Reg = MIB.getReg(0); | 
|  | // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. | 
|  | MIB->setDesc(get(X86::VCMPPSYrri)); | 
|  | MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_512_SETALLONES: { | 
|  | Register Reg = MIB.getReg(0); | 
|  | MIB->setDesc(get(X86::VPTERNLOGDZrri)); | 
|  | // VPTERNLOGD needs 3 register inputs and an immediate. | 
|  | // 0xff will return 1s for any input. | 
|  | MIB.addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addImm(0xff); | 
|  | return true; | 
|  | } | 
|  | case X86::AVX512_512_SEXT_MASK_32: | 
|  | case X86::AVX512_512_SEXT_MASK_64: { | 
|  | Register Reg = MIB.getReg(0); | 
|  | Register MaskReg = MIB.getReg(1); | 
|  | unsigned MaskState = getRegState(MIB->getOperand(1)); | 
|  | unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) | 
|  | ? X86::VPTERNLOGQZrrikz | 
|  | : X86::VPTERNLOGDZrrikz; | 
|  | MI.removeOperand(1); | 
|  | MIB->setDesc(get(Opc)); | 
|  | // VPTERNLOG needs 3 register inputs and an immediate. | 
|  | // 0xff will return 1s for any input. | 
|  | MIB.addReg(Reg, RegState::Undef) | 
|  | .addReg(MaskReg, MaskState) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addImm(0xff); | 
|  | return true; | 
|  | } | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), | 
|  | get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm); | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), | 
|  | get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm); | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), | 
|  | get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm); | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), | 
|  | get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm); | 
|  | case X86::VMOVAPSZ128mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), | 
|  | get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm); | 
|  | case X86::VMOVUPSZ128mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), | 
|  | get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm); | 
|  | case X86::VMOVAPSZ256mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), | 
|  | get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm); | 
|  | case X86::VMOVUPSZ256mr_NOVLX: | 
|  | return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), | 
|  | get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm); | 
|  | case X86::MOV32ri64: { | 
|  | Register Reg = MIB.getReg(0); | 
|  | Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); | 
|  | MI.setDesc(get(X86::MOV32ri)); | 
|  | MIB->getOperand(0).setReg(Reg32); | 
|  | MIB.addReg(Reg, RegState::ImplicitDefine); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case X86::RDFLAGS32: | 
|  | case X86::RDFLAGS64: { | 
|  | unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64; | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  |  | 
|  | MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(), | 
|  | get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32)) | 
|  | .getInstr(); | 
|  |  | 
|  | // Permit reads of the EFLAGS and DF registers without them being defined. | 
|  | // This intrinsic exists to read external processor state in flags, such as | 
|  | // the trap flag, interrupt flag, and direction flag, none of which are | 
|  | // modeled by the backend. | 
|  | assert(NewMI->getOperand(2).getReg() == X86::EFLAGS && | 
|  | "Unexpected register in operand! Should be EFLAGS."); | 
|  | NewMI->getOperand(2).setIsUndef(); | 
|  | assert(NewMI->getOperand(3).getReg() == X86::DF && | 
|  | "Unexpected register in operand! Should be DF."); | 
|  | NewMI->getOperand(3).setIsUndef(); | 
|  |  | 
|  | MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case X86::WRFLAGS32: | 
|  | case X86::WRFLAGS64: { | 
|  | unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64; | 
|  | MachineBasicBlock &MBB = *MIB->getParent(); | 
|  |  | 
|  | BuildMI(MBB, MI, MIB->getDebugLoc(), | 
|  | get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) | 
|  | .addReg(MI.getOperand(0).getReg()); | 
|  | BuildMI(MBB, MI, MIB->getDebugLoc(), | 
|  | get(Is64Bit ? X86::POPF64 : X86::POPF32)); | 
|  | MI.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // KNL does not recognize dependency-breaking idioms for mask registers, | 
|  | // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. | 
|  | // Using %k0 as the undef input register is a performance heuristic based | 
|  | // on the assumption that %k0 is used less frequently than the other mask | 
|  | // registers, since it is not usable as a write mask. | 
|  | // FIXME: A more advanced approach would be to choose the best input mask | 
|  | // register based on context. | 
|  | case X86::KSET0W: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXORWkk), X86::K0); | 
|  | case X86::KSET0D: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXORDkk), X86::K0); | 
|  | case X86::KSET0Q: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXORQkk), X86::K0); | 
|  | case X86::KSET1W: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXNORWkk), X86::K0); | 
|  | case X86::KSET1D: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXNORDkk), X86::K0); | 
|  | case X86::KSET1Q: | 
|  | return Expand2AddrKreg(MIB, get(X86::KXNORQkk), X86::K0); | 
|  | case TargetOpcode::LOAD_STACK_GUARD: | 
|  | expandLoadStackGuard(MIB, *this); | 
|  | return true; | 
|  | case X86::XOR64_FP: | 
|  | case X86::XOR32_FP: | 
|  | return expandXorFP(MIB, *this); | 
|  | case X86::SHLDROT32ri: | 
|  | return expandSHXDROT(MIB, get(X86::SHLD32rri8)); | 
|  | case X86::SHLDROT64ri: | 
|  | return expandSHXDROT(MIB, get(X86::SHLD64rri8)); | 
|  | case X86::SHRDROT32ri: | 
|  | return expandSHXDROT(MIB, get(X86::SHRD32rri8)); | 
|  | case X86::SHRDROT64ri: | 
|  | return expandSHXDROT(MIB, get(X86::SHRD64rri8)); | 
|  | case X86::ADD8rr_DB: | 
|  | MIB->setDesc(get(X86::OR8rr)); | 
|  | break; | 
|  | case X86::ADD16rr_DB: | 
|  | MIB->setDesc(get(X86::OR16rr)); | 
|  | break; | 
|  | case X86::ADD32rr_DB: | 
|  | MIB->setDesc(get(X86::OR32rr)); | 
|  | break; | 
|  | case X86::ADD64rr_DB: | 
|  | MIB->setDesc(get(X86::OR64rr)); | 
|  | break; | 
|  | case X86::ADD8ri_DB: | 
|  | MIB->setDesc(get(X86::OR8ri)); | 
|  | break; | 
|  | case X86::ADD16ri_DB: | 
|  | MIB->setDesc(get(X86::OR16ri)); | 
|  | break; | 
|  | case X86::ADD32ri_DB: | 
|  | MIB->setDesc(get(X86::OR32ri)); | 
|  | break; | 
|  | case X86::ADD64ri32_DB: | 
|  | MIB->setDesc(get(X86::OR64ri32)); | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true for all instructions that only update | 
|  | /// the first 32 or 64-bits of the destination register and leave the rest | 
|  | /// unmodified. This can be used to avoid folding loads if the instructions | 
|  | /// only update part of the destination register, and the non-updated part is | 
|  | /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these | 
|  | /// instructions breaks the partial register dependency and it can improve | 
|  | /// performance. e.g.: | 
|  | /// | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   cvtss2sd %xmm0, %xmm0 | 
|  | /// | 
|  | /// Instead of | 
|  | ///   cvtss2sd (%rdi), %xmm0 | 
|  | /// | 
|  | /// FIXME: This should be turned into a TSFlags. | 
|  | /// | 
|  | static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, | 
|  | bool ForLoadFold = false) { | 
|  | switch (Opcode) { | 
|  | case X86::CVTSI2SSrr: | 
|  | case X86::CVTSI2SSrm: | 
|  | case X86::CVTSI642SSrr: | 
|  | case X86::CVTSI642SSrm: | 
|  | case X86::CVTSI2SDrr: | 
|  | case X86::CVTSI2SDrm: | 
|  | case X86::CVTSI642SDrr: | 
|  | case X86::CVTSI642SDrm: | 
|  | // Load folding won't effect the undef register update since the input is | 
|  | // a GPR. | 
|  | return !ForLoadFold; | 
|  | case X86::CVTSD2SSrr: | 
|  | case X86::CVTSD2SSrm: | 
|  | case X86::CVTSS2SDrr: | 
|  | case X86::CVTSS2SDrm: | 
|  | case X86::MOVHPDrm: | 
|  | case X86::MOVHPSrm: | 
|  | case X86::MOVLPDrm: | 
|  | case X86::MOVLPSrm: | 
|  | case X86::RCPSSr: | 
|  | case X86::RCPSSm: | 
|  | case X86::RCPSSr_Int: | 
|  | case X86::RCPSSm_Int: | 
|  | case X86::ROUNDSDri: | 
|  | case X86::ROUNDSDmi: | 
|  | case X86::ROUNDSSri: | 
|  | case X86::ROUNDSSmi: | 
|  | case X86::RSQRTSSr: | 
|  | case X86::RSQRTSSm: | 
|  | case X86::RSQRTSSr_Int: | 
|  | case X86::RSQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSr_Int: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSDm_Int: | 
|  | return true; | 
|  | case X86::VFCMULCPHZ128rm: | 
|  | case X86::VFCMULCPHZ128rmb: | 
|  | case X86::VFCMULCPHZ128rmbkz: | 
|  | case X86::VFCMULCPHZ128rmkz: | 
|  | case X86::VFCMULCPHZ128rr: | 
|  | case X86::VFCMULCPHZ128rrkz: | 
|  | case X86::VFCMULCPHZ256rm: | 
|  | case X86::VFCMULCPHZ256rmb: | 
|  | case X86::VFCMULCPHZ256rmbkz: | 
|  | case X86::VFCMULCPHZ256rmkz: | 
|  | case X86::VFCMULCPHZ256rr: | 
|  | case X86::VFCMULCPHZ256rrkz: | 
|  | case X86::VFCMULCPHZrm: | 
|  | case X86::VFCMULCPHZrmb: | 
|  | case X86::VFCMULCPHZrmbkz: | 
|  | case X86::VFCMULCPHZrmkz: | 
|  | case X86::VFCMULCPHZrr: | 
|  | case X86::VFCMULCPHZrrb: | 
|  | case X86::VFCMULCPHZrrbkz: | 
|  | case X86::VFCMULCPHZrrkz: | 
|  | case X86::VFMULCPHZ128rm: | 
|  | case X86::VFMULCPHZ128rmb: | 
|  | case X86::VFMULCPHZ128rmbkz: | 
|  | case X86::VFMULCPHZ128rmkz: | 
|  | case X86::VFMULCPHZ128rr: | 
|  | case X86::VFMULCPHZ128rrkz: | 
|  | case X86::VFMULCPHZ256rm: | 
|  | case X86::VFMULCPHZ256rmb: | 
|  | case X86::VFMULCPHZ256rmbkz: | 
|  | case X86::VFMULCPHZ256rmkz: | 
|  | case X86::VFMULCPHZ256rr: | 
|  | case X86::VFMULCPHZ256rrkz: | 
|  | case X86::VFMULCPHZrm: | 
|  | case X86::VFMULCPHZrmb: | 
|  | case X86::VFMULCPHZrmbkz: | 
|  | case X86::VFMULCPHZrmkz: | 
|  | case X86::VFMULCPHZrr: | 
|  | case X86::VFMULCPHZrrb: | 
|  | case X86::VFMULCPHZrrbkz: | 
|  | case X86::VFMULCPHZrrkz: | 
|  | case X86::VFCMULCSHZrm: | 
|  | case X86::VFCMULCSHZrmkz: | 
|  | case X86::VFCMULCSHZrr: | 
|  | case X86::VFCMULCSHZrrb: | 
|  | case X86::VFCMULCSHZrrbkz: | 
|  | case X86::VFCMULCSHZrrkz: | 
|  | case X86::VFMULCSHZrm: | 
|  | case X86::VFMULCSHZrmkz: | 
|  | case X86::VFMULCSHZrr: | 
|  | case X86::VFMULCSHZrrb: | 
|  | case X86::VFMULCSHZrrbkz: | 
|  | case X86::VFMULCSHZrrkz: | 
|  | return Subtarget.hasMULCFalseDeps(); | 
|  | case X86::VPERMDYrm: | 
|  | case X86::VPERMDYrr: | 
|  | case X86::VPERMQYmi: | 
|  | case X86::VPERMQYri: | 
|  | case X86::VPERMPSYrm: | 
|  | case X86::VPERMPSYrr: | 
|  | case X86::VPERMPDYmi: | 
|  | case X86::VPERMPDYri: | 
|  | case X86::VPERMDZ256rm: | 
|  | case X86::VPERMDZ256rmb: | 
|  | case X86::VPERMDZ256rmbkz: | 
|  | case X86::VPERMDZ256rmkz: | 
|  | case X86::VPERMDZ256rr: | 
|  | case X86::VPERMDZ256rrkz: | 
|  | case X86::VPERMDZrm: | 
|  | case X86::VPERMDZrmb: | 
|  | case X86::VPERMDZrmbkz: | 
|  | case X86::VPERMDZrmkz: | 
|  | case X86::VPERMDZrr: | 
|  | case X86::VPERMDZrrkz: | 
|  | case X86::VPERMQZ256mbi: | 
|  | case X86::VPERMQZ256mbikz: | 
|  | case X86::VPERMQZ256mi: | 
|  | case X86::VPERMQZ256mikz: | 
|  | case X86::VPERMQZ256ri: | 
|  | case X86::VPERMQZ256rikz: | 
|  | case X86::VPERMQZ256rm: | 
|  | case X86::VPERMQZ256rmb: | 
|  | case X86::VPERMQZ256rmbkz: | 
|  | case X86::VPERMQZ256rmkz: | 
|  | case X86::VPERMQZ256rr: | 
|  | case X86::VPERMQZ256rrkz: | 
|  | case X86::VPERMQZmbi: | 
|  | case X86::VPERMQZmbikz: | 
|  | case X86::VPERMQZmi: | 
|  | case X86::VPERMQZmikz: | 
|  | case X86::VPERMQZri: | 
|  | case X86::VPERMQZrikz: | 
|  | case X86::VPERMQZrm: | 
|  | case X86::VPERMQZrmb: | 
|  | case X86::VPERMQZrmbkz: | 
|  | case X86::VPERMQZrmkz: | 
|  | case X86::VPERMQZrr: | 
|  | case X86::VPERMQZrrkz: | 
|  | case X86::VPERMPSZ256rm: | 
|  | case X86::VPERMPSZ256rmb: | 
|  | case X86::VPERMPSZ256rmbkz: | 
|  | case X86::VPERMPSZ256rmkz: | 
|  | case X86::VPERMPSZ256rr: | 
|  | case X86::VPERMPSZ256rrkz: | 
|  | case X86::VPERMPSZrm: | 
|  | case X86::VPERMPSZrmb: | 
|  | case X86::VPERMPSZrmbkz: | 
|  | case X86::VPERMPSZrmkz: | 
|  | case X86::VPERMPSZrr: | 
|  | case X86::VPERMPSZrrkz: | 
|  | case X86::VPERMPDZ256mbi: | 
|  | case X86::VPERMPDZ256mbikz: | 
|  | case X86::VPERMPDZ256mi: | 
|  | case X86::VPERMPDZ256mikz: | 
|  | case X86::VPERMPDZ256ri: | 
|  | case X86::VPERMPDZ256rikz: | 
|  | case X86::VPERMPDZ256rm: | 
|  | case X86::VPERMPDZ256rmb: | 
|  | case X86::VPERMPDZ256rmbkz: | 
|  | case X86::VPERMPDZ256rmkz: | 
|  | case X86::VPERMPDZ256rr: | 
|  | case X86::VPERMPDZ256rrkz: | 
|  | case X86::VPERMPDZmbi: | 
|  | case X86::VPERMPDZmbikz: | 
|  | case X86::VPERMPDZmi: | 
|  | case X86::VPERMPDZmikz: | 
|  | case X86::VPERMPDZri: | 
|  | case X86::VPERMPDZrikz: | 
|  | case X86::VPERMPDZrm: | 
|  | case X86::VPERMPDZrmb: | 
|  | case X86::VPERMPDZrmbkz: | 
|  | case X86::VPERMPDZrmkz: | 
|  | case X86::VPERMPDZrr: | 
|  | case X86::VPERMPDZrrkz: | 
|  | return Subtarget.hasPERMFalseDeps(); | 
|  | case X86::VRANGEPDZ128rmbi: | 
|  | case X86::VRANGEPDZ128rmbikz: | 
|  | case X86::VRANGEPDZ128rmi: | 
|  | case X86::VRANGEPDZ128rmikz: | 
|  | case X86::VRANGEPDZ128rri: | 
|  | case X86::VRANGEPDZ128rrikz: | 
|  | case X86::VRANGEPDZ256rmbi: | 
|  | case X86::VRANGEPDZ256rmbikz: | 
|  | case X86::VRANGEPDZ256rmi: | 
|  | case X86::VRANGEPDZ256rmikz: | 
|  | case X86::VRANGEPDZ256rri: | 
|  | case X86::VRANGEPDZ256rrikz: | 
|  | case X86::VRANGEPDZrmbi: | 
|  | case X86::VRANGEPDZrmbikz: | 
|  | case X86::VRANGEPDZrmi: | 
|  | case X86::VRANGEPDZrmikz: | 
|  | case X86::VRANGEPDZrri: | 
|  | case X86::VRANGEPDZrrib: | 
|  | case X86::VRANGEPDZrribkz: | 
|  | case X86::VRANGEPDZrrikz: | 
|  | case X86::VRANGEPSZ128rmbi: | 
|  | case X86::VRANGEPSZ128rmbikz: | 
|  | case X86::VRANGEPSZ128rmi: | 
|  | case X86::VRANGEPSZ128rmikz: | 
|  | case X86::VRANGEPSZ128rri: | 
|  | case X86::VRANGEPSZ128rrikz: | 
|  | case X86::VRANGEPSZ256rmbi: | 
|  | case X86::VRANGEPSZ256rmbikz: | 
|  | case X86::VRANGEPSZ256rmi: | 
|  | case X86::VRANGEPSZ256rmikz: | 
|  | case X86::VRANGEPSZ256rri: | 
|  | case X86::VRANGEPSZ256rrikz: | 
|  | case X86::VRANGEPSZrmbi: | 
|  | case X86::VRANGEPSZrmbikz: | 
|  | case X86::VRANGEPSZrmi: | 
|  | case X86::VRANGEPSZrmikz: | 
|  | case X86::VRANGEPSZrri: | 
|  | case X86::VRANGEPSZrrib: | 
|  | case X86::VRANGEPSZrribkz: | 
|  | case X86::VRANGEPSZrrikz: | 
|  | case X86::VRANGESDZrmi: | 
|  | case X86::VRANGESDZrmikz: | 
|  | case X86::VRANGESDZrri: | 
|  | case X86::VRANGESDZrrib: | 
|  | case X86::VRANGESDZrribkz: | 
|  | case X86::VRANGESDZrrikz: | 
|  | case X86::VRANGESSZrmi: | 
|  | case X86::VRANGESSZrmikz: | 
|  | case X86::VRANGESSZrri: | 
|  | case X86::VRANGESSZrrib: | 
|  | case X86::VRANGESSZrribkz: | 
|  | case X86::VRANGESSZrrikz: | 
|  | return Subtarget.hasRANGEFalseDeps(); | 
|  | case X86::VGETMANTSSZrmi: | 
|  | case X86::VGETMANTSSZrmikz: | 
|  | case X86::VGETMANTSSZrri: | 
|  | case X86::VGETMANTSSZrrib: | 
|  | case X86::VGETMANTSSZrribkz: | 
|  | case X86::VGETMANTSSZrrikz: | 
|  | case X86::VGETMANTSDZrmi: | 
|  | case X86::VGETMANTSDZrmikz: | 
|  | case X86::VGETMANTSDZrri: | 
|  | case X86::VGETMANTSDZrrib: | 
|  | case X86::VGETMANTSDZrribkz: | 
|  | case X86::VGETMANTSDZrrikz: | 
|  | case X86::VGETMANTSHZrmi: | 
|  | case X86::VGETMANTSHZrmikz: | 
|  | case X86::VGETMANTSHZrri: | 
|  | case X86::VGETMANTSHZrrib: | 
|  | case X86::VGETMANTSHZrribkz: | 
|  | case X86::VGETMANTSHZrrikz: | 
|  | case X86::VGETMANTPSZ128rmbi: | 
|  | case X86::VGETMANTPSZ128rmbikz: | 
|  | case X86::VGETMANTPSZ128rmi: | 
|  | case X86::VGETMANTPSZ128rmikz: | 
|  | case X86::VGETMANTPSZ256rmbi: | 
|  | case X86::VGETMANTPSZ256rmbikz: | 
|  | case X86::VGETMANTPSZ256rmi: | 
|  | case X86::VGETMANTPSZ256rmikz: | 
|  | case X86::VGETMANTPSZrmbi: | 
|  | case X86::VGETMANTPSZrmbikz: | 
|  | case X86::VGETMANTPSZrmi: | 
|  | case X86::VGETMANTPSZrmikz: | 
|  | case X86::VGETMANTPDZ128rmbi: | 
|  | case X86::VGETMANTPDZ128rmbikz: | 
|  | case X86::VGETMANTPDZ128rmi: | 
|  | case X86::VGETMANTPDZ128rmikz: | 
|  | case X86::VGETMANTPDZ256rmbi: | 
|  | case X86::VGETMANTPDZ256rmbikz: | 
|  | case X86::VGETMANTPDZ256rmi: | 
|  | case X86::VGETMANTPDZ256rmikz: | 
|  | case X86::VGETMANTPDZrmbi: | 
|  | case X86::VGETMANTPDZrmbikz: | 
|  | case X86::VGETMANTPDZrmi: | 
|  | case X86::VGETMANTPDZrmikz: | 
|  | return Subtarget.hasGETMANTFalseDeps(); | 
|  | case X86::VPMULLQZ128rm: | 
|  | case X86::VPMULLQZ128rmb: | 
|  | case X86::VPMULLQZ128rmbkz: | 
|  | case X86::VPMULLQZ128rmkz: | 
|  | case X86::VPMULLQZ128rr: | 
|  | case X86::VPMULLQZ128rrkz: | 
|  | case X86::VPMULLQZ256rm: | 
|  | case X86::VPMULLQZ256rmb: | 
|  | case X86::VPMULLQZ256rmbkz: | 
|  | case X86::VPMULLQZ256rmkz: | 
|  | case X86::VPMULLQZ256rr: | 
|  | case X86::VPMULLQZ256rrkz: | 
|  | case X86::VPMULLQZrm: | 
|  | case X86::VPMULLQZrmb: | 
|  | case X86::VPMULLQZrmbkz: | 
|  | case X86::VPMULLQZrmkz: | 
|  | case X86::VPMULLQZrr: | 
|  | case X86::VPMULLQZrrkz: | 
|  | return Subtarget.hasMULLQFalseDeps(); | 
|  | // GPR | 
|  | case X86::POPCNT32rm: | 
|  | case X86::POPCNT32rr: | 
|  | case X86::POPCNT64rm: | 
|  | case X86::POPCNT64rr: | 
|  | return Subtarget.hasPOPCNTFalseDeps(); | 
|  | case X86::LZCNT32rm: | 
|  | case X86::LZCNT32rr: | 
|  | case X86::LZCNT64rm: | 
|  | case X86::LZCNT64rr: | 
|  | case X86::TZCNT32rm: | 
|  | case X86::TZCNT32rr: | 
|  | case X86::TZCNT64rm: | 
|  | case X86::TZCNT64rr: | 
|  | return Subtarget.hasLZCNTFalseDeps(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the BreakFalseDeps pass how many idle | 
|  | /// instructions we would like before a partial register update. | 
|  | unsigned X86InstrInfo::getPartialRegUpdateClearance( | 
|  | const MachineInstr &MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  |  | 
|  | if (OpNum != 0) | 
|  | return 0; | 
|  |  | 
|  | // NDD ops with 8/16b results may appear to be partial register | 
|  | // updates after register allocation. | 
|  | bool HasNDDPartialWrite = false; | 
|  | if (X86II::hasNewDataDest(MI.getDesc().TSFlags)) { | 
|  | Register Reg = MI.getOperand(0).getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | HasNDDPartialWrite = | 
|  | X86::GR8RegClass.contains(Reg) || X86::GR16RegClass.contains(Reg); | 
|  | } | 
|  |  | 
|  | if (!(HasNDDPartialWrite || hasPartialRegUpdate(MI.getOpcode(), Subtarget))) | 
|  | return 0; | 
|  |  | 
|  | // Check if the result register is also used as a source. | 
|  | // For non-NDD ops, this means a partial update is wanted, hence we return 0. | 
|  | // For NDD ops, this means it is possible to compress the instruction | 
|  | // to a legacy form in CompressEVEX, which would create an unwanted partial | 
|  | // update, so we return the clearance. | 
|  | const MachineOperand &MO = MI.getOperand(0); | 
|  | Register Reg = MO.getReg(); | 
|  | bool ReadsReg = false; | 
|  | if (Reg.isVirtual()) | 
|  | ReadsReg = (MO.readsReg() || MI.readsVirtualRegister(Reg)); | 
|  | else | 
|  | ReadsReg = MI.readsRegister(Reg, TRI); | 
|  | if (ReadsReg != HasNDDPartialWrite) | 
|  | return 0; | 
|  |  | 
|  | // If any instructions in the clearance range are reading Reg, insert a | 
|  | // dependency breaking instruction, which is inexpensive and is likely to | 
|  | // be hidden in other instruction's cycles. | 
|  | return PartialRegUpdateClearance; | 
|  | } | 
|  |  | 
|  | // Return true for any instruction the copies the high bits of the first source | 
|  | // operand into the unused high bits of the destination operand. | 
|  | // Also returns true for instructions that have two inputs where one may | 
|  | // be undef and we want it to use the same register as the other input. | 
|  | static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, | 
|  | bool ForLoadFold = false) { | 
|  | // Set the OpNum parameter to the first source operand. | 
|  | switch (Opcode) { | 
|  | case X86::MMX_PUNPCKHBWrr: | 
|  | case X86::MMX_PUNPCKHWDrr: | 
|  | case X86::MMX_PUNPCKHDQrr: | 
|  | case X86::MMX_PUNPCKLBWrr: | 
|  | case X86::MMX_PUNPCKLWDrr: | 
|  | case X86::MMX_PUNPCKLDQrr: | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::PACKSSWBrr: | 
|  | case X86::PACKUSWBrr: | 
|  | case X86::PACKSSDWrr: | 
|  | case X86::PACKUSDWrr: | 
|  | case X86::PUNPCKHBWrr: | 
|  | case X86::PUNPCKLBWrr: | 
|  | case X86::PUNPCKHWDrr: | 
|  | case X86::PUNPCKLWDrr: | 
|  | case X86::PUNPCKHDQrr: | 
|  | case X86::PUNPCKLDQrr: | 
|  | case X86::PUNPCKHQDQrr: | 
|  | case X86::PUNPCKLQDQrr: | 
|  | case X86::SHUFPDrri: | 
|  | case X86::SHUFPSrri: | 
|  | // These instructions are sometimes used with an undef first or second | 
|  | // source. Return true here so BreakFalseDeps will assign this source to the | 
|  | // same register as the first source to avoid a false dependency. | 
|  | // Operand 1 of these instructions is tied so they're separate from their | 
|  | // VEX counterparts. | 
|  | return OpNum == 2 && !ForLoadFold; | 
|  |  | 
|  | case X86::VMOVLHPSrr: | 
|  | case X86::VMOVLHPSZrr: | 
|  | case X86::VPACKSSWBrr: | 
|  | case X86::VPACKUSWBrr: | 
|  | case X86::VPACKSSDWrr: | 
|  | case X86::VPACKUSDWrr: | 
|  | case X86::VPACKSSWBZ128rr: | 
|  | case X86::VPACKUSWBZ128rr: | 
|  | case X86::VPACKSSDWZ128rr: | 
|  | case X86::VPACKUSDWZ128rr: | 
|  | case X86::VPERM2F128rri: | 
|  | case X86::VPERM2I128rri: | 
|  | case X86::VSHUFF32X4Z256rri: | 
|  | case X86::VSHUFF32X4Zrri: | 
|  | case X86::VSHUFF64X2Z256rri: | 
|  | case X86::VSHUFF64X2Zrri: | 
|  | case X86::VSHUFI32X4Z256rri: | 
|  | case X86::VSHUFI32X4Zrri: | 
|  | case X86::VSHUFI64X2Z256rri: | 
|  | case X86::VSHUFI64X2Zrri: | 
|  | case X86::VPUNPCKHBWrr: | 
|  | case X86::VPUNPCKLBWrr: | 
|  | case X86::VPUNPCKHBWYrr: | 
|  | case X86::VPUNPCKLBWYrr: | 
|  | case X86::VPUNPCKHBWZ128rr: | 
|  | case X86::VPUNPCKLBWZ128rr: | 
|  | case X86::VPUNPCKHBWZ256rr: | 
|  | case X86::VPUNPCKLBWZ256rr: | 
|  | case X86::VPUNPCKHBWZrr: | 
|  | case X86::VPUNPCKLBWZrr: | 
|  | case X86::VPUNPCKHWDrr: | 
|  | case X86::VPUNPCKLWDrr: | 
|  | case X86::VPUNPCKHWDYrr: | 
|  | case X86::VPUNPCKLWDYrr: | 
|  | case X86::VPUNPCKHWDZ128rr: | 
|  | case X86::VPUNPCKLWDZ128rr: | 
|  | case X86::VPUNPCKHWDZ256rr: | 
|  | case X86::VPUNPCKLWDZ256rr: | 
|  | case X86::VPUNPCKHWDZrr: | 
|  | case X86::VPUNPCKLWDZrr: | 
|  | case X86::VPUNPCKHDQrr: | 
|  | case X86::VPUNPCKLDQrr: | 
|  | case X86::VPUNPCKHDQYrr: | 
|  | case X86::VPUNPCKLDQYrr: | 
|  | case X86::VPUNPCKHDQZ128rr: | 
|  | case X86::VPUNPCKLDQZ128rr: | 
|  | case X86::VPUNPCKHDQZ256rr: | 
|  | case X86::VPUNPCKLDQZ256rr: | 
|  | case X86::VPUNPCKHDQZrr: | 
|  | case X86::VPUNPCKLDQZrr: | 
|  | case X86::VPUNPCKHQDQrr: | 
|  | case X86::VPUNPCKLQDQrr: | 
|  | case X86::VPUNPCKHQDQYrr: | 
|  | case X86::VPUNPCKLQDQYrr: | 
|  | case X86::VPUNPCKHQDQZ128rr: | 
|  | case X86::VPUNPCKLQDQZ128rr: | 
|  | case X86::VPUNPCKHQDQZ256rr: | 
|  | case X86::VPUNPCKLQDQZ256rr: | 
|  | case X86::VPUNPCKHQDQZrr: | 
|  | case X86::VPUNPCKLQDQZrr: | 
|  | // These instructions are sometimes used with an undef first or second | 
|  | // source. Return true here so BreakFalseDeps will assign this source to the | 
|  | // same register as the first source to avoid a false dependency. | 
|  | return (OpNum == 1 || OpNum == 2) && !ForLoadFold; | 
|  |  | 
|  | case X86::VCVTSI2SSrr: | 
|  | case X86::VCVTSI2SSrm: | 
|  | case X86::VCVTSI2SSrr_Int: | 
|  | case X86::VCVTSI2SSrm_Int: | 
|  | case X86::VCVTSI642SSrr: | 
|  | case X86::VCVTSI642SSrm: | 
|  | case X86::VCVTSI642SSrr_Int: | 
|  | case X86::VCVTSI642SSrm_Int: | 
|  | case X86::VCVTSI2SDrr: | 
|  | case X86::VCVTSI2SDrm: | 
|  | case X86::VCVTSI2SDrr_Int: | 
|  | case X86::VCVTSI2SDrm_Int: | 
|  | case X86::VCVTSI642SDrr: | 
|  | case X86::VCVTSI642SDrm: | 
|  | case X86::VCVTSI642SDrr_Int: | 
|  | case X86::VCVTSI642SDrm_Int: | 
|  | // AVX-512 | 
|  | case X86::VCVTSI2SSZrr: | 
|  | case X86::VCVTSI2SSZrm: | 
|  | case X86::VCVTSI2SSZrr_Int: | 
|  | case X86::VCVTSI2SSZrrb_Int: | 
|  | case X86::VCVTSI2SSZrm_Int: | 
|  | case X86::VCVTSI642SSZrr: | 
|  | case X86::VCVTSI642SSZrm: | 
|  | case X86::VCVTSI642SSZrr_Int: | 
|  | case X86::VCVTSI642SSZrrb_Int: | 
|  | case X86::VCVTSI642SSZrm_Int: | 
|  | case X86::VCVTSI2SDZrr: | 
|  | case X86::VCVTSI2SDZrm: | 
|  | case X86::VCVTSI2SDZrr_Int: | 
|  | case X86::VCVTSI2SDZrm_Int: | 
|  | case X86::VCVTSI642SDZrr: | 
|  | case X86::VCVTSI642SDZrm: | 
|  | case X86::VCVTSI642SDZrr_Int: | 
|  | case X86::VCVTSI642SDZrrb_Int: | 
|  | case X86::VCVTSI642SDZrm_Int: | 
|  | case X86::VCVTUSI2SSZrr: | 
|  | case X86::VCVTUSI2SSZrm: | 
|  | case X86::VCVTUSI2SSZrr_Int: | 
|  | case X86::VCVTUSI2SSZrrb_Int: | 
|  | case X86::VCVTUSI2SSZrm_Int: | 
|  | case X86::VCVTUSI642SSZrr: | 
|  | case X86::VCVTUSI642SSZrm: | 
|  | case X86::VCVTUSI642SSZrr_Int: | 
|  | case X86::VCVTUSI642SSZrrb_Int: | 
|  | case X86::VCVTUSI642SSZrm_Int: | 
|  | case X86::VCVTUSI2SDZrr: | 
|  | case X86::VCVTUSI2SDZrm: | 
|  | case X86::VCVTUSI2SDZrr_Int: | 
|  | case X86::VCVTUSI2SDZrm_Int: | 
|  | case X86::VCVTUSI642SDZrr: | 
|  | case X86::VCVTUSI642SDZrm: | 
|  | case X86::VCVTUSI642SDZrr_Int: | 
|  | case X86::VCVTUSI642SDZrrb_Int: | 
|  | case X86::VCVTUSI642SDZrm_Int: | 
|  | case X86::VCVTSI2SHZrr: | 
|  | case X86::VCVTSI2SHZrm: | 
|  | case X86::VCVTSI2SHZrr_Int: | 
|  | case X86::VCVTSI2SHZrrb_Int: | 
|  | case X86::VCVTSI2SHZrm_Int: | 
|  | case X86::VCVTSI642SHZrr: | 
|  | case X86::VCVTSI642SHZrm: | 
|  | case X86::VCVTSI642SHZrr_Int: | 
|  | case X86::VCVTSI642SHZrrb_Int: | 
|  | case X86::VCVTSI642SHZrm_Int: | 
|  | case X86::VCVTUSI2SHZrr: | 
|  | case X86::VCVTUSI2SHZrm: | 
|  | case X86::VCVTUSI2SHZrr_Int: | 
|  | case X86::VCVTUSI2SHZrrb_Int: | 
|  | case X86::VCVTUSI2SHZrm_Int: | 
|  | case X86::VCVTUSI642SHZrr: | 
|  | case X86::VCVTUSI642SHZrm: | 
|  | case X86::VCVTUSI642SHZrr_Int: | 
|  | case X86::VCVTUSI642SHZrrb_Int: | 
|  | case X86::VCVTUSI642SHZrm_Int: | 
|  | // Load folding won't effect the undef register update since the input is | 
|  | // a GPR. | 
|  | return OpNum == 1 && !ForLoadFold; | 
|  | case X86::VCVTSD2SSrr: | 
|  | case X86::VCVTSD2SSrm: | 
|  | case X86::VCVTSD2SSrr_Int: | 
|  | case X86::VCVTSD2SSrm_Int: | 
|  | case X86::VCVTSS2SDrr: | 
|  | case X86::VCVTSS2SDrm: | 
|  | case X86::VCVTSS2SDrr_Int: | 
|  | case X86::VCVTSS2SDrm_Int: | 
|  | case X86::VRCPSSr: | 
|  | case X86::VRCPSSr_Int: | 
|  | case X86::VRCPSSm: | 
|  | case X86::VRCPSSm_Int: | 
|  | case X86::VROUNDSDri: | 
|  | case X86::VROUNDSDmi: | 
|  | case X86::VROUNDSDri_Int: | 
|  | case X86::VROUNDSDmi_Int: | 
|  | case X86::VROUNDSSri: | 
|  | case X86::VROUNDSSmi: | 
|  | case X86::VROUNDSSri_Int: | 
|  | case X86::VROUNDSSmi_Int: | 
|  | case X86::VRSQRTSSr: | 
|  | case X86::VRSQRTSSr_Int: | 
|  | case X86::VRSQRTSSm: | 
|  | case X86::VRSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTSSr_Int: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSDr_Int: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | // AVX-512 | 
|  | case X86::VCVTSD2SSZrr: | 
|  | case X86::VCVTSD2SSZrr_Int: | 
|  | case X86::VCVTSD2SSZrrb_Int: | 
|  | case X86::VCVTSD2SSZrm: | 
|  | case X86::VCVTSD2SSZrm_Int: | 
|  | case X86::VCVTSS2SDZrr: | 
|  | case X86::VCVTSS2SDZrr_Int: | 
|  | case X86::VCVTSS2SDZrrb_Int: | 
|  | case X86::VCVTSS2SDZrm: | 
|  | case X86::VCVTSS2SDZrm_Int: | 
|  | case X86::VGETEXPSDZr: | 
|  | case X86::VGETEXPSDZrb: | 
|  | case X86::VGETEXPSDZm: | 
|  | case X86::VGETEXPSSZr: | 
|  | case X86::VGETEXPSSZrb: | 
|  | case X86::VGETEXPSSZm: | 
|  | case X86::VGETMANTSDZrri: | 
|  | case X86::VGETMANTSDZrrib: | 
|  | case X86::VGETMANTSDZrmi: | 
|  | case X86::VGETMANTSSZrri: | 
|  | case X86::VGETMANTSSZrrib: | 
|  | case X86::VGETMANTSSZrmi: | 
|  | case X86::VRNDSCALESDZrri: | 
|  | case X86::VRNDSCALESDZrri_Int: | 
|  | case X86::VRNDSCALESDZrrib_Int: | 
|  | case X86::VRNDSCALESDZrmi: | 
|  | case X86::VRNDSCALESDZrmi_Int: | 
|  | case X86::VRNDSCALESSZrri: | 
|  | case X86::VRNDSCALESSZrri_Int: | 
|  | case X86::VRNDSCALESSZrrib_Int: | 
|  | case X86::VRNDSCALESSZrmi: | 
|  | case X86::VRNDSCALESSZrmi_Int: | 
|  | case X86::VRCP14SDZrr: | 
|  | case X86::VRCP14SDZrm: | 
|  | case X86::VRCP14SSZrr: | 
|  | case X86::VRCP14SSZrm: | 
|  | case X86::VRCPSHZrr: | 
|  | case X86::VRCPSHZrm: | 
|  | case X86::VRSQRTSHZrr: | 
|  | case X86::VRSQRTSHZrm: | 
|  | case X86::VREDUCESHZrmi: | 
|  | case X86::VREDUCESHZrri: | 
|  | case X86::VREDUCESHZrrib: | 
|  | case X86::VGETEXPSHZr: | 
|  | case X86::VGETEXPSHZrb: | 
|  | case X86::VGETEXPSHZm: | 
|  | case X86::VGETMANTSHZrri: | 
|  | case X86::VGETMANTSHZrrib: | 
|  | case X86::VGETMANTSHZrmi: | 
|  | case X86::VRNDSCALESHZrri: | 
|  | case X86::VRNDSCALESHZrri_Int: | 
|  | case X86::VRNDSCALESHZrrib_Int: | 
|  | case X86::VRNDSCALESHZrmi: | 
|  | case X86::VRNDSCALESHZrmi_Int: | 
|  | case X86::VSQRTSHZr: | 
|  | case X86::VSQRTSHZr_Int: | 
|  | case X86::VSQRTSHZrb_Int: | 
|  | case X86::VSQRTSHZm: | 
|  | case X86::VSQRTSHZm_Int: | 
|  | case X86::VRCP28SDZr: | 
|  | case X86::VRCP28SDZrb: | 
|  | case X86::VRCP28SDZm: | 
|  | case X86::VRCP28SSZr: | 
|  | case X86::VRCP28SSZrb: | 
|  | case X86::VRCP28SSZm: | 
|  | case X86::VREDUCESSZrmi: | 
|  | case X86::VREDUCESSZrri: | 
|  | case X86::VREDUCESSZrrib: | 
|  | case X86::VRSQRT14SDZrr: | 
|  | case X86::VRSQRT14SDZrm: | 
|  | case X86::VRSQRT14SSZrr: | 
|  | case X86::VRSQRT14SSZrm: | 
|  | case X86::VRSQRT28SDZr: | 
|  | case X86::VRSQRT28SDZrb: | 
|  | case X86::VRSQRT28SDZm: | 
|  | case X86::VRSQRT28SSZr: | 
|  | case X86::VRSQRT28SSZrb: | 
|  | case X86::VRSQRT28SSZm: | 
|  | case X86::VSQRTSSZr: | 
|  | case X86::VSQRTSSZr_Int: | 
|  | case X86::VSQRTSSZrb_Int: | 
|  | case X86::VSQRTSSZm: | 
|  | case X86::VSQRTSSZm_Int: | 
|  | case X86::VSQRTSDZr: | 
|  | case X86::VSQRTSDZr_Int: | 
|  | case X86::VSQRTSDZrb_Int: | 
|  | case X86::VSQRTSDZm: | 
|  | case X86::VSQRTSDZm_Int: | 
|  | case X86::VCVTSD2SHZrr: | 
|  | case X86::VCVTSD2SHZrr_Int: | 
|  | case X86::VCVTSD2SHZrrb_Int: | 
|  | case X86::VCVTSD2SHZrm: | 
|  | case X86::VCVTSD2SHZrm_Int: | 
|  | case X86::VCVTSS2SHZrr: | 
|  | case X86::VCVTSS2SHZrr_Int: | 
|  | case X86::VCVTSS2SHZrrb_Int: | 
|  | case X86::VCVTSS2SHZrm: | 
|  | case X86::VCVTSS2SHZrm_Int: | 
|  | case X86::VCVTSH2SDZrr: | 
|  | case X86::VCVTSH2SDZrr_Int: | 
|  | case X86::VCVTSH2SDZrrb_Int: | 
|  | case X86::VCVTSH2SDZrm: | 
|  | case X86::VCVTSH2SDZrm_Int: | 
|  | case X86::VCVTSH2SSZrr: | 
|  | case X86::VCVTSH2SSZrr_Int: | 
|  | case X86::VCVTSH2SSZrrb_Int: | 
|  | case X86::VCVTSH2SSZrm: | 
|  | case X86::VCVTSH2SSZrm_Int: | 
|  | return OpNum == 1; | 
|  | case X86::VMOVSSZrrk: | 
|  | case X86::VMOVSDZrrk: | 
|  | return OpNum == 3 && !ForLoadFold; | 
|  | case X86::VMOVSSZrrkz: | 
|  | case X86::VMOVSDZrrkz: | 
|  | return OpNum == 2 && !ForLoadFold; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Inform the BreakFalseDeps pass how many idle instructions we would like | 
|  | /// before certain undef register reads. | 
|  | /// | 
|  | /// This catches the VCVTSI2SD family of instructions: | 
|  | /// | 
|  | /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 | 
|  | /// | 
|  | /// We should to be careful *not* to catch VXOR idioms which are presumably | 
|  | /// handled specially in the pipeline: | 
|  | /// | 
|  | /// vxorps undef %xmm1, undef %xmm1, %xmm1 | 
|  | /// | 
|  | /// Like getPartialRegUpdateClearance, this makes a strong assumption that the | 
|  | /// high bits that are passed-through are not live. | 
|  | unsigned | 
|  | X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | const MachineOperand &MO = MI.getOperand(OpNum); | 
|  | if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum)) | 
|  | return UndefRegClearance; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::breakPartialRegDependency( | 
|  | MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { | 
|  | Register Reg = MI.getOperand(OpNum).getReg(); | 
|  | // If MI kills this register, the false dependence is already broken. | 
|  | if (MI.killsRegister(Reg, TRI)) | 
|  | return; | 
|  |  | 
|  | if (X86::VR128RegClass.contains(Reg)) { | 
|  | // These instructions are all floating point domain, so xorps is the best | 
|  | // choice. | 
|  | unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::VR256RegClass.contains(Reg)) { | 
|  | // Use vxorps to clear the full ymm register. | 
|  | // It wants to read and write the xmm sub-register. | 
|  | Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::VR128XRegClass.contains(Reg)) { | 
|  | // Only handle VLX targets. | 
|  | if (!Subtarget.hasVLX()) | 
|  | return; | 
|  | // Since vxorps requires AVX512DQ, vpxord should be the best choice. | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::VR256XRegClass.contains(Reg) || | 
|  | X86::VR512RegClass.contains(Reg)) { | 
|  | // Only handle VLX targets. | 
|  | if (!Subtarget.hasVLX()) | 
|  | return; | 
|  | // Use vpxord to clear the full ymm/zmm register. | 
|  | // It wants to read and write the xmm sub-register. | 
|  | Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::GR64RegClass.contains(Reg)) { | 
|  | // Using XOR32rr because it has shorter encoding and zeros up the upper bits | 
|  | // as well. | 
|  | Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(XReg, RegState::Undef) | 
|  | .addReg(Reg, RegState::ImplicitDefine); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if (X86::GR32RegClass.contains(Reg)) { | 
|  | BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | MI.addRegisterKilled(Reg, TRI, true); | 
|  | } else if ((X86::GR16RegClass.contains(Reg) || | 
|  | X86::GR8RegClass.contains(Reg)) && | 
|  | X86II::hasNewDataDest(MI.getDesc().TSFlags)) { | 
|  | // This case is only expected for NDD ops which appear to be partial | 
|  | // writes, but are not due to the zeroing of the upper part. Here | 
|  | // we add an implicit def of the superegister, which prevents | 
|  | // CompressEVEX from converting this to a legacy form. | 
|  | Register SuperReg = getX86SubSuperRegister(Reg, 64); | 
|  | MachineInstrBuilder BuildMI(*MI.getParent()->getParent(), &MI); | 
|  | if (!MI.definesRegister(SuperReg, /*TRI=*/nullptr)) | 
|  | BuildMI.addReg(SuperReg, RegState::ImplicitDefine); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, | 
|  | int PtrOffset = 0) { | 
|  | unsigned NumAddrOps = MOs.size(); | 
|  |  | 
|  | if (NumAddrOps < 4) { | 
|  | // FrameIndex only - add an immediate offset (whether its zero or not). | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) | 
|  | MIB.add(MOs[i]); | 
|  | addOffset(MIB, PtrOffset); | 
|  | } else { | 
|  | // General Memory Addressing - we need to add any offset to an existing | 
|  | // offset. | 
|  | assert(MOs.size() == 5 && "Unexpected memory operand list length"); | 
|  | for (unsigned i = 0; i != NumAddrOps; ++i) { | 
|  | const MachineOperand &MO = MOs[i]; | 
|  | if (i == 3 && PtrOffset != 0) { | 
|  | MIB.addDisp(MO, PtrOffset); | 
|  | } else { | 
|  | MIB.add(MO); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void updateOperandRegConstraints(MachineFunction &MF, | 
|  | MachineInstr &NewMI, | 
|  | const TargetInstrInfo &TII) { | 
|  | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  |  | 
|  | for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { | 
|  | MachineOperand &MO = NewMI.getOperand(Idx); | 
|  | // We only need to update constraints on virtual register operands. | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | auto *NewRC = MRI.constrainRegClass( | 
|  | Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); | 
|  | if (!NewRC) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "WARNING: Unable to update register constraint for operand " | 
|  | << Idx << " of instruction:\n"; | 
|  | NewMI.dump(); dbgs() << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI, | 
|  | const TargetInstrInfo &TII) { | 
|  | // Create the base instruction with the memory operand as the first part. | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  | addOperands(MIB, MOs); | 
|  |  | 
|  | // Loop over the rest of the ri operands, converting them over. | 
|  | unsigned NumOps = MI.getDesc().getNumOperands() - 2; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i + 2); | 
|  | MIB.add(MO); | 
|  | } | 
|  | for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2)) | 
|  | MIB.add(MO); | 
|  |  | 
|  | updateOperandRegConstraints(MF, *NewMI, TII); | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode, | 
|  | unsigned OpNo, ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI, const TargetInstrInfo &TII, | 
|  | int PtrOffset = 0) { | 
|  | // Omit the implicit operands, something BuildMI can't do. | 
|  | MachineInstr *NewMI = | 
|  | MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, NewMI); | 
|  |  | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (i == OpNo) { | 
|  | assert(MO.isReg() && "Expected to fold into reg operand!"); | 
|  | addOperands(MIB, MOs, PtrOffset); | 
|  | } else { | 
|  | MIB.add(MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | updateOperandRegConstraints(MF, *NewMI, TII); | 
|  |  | 
|  | // Copy the NoFPExcept flag from the instruction we're fusing. | 
|  | if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) | 
|  | NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); | 
|  |  | 
|  | MachineBasicBlock *MBB = InsertPt->getParent(); | 
|  | MBB->insert(InsertPt, NewMI); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, | 
|  | ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | MachineInstr &MI) { | 
|  | MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, | 
|  | MI.getDebugLoc(), TII.get(Opcode)); | 
|  | addOperands(MIB, MOs); | 
|  | return MIB.addImm(0); | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandCustom( | 
|  | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, Align Alignment) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::INSERTPSrri: | 
|  | case X86::VINSERTPSrri: | 
|  | case X86::VINSERTPSZrri: | 
|  | // Attempt to convert the load of inserted vector into a fold load | 
|  | // of a single float. | 
|  | if (OpNum == 2) { | 
|  | unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); | 
|  | unsigned ZMask = Imm & 15; | 
|  | unsigned DstIdx = (Imm >> 4) & 3; | 
|  | unsigned SrcIdx = (Imm >> 6) & 3; | 
|  |  | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if ((Size == 0 || Size >= 16) && RCSize >= 16 && | 
|  | (MI.getOpcode() != X86::INSERTPSrri || Alignment >= Align(4))) { | 
|  | int PtrOffset = SrcIdx * 4; | 
|  | unsigned NewImm = (DstIdx << 4) | ZMask; | 
|  | unsigned NewOpCode = | 
|  | (MI.getOpcode() == X86::VINSERTPSZrri)  ? X86::VINSERTPSZrmi | 
|  | : (MI.getOpcode() == X86::VINSERTPSrri) ? X86::VINSERTPSrmi | 
|  | : X86::INSERTPSrmi; | 
|  | MachineInstr *NewMI = | 
|  | fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); | 
|  | NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86::MOVHLPSrr: | 
|  | case X86::VMOVHLPSrr: | 
|  | case X86::VMOVHLPSZrr: | 
|  | // Move the upper 64-bits of the second operand to the lower 64-bits. | 
|  | // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. | 
|  | // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. | 
|  | if (OpNum == 2) { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { | 
|  | unsigned NewOpCode = | 
|  | (MI.getOpcode() == X86::VMOVHLPSZrr)  ? X86::VMOVLPSZ128rm | 
|  | : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm | 
|  | : X86::MOVLPSrm; | 
|  | MachineInstr *NewMI = | 
|  | fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86::UNPCKLPDrr: | 
|  | // If we won't be able to fold this to the memory form of UNPCKL, use | 
|  | // MOVHPD instead. Done as custom because we can't have this in the load | 
|  | // table twice. | 
|  | if (OpNum == 2) { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { | 
|  | MachineInstr *NewMI = | 
|  | fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); | 
|  | return NewMI; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86::MOV32r0: | 
|  | if (auto *NewMI = | 
|  | makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs, | 
|  | InsertPt, MI)) | 
|  | return NewMI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, | 
|  | MachineInstr &MI) { | 
|  | if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) || | 
|  | !MI.getOperand(1).isReg()) | 
|  | return false; | 
|  |  | 
|  | // The are two cases we need to handle depending on where in the pipeline | 
|  | // the folding attempt is being made. | 
|  | // -Register has the undef flag set. | 
|  | // -Register is produced by the IMPLICIT_DEF instruction. | 
|  |  | 
|  | if (MI.getOperand(1).isUndef()) | 
|  | return true; | 
|  |  | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); | 
|  | return VRegDef && VRegDef->isImplicitDef(); | 
|  | } | 
|  |  | 
|  | unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI, | 
|  | unsigned Idx1) const { | 
|  | unsigned Idx2 = CommuteAnyOperandIndex; | 
|  | if (!findCommutedOpIndices(MI, Idx1, Idx2)) | 
|  | return Idx1; | 
|  |  | 
|  | bool HasDef = MI.getDesc().getNumDefs(); | 
|  | Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); | 
|  | Register Reg1 = MI.getOperand(Idx1).getReg(); | 
|  | Register Reg2 = MI.getOperand(Idx2).getReg(); | 
|  | bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO); | 
|  | bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO); | 
|  |  | 
|  | // If either of the commutable operands are tied to the destination | 
|  | // then we can not commute + fold. | 
|  | if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) | 
|  | return Idx1; | 
|  |  | 
|  | return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1; | 
|  | } | 
|  |  | 
|  | static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) { | 
|  | if (PrintFailedFusing && !MI.isCopy()) | 
|  | dbgs() << "We failed to fuse operand " << Idx << " in " << MI; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, | 
|  | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, | 
|  | unsigned Size, Align Alignment, bool AllowCommute) const { | 
|  | bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); | 
|  | unsigned Opc = MI.getOpcode(); | 
|  |  | 
|  | // For CPUs that favor the register form of a call or push, | 
|  | // do not fold loads into calls or pushes, unless optimizing for size | 
|  | // aggressively. | 
|  | if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && | 
|  | (Opc == X86::CALL32r || Opc == X86::CALL64r || | 
|  | Opc == X86::CALL64r_ImpCall || Opc == X86::PUSH16r || | 
|  | Opc == X86::PUSH32r || Opc == X86::PUSH64r)) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().hasOptSize() && | 
|  | (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned NumOps = MI.getDesc().getNumOperands(); | 
|  | bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() && | 
|  | MI.getOperand(1).isReg() && | 
|  | MI.getOperand(0).getReg() == MI.getOperand(1).getReg(); | 
|  |  | 
|  | // FIXME: AsmPrinter doesn't know how to handle | 
|  | // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. | 
|  | if (Opc == X86::ADD32ri && | 
|  | MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) | 
|  | return nullptr; | 
|  |  | 
|  | // GOTTPOFF relocation loads can only be folded into add instructions. | 
|  | // FIXME: Need to exclude other relocations that only support specific | 
|  | // instructions. | 
|  | if (MOs.size() == X86::AddrNumOperands && | 
|  | MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && | 
|  | Opc != X86::ADD64rr) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't fold loads into indirect calls that need a KCFI check as we'll | 
|  | // have to unfold these in X86TargetLowering::EmitKCFICheck anyway. | 
|  | if (MI.isCall() && MI.getCFIType()) | 
|  | return nullptr; | 
|  |  | 
|  | // Attempt to fold any custom cases we have. | 
|  | if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, | 
|  | Size, Alignment)) | 
|  | return CustomMI; | 
|  |  | 
|  | // Folding a memory location into the two-address part of a two-address | 
|  | // instruction is different than folding it other places.  It requires | 
|  | // replacing the *two* registers with the memory location. | 
|  | // | 
|  | // Utilize the mapping NonNDD -> RMW for the NDD variant. | 
|  | unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U; | 
|  | const X86FoldTableEntry *I = | 
|  | IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc) | 
|  | : lookupFoldTable(Opc, OpNum); | 
|  |  | 
|  | MachineInstr *NewMI = nullptr; | 
|  | if (I) { | 
|  | unsigned Opcode = I->DstOp; | 
|  | if (Alignment < | 
|  | Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT))) | 
|  | return nullptr; | 
|  | bool NarrowToMOV32rm = false; | 
|  | if (Size) { | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); | 
|  | unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. | 
|  | if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) { | 
|  | // If this is a 64-bit load, but the spill slot is 32, then we can do | 
|  | // a 32-bit load which is implicitly zero-extended. This likely is | 
|  | // due to live interval analysis remat'ing a load from stack slot. | 
|  | if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) | 
|  | return nullptr; | 
|  | if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) | 
|  | return nullptr; | 
|  | Opcode = X86::MOV32rm; | 
|  | NarrowToMOV32rm = true; | 
|  | } | 
|  | // For stores, make sure the size of the object is equal to the size of | 
|  | // the store. If the object is larger, the extra bits would be garbage. If | 
|  | // the object is smaller we might overwrite another object or fault. | 
|  | if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this) | 
|  | : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); | 
|  |  | 
|  | if (NarrowToMOV32rm) { | 
|  | // If this is the special case where we use a MOV32rm to load a 32-bit | 
|  | // value and zero-extend the top bits. Change the destination register | 
|  | // to a 32-bit one. | 
|  | Register DstReg = NewMI->getOperand(0).getReg(); | 
|  | if (DstReg.isPhysical()) | 
|  | NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); | 
|  | else | 
|  | NewMI->getOperand(0).setSubReg(X86::sub_32bit); | 
|  | } | 
|  | return NewMI; | 
|  | } | 
|  |  | 
|  | if (AllowCommute) { | 
|  | // If the instruction and target operand are commutable, commute the | 
|  | // instruction and try again. | 
|  | unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); | 
|  | if (CommuteOpIdx2 == OpNum) { | 
|  | printFailMsgforFold(MI, OpNum); | 
|  | return nullptr; | 
|  | } | 
|  | // Attempt to fold with the commuted version of the instruction. | 
|  | NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, | 
|  | Alignment, /*AllowCommute=*/false); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  | // Folding failed again - undo the commute before returning. | 
|  | commuteInstruction(MI, false, OpNum, CommuteOpIdx2); | 
|  | } | 
|  |  | 
|  | printFailMsgforFold(MI, OpNum); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, | 
|  | VirtRegMap *VRM) const { | 
|  | // Check switch flag | 
|  | if (NoFusing) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().hasOptSize() && | 
|  | (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't fold subreg spills, or reloads that use a high subreg. | 
|  | for (auto Op : Ops) { | 
|  | MachineOperand &MO = MI.getOperand(Op); | 
|  | auto SubReg = MO.getSubReg(); | 
|  | // MOV32r0 is special b/c it's used to clear a 64-bit register too. | 
|  | // (See patterns for MOV32r0 in TD files). | 
|  | if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit) | 
|  | continue; | 
|  | if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  | unsigned Size = MFI.getObjectSize(FrameIndex); | 
|  | Align Alignment = MFI.getObjectAlign(FrameIndex); | 
|  | // If the function stack isn't realigned we don't want to fold instructions | 
|  | // that need increased alignment. | 
|  | if (!RI.hasStackRealignment(MF)) | 
|  | Alignment = | 
|  | std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); | 
|  |  | 
|  | auto Impl = [&]() { | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], | 
|  | MachineOperand::CreateFI(FrameIndex), InsertPt, | 
|  | Size, Alignment, /*AllowCommute=*/true); | 
|  | }; | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | unsigned RCSize = 0; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | default: | 
|  | // NDD can be folded into RMW though its Op0 and Op1 are not tied. | 
|  | return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl() | 
|  | : nullptr; | 
|  | case X86::TEST8rr: | 
|  | NewOpc = X86::CMP8ri; | 
|  | RCSize = 1; | 
|  | break; | 
|  | case X86::TEST16rr: | 
|  | NewOpc = X86::CMP16ri; | 
|  | RCSize = 2; | 
|  | break; | 
|  | case X86::TEST32rr: | 
|  | NewOpc = X86::CMP32ri; | 
|  | RCSize = 4; | 
|  | break; | 
|  | case X86::TEST64rr: | 
|  | NewOpc = X86::CMP64ri32; | 
|  | RCSize = 8; | 
|  | break; | 
|  | } | 
|  | // Check if it's safe to fold the load. If the size of the object is | 
|  | // narrower than the load width, then it's not. | 
|  | if (Size < RCSize) | 
|  | return nullptr; | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI.setDesc(get(NewOpc)); | 
|  | MI.getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | return Impl(); | 
|  | } | 
|  |  | 
|  | /// Check if \p LoadMI is a partial register load that we can't fold into \p MI | 
|  | /// because the latter uses contents that wouldn't be defined in the folded | 
|  | /// version.  For instance, this transformation isn't legal: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addps %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addps (%rdi), %xmm0 | 
|  | /// | 
|  | /// But this one is: | 
|  | ///   movss (%rdi), %xmm0 | 
|  | ///   addss %xmm0, %xmm0 | 
|  | /// -> | 
|  | ///   addss (%rdi), %xmm0 | 
|  | /// | 
|  | static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, | 
|  | const MachineInstr &UserMI, | 
|  | const MachineFunction &MF) { | 
|  | unsigned Opc = LoadMI.getOpcode(); | 
|  | unsigned UserOpc = UserMI.getOpcode(); | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = | 
|  | MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); | 
|  | unsigned RegSize = TRI.getRegSizeInBits(*RC); | 
|  |  | 
|  | if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || | 
|  | Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || | 
|  | Opc == X86::VMOVSSZrm_alt) && | 
|  | RegSize > 32) { | 
|  | // These instructions only load 32 bits, we can't fold them if the | 
|  | // destination register is wider than 32 bits (4 bytes), and its user | 
|  | // instruction isn't scalar (SS). | 
|  | switch (UserOpc) { | 
|  | case X86::CVTSS2SDrr_Int: | 
|  | case X86::VCVTSS2SDrr_Int: | 
|  | case X86::VCVTSS2SDZrr_Int: | 
|  | case X86::VCVTSS2SDZrrk_Int: | 
|  | case X86::VCVTSS2SDZrrkz_Int: | 
|  | case X86::CVTSS2SIrr_Int: | 
|  | case X86::CVTSS2SI64rr_Int: | 
|  | case X86::VCVTSS2SIrr_Int: | 
|  | case X86::VCVTSS2SI64rr_Int: | 
|  | case X86::VCVTSS2SIZrr_Int: | 
|  | case X86::VCVTSS2SI64Zrr_Int: | 
|  | case X86::CVTTSS2SIrr_Int: | 
|  | case X86::CVTTSS2SI64rr_Int: | 
|  | case X86::VCVTTSS2SIrr_Int: | 
|  | case X86::VCVTTSS2SI64rr_Int: | 
|  | case X86::VCVTTSS2SIZrr_Int: | 
|  | case X86::VCVTTSS2SI64Zrr_Int: | 
|  | case X86::VCVTSS2USIZrr_Int: | 
|  | case X86::VCVTSS2USI64Zrr_Int: | 
|  | case X86::VCVTTSS2USIZrr_Int: | 
|  | case X86::VCVTTSS2USI64Zrr_Int: | 
|  | case X86::RCPSSr_Int: | 
|  | case X86::VRCPSSr_Int: | 
|  | case X86::RSQRTSSr_Int: | 
|  | case X86::VRSQRTSSr_Int: | 
|  | case X86::ROUNDSSri_Int: | 
|  | case X86::VROUNDSSri_Int: | 
|  | case X86::COMISSrr_Int: | 
|  | case X86::VCOMISSrr_Int: | 
|  | case X86::VCOMISSZrr_Int: | 
|  | case X86::UCOMISSrr_Int: | 
|  | case X86::VUCOMISSrr_Int: | 
|  | case X86::VUCOMISSZrr_Int: | 
|  | case X86::ADDSSrr_Int: | 
|  | case X86::VADDSSrr_Int: | 
|  | case X86::VADDSSZrr_Int: | 
|  | case X86::CMPSSrri_Int: | 
|  | case X86::VCMPSSrri_Int: | 
|  | case X86::VCMPSSZrri_Int: | 
|  | case X86::DIVSSrr_Int: | 
|  | case X86::VDIVSSrr_Int: | 
|  | case X86::VDIVSSZrr_Int: | 
|  | case X86::MAXSSrr_Int: | 
|  | case X86::VMAXSSrr_Int: | 
|  | case X86::VMAXSSZrr_Int: | 
|  | case X86::MINSSrr_Int: | 
|  | case X86::VMINSSrr_Int: | 
|  | case X86::VMINSSZrr_Int: | 
|  | case X86::MULSSrr_Int: | 
|  | case X86::VMULSSrr_Int: | 
|  | case X86::VMULSSZrr_Int: | 
|  | case X86::SQRTSSr_Int: | 
|  | case X86::VSQRTSSr_Int: | 
|  | case X86::VSQRTSSZr_Int: | 
|  | case X86::SUBSSrr_Int: | 
|  | case X86::VSUBSSrr_Int: | 
|  | case X86::VSUBSSZrr_Int: | 
|  | case X86::VADDSSZrrk_Int: | 
|  | case X86::VADDSSZrrkz_Int: | 
|  | case X86::VCMPSSZrrik_Int: | 
|  | case X86::VDIVSSZrrk_Int: | 
|  | case X86::VDIVSSZrrkz_Int: | 
|  | case X86::VMAXSSZrrk_Int: | 
|  | case X86::VMAXSSZrrkz_Int: | 
|  | case X86::VMINSSZrrk_Int: | 
|  | case X86::VMINSSZrrkz_Int: | 
|  | case X86::VMULSSZrrk_Int: | 
|  | case X86::VMULSSZrrkz_Int: | 
|  | case X86::VSQRTSSZrk_Int: | 
|  | case X86::VSQRTSSZrkz_Int: | 
|  | case X86::VSUBSSZrrk_Int: | 
|  | case X86::VSUBSSZrrkz_Int: | 
|  | case X86::VFMADDSS4rr_Int: | 
|  | case X86::VFNMADDSS4rr_Int: | 
|  | case X86::VFMSUBSS4rr_Int: | 
|  | case X86::VFNMSUBSS4rr_Int: | 
|  | case X86::VFMADD132SSr_Int: | 
|  | case X86::VFNMADD132SSr_Int: | 
|  | case X86::VFMADD213SSr_Int: | 
|  | case X86::VFNMADD213SSr_Int: | 
|  | case X86::VFMADD231SSr_Int: | 
|  | case X86::VFNMADD231SSr_Int: | 
|  | case X86::VFMSUB132SSr_Int: | 
|  | case X86::VFNMSUB132SSr_Int: | 
|  | case X86::VFMSUB213SSr_Int: | 
|  | case X86::VFNMSUB213SSr_Int: | 
|  | case X86::VFMSUB231SSr_Int: | 
|  | case X86::VFNMSUB231SSr_Int: | 
|  | case X86::VFMADD132SSZr_Int: | 
|  | case X86::VFNMADD132SSZr_Int: | 
|  | case X86::VFMADD213SSZr_Int: | 
|  | case X86::VFNMADD213SSZr_Int: | 
|  | case X86::VFMADD231SSZr_Int: | 
|  | case X86::VFNMADD231SSZr_Int: | 
|  | case X86::VFMSUB132SSZr_Int: | 
|  | case X86::VFNMSUB132SSZr_Int: | 
|  | case X86::VFMSUB213SSZr_Int: | 
|  | case X86::VFNMSUB213SSZr_Int: | 
|  | case X86::VFMSUB231SSZr_Int: | 
|  | case X86::VFNMSUB231SSZr_Int: | 
|  | case X86::VFMADD132SSZrk_Int: | 
|  | case X86::VFNMADD132SSZrk_Int: | 
|  | case X86::VFMADD213SSZrk_Int: | 
|  | case X86::VFNMADD213SSZrk_Int: | 
|  | case X86::VFMADD231SSZrk_Int: | 
|  | case X86::VFNMADD231SSZrk_Int: | 
|  | case X86::VFMSUB132SSZrk_Int: | 
|  | case X86::VFNMSUB132SSZrk_Int: | 
|  | case X86::VFMSUB213SSZrk_Int: | 
|  | case X86::VFNMSUB213SSZrk_Int: | 
|  | case X86::VFMSUB231SSZrk_Int: | 
|  | case X86::VFNMSUB231SSZrk_Int: | 
|  | case X86::VFMADD132SSZrkz_Int: | 
|  | case X86::VFNMADD132SSZrkz_Int: | 
|  | case X86::VFMADD213SSZrkz_Int: | 
|  | case X86::VFNMADD213SSZrkz_Int: | 
|  | case X86::VFMADD231SSZrkz_Int: | 
|  | case X86::VFNMADD231SSZrkz_Int: | 
|  | case X86::VFMSUB132SSZrkz_Int: | 
|  | case X86::VFNMSUB132SSZrkz_Int: | 
|  | case X86::VFMSUB213SSZrkz_Int: | 
|  | case X86::VFNMSUB213SSZrkz_Int: | 
|  | case X86::VFMSUB231SSZrkz_Int: | 
|  | case X86::VFNMSUB231SSZrkz_Int: | 
|  | case X86::VFIXUPIMMSSZrri: | 
|  | case X86::VFIXUPIMMSSZrrik: | 
|  | case X86::VFIXUPIMMSSZrrikz: | 
|  | case X86::VFPCLASSSSZri: | 
|  | case X86::VFPCLASSSSZrik: | 
|  | case X86::VGETEXPSSZr: | 
|  | case X86::VGETEXPSSZrk: | 
|  | case X86::VGETEXPSSZrkz: | 
|  | case X86::VGETMANTSSZrri: | 
|  | case X86::VGETMANTSSZrrik: | 
|  | case X86::VGETMANTSSZrrikz: | 
|  | case X86::VRANGESSZrri: | 
|  | case X86::VRANGESSZrrik: | 
|  | case X86::VRANGESSZrrikz: | 
|  | case X86::VRCP14SSZrr: | 
|  | case X86::VRCP14SSZrrk: | 
|  | case X86::VRCP14SSZrrkz: | 
|  | case X86::VRCP28SSZr: | 
|  | case X86::VRCP28SSZrk: | 
|  | case X86::VRCP28SSZrkz: | 
|  | case X86::VREDUCESSZrri: | 
|  | case X86::VREDUCESSZrrik: | 
|  | case X86::VREDUCESSZrrikz: | 
|  | case X86::VRNDSCALESSZrri_Int: | 
|  | case X86::VRNDSCALESSZrrik_Int: | 
|  | case X86::VRNDSCALESSZrrikz_Int: | 
|  | case X86::VRSQRT14SSZrr: | 
|  | case X86::VRSQRT14SSZrrk: | 
|  | case X86::VRSQRT14SSZrrkz: | 
|  | case X86::VRSQRT28SSZr: | 
|  | case X86::VRSQRT28SSZrk: | 
|  | case X86::VRSQRT28SSZrkz: | 
|  | case X86::VSCALEFSSZrr: | 
|  | case X86::VSCALEFSSZrrk: | 
|  | case X86::VSCALEFSSZrrkz: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || | 
|  | Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || | 
|  | Opc == X86::VMOVSDZrm_alt) && | 
|  | RegSize > 64) { | 
|  | // These instructions only load 64 bits, we can't fold them if the | 
|  | // destination register is wider than 64 bits (8 bytes), and its user | 
|  | // instruction isn't scalar (SD). | 
|  | switch (UserOpc) { | 
|  | case X86::CVTSD2SSrr_Int: | 
|  | case X86::VCVTSD2SSrr_Int: | 
|  | case X86::VCVTSD2SSZrr_Int: | 
|  | case X86::VCVTSD2SSZrrk_Int: | 
|  | case X86::VCVTSD2SSZrrkz_Int: | 
|  | case X86::CVTSD2SIrr_Int: | 
|  | case X86::CVTSD2SI64rr_Int: | 
|  | case X86::VCVTSD2SIrr_Int: | 
|  | case X86::VCVTSD2SI64rr_Int: | 
|  | case X86::VCVTSD2SIZrr_Int: | 
|  | case X86::VCVTSD2SI64Zrr_Int: | 
|  | case X86::CVTTSD2SIrr_Int: | 
|  | case X86::CVTTSD2SI64rr_Int: | 
|  | case X86::VCVTTSD2SIrr_Int: | 
|  | case X86::VCVTTSD2SI64rr_Int: | 
|  | case X86::VCVTTSD2SIZrr_Int: | 
|  | case X86::VCVTTSD2SI64Zrr_Int: | 
|  | case X86::VCVTSD2USIZrr_Int: | 
|  | case X86::VCVTSD2USI64Zrr_Int: | 
|  | case X86::VCVTTSD2USIZrr_Int: | 
|  | case X86::VCVTTSD2USI64Zrr_Int: | 
|  | case X86::ROUNDSDri_Int: | 
|  | case X86::VROUNDSDri_Int: | 
|  | case X86::COMISDrr_Int: | 
|  | case X86::VCOMISDrr_Int: | 
|  | case X86::VCOMISDZrr_Int: | 
|  | case X86::UCOMISDrr_Int: | 
|  | case X86::VUCOMISDrr_Int: | 
|  | case X86::VUCOMISDZrr_Int: | 
|  | case X86::ADDSDrr_Int: | 
|  | case X86::VADDSDrr_Int: | 
|  | case X86::VADDSDZrr_Int: | 
|  | case X86::CMPSDrri_Int: | 
|  | case X86::VCMPSDrri_Int: | 
|  | case X86::VCMPSDZrri_Int: | 
|  | case X86::DIVSDrr_Int: | 
|  | case X86::VDIVSDrr_Int: | 
|  | case X86::VDIVSDZrr_Int: | 
|  | case X86::MAXSDrr_Int: | 
|  | case X86::VMAXSDrr_Int: | 
|  | case X86::VMAXSDZrr_Int: | 
|  | case X86::MINSDrr_Int: | 
|  | case X86::VMINSDrr_Int: | 
|  | case X86::VMINSDZrr_Int: | 
|  | case X86::MULSDrr_Int: | 
|  | case X86::VMULSDrr_Int: | 
|  | case X86::VMULSDZrr_Int: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::VSQRTSDr_Int: | 
|  | case X86::VSQRTSDZr_Int: | 
|  | case X86::SUBSDrr_Int: | 
|  | case X86::VSUBSDrr_Int: | 
|  | case X86::VSUBSDZrr_Int: | 
|  | case X86::VADDSDZrrk_Int: | 
|  | case X86::VADDSDZrrkz_Int: | 
|  | case X86::VCMPSDZrrik_Int: | 
|  | case X86::VDIVSDZrrk_Int: | 
|  | case X86::VDIVSDZrrkz_Int: | 
|  | case X86::VMAXSDZrrk_Int: | 
|  | case X86::VMAXSDZrrkz_Int: | 
|  | case X86::VMINSDZrrk_Int: | 
|  | case X86::VMINSDZrrkz_Int: | 
|  | case X86::VMULSDZrrk_Int: | 
|  | case X86::VMULSDZrrkz_Int: | 
|  | case X86::VSQRTSDZrk_Int: | 
|  | case X86::VSQRTSDZrkz_Int: | 
|  | case X86::VSUBSDZrrk_Int: | 
|  | case X86::VSUBSDZrrkz_Int: | 
|  | case X86::VFMADDSD4rr_Int: | 
|  | case X86::VFNMADDSD4rr_Int: | 
|  | case X86::VFMSUBSD4rr_Int: | 
|  | case X86::VFNMSUBSD4rr_Int: | 
|  | case X86::VFMADD132SDr_Int: | 
|  | case X86::VFNMADD132SDr_Int: | 
|  | case X86::VFMADD213SDr_Int: | 
|  | case X86::VFNMADD213SDr_Int: | 
|  | case X86::VFMADD231SDr_Int: | 
|  | case X86::VFNMADD231SDr_Int: | 
|  | case X86::VFMSUB132SDr_Int: | 
|  | case X86::VFNMSUB132SDr_Int: | 
|  | case X86::VFMSUB213SDr_Int: | 
|  | case X86::VFNMSUB213SDr_Int: | 
|  | case X86::VFMSUB231SDr_Int: | 
|  | case X86::VFNMSUB231SDr_Int: | 
|  | case X86::VFMADD132SDZr_Int: | 
|  | case X86::VFNMADD132SDZr_Int: | 
|  | case X86::VFMADD213SDZr_Int: | 
|  | case X86::VFNMADD213SDZr_Int: | 
|  | case X86::VFMADD231SDZr_Int: | 
|  | case X86::VFNMADD231SDZr_Int: | 
|  | case X86::VFMSUB132SDZr_Int: | 
|  | case X86::VFNMSUB132SDZr_Int: | 
|  | case X86::VFMSUB213SDZr_Int: | 
|  | case X86::VFNMSUB213SDZr_Int: | 
|  | case X86::VFMSUB231SDZr_Int: | 
|  | case X86::VFNMSUB231SDZr_Int: | 
|  | case X86::VFMADD132SDZrk_Int: | 
|  | case X86::VFNMADD132SDZrk_Int: | 
|  | case X86::VFMADD213SDZrk_Int: | 
|  | case X86::VFNMADD213SDZrk_Int: | 
|  | case X86::VFMADD231SDZrk_Int: | 
|  | case X86::VFNMADD231SDZrk_Int: | 
|  | case X86::VFMSUB132SDZrk_Int: | 
|  | case X86::VFNMSUB132SDZrk_Int: | 
|  | case X86::VFMSUB213SDZrk_Int: | 
|  | case X86::VFNMSUB213SDZrk_Int: | 
|  | case X86::VFMSUB231SDZrk_Int: | 
|  | case X86::VFNMSUB231SDZrk_Int: | 
|  | case X86::VFMADD132SDZrkz_Int: | 
|  | case X86::VFNMADD132SDZrkz_Int: | 
|  | case X86::VFMADD213SDZrkz_Int: | 
|  | case X86::VFNMADD213SDZrkz_Int: | 
|  | case X86::VFMADD231SDZrkz_Int: | 
|  | case X86::VFNMADD231SDZrkz_Int: | 
|  | case X86::VFMSUB132SDZrkz_Int: | 
|  | case X86::VFNMSUB132SDZrkz_Int: | 
|  | case X86::VFMSUB213SDZrkz_Int: | 
|  | case X86::VFNMSUB213SDZrkz_Int: | 
|  | case X86::VFMSUB231SDZrkz_Int: | 
|  | case X86::VFNMSUB231SDZrkz_Int: | 
|  | case X86::VFIXUPIMMSDZrri: | 
|  | case X86::VFIXUPIMMSDZrrik: | 
|  | case X86::VFIXUPIMMSDZrrikz: | 
|  | case X86::VFPCLASSSDZri: | 
|  | case X86::VFPCLASSSDZrik: | 
|  | case X86::VGETEXPSDZr: | 
|  | case X86::VGETEXPSDZrk: | 
|  | case X86::VGETEXPSDZrkz: | 
|  | case X86::VGETMANTSDZrri: | 
|  | case X86::VGETMANTSDZrrik: | 
|  | case X86::VGETMANTSDZrrikz: | 
|  | case X86::VRANGESDZrri: | 
|  | case X86::VRANGESDZrrik: | 
|  | case X86::VRANGESDZrrikz: | 
|  | case X86::VRCP14SDZrr: | 
|  | case X86::VRCP14SDZrrk: | 
|  | case X86::VRCP14SDZrrkz: | 
|  | case X86::VRCP28SDZr: | 
|  | case X86::VRCP28SDZrk: | 
|  | case X86::VRCP28SDZrkz: | 
|  | case X86::VREDUCESDZrri: | 
|  | case X86::VREDUCESDZrrik: | 
|  | case X86::VREDUCESDZrrikz: | 
|  | case X86::VRNDSCALESDZrri_Int: | 
|  | case X86::VRNDSCALESDZrrik_Int: | 
|  | case X86::VRNDSCALESDZrrikz_Int: | 
|  | case X86::VRSQRT14SDZrr: | 
|  | case X86::VRSQRT14SDZrrk: | 
|  | case X86::VRSQRT14SDZrrkz: | 
|  | case X86::VRSQRT28SDZr: | 
|  | case X86::VRSQRT28SDZrk: | 
|  | case X86::VRSQRT28SDZrkz: | 
|  | case X86::VSCALEFSDZrr: | 
|  | case X86::VSCALEFSDZrrk: | 
|  | case X86::VSCALEFSDZrrkz: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { | 
|  | // These instructions only load 16 bits, we can't fold them if the | 
|  | // destination register is wider than 16 bits (2 bytes), and its user | 
|  | // instruction isn't scalar (SH). | 
|  | switch (UserOpc) { | 
|  | case X86::VADDSHZrr_Int: | 
|  | case X86::VCMPSHZrri_Int: | 
|  | case X86::VDIVSHZrr_Int: | 
|  | case X86::VMAXSHZrr_Int: | 
|  | case X86::VMINSHZrr_Int: | 
|  | case X86::VMULSHZrr_Int: | 
|  | case X86::VSUBSHZrr_Int: | 
|  | case X86::VADDSHZrrk_Int: | 
|  | case X86::VADDSHZrrkz_Int: | 
|  | case X86::VCMPSHZrrik_Int: | 
|  | case X86::VDIVSHZrrk_Int: | 
|  | case X86::VDIVSHZrrkz_Int: | 
|  | case X86::VMAXSHZrrk_Int: | 
|  | case X86::VMAXSHZrrkz_Int: | 
|  | case X86::VMINSHZrrk_Int: | 
|  | case X86::VMINSHZrrkz_Int: | 
|  | case X86::VMULSHZrrk_Int: | 
|  | case X86::VMULSHZrrkz_Int: | 
|  | case X86::VSUBSHZrrk_Int: | 
|  | case X86::VSUBSHZrrkz_Int: | 
|  | case X86::VFMADD132SHZr_Int: | 
|  | case X86::VFNMADD132SHZr_Int: | 
|  | case X86::VFMADD213SHZr_Int: | 
|  | case X86::VFNMADD213SHZr_Int: | 
|  | case X86::VFMADD231SHZr_Int: | 
|  | case X86::VFNMADD231SHZr_Int: | 
|  | case X86::VFMSUB132SHZr_Int: | 
|  | case X86::VFNMSUB132SHZr_Int: | 
|  | case X86::VFMSUB213SHZr_Int: | 
|  | case X86::VFNMSUB213SHZr_Int: | 
|  | case X86::VFMSUB231SHZr_Int: | 
|  | case X86::VFNMSUB231SHZr_Int: | 
|  | case X86::VFMADD132SHZrk_Int: | 
|  | case X86::VFNMADD132SHZrk_Int: | 
|  | case X86::VFMADD213SHZrk_Int: | 
|  | case X86::VFNMADD213SHZrk_Int: | 
|  | case X86::VFMADD231SHZrk_Int: | 
|  | case X86::VFNMADD231SHZrk_Int: | 
|  | case X86::VFMSUB132SHZrk_Int: | 
|  | case X86::VFNMSUB132SHZrk_Int: | 
|  | case X86::VFMSUB213SHZrk_Int: | 
|  | case X86::VFNMSUB213SHZrk_Int: | 
|  | case X86::VFMSUB231SHZrk_Int: | 
|  | case X86::VFNMSUB231SHZrk_Int: | 
|  | case X86::VFMADD132SHZrkz_Int: | 
|  | case X86::VFNMADD132SHZrkz_Int: | 
|  | case X86::VFMADD213SHZrkz_Int: | 
|  | case X86::VFNMADD213SHZrkz_Int: | 
|  | case X86::VFMADD231SHZrkz_Int: | 
|  | case X86::VFNMADD231SHZrkz_Int: | 
|  | case X86::VFMSUB132SHZrkz_Int: | 
|  | case X86::VFNMSUB132SHZrkz_Int: | 
|  | case X86::VFMSUB213SHZrkz_Int: | 
|  | case X86::VFNMSUB213SHZrkz_Int: | 
|  | case X86::VFMSUB231SHZrkz_Int: | 
|  | case X86::VFNMSUB231SHZrkz_Int: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( | 
|  | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, | 
|  | MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, | 
|  | LiveIntervals *LIS) const { | 
|  |  | 
|  | // TODO: Support the case where LoadMI loads a wide register, but MI | 
|  | // only uses a subreg. | 
|  | for (auto Op : Ops) { | 
|  | if (MI.getOperand(Op).getSubReg()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If loading from a FrameIndex, fold directly from the FrameIndex. | 
|  | unsigned NumOps = LoadMI.getDesc().getNumOperands(); | 
|  | int FrameIndex; | 
|  | if (isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
|  | if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) | 
|  | return nullptr; | 
|  | return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); | 
|  | } | 
|  |  | 
|  | // Check switch flag | 
|  | if (NoFusing) | 
|  | return nullptr; | 
|  |  | 
|  | // Avoid partial and undef register update stalls unless optimizing for size. | 
|  | if (!MF.getFunction().hasOptSize() && | 
|  | (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || | 
|  | shouldPreventUndefRegUpdateMemFold(MF, MI))) | 
|  | return nullptr; | 
|  |  | 
|  | // Do not fold a NDD instruction and a memory instruction with relocation to | 
|  | // avoid emit APX relocation when the flag is disabled for backward | 
|  | // compatibility. | 
|  | uint64_t TSFlags = MI.getDesc().TSFlags; | 
|  | if (!X86EnableAPXForRelocation && isMemInstrWithGOTPCREL(LoadMI) && | 
|  | X86II::hasNewDataDest(TSFlags)) | 
|  | return nullptr; | 
|  |  | 
|  | // Determine the alignment of the load. | 
|  | Align Alignment; | 
|  | unsigned LoadOpc = LoadMI.getOpcode(); | 
|  | if (LoadMI.hasOneMemOperand()) | 
|  | Alignment = (*LoadMI.memoperands_begin())->getAlign(); | 
|  | else | 
|  | switch (LoadOpc) { | 
|  | case X86::AVX512_512_SET0: | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | Alignment = Align(64); | 
|  | break; | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | case X86::AVX512_256_SET0: | 
|  | Alignment = Align(32); | 
|  | break; | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::FsFLD0F128: | 
|  | case X86::AVX512_FsFLD0F128: | 
|  | Alignment = Align(16); | 
|  | break; | 
|  | case X86::MMX_SET0: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | Alignment = Align(8); | 
|  | break; | 
|  | case X86::FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | Alignment = Align(4); | 
|  | break; | 
|  | case X86::FsFLD0SH: | 
|  | case X86::AVX512_FsFLD0SH: | 
|  | Alignment = Align(2); | 
|  | break; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { | 
|  | unsigned NewOpc = 0; | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return nullptr; | 
|  | case X86::TEST8rr: | 
|  | NewOpc = X86::CMP8ri; | 
|  | break; | 
|  | case X86::TEST16rr: | 
|  | NewOpc = X86::CMP16ri; | 
|  | break; | 
|  | case X86::TEST32rr: | 
|  | NewOpc = X86::CMP32ri; | 
|  | break; | 
|  | case X86::TEST64rr: | 
|  | NewOpc = X86::CMP64ri32; | 
|  | break; | 
|  | } | 
|  | // Change to CMPXXri r, 0 first. | 
|  | MI.setDesc(get(NewOpc)); | 
|  | MI.getOperand(1).ChangeToImmediate(0); | 
|  | } else if (Ops.size() != 1) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the subregisters match. | 
|  | // Otherwise we risk changing the size of the load. | 
|  | if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<MachineOperand, X86::AddrNumOperands> MOs; | 
|  | switch (LoadOpc) { | 
|  | case X86::MMX_SET0: | 
|  | case X86::V_SET0: | 
|  | case X86::V_SETALLONES: | 
|  | case X86::AVX2_SETALLONES: | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX_SET0: | 
|  | case X86::AVX512_128_SET0: | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX512_512_SET0: | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | case X86::FsFLD0SH: | 
|  | case X86::AVX512_FsFLD0SH: | 
|  | case X86::FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | case X86::FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | case X86::FsFLD0F128: | 
|  | case X86::AVX512_FsFLD0F128: { | 
|  | // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. | 
|  | // Create a constant-pool entry and operands to load from it. | 
|  |  | 
|  | // Large code model can't fold loads this way. | 
|  | if (MF.getTarget().getCodeModel() == CodeModel::Large) | 
|  | return nullptr; | 
|  |  | 
|  | // x86-32 PIC requires a PIC base register for constant pools. | 
|  | unsigned PICBase = 0; | 
|  | // Since we're using Small or Kernel code model, we can always use | 
|  | // RIP-relative addressing for a smaller encoding. | 
|  | if (Subtarget.is64Bit()) { | 
|  | PICBase = X86::RIP; | 
|  | } else if (MF.getTarget().isPositionIndependent()) { | 
|  | // FIXME: PICBase = getGlobalBaseReg(&MF); | 
|  | // This doesn't work for several reasons. | 
|  | // 1. GlobalBaseReg may have been spilled. | 
|  | // 2. It may not be live at MI. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Create a constant-pool entry. | 
|  | MachineConstantPool &MCP = *MF.getConstantPool(); | 
|  | Type *Ty; | 
|  | bool IsAllOnes = false; | 
|  | switch (LoadOpc) { | 
|  | case X86::FsFLD0SS: | 
|  | case X86::AVX512_FsFLD0SS: | 
|  | Ty = Type::getFloatTy(MF.getFunction().getContext()); | 
|  | break; | 
|  | case X86::FsFLD0SD: | 
|  | case X86::AVX512_FsFLD0SD: | 
|  | Ty = Type::getDoubleTy(MF.getFunction().getContext()); | 
|  | break; | 
|  | case X86::FsFLD0F128: | 
|  | case X86::AVX512_FsFLD0F128: | 
|  | Ty = Type::getFP128Ty(MF.getFunction().getContext()); | 
|  | break; | 
|  | case X86::FsFLD0SH: | 
|  | case X86::AVX512_FsFLD0SH: | 
|  | Ty = Type::getHalfTy(MF.getFunction().getContext()); | 
|  | break; | 
|  | case X86::AVX512_512_SETALLONES: | 
|  | IsAllOnes = true; | 
|  | [[fallthrough]]; | 
|  | case X86::AVX512_512_SET0: | 
|  | Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), | 
|  | 16); | 
|  | break; | 
|  | case X86::AVX1_SETALLONES: | 
|  | case X86::AVX2_SETALLONES: | 
|  | IsAllOnes = true; | 
|  | [[fallthrough]]; | 
|  | case X86::AVX512_256_SET0: | 
|  | case X86::AVX_SET0: | 
|  | Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), | 
|  | 8); | 
|  |  | 
|  | break; | 
|  | case X86::MMX_SET0: | 
|  | Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), | 
|  | 2); | 
|  | break; | 
|  | case X86::V_SETALLONES: | 
|  | IsAllOnes = true; | 
|  | [[fallthrough]]; | 
|  | case X86::V_SET0: | 
|  | case X86::AVX512_128_SET0: | 
|  | Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), | 
|  | 4); | 
|  | break; | 
|  | } | 
|  |  | 
|  | const Constant *C = | 
|  | IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); | 
|  | unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); | 
|  |  | 
|  | // Create operands to load from the constant pool entry. | 
|  | MOs.push_back(MachineOperand::CreateReg(PICBase, false)); | 
|  | MOs.push_back(MachineOperand::CreateImm(1)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); | 
|  | MOs.push_back(MachineOperand::CreateReg(0, false)); | 
|  | break; | 
|  | } | 
|  | case X86::VPBROADCASTBZ128rm: | 
|  | case X86::VPBROADCASTBZ256rm: | 
|  | case X86::VPBROADCASTBZrm: | 
|  | case X86::VBROADCASTF32X2Z256rm: | 
|  | case X86::VBROADCASTF32X2Zrm: | 
|  | case X86::VBROADCASTI32X2Z128rm: | 
|  | case X86::VBROADCASTI32X2Z256rm: | 
|  | case X86::VBROADCASTI32X2Zrm: | 
|  | // No instructions currently fuse with 8bits or 32bits x 2. | 
|  | return nullptr; | 
|  |  | 
|  | #define FOLD_BROADCAST(SIZE)                                                   \ | 
|  | MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,          \ | 
|  | LoadMI.operands_begin() + NumOps);                                \ | 
|  | return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE,     \ | 
|  | /*AllowCommute=*/true); | 
|  | case X86::VPBROADCASTWZ128rm: | 
|  | case X86::VPBROADCASTWZ256rm: | 
|  | case X86::VPBROADCASTWZrm: | 
|  | FOLD_BROADCAST(16); | 
|  | case X86::VPBROADCASTDZ128rm: | 
|  | case X86::VPBROADCASTDZ256rm: | 
|  | case X86::VPBROADCASTDZrm: | 
|  | case X86::VBROADCASTSSZ128rm: | 
|  | case X86::VBROADCASTSSZ256rm: | 
|  | case X86::VBROADCASTSSZrm: | 
|  | FOLD_BROADCAST(32); | 
|  | case X86::VPBROADCASTQZ128rm: | 
|  | case X86::VPBROADCASTQZ256rm: | 
|  | case X86::VPBROADCASTQZrm: | 
|  | case X86::VBROADCASTSDZ256rm: | 
|  | case X86::VBROADCASTSDZrm: | 
|  | FOLD_BROADCAST(64); | 
|  | default: { | 
|  | if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) | 
|  | return nullptr; | 
|  |  | 
|  | // Folding a normal load. Just copy the load's address operands. | 
|  | MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, | 
|  | LoadMI.operands_begin() + NumOps); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, | 
|  | /*Size=*/0, Alignment, /*AllowCommute=*/true); | 
|  | } | 
|  |  | 
|  | MachineInstr * | 
|  | X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI, | 
|  | unsigned OpNum, ArrayRef<MachineOperand> MOs, | 
|  | MachineBasicBlock::iterator InsertPt, | 
|  | unsigned BitsSize, bool AllowCommute) const { | 
|  |  | 
|  | if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum)) | 
|  | return matchBroadcastSize(*I, BitsSize) | 
|  | ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this) | 
|  | : nullptr; | 
|  |  | 
|  | if (AllowCommute) { | 
|  | // If the instruction and target operand are commutable, commute the | 
|  | // instruction and try again. | 
|  | unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); | 
|  | if (CommuteOpIdx2 == OpNum) { | 
|  | printFailMsgforFold(MI, OpNum); | 
|  | return nullptr; | 
|  | } | 
|  | MachineInstr *NewMI = | 
|  | foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize, | 
|  | /*AllowCommute=*/false); | 
|  | if (NewMI) | 
|  | return NewMI; | 
|  | // Folding failed again - undo the commute before returning. | 
|  | commuteInstruction(MI, false, OpNum, CommuteOpIdx2); | 
|  | } | 
|  |  | 
|  | printFailMsgforFold(MI, OpNum); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static SmallVector<MachineMemOperand *, 2> | 
|  | extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { | 
|  | SmallVector<MachineMemOperand *, 2> LoadMMOs; | 
|  |  | 
|  | for (MachineMemOperand *MMO : MMOs) { | 
|  | if (!MMO->isLoad()) | 
|  | continue; | 
|  |  | 
|  | if (!MMO->isStore()) { | 
|  | // Reuse the MMO. | 
|  | LoadMMOs.push_back(MMO); | 
|  | } else { | 
|  | // Clone the MMO and unset the store flag. | 
|  | LoadMMOs.push_back(MF.getMachineMemOperand( | 
|  | MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return LoadMMOs; | 
|  | } | 
|  |  | 
|  | static SmallVector<MachineMemOperand *, 2> | 
|  | extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { | 
|  | SmallVector<MachineMemOperand *, 2> StoreMMOs; | 
|  |  | 
|  | for (MachineMemOperand *MMO : MMOs) { | 
|  | if (!MMO->isStore()) | 
|  | continue; | 
|  |  | 
|  | if (!MMO->isLoad()) { | 
|  | // Reuse the MMO. | 
|  | StoreMMOs.push_back(MMO); | 
|  | } else { | 
|  | // Clone the MMO and unset the load flag. | 
|  | StoreMMOs.push_back(MF.getMachineMemOperand( | 
|  | MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return StoreMMOs; | 
|  | } | 
|  |  | 
|  | static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, | 
|  | const TargetRegisterClass *RC, | 
|  | const X86Subtarget &STI) { | 
|  | assert(STI.hasAVX512() && "Expected at least AVX512!"); | 
|  | unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); | 
|  | assert((SpillSize == 64 || STI.hasVLX()) && | 
|  | "Can't broadcast less than 64 bytes without AVX512VL!"); | 
|  |  | 
|  | #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64)                            \ | 
|  | case TYPE:                                                                   \ | 
|  | switch (SpillSize) {                                                       \ | 
|  | default:                                                                   \ | 
|  | llvm_unreachable("Unknown spill size");                                  \ | 
|  | case 16:                                                                   \ | 
|  | return X86::OP16;                                                        \ | 
|  | case 32:                                                                   \ | 
|  | return X86::OP32;                                                        \ | 
|  | case 64:                                                                   \ | 
|  | return X86::OP64;                                                        \ | 
|  | }                                                                          \ | 
|  | break; | 
|  |  | 
|  | switch (I->Flags & TB_BCAST_MASK) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected broadcast type!"); | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, | 
|  | VPBROADCASTWZrm) | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm, | 
|  | VPBROADCASTDZrm) | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm, | 
|  | VPBROADCASTQZrm) | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, | 
|  | VPBROADCASTWZrm) | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm, | 
|  | VBROADCASTSSZrm) | 
|  | CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm, | 
|  | VBROADCASTSDZrm) | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::unfoldMemoryOperand( | 
|  | MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, | 
|  | bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { | 
|  | const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); | 
|  | if (I == nullptr) | 
|  | return false; | 
|  | unsigned Opc = I->DstOp; | 
|  | unsigned Index = I->Flags & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return false; | 
|  | UnfoldLoad &= FoldedLoad; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return false; | 
|  | UnfoldStore &= FoldedStore; | 
|  |  | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  |  | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | // TODO: Check if 32-byte or greater accesses are slow too? | 
|  | if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Without memoperands, loadRegFromAddr and storeRegToStackSlot will | 
|  | // conservatively assume the address is unaligned. That's bad for | 
|  | // performance. | 
|  | return false; | 
|  | SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; | 
|  | SmallVector<MachineOperand, 2> BeforeOps; | 
|  | SmallVector<MachineOperand, 2> AfterOps; | 
|  | SmallVector<MachineOperand, 4> ImpOps; | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &Op = MI.getOperand(i); | 
|  | if (i >= Index && i < Index + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (Op.isReg() && Op.isImplicit()) | 
|  | ImpOps.push_back(Op); | 
|  | else if (i < Index) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | // Emit the load or broadcast instruction. | 
|  | if (UnfoldLoad) { | 
|  | auto MMOs = extractLoadMMOs(MI.memoperands(), MF); | 
|  |  | 
|  | unsigned Opc; | 
|  | if (I->Flags & TB_BCAST_MASK) { | 
|  | Opc = getBroadcastOpcode(I, RC, Subtarget); | 
|  | } else { | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; | 
|  | Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); | 
|  | } | 
|  |  | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); | 
|  | for (const MachineOperand &AddrOp : AddrOps) | 
|  | MIB.add(AddrOp); | 
|  | MIB.setMemRefs(MMOs); | 
|  | NewMIs.push_back(MIB); | 
|  |  | 
|  | if (UnfoldStore) { | 
|  | // Address operands cannot be marked isKill. | 
|  | for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { | 
|  | MachineOperand &MO = NewMIs[0]->getOperand(i); | 
|  | if (MO.isReg()) | 
|  | MO.setIsKill(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); | 
|  | MachineInstrBuilder MIB(MF, DataMI); | 
|  |  | 
|  | if (FoldedStore) | 
|  | MIB.addReg(Reg, RegState::Define); | 
|  | for (MachineOperand &BeforeOp : BeforeOps) | 
|  | MIB.add(BeforeOp); | 
|  | if (FoldedLoad) | 
|  | MIB.addReg(Reg); | 
|  | for (MachineOperand &AfterOp : AfterOps) | 
|  | MIB.add(AfterOp); | 
|  | for (MachineOperand &ImpOp : ImpOps) { | 
|  | MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | | 
|  | RegState::Implicit | | 
|  | getKillRegState(ImpOp.isKill()) | | 
|  | getDeadRegState(ImpOp.isDead()) | | 
|  | getUndefRegState(ImpOp.isUndef())); | 
|  | } | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP8ri: { | 
|  | MachineOperand &MO0 = DataMI->getOperand(0); | 
|  | MachineOperand &MO1 = DataMI->getOperand(1); | 
|  | if (MO1.isImm() && MO1.getImm() == 0) { | 
|  | unsigned NewOpc; | 
|  | switch (DataMI->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::CMP64ri32: | 
|  | NewOpc = X86::TEST64rr; | 
|  | break; | 
|  | case X86::CMP32ri: | 
|  | NewOpc = X86::TEST32rr; | 
|  | break; | 
|  | case X86::CMP16ri: | 
|  | NewOpc = X86::TEST16rr; | 
|  | break; | 
|  | case X86::CMP8ri: | 
|  | NewOpc = X86::TEST8rr; | 
|  | break; | 
|  | } | 
|  | DataMI->setDesc(get(NewOpc)); | 
|  | MO1.ChangeToRegister(MO0.getReg(), false); | 
|  | } | 
|  | } | 
|  | } | 
|  | NewMIs.push_back(DataMI); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (UnfoldStore) { | 
|  | const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | auto MMOs = extractStoreMMOs(MI.memoperands(), MF); | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; | 
|  | unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); | 
|  | DebugLoc DL; | 
|  | MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); | 
|  | for (const MachineOperand &AddrOp : AddrOps) | 
|  | MIB.add(AddrOp); | 
|  | MIB.addReg(Reg, RegState::Kill); | 
|  | MIB.setMemRefs(MMOs); | 
|  | NewMIs.push_back(MIB); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::unfoldMemoryOperand( | 
|  | SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const { | 
|  | if (!N->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); | 
|  | if (I == nullptr) | 
|  | return false; | 
|  | unsigned Opc = I->DstOp; | 
|  | unsigned Index = I->Flags & TB_INDEX_MASK; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | const MCInstrDesc &MCID = get(Opc); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); | 
|  | const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); | 
|  | unsigned NumDefs = MCID.NumDefs; | 
|  | std::vector<SDValue> AddrOps; | 
|  | std::vector<SDValue> BeforeOps; | 
|  | std::vector<SDValue> AfterOps; | 
|  | SDLoc dl(N); | 
|  | unsigned NumOps = N->getNumOperands(); | 
|  | for (unsigned i = 0; i != NumOps - 1; ++i) { | 
|  | SDValue Op = N->getOperand(i); | 
|  | if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands) | 
|  | AddrOps.push_back(Op); | 
|  | else if (i < Index - NumDefs) | 
|  | BeforeOps.push_back(Op); | 
|  | else if (i > Index - NumDefs) | 
|  | AfterOps.push_back(Op); | 
|  | } | 
|  | SDValue Chain = N->getOperand(NumOps - 1); | 
|  | AddrOps.push_back(Chain); | 
|  |  | 
|  | // Emit the load instruction. | 
|  | SDNode *Load = nullptr; | 
|  | if (FoldedLoad) { | 
|  | EVT VT = *TRI.legalclasstypes_begin(*RC); | 
|  | auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); | 
|  | if (MMOs.empty() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned load. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  |  | 
|  | unsigned Opc; | 
|  | if (I->Flags & TB_BCAST_MASK) { | 
|  | Opc = getBroadcastOpcode(I, RC, Subtarget); | 
|  | } else { | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; | 
|  | Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); | 
|  | } | 
|  |  | 
|  | Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Load); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); | 
|  | } | 
|  |  | 
|  | // Emit the data processing instruction. | 
|  | std::vector<EVT> VTs; | 
|  | const TargetRegisterClass *DstRC = nullptr; | 
|  | if (MCID.getNumDefs() > 0) { | 
|  | DstRC = getRegClass(MCID, 0, &RI, MF); | 
|  | VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); | 
|  | } | 
|  | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { | 
|  | EVT VT = N->getValueType(i); | 
|  | if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) | 
|  | VTs.push_back(VT); | 
|  | } | 
|  | if (Load) | 
|  | BeforeOps.push_back(SDValue(Load, 0)); | 
|  | llvm::append_range(BeforeOps, AfterOps); | 
|  | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. | 
|  | switch (Opc) { | 
|  | default: | 
|  | break; | 
|  | case X86::CMP64ri32: | 
|  | case X86::CMP32ri: | 
|  | case X86::CMP16ri: | 
|  | case X86::CMP8ri: | 
|  | if (isNullConstant(BeforeOps[1])) { | 
|  | switch (Opc) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable!"); | 
|  | case X86::CMP64ri32: | 
|  | Opc = X86::TEST64rr; | 
|  | break; | 
|  | case X86::CMP32ri: | 
|  | Opc = X86::TEST32rr; | 
|  | break; | 
|  | case X86::CMP16ri: | 
|  | Opc = X86::TEST16rr; | 
|  | break; | 
|  | case X86::CMP8ri: | 
|  | Opc = X86::TEST8rr; | 
|  | break; | 
|  | } | 
|  | BeforeOps[1] = BeforeOps[0]; | 
|  | } | 
|  | } | 
|  | SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps); | 
|  | NewNodes.push_back(NewNode); | 
|  |  | 
|  | // Emit the store instruction. | 
|  | if (FoldedStore) { | 
|  | AddrOps.pop_back(); | 
|  | AddrOps.push_back(SDValue(NewNode, 0)); | 
|  | AddrOps.push_back(Chain); | 
|  | auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); | 
|  | if (MMOs.empty() && RC == &X86::VR128RegClass && | 
|  | Subtarget.isUnalignedMem16Slow()) | 
|  | // Do not introduce a slow unaligned store. | 
|  | return false; | 
|  | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte | 
|  | // memory access is slow above. | 
|  | unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); | 
|  | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; | 
|  | SDNode *Store = | 
|  | DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), | 
|  | dl, MVT::Other, AddrOps); | 
|  | NewNodes.push_back(Store); | 
|  |  | 
|  | // Preserve memory reference information. | 
|  | DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, | 
|  | bool UnfoldStore, | 
|  | unsigned *LoadRegIndex) const { | 
|  | const X86FoldTableEntry *I = lookupUnfoldTable(Opc); | 
|  | if (I == nullptr) | 
|  | return 0; | 
|  | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; | 
|  | bool FoldedStore = I->Flags & TB_FOLDED_STORE; | 
|  | if (UnfoldLoad && !FoldedLoad) | 
|  | return 0; | 
|  | if (UnfoldStore && !FoldedStore) | 
|  | return 0; | 
|  | if (LoadRegIndex) | 
|  | *LoadRegIndex = I->Flags & TB_INDEX_MASK; | 
|  | return I->DstOp; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, | 
|  | int64_t &Offset1, | 
|  | int64_t &Offset2) const { | 
|  | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | auto IsLoadOpcode = [&](unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return false; | 
|  | case X86::MOV8rm: | 
|  | case X86::MOV16rm: | 
|  | case X86::MOV32rm: | 
|  | case X86::MOV64rm: | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MOVSSrm: | 
|  | case X86::MOVSSrm_alt: | 
|  | case X86::MOVSDrm: | 
|  | case X86::MOVSDrm_alt: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | case X86::MOVAPSrm: | 
|  | case X86::MOVUPSrm: | 
|  | case X86::MOVAPDrm: | 
|  | case X86::MOVUPDrm: | 
|  | case X86::MOVDQArm: | 
|  | case X86::MOVDQUrm: | 
|  | // AVX load instructions | 
|  | case X86::VMOVSSrm: | 
|  | case X86::VMOVSSrm_alt: | 
|  | case X86::VMOVSDrm: | 
|  | case X86::VMOVSDrm_alt: | 
|  | case X86::VMOVAPSrm: | 
|  | case X86::VMOVUPSrm: | 
|  | case X86::VMOVAPDrm: | 
|  | case X86::VMOVUPDrm: | 
|  | case X86::VMOVDQArm: | 
|  | case X86::VMOVDQUrm: | 
|  | case X86::VMOVAPSYrm: | 
|  | case X86::VMOVUPSYrm: | 
|  | case X86::VMOVAPDYrm: | 
|  | case X86::VMOVUPDYrm: | 
|  | case X86::VMOVDQAYrm: | 
|  | case X86::VMOVDQUYrm: | 
|  | // AVX512 load instructions | 
|  | case X86::VMOVSSZrm: | 
|  | case X86::VMOVSSZrm_alt: | 
|  | case X86::VMOVSDZrm: | 
|  | case X86::VMOVSDZrm_alt: | 
|  | case X86::VMOVAPSZ128rm: | 
|  | case X86::VMOVUPSZ128rm: | 
|  | case X86::VMOVAPSZ128rm_NOVLX: | 
|  | case X86::VMOVUPSZ128rm_NOVLX: | 
|  | case X86::VMOVAPDZ128rm: | 
|  | case X86::VMOVUPDZ128rm: | 
|  | case X86::VMOVDQU8Z128rm: | 
|  | case X86::VMOVDQU16Z128rm: | 
|  | case X86::VMOVDQA32Z128rm: | 
|  | case X86::VMOVDQU32Z128rm: | 
|  | case X86::VMOVDQA64Z128rm: | 
|  | case X86::VMOVDQU64Z128rm: | 
|  | case X86::VMOVAPSZ256rm: | 
|  | case X86::VMOVUPSZ256rm: | 
|  | case X86::VMOVAPSZ256rm_NOVLX: | 
|  | case X86::VMOVUPSZ256rm_NOVLX: | 
|  | case X86::VMOVAPDZ256rm: | 
|  | case X86::VMOVUPDZ256rm: | 
|  | case X86::VMOVDQU8Z256rm: | 
|  | case X86::VMOVDQU16Z256rm: | 
|  | case X86::VMOVDQA32Z256rm: | 
|  | case X86::VMOVDQU32Z256rm: | 
|  | case X86::VMOVDQA64Z256rm: | 
|  | case X86::VMOVDQU64Z256rm: | 
|  | case X86::VMOVAPSZrm: | 
|  | case X86::VMOVUPSZrm: | 
|  | case X86::VMOVAPDZrm: | 
|  | case X86::VMOVUPDZrm: | 
|  | case X86::VMOVDQU8Zrm: | 
|  | case X86::VMOVDQU16Zrm: | 
|  | case X86::VMOVDQA32Zrm: | 
|  | case X86::VMOVDQU32Zrm: | 
|  | case X86::VMOVDQA64Zrm: | 
|  | case X86::VMOVDQU64Zrm: | 
|  | case X86::KMOVBkm: | 
|  | case X86::KMOVBkm_EVEX: | 
|  | case X86::KMOVWkm: | 
|  | case X86::KMOVWkm_EVEX: | 
|  | case X86::KMOVDkm: | 
|  | case X86::KMOVDkm_EVEX: | 
|  | case X86::KMOVQkm: | 
|  | case X86::KMOVQkm_EVEX: | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | if (!IsLoadOpcode(Load1->getMachineOpcode()) || | 
|  | !IsLoadOpcode(Load2->getMachineOpcode())) | 
|  | return false; | 
|  |  | 
|  | // Lambda to check if both the loads have the same value for an operand index. | 
|  | auto HasSameOp = [&](int I) { | 
|  | return Load1->getOperand(I) == Load2->getOperand(I); | 
|  | }; | 
|  |  | 
|  | // All operands except the displacement should match. | 
|  | if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || | 
|  | !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) | 
|  | return false; | 
|  |  | 
|  | // Chain Operand must be the same. | 
|  | if (!HasSameOp(5)) | 
|  | return false; | 
|  |  | 
|  | // Now let's examine if the displacements are constants. | 
|  | auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); | 
|  | auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); | 
|  | if (!Disp1 || !Disp2) | 
|  | return false; | 
|  |  | 
|  | Offset1 = Disp1->getSExtValue(); | 
|  | Offset2 = Disp2->getSExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, | 
|  | int64_t Offset1, int64_t Offset2, | 
|  | unsigned NumLoads) const { | 
|  | assert(Offset2 > Offset1); | 
|  | if ((Offset2 - Offset1) / 8 > 64) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  | unsigned Opc2 = Load2->getMachineOpcode(); | 
|  | if (Opc1 != Opc2) | 
|  | return false; // FIXME: overly conservative? | 
|  |  | 
|  | switch (Opc1) { | 
|  | default: | 
|  | break; | 
|  | case X86::LD_Fp32m: | 
|  | case X86::LD_Fp64m: | 
|  | case X86::LD_Fp80m: | 
|  | case X86::MMX_MOVD64rm: | 
|  | case X86::MMX_MOVQ64rm: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVT VT = Load1->getValueType(0); | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | // XMM registers. In 64-bit mode we can be a bit more aggressive since we | 
|  | // have 16 of them to play with. | 
|  | if (Subtarget.is64Bit()) { | 
|  | if (NumLoads >= 3) | 
|  | return false; | 
|  | } else if (NumLoads) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::i64: | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (NumLoads) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  |  | 
|  | // ENDBR instructions should not be scheduled around. | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || | 
|  | Opcode == X86::PLDTILECFGV) | 
|  | return true; | 
|  |  | 
|  | // Frame setup and destroy can't be scheduled around. | 
|  | if (MI.getFlag(MachineInstr::FrameSetup) || | 
|  | MI.getFlag(MachineInstr::FrameDestroy)) | 
|  | return true; | 
|  |  | 
|  | return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::reverseBranchCondition( | 
|  | SmallVectorImpl<MachineOperand> &Cond) const { | 
|  | assert(Cond.size() == 1 && "Invalid X86 branch condition!"); | 
|  | X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); | 
|  | Cond[0].setImm(GetOppositeBranchCondition(CC)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isSafeToMoveRegClassDefs( | 
|  | const TargetRegisterClass *RC) const { | 
|  | // FIXME: Return false for x87 stack register classes for now. We can't | 
|  | // allow any loads of these registers before FpGet_ST0_80. | 
|  | return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || | 
|  | RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || | 
|  | RC == &X86::RFP80RegClass); | 
|  | } | 
|  |  | 
|  | /// Return a virtual register initialized with the | 
|  | /// the global base register value. Output instructions required to | 
|  | /// initialize the register in the function entry block, if necessary. | 
|  | /// | 
|  | /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. | 
|  | /// | 
|  | Register X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { | 
|  | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); | 
|  | Register GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  | if (GlobalBaseReg) | 
|  | return GlobalBaseReg; | 
|  |  | 
|  | // Create the register. The code to initialize it is inserted | 
|  | // later, by the CGBR pass (below). | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | GlobalBaseReg = RegInfo.createVirtualRegister( | 
|  | Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); | 
|  | X86FI->setGlobalBaseReg(GlobalBaseReg); | 
|  | return GlobalBaseReg; | 
|  | } | 
|  |  | 
|  | // FIXME: Some shuffle and unpack instructions have equivalents in different | 
|  | // domains, but they require a bit more work than just switching opcodes. | 
|  |  | 
|  | static const uint16_t *lookup(unsigned opcode, unsigned domain, | 
|  | ArrayRef<uint16_t[3]> Table) { | 
|  | for (const uint16_t(&Row)[3] : Table) | 
|  | if (Row[domain - 1] == opcode) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, | 
|  | ArrayRef<uint16_t[4]> Table) { | 
|  | // If this is the integer domain make sure to check both integer columns. | 
|  | for (const uint16_t(&Row)[4] : Table) | 
|  | if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode)) | 
|  | return Row; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Helper to attempt to widen/narrow blend masks. | 
|  | static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, | 
|  | unsigned NewWidth, unsigned *pNewMask = nullptr) { | 
|  | assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && | 
|  | "Illegal blend mask scale"); | 
|  | unsigned NewMask = 0; | 
|  |  | 
|  | if ((OldWidth % NewWidth) == 0) { | 
|  | unsigned Scale = OldWidth / NewWidth; | 
|  | unsigned SubMask = (1u << Scale) - 1; | 
|  | for (unsigned i = 0; i != NewWidth; ++i) { | 
|  | unsigned Sub = (OldMask >> (i * Scale)) & SubMask; | 
|  | if (Sub == SubMask) | 
|  | NewMask |= (1u << i); | 
|  | else if (Sub != 0x0) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | unsigned Scale = NewWidth / OldWidth; | 
|  | unsigned SubMask = (1u << Scale) - 1; | 
|  | for (unsigned i = 0; i != OldWidth; ++i) { | 
|  | if (OldMask & (1 << i)) { | 
|  | NewMask |= (SubMask << (i * Scale)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pNewMask) | 
|  | *pNewMask = NewMask; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  |  | 
|  | auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { | 
|  | uint16_t validDomains = 0; | 
|  | if (MI.getOperand(NumOperands - 1).isImm()) { | 
|  | unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); | 
|  | if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) | 
|  | validDomains |= 0x2; // PackedSingle | 
|  | if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) | 
|  | validDomains |= 0x4; // PackedDouble | 
|  | if (!Is256 || Subtarget.hasAVX2()) | 
|  | validDomains |= 0x8; // PackedInt | 
|  | } | 
|  | return validDomains; | 
|  | }; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case X86::BLENDPDrmi: | 
|  | case X86::BLENDPDrri: | 
|  | case X86::VBLENDPDrmi: | 
|  | case X86::VBLENDPDrri: | 
|  | return GetBlendDomains(2, false); | 
|  | case X86::VBLENDPDYrmi: | 
|  | case X86::VBLENDPDYrri: | 
|  | return GetBlendDomains(4, true); | 
|  | case X86::BLENDPSrmi: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::VBLENDPSrmi: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VPBLENDDrmi: | 
|  | case X86::VPBLENDDrri: | 
|  | return GetBlendDomains(4, false); | 
|  | case X86::VBLENDPSYrmi: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDYrmi: | 
|  | case X86::VPBLENDDYrri: | 
|  | return GetBlendDomains(8, true); | 
|  | case X86::PBLENDWrmi: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VPBLENDWrmi: | 
|  | case X86::VPBLENDWrri: | 
|  | // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. | 
|  | case X86::VPBLENDWYrmi: | 
|  | case X86::VPBLENDWYrri: | 
|  | return GetBlendDomains(8, false); | 
|  | case X86::VPANDDZ128rr: | 
|  | case X86::VPANDDZ128rm: | 
|  | case X86::VPANDDZ256rr: | 
|  | case X86::VPANDDZ256rm: | 
|  | case X86::VPANDQZ128rr: | 
|  | case X86::VPANDQZ128rm: | 
|  | case X86::VPANDQZ256rr: | 
|  | case X86::VPANDQZ256rm: | 
|  | case X86::VPANDNDZ128rr: | 
|  | case X86::VPANDNDZ128rm: | 
|  | case X86::VPANDNDZ256rr: | 
|  | case X86::VPANDNDZ256rm: | 
|  | case X86::VPANDNQZ128rr: | 
|  | case X86::VPANDNQZ128rm: | 
|  | case X86::VPANDNQZ256rr: | 
|  | case X86::VPANDNQZ256rm: | 
|  | case X86::VPORDZ128rr: | 
|  | case X86::VPORDZ128rm: | 
|  | case X86::VPORDZ256rr: | 
|  | case X86::VPORDZ256rm: | 
|  | case X86::VPORQZ128rr: | 
|  | case X86::VPORQZ128rm: | 
|  | case X86::VPORQZ256rr: | 
|  | case X86::VPORQZ256rm: | 
|  | case X86::VPXORDZ128rr: | 
|  | case X86::VPXORDZ128rm: | 
|  | case X86::VPXORDZ256rr: | 
|  | case X86::VPXORDZ256rm: | 
|  | case X86::VPXORQZ128rr: | 
|  | case X86::VPXORQZ128rm: | 
|  | case X86::VPXORQZ256rr: | 
|  | case X86::VPXORQZ256rm: | 
|  | // If we don't have DQI see if we can still switch from an EVEX integer | 
|  | // instruction to a VEX floating point instruction. | 
|  | if (Subtarget.hasDQI()) | 
|  | return 0; | 
|  |  | 
|  | if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) | 
|  | return 0; | 
|  | if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) | 
|  | return 0; | 
|  | // Register forms will have 3 operands. Memory form will have more. | 
|  | if (NumOperands == 3 && | 
|  | RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) | 
|  | return 0; | 
|  |  | 
|  | // All domains are valid. | 
|  | return 0xe; | 
|  | case X86::MOVHLPSrr: | 
|  | // We can swap domains when both inputs are the same register. | 
|  | // FIXME: This doesn't catch all the cases we would like. If the input | 
|  | // register isn't KILLed by the instruction, the two address instruction | 
|  | // pass puts a COPY on one input. The other input uses the original | 
|  | // register. This prevents the same physical register from being used by | 
|  | // both inputs. | 
|  | if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && | 
|  | MI.getOperand(0).getSubReg() == 0 && | 
|  | MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0) | 
|  | return 0x6; | 
|  | return 0; | 
|  | case X86::SHUFPDrri: | 
|  | return 0x6; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #include "X86ReplaceableInstrs.def" | 
|  |  | 
|  | bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, | 
|  | unsigned Domain) const { | 
|  | assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); | 
|  | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | assert(dom && "Not an SSE instruction"); | 
|  |  | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | unsigned NumOperands = MI.getDesc().getNumOperands(); | 
|  |  | 
|  | auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { | 
|  | if (MI.getOperand(NumOperands - 1).isImm()) { | 
|  | unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; | 
|  | Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); | 
|  | unsigned NewImm = Imm; | 
|  |  | 
|  | const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); | 
|  | if (!table) | 
|  | table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); | 
|  |  | 
|  | if (Domain == 1) { // PackedSingle | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); | 
|  | } else if (Domain == 2) { // PackedDouble | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); | 
|  | } else if (Domain == 3) { // PackedInt | 
|  | if (Subtarget.hasAVX2()) { | 
|  | // If we are already VPBLENDW use that, else use VPBLENDD. | 
|  | if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { | 
|  | table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); | 
|  | AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); | 
|  | } | 
|  | } else { | 
|  | assert(!Is256 && "128-bit vector expected"); | 
|  | AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(table && table[Domain - 1] && "Unknown domain op"); | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | MI.getOperand(NumOperands - 1).setImm(NewImm & 255); | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | switch (Opcode) { | 
|  | case X86::BLENDPDrmi: | 
|  | case X86::BLENDPDrri: | 
|  | case X86::VBLENDPDrmi: | 
|  | case X86::VBLENDPDrri: | 
|  | return SetBlendDomain(2, false); | 
|  | case X86::VBLENDPDYrmi: | 
|  | case X86::VBLENDPDYrri: | 
|  | return SetBlendDomain(4, true); | 
|  | case X86::BLENDPSrmi: | 
|  | case X86::BLENDPSrri: | 
|  | case X86::VBLENDPSrmi: | 
|  | case X86::VBLENDPSrri: | 
|  | case X86::VPBLENDDrmi: | 
|  | case X86::VPBLENDDrri: | 
|  | return SetBlendDomain(4, false); | 
|  | case X86::VBLENDPSYrmi: | 
|  | case X86::VBLENDPSYrri: | 
|  | case X86::VPBLENDDYrmi: | 
|  | case X86::VPBLENDDYrri: | 
|  | return SetBlendDomain(8, true); | 
|  | case X86::PBLENDWrmi: | 
|  | case X86::PBLENDWrri: | 
|  | case X86::VPBLENDWrmi: | 
|  | case X86::VPBLENDWrri: | 
|  | return SetBlendDomain(8, false); | 
|  | case X86::VPBLENDWYrmi: | 
|  | case X86::VPBLENDWYrri: | 
|  | return SetBlendDomain(16, true); | 
|  | case X86::VPANDDZ128rr: | 
|  | case X86::VPANDDZ128rm: | 
|  | case X86::VPANDDZ256rr: | 
|  | case X86::VPANDDZ256rm: | 
|  | case X86::VPANDQZ128rr: | 
|  | case X86::VPANDQZ128rm: | 
|  | case X86::VPANDQZ256rr: | 
|  | case X86::VPANDQZ256rm: | 
|  | case X86::VPANDNDZ128rr: | 
|  | case X86::VPANDNDZ128rm: | 
|  | case X86::VPANDNDZ256rr: | 
|  | case X86::VPANDNDZ256rm: | 
|  | case X86::VPANDNQZ128rr: | 
|  | case X86::VPANDNQZ128rm: | 
|  | case X86::VPANDNQZ256rr: | 
|  | case X86::VPANDNQZ256rm: | 
|  | case X86::VPORDZ128rr: | 
|  | case X86::VPORDZ128rm: | 
|  | case X86::VPORDZ256rr: | 
|  | case X86::VPORDZ256rm: | 
|  | case X86::VPORQZ128rr: | 
|  | case X86::VPORQZ128rm: | 
|  | case X86::VPORQZ256rr: | 
|  | case X86::VPORQZ256rm: | 
|  | case X86::VPXORDZ128rr: | 
|  | case X86::VPXORDZ128rm: | 
|  | case X86::VPXORDZ256rr: | 
|  | case X86::VPXORDZ256rm: | 
|  | case X86::VPXORQZ128rr: | 
|  | case X86::VPXORQZ128rm: | 
|  | case X86::VPXORQZ256rr: | 
|  | case X86::VPXORQZ256rm: { | 
|  | // Without DQI, convert EVEX instructions to VEX instructions. | 
|  | if (Subtarget.hasDQI()) | 
|  | return false; | 
|  |  | 
|  | const uint16_t *table = | 
|  | lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs); | 
|  | assert(table && "Instruction not found in table?"); | 
|  | // Don't change integer Q instructions to D instructions and | 
|  | // use D intructions if we started with a PS instruction. | 
|  | if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | return true; | 
|  | } | 
|  | case X86::UNPCKHPDrr: | 
|  | case X86::MOVHLPSrr: | 
|  | // We just need to commute the instruction which will switch the domains. | 
|  | if (Domain != dom && Domain != 3 && | 
|  | MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && | 
|  | MI.getOperand(0).getSubReg() == 0 && | 
|  | MI.getOperand(1).getSubReg() == 0 && | 
|  | MI.getOperand(2).getSubReg() == 0) { | 
|  | commuteInstruction(MI, false); | 
|  | return true; | 
|  | } | 
|  | // We must always return true for MOVHLPSrr. | 
|  | if (Opcode == X86::MOVHLPSrr) | 
|  | return true; | 
|  | break; | 
|  | case X86::SHUFPDrri: { | 
|  | if (Domain == 1) { | 
|  | unsigned Imm = MI.getOperand(3).getImm(); | 
|  | unsigned NewImm = 0x44; | 
|  | if (Imm & 1) | 
|  | NewImm |= 0x0a; | 
|  | if (Imm & 2) | 
|  | NewImm |= 0xa0; | 
|  | MI.getOperand(3).setImm(NewImm); | 
|  | MI.setDesc(get(X86::SHUFPSrri)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::pair<uint16_t, uint16_t> | 
|  | X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { | 
|  | uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | unsigned opcode = MI.getOpcode(); | 
|  | uint16_t validDomains = 0; | 
|  | if (domain) { | 
|  | // Attempt to match for custom instructions. | 
|  | validDomains = getExecutionDomainCustom(MI); | 
|  | if (validDomains) | 
|  | return std::make_pair(domain, validDomains); | 
|  |  | 
|  | if (lookup(opcode, domain, ReplaceableInstrs)) { | 
|  | validDomains = 0xe; | 
|  | } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { | 
|  | validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; | 
|  | } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { | 
|  | validDomains = 0x6; | 
|  | } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { | 
|  | // Insert/extract instructions should only effect domain if AVX2 | 
|  | // is enabled. | 
|  | if (!Subtarget.hasAVX2()) | 
|  | return std::make_pair(0, 0); | 
|  | validDomains = 0xe; | 
|  | } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { | 
|  | validDomains = 0xe; | 
|  | } else if (Subtarget.hasDQI() && | 
|  | lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) { | 
|  | validDomains = 0xe; | 
|  | } else if (Subtarget.hasDQI()) { | 
|  | if (const uint16_t *table = | 
|  | lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) { | 
|  | if (domain == 1 || (domain == 3 && table[3] == opcode)) | 
|  | validDomains = 0xa; | 
|  | else | 
|  | validDomains = 0xc; | 
|  | } | 
|  | } | 
|  | } | 
|  | return std::make_pair(domain, validDomains); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { | 
|  | assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); | 
|  | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; | 
|  | assert(dom && "Not an SSE instruction"); | 
|  |  | 
|  | // Attempt to match for custom instructions. | 
|  | if (setExecutionDomainCustom(MI, Domain)) | 
|  | return; | 
|  |  | 
|  | const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); | 
|  | if (!table) { // try the other table | 
|  | assert((Subtarget.hasAVX2() || Domain < 3) && | 
|  | "256-bit vector operations only available in AVX2"); | 
|  | table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); | 
|  | } | 
|  | if (!table) { // try the FP table | 
|  | table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); | 
|  | assert((!table || Domain < 3) && | 
|  | "Can only select PackedSingle or PackedDouble"); | 
|  | } | 
|  | if (!table) { // try the other table | 
|  | assert(Subtarget.hasAVX2() && | 
|  | "256-bit insert/extract only available in AVX2"); | 
|  | table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); | 
|  | } | 
|  | if (!table) { // try the AVX512 table | 
|  | assert(Subtarget.hasAVX512() && "Requires AVX-512"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); | 
|  | // Don't change integer Q instructions to D instructions. | 
|  | if (table && Domain == 3 && table[3] == MI.getOpcode()) | 
|  | Domain = 4; | 
|  | } | 
|  | if (!table) { // try the AVX512DQ table | 
|  | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); | 
|  | // Don't change integer Q instructions to D instructions and | 
|  | // use D instructions if we started with a PS instruction. | 
|  | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | } | 
|  | if (!table) { // try the AVX512DQMasked table | 
|  | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); | 
|  | table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); | 
|  | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) | 
|  | Domain = 4; | 
|  | } | 
|  | assert(table && "Cannot change domain"); | 
|  | MI.setDesc(get(table[Domain - 1])); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | DebugLoc DL; | 
|  | BuildMI(MBB, MI, DL, get(X86::NOOP)); | 
|  | } | 
|  |  | 
|  | /// Return the noop instruction to use for a noop. | 
|  | MCInst X86InstrInfo::getNop() const { | 
|  | MCInst Nop; | 
|  | Nop.setOpcode(X86::NOOP); | 
|  | return Nop; | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isHighLatencyDef(int opc) const { | 
|  | switch (opc) { | 
|  | default: | 
|  | return false; | 
|  | case X86::DIVPDrm: | 
|  | case X86::DIVPDrr: | 
|  | case X86::DIVPSrm: | 
|  | case X86::DIVPSrr: | 
|  | case X86::DIVSDrm: | 
|  | case X86::DIVSDrm_Int: | 
|  | case X86::DIVSDrr: | 
|  | case X86::DIVSDrr_Int: | 
|  | case X86::DIVSSrm: | 
|  | case X86::DIVSSrm_Int: | 
|  | case X86::DIVSSrr: | 
|  | case X86::DIVSSrr_Int: | 
|  | case X86::SQRTPDm: | 
|  | case X86::SQRTPDr: | 
|  | case X86::SQRTPSm: | 
|  | case X86::SQRTPSr: | 
|  | case X86::SQRTSDm: | 
|  | case X86::SQRTSDm_Int: | 
|  | case X86::SQRTSDr: | 
|  | case X86::SQRTSDr_Int: | 
|  | case X86::SQRTSSm: | 
|  | case X86::SQRTSSm_Int: | 
|  | case X86::SQRTSSr: | 
|  | case X86::SQRTSSr_Int: | 
|  | // AVX instructions with high latency | 
|  | case X86::VDIVPDrm: | 
|  | case X86::VDIVPDrr: | 
|  | case X86::VDIVPDYrm: | 
|  | case X86::VDIVPDYrr: | 
|  | case X86::VDIVPSrm: | 
|  | case X86::VDIVPSrr: | 
|  | case X86::VDIVPSYrm: | 
|  | case X86::VDIVPSYrr: | 
|  | case X86::VDIVSDrm: | 
|  | case X86::VDIVSDrm_Int: | 
|  | case X86::VDIVSDrr: | 
|  | case X86::VDIVSDrr_Int: | 
|  | case X86::VDIVSSrm: | 
|  | case X86::VDIVSSrm_Int: | 
|  | case X86::VDIVSSrr: | 
|  | case X86::VDIVSSrr_Int: | 
|  | case X86::VSQRTPDm: | 
|  | case X86::VSQRTPDr: | 
|  | case X86::VSQRTPDYm: | 
|  | case X86::VSQRTPDYr: | 
|  | case X86::VSQRTPSm: | 
|  | case X86::VSQRTPSr: | 
|  | case X86::VSQRTPSYm: | 
|  | case X86::VSQRTPSYr: | 
|  | case X86::VSQRTSDm: | 
|  | case X86::VSQRTSDm_Int: | 
|  | case X86::VSQRTSDr: | 
|  | case X86::VSQRTSDr_Int: | 
|  | case X86::VSQRTSSm: | 
|  | case X86::VSQRTSSm_Int: | 
|  | case X86::VSQRTSSr: | 
|  | case X86::VSQRTSSr_Int: | 
|  | // AVX512 instructions with high latency | 
|  | case X86::VDIVPDZ128rm: | 
|  | case X86::VDIVPDZ128rmb: | 
|  | case X86::VDIVPDZ128rmbk: | 
|  | case X86::VDIVPDZ128rmbkz: | 
|  | case X86::VDIVPDZ128rmk: | 
|  | case X86::VDIVPDZ128rmkz: | 
|  | case X86::VDIVPDZ128rr: | 
|  | case X86::VDIVPDZ128rrk: | 
|  | case X86::VDIVPDZ128rrkz: | 
|  | case X86::VDIVPDZ256rm: | 
|  | case X86::VDIVPDZ256rmb: | 
|  | case X86::VDIVPDZ256rmbk: | 
|  | case X86::VDIVPDZ256rmbkz: | 
|  | case X86::VDIVPDZ256rmk: | 
|  | case X86::VDIVPDZ256rmkz: | 
|  | case X86::VDIVPDZ256rr: | 
|  | case X86::VDIVPDZ256rrk: | 
|  | case X86::VDIVPDZ256rrkz: | 
|  | case X86::VDIVPDZrrb: | 
|  | case X86::VDIVPDZrrbk: | 
|  | case X86::VDIVPDZrrbkz: | 
|  | case X86::VDIVPDZrm: | 
|  | case X86::VDIVPDZrmb: | 
|  | case X86::VDIVPDZrmbk: | 
|  | case X86::VDIVPDZrmbkz: | 
|  | case X86::VDIVPDZrmk: | 
|  | case X86::VDIVPDZrmkz: | 
|  | case X86::VDIVPDZrr: | 
|  | case X86::VDIVPDZrrk: | 
|  | case X86::VDIVPDZrrkz: | 
|  | case X86::VDIVPSZ128rm: | 
|  | case X86::VDIVPSZ128rmb: | 
|  | case X86::VDIVPSZ128rmbk: | 
|  | case X86::VDIVPSZ128rmbkz: | 
|  | case X86::VDIVPSZ128rmk: | 
|  | case X86::VDIVPSZ128rmkz: | 
|  | case X86::VDIVPSZ128rr: | 
|  | case X86::VDIVPSZ128rrk: | 
|  | case X86::VDIVPSZ128rrkz: | 
|  | case X86::VDIVPSZ256rm: | 
|  | case X86::VDIVPSZ256rmb: | 
|  | case X86::VDIVPSZ256rmbk: | 
|  | case X86::VDIVPSZ256rmbkz: | 
|  | case X86::VDIVPSZ256rmk: | 
|  | case X86::VDIVPSZ256rmkz: | 
|  | case X86::VDIVPSZ256rr: | 
|  | case X86::VDIVPSZ256rrk: | 
|  | case X86::VDIVPSZ256rrkz: | 
|  | case X86::VDIVPSZrrb: | 
|  | case X86::VDIVPSZrrbk: | 
|  | case X86::VDIVPSZrrbkz: | 
|  | case X86::VDIVPSZrm: | 
|  | case X86::VDIVPSZrmb: | 
|  | case X86::VDIVPSZrmbk: | 
|  | case X86::VDIVPSZrmbkz: | 
|  | case X86::VDIVPSZrmk: | 
|  | case X86::VDIVPSZrmkz: | 
|  | case X86::VDIVPSZrr: | 
|  | case X86::VDIVPSZrrk: | 
|  | case X86::VDIVPSZrrkz: | 
|  | case X86::VDIVSDZrm: | 
|  | case X86::VDIVSDZrr: | 
|  | case X86::VDIVSDZrm_Int: | 
|  | case X86::VDIVSDZrmk_Int: | 
|  | case X86::VDIVSDZrmkz_Int: | 
|  | case X86::VDIVSDZrr_Int: | 
|  | case X86::VDIVSDZrrk_Int: | 
|  | case X86::VDIVSDZrrkz_Int: | 
|  | case X86::VDIVSDZrrb_Int: | 
|  | case X86::VDIVSDZrrbk_Int: | 
|  | case X86::VDIVSDZrrbkz_Int: | 
|  | case X86::VDIVSSZrm: | 
|  | case X86::VDIVSSZrr: | 
|  | case X86::VDIVSSZrm_Int: | 
|  | case X86::VDIVSSZrmk_Int: | 
|  | case X86::VDIVSSZrmkz_Int: | 
|  | case X86::VDIVSSZrr_Int: | 
|  | case X86::VDIVSSZrrk_Int: | 
|  | case X86::VDIVSSZrrkz_Int: | 
|  | case X86::VDIVSSZrrb_Int: | 
|  | case X86::VDIVSSZrrbk_Int: | 
|  | case X86::VDIVSSZrrbkz_Int: | 
|  | case X86::VSQRTPDZ128m: | 
|  | case X86::VSQRTPDZ128mb: | 
|  | case X86::VSQRTPDZ128mbk: | 
|  | case X86::VSQRTPDZ128mbkz: | 
|  | case X86::VSQRTPDZ128mk: | 
|  | case X86::VSQRTPDZ128mkz: | 
|  | case X86::VSQRTPDZ128r: | 
|  | case X86::VSQRTPDZ128rk: | 
|  | case X86::VSQRTPDZ128rkz: | 
|  | case X86::VSQRTPDZ256m: | 
|  | case X86::VSQRTPDZ256mb: | 
|  | case X86::VSQRTPDZ256mbk: | 
|  | case X86::VSQRTPDZ256mbkz: | 
|  | case X86::VSQRTPDZ256mk: | 
|  | case X86::VSQRTPDZ256mkz: | 
|  | case X86::VSQRTPDZ256r: | 
|  | case X86::VSQRTPDZ256rk: | 
|  | case X86::VSQRTPDZ256rkz: | 
|  | case X86::VSQRTPDZm: | 
|  | case X86::VSQRTPDZmb: | 
|  | case X86::VSQRTPDZmbk: | 
|  | case X86::VSQRTPDZmbkz: | 
|  | case X86::VSQRTPDZmk: | 
|  | case X86::VSQRTPDZmkz: | 
|  | case X86::VSQRTPDZr: | 
|  | case X86::VSQRTPDZrb: | 
|  | case X86::VSQRTPDZrbk: | 
|  | case X86::VSQRTPDZrbkz: | 
|  | case X86::VSQRTPDZrk: | 
|  | case X86::VSQRTPDZrkz: | 
|  | case X86::VSQRTPSZ128m: | 
|  | case X86::VSQRTPSZ128mb: | 
|  | case X86::VSQRTPSZ128mbk: | 
|  | case X86::VSQRTPSZ128mbkz: | 
|  | case X86::VSQRTPSZ128mk: | 
|  | case X86::VSQRTPSZ128mkz: | 
|  | case X86::VSQRTPSZ128r: | 
|  | case X86::VSQRTPSZ128rk: | 
|  | case X86::VSQRTPSZ128rkz: | 
|  | case X86::VSQRTPSZ256m: | 
|  | case X86::VSQRTPSZ256mb: | 
|  | case X86::VSQRTPSZ256mbk: | 
|  | case X86::VSQRTPSZ256mbkz: | 
|  | case X86::VSQRTPSZ256mk: | 
|  | case X86::VSQRTPSZ256mkz: | 
|  | case X86::VSQRTPSZ256r: | 
|  | case X86::VSQRTPSZ256rk: | 
|  | case X86::VSQRTPSZ256rkz: | 
|  | case X86::VSQRTPSZm: | 
|  | case X86::VSQRTPSZmb: | 
|  | case X86::VSQRTPSZmbk: | 
|  | case X86::VSQRTPSZmbkz: | 
|  | case X86::VSQRTPSZmk: | 
|  | case X86::VSQRTPSZmkz: | 
|  | case X86::VSQRTPSZr: | 
|  | case X86::VSQRTPSZrb: | 
|  | case X86::VSQRTPSZrbk: | 
|  | case X86::VSQRTPSZrbkz: | 
|  | case X86::VSQRTPSZrk: | 
|  | case X86::VSQRTPSZrkz: | 
|  | case X86::VSQRTSDZm: | 
|  | case X86::VSQRTSDZm_Int: | 
|  | case X86::VSQRTSDZmk_Int: | 
|  | case X86::VSQRTSDZmkz_Int: | 
|  | case X86::VSQRTSDZr: | 
|  | case X86::VSQRTSDZr_Int: | 
|  | case X86::VSQRTSDZrk_Int: | 
|  | case X86::VSQRTSDZrkz_Int: | 
|  | case X86::VSQRTSDZrb_Int: | 
|  | case X86::VSQRTSDZrbk_Int: | 
|  | case X86::VSQRTSDZrbkz_Int: | 
|  | case X86::VSQRTSSZm: | 
|  | case X86::VSQRTSSZm_Int: | 
|  | case X86::VSQRTSSZmk_Int: | 
|  | case X86::VSQRTSSZmkz_Int: | 
|  | case X86::VSQRTSSZr: | 
|  | case X86::VSQRTSSZr_Int: | 
|  | case X86::VSQRTSSZrk_Int: | 
|  | case X86::VSQRTSSZrkz_Int: | 
|  | case X86::VSQRTSSZrb_Int: | 
|  | case X86::VSQRTSSZrbk_Int: | 
|  | case X86::VSQRTSSZrbkz_Int: | 
|  |  | 
|  | case X86::VGATHERDPDYrm: | 
|  | case X86::VGATHERDPDZ128rm: | 
|  | case X86::VGATHERDPDZ256rm: | 
|  | case X86::VGATHERDPDZrm: | 
|  | case X86::VGATHERDPDrm: | 
|  | case X86::VGATHERDPSYrm: | 
|  | case X86::VGATHERDPSZ128rm: | 
|  | case X86::VGATHERDPSZ256rm: | 
|  | case X86::VGATHERDPSZrm: | 
|  | case X86::VGATHERDPSrm: | 
|  | case X86::VGATHERPF0DPDm: | 
|  | case X86::VGATHERPF0DPSm: | 
|  | case X86::VGATHERPF0QPDm: | 
|  | case X86::VGATHERPF0QPSm: | 
|  | case X86::VGATHERPF1DPDm: | 
|  | case X86::VGATHERPF1DPSm: | 
|  | case X86::VGATHERPF1QPDm: | 
|  | case X86::VGATHERPF1QPSm: | 
|  | case X86::VGATHERQPDYrm: | 
|  | case X86::VGATHERQPDZ128rm: | 
|  | case X86::VGATHERQPDZ256rm: | 
|  | case X86::VGATHERQPDZrm: | 
|  | case X86::VGATHERQPDrm: | 
|  | case X86::VGATHERQPSYrm: | 
|  | case X86::VGATHERQPSZ128rm: | 
|  | case X86::VGATHERQPSZ256rm: | 
|  | case X86::VGATHERQPSZrm: | 
|  | case X86::VGATHERQPSrm: | 
|  | case X86::VPGATHERDDYrm: | 
|  | case X86::VPGATHERDDZ128rm: | 
|  | case X86::VPGATHERDDZ256rm: | 
|  | case X86::VPGATHERDDZrm: | 
|  | case X86::VPGATHERDDrm: | 
|  | case X86::VPGATHERDQYrm: | 
|  | case X86::VPGATHERDQZ128rm: | 
|  | case X86::VPGATHERDQZ256rm: | 
|  | case X86::VPGATHERDQZrm: | 
|  | case X86::VPGATHERDQrm: | 
|  | case X86::VPGATHERQDYrm: | 
|  | case X86::VPGATHERQDZ128rm: | 
|  | case X86::VPGATHERQDZ256rm: | 
|  | case X86::VPGATHERQDZrm: | 
|  | case X86::VPGATHERQDrm: | 
|  | case X86::VPGATHERQQYrm: | 
|  | case X86::VPGATHERQQZ128rm: | 
|  | case X86::VPGATHERQQZ256rm: | 
|  | case X86::VPGATHERQQZrm: | 
|  | case X86::VPGATHERQQrm: | 
|  | case X86::VSCATTERDPDZ128mr: | 
|  | case X86::VSCATTERDPDZ256mr: | 
|  | case X86::VSCATTERDPDZmr: | 
|  | case X86::VSCATTERDPSZ128mr: | 
|  | case X86::VSCATTERDPSZ256mr: | 
|  | case X86::VSCATTERDPSZmr: | 
|  | case X86::VSCATTERPF0DPDm: | 
|  | case X86::VSCATTERPF0DPSm: | 
|  | case X86::VSCATTERPF0QPDm: | 
|  | case X86::VSCATTERPF0QPSm: | 
|  | case X86::VSCATTERPF1DPDm: | 
|  | case X86::VSCATTERPF1DPSm: | 
|  | case X86::VSCATTERPF1QPDm: | 
|  | case X86::VSCATTERPF1QPSm: | 
|  | case X86::VSCATTERQPDZ128mr: | 
|  | case X86::VSCATTERQPDZ256mr: | 
|  | case X86::VSCATTERQPDZmr: | 
|  | case X86::VSCATTERQPSZ128mr: | 
|  | case X86::VSCATTERQPSZ256mr: | 
|  | case X86::VSCATTERQPSZmr: | 
|  | case X86::VPSCATTERDDZ128mr: | 
|  | case X86::VPSCATTERDDZ256mr: | 
|  | case X86::VPSCATTERDDZmr: | 
|  | case X86::VPSCATTERDQZ128mr: | 
|  | case X86::VPSCATTERDQZ256mr: | 
|  | case X86::VPSCATTERDQZmr: | 
|  | case X86::VPSCATTERQDZ128mr: | 
|  | case X86::VPSCATTERQDZ256mr: | 
|  | case X86::VPSCATTERQDZmr: | 
|  | case X86::VPSCATTERQQZ128mr: | 
|  | case X86::VPSCATTERQQZ256mr: | 
|  | case X86::VPSCATTERQQZmr: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const MachineInstr &DefMI, | 
|  | unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const { | 
|  | return isHighLatencyDef(DefMI.getOpcode()); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, | 
|  | const MachineBasicBlock *MBB) const { | 
|  | assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && | 
|  | Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); | 
|  |  | 
|  | // Integer binary math/logic instructions have a third source operand: | 
|  | // the EFLAGS register. That operand must be both defined here and never | 
|  | // used; ie, it must be dead. If the EFLAGS operand is live, then we can | 
|  | // not change anything because rearranging the operands could affect other | 
|  | // instructions that depend on the exact status flags (zero, sign, etc.) | 
|  | // that are set by using these particular operands with this operation. | 
|  | const MachineOperand *FlagDef = | 
|  | Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  | assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?"); | 
|  | if (FlagDef && !FlagDef->isDead()) | 
|  | return false; | 
|  |  | 
|  | return TargetInstrInfo::hasReassociableOperands(Inst, MBB); | 
|  | } | 
|  |  | 
|  | // TODO: There are many more machine instruction opcodes to match: | 
|  | //       1. Other data types (integer, vectors) | 
|  | //       2. Other math / logic operations (xor, or) | 
|  | //       3. Other forms of the same operation (intrinsics and other variants) | 
|  | bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, | 
|  | bool Invert) const { | 
|  | if (Invert) | 
|  | return false; | 
|  | switch (Inst.getOpcode()) { | 
|  | CASE_ND(ADD8rr) | 
|  | CASE_ND(ADD16rr) | 
|  | CASE_ND(ADD32rr) | 
|  | CASE_ND(ADD64rr) | 
|  | CASE_ND(AND8rr) | 
|  | CASE_ND(AND16rr) | 
|  | CASE_ND(AND32rr) | 
|  | CASE_ND(AND64rr) | 
|  | CASE_ND(OR8rr) | 
|  | CASE_ND(OR16rr) | 
|  | CASE_ND(OR32rr) | 
|  | CASE_ND(OR64rr) | 
|  | CASE_ND(XOR8rr) | 
|  | CASE_ND(XOR16rr) | 
|  | CASE_ND(XOR32rr) | 
|  | CASE_ND(XOR64rr) | 
|  | CASE_ND(IMUL16rr) | 
|  | CASE_ND(IMUL32rr) | 
|  | CASE_ND(IMUL64rr) | 
|  | case X86::PANDrr: | 
|  | case X86::PORrr: | 
|  | case X86::PXORrr: | 
|  | case X86::ANDPDrr: | 
|  | case X86::ANDPSrr: | 
|  | case X86::ORPDrr: | 
|  | case X86::ORPSrr: | 
|  | case X86::XORPDrr: | 
|  | case X86::XORPSrr: | 
|  | case X86::PADDBrr: | 
|  | case X86::PADDWrr: | 
|  | case X86::PADDDrr: | 
|  | case X86::PADDQrr: | 
|  | case X86::PMULLWrr: | 
|  | case X86::PMULLDrr: | 
|  | case X86::PMAXSBrr: | 
|  | case X86::PMAXSDrr: | 
|  | case X86::PMAXSWrr: | 
|  | case X86::PMAXUBrr: | 
|  | case X86::PMAXUDrr: | 
|  | case X86::PMAXUWrr: | 
|  | case X86::PMINSBrr: | 
|  | case X86::PMINSDrr: | 
|  | case X86::PMINSWrr: | 
|  | case X86::PMINUBrr: | 
|  | case X86::PMINUDrr: | 
|  | case X86::PMINUWrr: | 
|  | case X86::VPANDrr: | 
|  | case X86::VPANDYrr: | 
|  | case X86::VPANDDZ128rr: | 
|  | case X86::VPANDDZ256rr: | 
|  | case X86::VPANDDZrr: | 
|  | case X86::VPANDQZ128rr: | 
|  | case X86::VPANDQZ256rr: | 
|  | case X86::VPANDQZrr: | 
|  | case X86::VPORrr: | 
|  | case X86::VPORYrr: | 
|  | case X86::VPORDZ128rr: | 
|  | case X86::VPORDZ256rr: | 
|  | case X86::VPORDZrr: | 
|  | case X86::VPORQZ128rr: | 
|  | case X86::VPORQZ256rr: | 
|  | case X86::VPORQZrr: | 
|  | case X86::VPXORrr: | 
|  | case X86::VPXORYrr: | 
|  | case X86::VPXORDZ128rr: | 
|  | case X86::VPXORDZ256rr: | 
|  | case X86::VPXORDZrr: | 
|  | case X86::VPXORQZ128rr: | 
|  | case X86::VPXORQZ256rr: | 
|  | case X86::VPXORQZrr: | 
|  | case X86::VANDPDrr: | 
|  | case X86::VANDPSrr: | 
|  | case X86::VANDPDYrr: | 
|  | case X86::VANDPSYrr: | 
|  | case X86::VANDPDZ128rr: | 
|  | case X86::VANDPSZ128rr: | 
|  | case X86::VANDPDZ256rr: | 
|  | case X86::VANDPSZ256rr: | 
|  | case X86::VANDPDZrr: | 
|  | case X86::VANDPSZrr: | 
|  | case X86::VORPDrr: | 
|  | case X86::VORPSrr: | 
|  | case X86::VORPDYrr: | 
|  | case X86::VORPSYrr: | 
|  | case X86::VORPDZ128rr: | 
|  | case X86::VORPSZ128rr: | 
|  | case X86::VORPDZ256rr: | 
|  | case X86::VORPSZ256rr: | 
|  | case X86::VORPDZrr: | 
|  | case X86::VORPSZrr: | 
|  | case X86::VXORPDrr: | 
|  | case X86::VXORPSrr: | 
|  | case X86::VXORPDYrr: | 
|  | case X86::VXORPSYrr: | 
|  | case X86::VXORPDZ128rr: | 
|  | case X86::VXORPSZ128rr: | 
|  | case X86::VXORPDZ256rr: | 
|  | case X86::VXORPSZ256rr: | 
|  | case X86::VXORPDZrr: | 
|  | case X86::VXORPSZrr: | 
|  | case X86::KADDBkk: | 
|  | case X86::KADDWkk: | 
|  | case X86::KADDDkk: | 
|  | case X86::KADDQkk: | 
|  | case X86::KANDBkk: | 
|  | case X86::KANDWkk: | 
|  | case X86::KANDDkk: | 
|  | case X86::KANDQkk: | 
|  | case X86::KORBkk: | 
|  | case X86::KORWkk: | 
|  | case X86::KORDkk: | 
|  | case X86::KORQkk: | 
|  | case X86::KXORBkk: | 
|  | case X86::KXORWkk: | 
|  | case X86::KXORDkk: | 
|  | case X86::KXORQkk: | 
|  | case X86::VPADDBrr: | 
|  | case X86::VPADDWrr: | 
|  | case X86::VPADDDrr: | 
|  | case X86::VPADDQrr: | 
|  | case X86::VPADDBYrr: | 
|  | case X86::VPADDWYrr: | 
|  | case X86::VPADDDYrr: | 
|  | case X86::VPADDQYrr: | 
|  | case X86::VPADDBZ128rr: | 
|  | case X86::VPADDWZ128rr: | 
|  | case X86::VPADDDZ128rr: | 
|  | case X86::VPADDQZ128rr: | 
|  | case X86::VPADDBZ256rr: | 
|  | case X86::VPADDWZ256rr: | 
|  | case X86::VPADDDZ256rr: | 
|  | case X86::VPADDQZ256rr: | 
|  | case X86::VPADDBZrr: | 
|  | case X86::VPADDWZrr: | 
|  | case X86::VPADDDZrr: | 
|  | case X86::VPADDQZrr: | 
|  | case X86::VPMULLWrr: | 
|  | case X86::VPMULLWYrr: | 
|  | case X86::VPMULLWZ128rr: | 
|  | case X86::VPMULLWZ256rr: | 
|  | case X86::VPMULLWZrr: | 
|  | case X86::VPMULLDrr: | 
|  | case X86::VPMULLDYrr: | 
|  | case X86::VPMULLDZ128rr: | 
|  | case X86::VPMULLDZ256rr: | 
|  | case X86::VPMULLDZrr: | 
|  | case X86::VPMULLQZ128rr: | 
|  | case X86::VPMULLQZ256rr: | 
|  | case X86::VPMULLQZrr: | 
|  | case X86::VPMAXSBrr: | 
|  | case X86::VPMAXSBYrr: | 
|  | case X86::VPMAXSBZ128rr: | 
|  | case X86::VPMAXSBZ256rr: | 
|  | case X86::VPMAXSBZrr: | 
|  | case X86::VPMAXSDrr: | 
|  | case X86::VPMAXSDYrr: | 
|  | case X86::VPMAXSDZ128rr: | 
|  | case X86::VPMAXSDZ256rr: | 
|  | case X86::VPMAXSDZrr: | 
|  | case X86::VPMAXSQZ128rr: | 
|  | case X86::VPMAXSQZ256rr: | 
|  | case X86::VPMAXSQZrr: | 
|  | case X86::VPMAXSWrr: | 
|  | case X86::VPMAXSWYrr: | 
|  | case X86::VPMAXSWZ128rr: | 
|  | case X86::VPMAXSWZ256rr: | 
|  | case X86::VPMAXSWZrr: | 
|  | case X86::VPMAXUBrr: | 
|  | case X86::VPMAXUBYrr: | 
|  | case X86::VPMAXUBZ128rr: | 
|  | case X86::VPMAXUBZ256rr: | 
|  | case X86::VPMAXUBZrr: | 
|  | case X86::VPMAXUDrr: | 
|  | case X86::VPMAXUDYrr: | 
|  | case X86::VPMAXUDZ128rr: | 
|  | case X86::VPMAXUDZ256rr: | 
|  | case X86::VPMAXUDZrr: | 
|  | case X86::VPMAXUQZ128rr: | 
|  | case X86::VPMAXUQZ256rr: | 
|  | case X86::VPMAXUQZrr: | 
|  | case X86::VPMAXUWrr: | 
|  | case X86::VPMAXUWYrr: | 
|  | case X86::VPMAXUWZ128rr: | 
|  | case X86::VPMAXUWZ256rr: | 
|  | case X86::VPMAXUWZrr: | 
|  | case X86::VPMINSBrr: | 
|  | case X86::VPMINSBYrr: | 
|  | case X86::VPMINSBZ128rr: | 
|  | case X86::VPMINSBZ256rr: | 
|  | case X86::VPMINSBZrr: | 
|  | case X86::VPMINSDrr: | 
|  | case X86::VPMINSDYrr: | 
|  | case X86::VPMINSDZ128rr: | 
|  | case X86::VPMINSDZ256rr: | 
|  | case X86::VPMINSDZrr: | 
|  | case X86::VPMINSQZ128rr: | 
|  | case X86::VPMINSQZ256rr: | 
|  | case X86::VPMINSQZrr: | 
|  | case X86::VPMINSWrr: | 
|  | case X86::VPMINSWYrr: | 
|  | case X86::VPMINSWZ128rr: | 
|  | case X86::VPMINSWZ256rr: | 
|  | case X86::VPMINSWZrr: | 
|  | case X86::VPMINUBrr: | 
|  | case X86::VPMINUBYrr: | 
|  | case X86::VPMINUBZ128rr: | 
|  | case X86::VPMINUBZ256rr: | 
|  | case X86::VPMINUBZrr: | 
|  | case X86::VPMINUDrr: | 
|  | case X86::VPMINUDYrr: | 
|  | case X86::VPMINUDZ128rr: | 
|  | case X86::VPMINUDZ256rr: | 
|  | case X86::VPMINUDZrr: | 
|  | case X86::VPMINUQZ128rr: | 
|  | case X86::VPMINUQZ256rr: | 
|  | case X86::VPMINUQZrr: | 
|  | case X86::VPMINUWrr: | 
|  | case X86::VPMINUWYrr: | 
|  | case X86::VPMINUWZ128rr: | 
|  | case X86::VPMINUWZ256rr: | 
|  | case X86::VPMINUWZrr: | 
|  | // Normal min/max instructions are not commutative because of NaN and signed | 
|  | // zero semantics, but these are. Thus, there's no need to check for global | 
|  | // relaxed math; the instructions themselves have the properties we need. | 
|  | case X86::MAXCPDrr: | 
|  | case X86::MAXCPSrr: | 
|  | case X86::MAXCSDrr: | 
|  | case X86::MAXCSSrr: | 
|  | case X86::MINCPDrr: | 
|  | case X86::MINCPSrr: | 
|  | case X86::MINCSDrr: | 
|  | case X86::MINCSSrr: | 
|  | case X86::VMAXCPDrr: | 
|  | case X86::VMAXCPSrr: | 
|  | case X86::VMAXCPDYrr: | 
|  | case X86::VMAXCPSYrr: | 
|  | case X86::VMAXCPDZ128rr: | 
|  | case X86::VMAXCPSZ128rr: | 
|  | case X86::VMAXCPDZ256rr: | 
|  | case X86::VMAXCPSZ256rr: | 
|  | case X86::VMAXCPDZrr: | 
|  | case X86::VMAXCPSZrr: | 
|  | case X86::VMAXCSDrr: | 
|  | case X86::VMAXCSSrr: | 
|  | case X86::VMAXCSDZrr: | 
|  | case X86::VMAXCSSZrr: | 
|  | case X86::VMINCPDrr: | 
|  | case X86::VMINCPSrr: | 
|  | case X86::VMINCPDYrr: | 
|  | case X86::VMINCPSYrr: | 
|  | case X86::VMINCPDZ128rr: | 
|  | case X86::VMINCPSZ128rr: | 
|  | case X86::VMINCPDZ256rr: | 
|  | case X86::VMINCPSZ256rr: | 
|  | case X86::VMINCPDZrr: | 
|  | case X86::VMINCPSZrr: | 
|  | case X86::VMINCSDrr: | 
|  | case X86::VMINCSSrr: | 
|  | case X86::VMINCSDZrr: | 
|  | case X86::VMINCSSZrr: | 
|  | case X86::VMAXCPHZ128rr: | 
|  | case X86::VMAXCPHZ256rr: | 
|  | case X86::VMAXCPHZrr: | 
|  | case X86::VMAXCSHZrr: | 
|  | case X86::VMINCPHZ128rr: | 
|  | case X86::VMINCPHZ256rr: | 
|  | case X86::VMINCPHZrr: | 
|  | case X86::VMINCSHZrr: | 
|  | return true; | 
|  | case X86::ADDPDrr: | 
|  | case X86::ADDPSrr: | 
|  | case X86::ADDSDrr: | 
|  | case X86::ADDSSrr: | 
|  | case X86::MULPDrr: | 
|  | case X86::MULPSrr: | 
|  | case X86::MULSDrr: | 
|  | case X86::MULSSrr: | 
|  | case X86::VADDPDrr: | 
|  | case X86::VADDPSrr: | 
|  | case X86::VADDPDYrr: | 
|  | case X86::VADDPSYrr: | 
|  | case X86::VADDPDZ128rr: | 
|  | case X86::VADDPSZ128rr: | 
|  | case X86::VADDPDZ256rr: | 
|  | case X86::VADDPSZ256rr: | 
|  | case X86::VADDPDZrr: | 
|  | case X86::VADDPSZrr: | 
|  | case X86::VADDSDrr: | 
|  | case X86::VADDSSrr: | 
|  | case X86::VADDSDZrr: | 
|  | case X86::VADDSSZrr: | 
|  | case X86::VMULPDrr: | 
|  | case X86::VMULPSrr: | 
|  | case X86::VMULPDYrr: | 
|  | case X86::VMULPSYrr: | 
|  | case X86::VMULPDZ128rr: | 
|  | case X86::VMULPSZ128rr: | 
|  | case X86::VMULPDZ256rr: | 
|  | case X86::VMULPSZ256rr: | 
|  | case X86::VMULPDZrr: | 
|  | case X86::VMULPSZrr: | 
|  | case X86::VMULSDrr: | 
|  | case X86::VMULSSrr: | 
|  | case X86::VMULSDZrr: | 
|  | case X86::VMULSSZrr: | 
|  | case X86::VADDPHZ128rr: | 
|  | case X86::VADDPHZ256rr: | 
|  | case X86::VADDPHZrr: | 
|  | case X86::VADDSHZrr: | 
|  | case X86::VMULPHZ128rr: | 
|  | case X86::VMULPHZ256rr: | 
|  | case X86::VMULPHZrr: | 
|  | case X86::VMULSHZrr: | 
|  | return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && | 
|  | Inst.getFlag(MachineInstr::MIFlag::FmNsz); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If \p DescribedReg overlaps with the MOVrr instruction's destination | 
|  | /// register then, if possible, describe the value in terms of the source | 
|  | /// register. | 
|  | static std::optional<ParamLoadedValue> | 
|  | describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | Register DestReg = MI.getOperand(0).getReg(); | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  |  | 
|  | auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); | 
|  |  | 
|  | // If the described register is the destination, just return the source. | 
|  | if (DestReg == DescribedReg) | 
|  | return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); | 
|  |  | 
|  | // If the described register is a sub-register of the destination register, | 
|  | // then pick out the source register's corresponding sub-register. | 
|  | if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { | 
|  | Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); | 
|  | return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); | 
|  | } | 
|  |  | 
|  | // The remaining case to consider is when the described register is a | 
|  | // super-register of the destination register. MOV8rr and MOV16rr does not | 
|  | // write to any of the other bytes in the register, meaning that we'd have to | 
|  | // describe the value using a combination of the source register and the | 
|  | // non-overlapping bits in the described register, which is not currently | 
|  | // possible. | 
|  | if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || | 
|  | !TRI->isSuperRegister(DestReg, DescribedReg)) | 
|  | return std::nullopt; | 
|  |  | 
|  | assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); | 
|  | return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); | 
|  | } | 
|  |  | 
|  | std::optional<ParamLoadedValue> | 
|  | X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { | 
|  | const MachineOperand *Op = nullptr; | 
|  | DIExpression *Expr = nullptr; | 
|  |  | 
|  | const TargetRegisterInfo *TRI = &getRegisterInfo(); | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | case X86::LEA32r: | 
|  | case X86::LEA64r: | 
|  | case X86::LEA64_32r: { | 
|  | // We may need to describe a 64-bit parameter with a 32-bit LEA. | 
|  | if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) | 
|  | return std::nullopt; | 
|  |  | 
|  | // Operand 4 could be global address. For now we do not support | 
|  | // such situation. | 
|  | if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) | 
|  | return std::nullopt; | 
|  |  | 
|  | const MachineOperand &Op1 = MI.getOperand(1); | 
|  | const MachineOperand &Op2 = MI.getOperand(3); | 
|  | assert(Op2.isReg() && | 
|  | (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical())); | 
|  |  | 
|  | // Omit situations like: | 
|  | // %rsi = lea %rsi, 4, ... | 
|  | if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || | 
|  | Op2.getReg() == MI.getOperand(0).getReg()) | 
|  | return std::nullopt; | 
|  | else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && | 
|  | TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || | 
|  | (Op2.getReg() != X86::NoRegister && | 
|  | TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) | 
|  | return std::nullopt; | 
|  |  | 
|  | int64_t Coef = MI.getOperand(2).getImm(); | 
|  | int64_t Offset = MI.getOperand(4).getImm(); | 
|  | SmallVector<uint64_t, 8> Ops; | 
|  |  | 
|  | if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { | 
|  | Op = &Op1; | 
|  | } else if (Op1.isFI()) | 
|  | Op = &Op1; | 
|  |  | 
|  | if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { | 
|  | Ops.push_back(dwarf::DW_OP_constu); | 
|  | Ops.push_back(Coef + 1); | 
|  | Ops.push_back(dwarf::DW_OP_mul); | 
|  | } else { | 
|  | if (Op && Op2.getReg() != X86::NoRegister) { | 
|  | int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); | 
|  | if (dwarfReg < 0) | 
|  | return std::nullopt; | 
|  | else if (dwarfReg < 32) { | 
|  | Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); | 
|  | Ops.push_back(0); | 
|  | } else { | 
|  | Ops.push_back(dwarf::DW_OP_bregx); | 
|  | Ops.push_back(dwarfReg); | 
|  | Ops.push_back(0); | 
|  | } | 
|  | } else if (!Op) { | 
|  | assert(Op2.getReg() != X86::NoRegister); | 
|  | Op = &Op2; | 
|  | } | 
|  |  | 
|  | if (Coef > 1) { | 
|  | assert(Op2.getReg() != X86::NoRegister); | 
|  | Ops.push_back(dwarf::DW_OP_constu); | 
|  | Ops.push_back(Coef); | 
|  | Ops.push_back(dwarf::DW_OP_mul); | 
|  | } | 
|  |  | 
|  | if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && | 
|  | Op2.getReg() != X86::NoRegister) { | 
|  | Ops.push_back(dwarf::DW_OP_plus); | 
|  | } | 
|  | } | 
|  |  | 
|  | DIExpression::appendOffset(Ops, Offset); | 
|  | Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); | 
|  |  | 
|  | return ParamLoadedValue(*Op, Expr); | 
|  | } | 
|  | case X86::MOV8ri: | 
|  | case X86::MOV16ri: | 
|  | // TODO: Handle MOV8ri and MOV16ri. | 
|  | return std::nullopt; | 
|  | case X86::MOV32ri: | 
|  | case X86::MOV64ri: | 
|  | case X86::MOV64ri32: | 
|  | // MOV32ri may be used for producing zero-extended 32-bit immediates in | 
|  | // 64-bit parameters, so we need to consider super-registers. | 
|  | if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) | 
|  | return std::nullopt; | 
|  | return ParamLoadedValue(MI.getOperand(1), Expr); | 
|  | case X86::MOV8rr: | 
|  | case X86::MOV16rr: | 
|  | case X86::MOV32rr: | 
|  | case X86::MOV64rr: | 
|  | return describeMOVrrLoadedValue(MI, Reg, TRI); | 
|  | case X86::XOR32rr: { | 
|  | // 64-bit parameters are zero-materialized using XOR32rr, so also consider | 
|  | // super-registers. | 
|  | if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) | 
|  | return std::nullopt; | 
|  | if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) | 
|  | return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); | 
|  | return std::nullopt; | 
|  | } | 
|  | case X86::MOVSX64rr32: { | 
|  | // We may need to describe the lower 32 bits of the MOVSX; for example, in | 
|  | // cases like this: | 
|  | // | 
|  | //  $ebx = [...] | 
|  | //  $rdi = MOVSX64rr32 $ebx | 
|  | //  $esi = MOV32rr $edi | 
|  | if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) | 
|  | return std::nullopt; | 
|  |  | 
|  | Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); | 
|  |  | 
|  | // If the described register is the destination register we need to | 
|  | // sign-extend the source register from 32 bits. The other case we handle | 
|  | // is when the described register is the 32-bit sub-register of the | 
|  | // destination register, in case we just need to return the source | 
|  | // register. | 
|  | if (Reg == MI.getOperand(0).getReg()) | 
|  | Expr = DIExpression::appendExt(Expr, 32, 64, true); | 
|  | else | 
|  | assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && | 
|  | "Unhandled sub-register case for MOVSX64rr32"); | 
|  |  | 
|  | return ParamLoadedValue(MI.getOperand(1), Expr); | 
|  | } | 
|  | default: | 
|  | assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); | 
|  | return TargetInstrInfo::describeLoadedValue(MI, Reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This is an architecture-specific helper function of reassociateOps. | 
|  | /// Set special operand attributes for new instructions after reassociation. | 
|  | void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, | 
|  | MachineInstr &OldMI2, | 
|  | MachineInstr &NewMI1, | 
|  | MachineInstr &NewMI2) const { | 
|  | // Integer instructions may define an implicit EFLAGS dest register operand. | 
|  | MachineOperand *OldFlagDef1 = | 
|  | OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  | MachineOperand *OldFlagDef2 = | 
|  | OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  |  | 
|  | assert(!OldFlagDef1 == !OldFlagDef2 && | 
|  | "Unexpected instruction type for reassociation"); | 
|  |  | 
|  | if (!OldFlagDef1 || !OldFlagDef2) | 
|  | return; | 
|  |  | 
|  | assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && | 
|  | "Must have dead EFLAGS operand in reassociable instruction"); | 
|  |  | 
|  | MachineOperand *NewFlagDef1 = | 
|  | NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  | MachineOperand *NewFlagDef2 = | 
|  | NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); | 
|  |  | 
|  | assert(NewFlagDef1 && NewFlagDef2 && | 
|  | "Unexpected operand in reassociable instruction"); | 
|  |  | 
|  | // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations | 
|  | // of this pass or other passes. The EFLAGS operands must be dead in these new | 
|  | // instructions because the EFLAGS operands in the original instructions must | 
|  | // be dead in order for reassociation to occur. | 
|  | NewFlagDef1->setIsDead(); | 
|  | NewFlagDef2->setIsDead(); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { | 
|  | return std::make_pair(TF, 0u); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { | 
|  | using namespace X86II; | 
|  | static const std::pair<unsigned, const char *> TargetFlags[] = { | 
|  | {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, | 
|  | {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, | 
|  | {MO_GOT, "x86-got"}, | 
|  | {MO_GOTOFF, "x86-gotoff"}, | 
|  | {MO_GOTPCREL, "x86-gotpcrel"}, | 
|  | {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"}, | 
|  | {MO_PLT, "x86-plt"}, | 
|  | {MO_TLSGD, "x86-tlsgd"}, | 
|  | {MO_TLSLD, "x86-tlsld"}, | 
|  | {MO_TLSLDM, "x86-tlsldm"}, | 
|  | {MO_GOTTPOFF, "x86-gottpoff"}, | 
|  | {MO_INDNTPOFF, "x86-indntpoff"}, | 
|  | {MO_TPOFF, "x86-tpoff"}, | 
|  | {MO_DTPOFF, "x86-dtpoff"}, | 
|  | {MO_NTPOFF, "x86-ntpoff"}, | 
|  | {MO_GOTNTPOFF, "x86-gotntpoff"}, | 
|  | {MO_DLLIMPORT, "x86-dllimport"}, | 
|  | {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, | 
|  | {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, | 
|  | {MO_TLVP, "x86-tlvp"}, | 
|  | {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, | 
|  | {MO_SECREL, "x86-secrel"}, | 
|  | {MO_COFFSTUB, "x86-coffstub"}}; | 
|  | return ArrayRef(TargetFlags); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Create Global Base Reg pass. This initializes the PIC | 
|  | /// global base register for x86-32. | 
|  | struct CGBR : public MachineFunctionPass { | 
|  | static char ID; | 
|  | CGBR() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | const X86TargetMachine *TM = | 
|  | static_cast<const X86TargetMachine *>(&MF.getTarget()); | 
|  | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); | 
|  |  | 
|  | // Only emit a global base reg in PIC mode. | 
|  | if (!TM->isPositionIndependent()) | 
|  | return false; | 
|  |  | 
|  | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | Register GlobalBaseReg = X86FI->getGlobalBaseReg(); | 
|  |  | 
|  | // If we didn't need a GlobalBaseReg, don't insert code. | 
|  | if (GlobalBaseReg == 0) | 
|  | return false; | 
|  |  | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF.front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | DebugLoc DL = FirstMBB.findDebugLoc(MBBI); | 
|  | MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | Register PC; | 
|  | if (STI.isPICStyleGOT()) | 
|  | PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); | 
|  | else | 
|  | PC = GlobalBaseReg; | 
|  |  | 
|  | if (STI.is64Bit()) { | 
|  | if (TM->getCodeModel() == CodeModel::Large) { | 
|  | // In the large code model, we are aiming for this code, though the | 
|  | // register allocation may vary: | 
|  | //   leaq .LN$pb(%rip), %rax | 
|  | //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx | 
|  | //   addq %rcx, %rax | 
|  | // RAX now holds address of _GLOBAL_OFFSET_TABLE_. | 
|  | Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); | 
|  | Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addSym(MF.getPICBaseSymbol()) | 
|  | .addReg(0); | 
|  | std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | 
|  | X86II::MO_PIC_BASE_OFFSET); | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) | 
|  | .addReg(PBReg, RegState::Kill) | 
|  | .addReg(GOTReg, RegState::Kill); | 
|  | } else { | 
|  | // In other code models, use a RIP-relative LEA to materialize the | 
|  | // GOT. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) | 
|  | .addReg(X86::RIP) | 
|  | .addImm(0) | 
|  | .addReg(0) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") | 
|  | .addReg(0); | 
|  | } | 
|  | } else { | 
|  | // Operand of MovePCtoStack is completely ignored by asm printer. It's | 
|  | // only used in JIT code emission as displacement to pc. | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); | 
|  |  | 
|  | // If we're using vanilla 'GOT' PIC style, we should use relative | 
|  | // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. | 
|  | if (STI.isPICStyleGOT()) { | 
|  | // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], | 
|  | // %some_register | 
|  | BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) | 
|  | .addReg(PC) | 
|  | .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", | 
|  | X86II::MO_GOT_ABSOLUTE_ADDRESS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "X86 PIC Global Base Reg Initialization"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | char CGBR::ID = 0; | 
|  | FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); } | 
|  |  | 
|  | namespace { | 
|  | struct LDTLSCleanup : public MachineFunctionPass { | 
|  | static char ID; | 
|  | LDTLSCleanup() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | if (MFI->getNumLocalDynamicTLSAccesses() < 2) { | 
|  | // No point folding accesses if there isn't at least two. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineDominatorTree *DT = | 
|  | &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); | 
|  | return VisitNode(DT->getRootNode(), Register()); | 
|  | } | 
|  |  | 
|  | // Visit the dominator subtree rooted at Node in pre-order. | 
|  | // If TLSBaseAddrReg is non-null, then use that to replace any | 
|  | // TLS_base_addr instructions. Otherwise, create the register | 
|  | // when the first such instruction is seen, and then use it | 
|  | // as we encounter more instructions. | 
|  | bool VisitNode(MachineDomTreeNode *Node, Register TLSBaseAddrReg) { | 
|  | MachineBasicBlock *BB = Node->getBlock(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Traverse the current block. | 
|  | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | ++I) { | 
|  | switch (I->getOpcode()) { | 
|  | case X86::TLS_base_addr32: | 
|  | case X86::TLS_base_addr64: | 
|  | if (TLSBaseAddrReg) | 
|  | I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); | 
|  | else | 
|  | I = SetRegister(*I, &TLSBaseAddrReg); | 
|  | Changed = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Visit the children of this block in the dominator tree. | 
|  | for (auto &I : *Node) { | 
|  | Changed |= VisitNode(I, TLSBaseAddrReg); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Replace the TLS_base_addr instruction I with a copy from | 
|  | // TLSBaseAddrReg, returning the new instruction. | 
|  | MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, | 
|  | Register TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I.getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Insert a Copy from TLSBaseAddrReg to RAX/EAX. | 
|  | MachineInstr *Copy = | 
|  | BuildMI(*I.getParent(), I, I.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) | 
|  | .addReg(TLSBaseAddrReg); | 
|  |  | 
|  | // Erase the TLS_base_addr instruction. | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | // Create a virtual register in *TLSBaseAddrReg, and populate it by | 
|  | // inserting a copy instruction after I. Returns the new instruction. | 
|  | MachineInstr *SetRegister(MachineInstr &I, Register *TLSBaseAddrReg) { | 
|  | MachineFunction *MF = I.getParent()->getParent(); | 
|  | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); | 
|  | const bool is64Bit = STI.is64Bit(); | 
|  | const X86InstrInfo *TII = STI.getInstrInfo(); | 
|  |  | 
|  | // Create a virtual register for the TLS base address. | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  | *TLSBaseAddrReg = RegInfo.createVirtualRegister( | 
|  | is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); | 
|  |  | 
|  | // Insert a copy from RAX/EAX to TLSBaseAddrReg. | 
|  | MachineInstr *Next = I.getNextNode(); | 
|  | MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) | 
|  | .addReg(is64Bit ? X86::RAX : X86::EAX); | 
|  |  | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Local Dynamic TLS Access Clean-up"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<MachineDominatorTreeWrapperPass>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | char LDTLSCleanup::ID = 0; | 
|  | FunctionPass *llvm::createCleanupLocalDynamicTLSPass() { | 
|  | return new LDTLSCleanup(); | 
|  | } | 
|  |  | 
|  | /// Constants defining how certain sequences should be outlined. | 
|  | /// | 
|  | /// \p MachineOutlinerDefault implies that the function is called with a call | 
|  | /// instruction, and a return must be emitted for the outlined function frame. | 
|  | /// | 
|  | /// That is, | 
|  | /// | 
|  | /// I1                                 OUTLINED_FUNCTION: | 
|  | /// I2 --> call OUTLINED_FUNCTION       I1 | 
|  | /// I3                                  I2 | 
|  | ///                                     I3 | 
|  | ///                                     ret | 
|  | /// | 
|  | /// * Call construction overhead: 1 (call instruction) | 
|  | /// * Frame construction overhead: 1 (return instruction) | 
|  | /// | 
|  | /// \p MachineOutlinerTailCall implies that the function is being tail called. | 
|  | /// A jump is emitted instead of a call, and the return is already present in | 
|  | /// the outlined sequence. That is, | 
|  | /// | 
|  | /// I1                                 OUTLINED_FUNCTION: | 
|  | /// I2 --> jmp OUTLINED_FUNCTION       I1 | 
|  | /// ret                                I2 | 
|  | ///                                    ret | 
|  | /// | 
|  | /// * Call construction overhead: 1 (jump instruction) | 
|  | /// * Frame construction overhead: 0 (don't need to return) | 
|  | /// | 
|  | enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall }; | 
|  |  | 
|  | std::optional<std::unique_ptr<outliner::OutlinedFunction>> | 
|  | X86InstrInfo::getOutliningCandidateInfo( | 
|  | const MachineModuleInfo &MMI, | 
|  | std::vector<outliner::Candidate> &RepeatedSequenceLocs, | 
|  | unsigned MinRepeats) const { | 
|  | unsigned SequenceSize = 0; | 
|  | for (auto &MI : RepeatedSequenceLocs[0]) { | 
|  | // FIXME: x86 doesn't implement getInstSizeInBytes, so | 
|  | // we can't tell the cost.  Just assume each instruction | 
|  | // is one byte. | 
|  | if (MI.isDebugInstr() || MI.isKill()) | 
|  | continue; | 
|  | SequenceSize += 1; | 
|  | } | 
|  |  | 
|  | // We check to see if CFI Instructions are present, and if they are | 
|  | // we find the number of CFI Instructions in the candidates. | 
|  | unsigned CFICount = 0; | 
|  | for (auto &I : RepeatedSequenceLocs[0]) { | 
|  | if (I.isCFIInstruction()) | 
|  | CFICount++; | 
|  | } | 
|  |  | 
|  | // We compare the number of found CFI Instructions to  the number of CFI | 
|  | // instructions in the parent function for each candidate.  We must check this | 
|  | // since if we outline one of the CFI instructions in a function, we have to | 
|  | // outline them all for correctness. If we do not, the address offsets will be | 
|  | // incorrect between the two sections of the program. | 
|  | for (outliner::Candidate &C : RepeatedSequenceLocs) { | 
|  | std::vector<MCCFIInstruction> CFIInstructions = | 
|  | C.getMF()->getFrameInstructions(); | 
|  |  | 
|  | if (CFICount > 0 && CFICount != CFIInstructions.size()) | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // FIXME: Use real size in bytes for call and ret instructions. | 
|  | if (RepeatedSequenceLocs[0].back().isTerminator()) { | 
|  | for (outliner::Candidate &C : RepeatedSequenceLocs) | 
|  | C.setCallInfo(MachineOutlinerTailCall, 1); | 
|  |  | 
|  | return std::make_unique<outliner::OutlinedFunction>( | 
|  | RepeatedSequenceLocs, SequenceSize, | 
|  | 0,                      // Number of bytes to emit frame. | 
|  | MachineOutlinerTailCall // Type of frame. | 
|  | ); | 
|  | } | 
|  |  | 
|  | if (CFICount > 0) | 
|  | return std::nullopt; | 
|  |  | 
|  | for (outliner::Candidate &C : RepeatedSequenceLocs) | 
|  | C.setCallInfo(MachineOutlinerDefault, 1); | 
|  |  | 
|  | return std::make_unique<outliner::OutlinedFunction>( | 
|  | RepeatedSequenceLocs, SequenceSize, 1, MachineOutlinerDefault); | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::isFunctionSafeToOutlineFrom( | 
|  | MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { | 
|  | const Function &F = MF.getFunction(); | 
|  |  | 
|  | // Does the function use a red zone? If it does, then we can't risk messing | 
|  | // with the stack. | 
|  | if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { | 
|  | // It could have a red zone. If it does, then we don't want to touch it. | 
|  | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); | 
|  | if (!X86FI || X86FI->getUsesRedZone()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we *don't* want to outline from things that could potentially be deduped | 
|  | // then return false. | 
|  | if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) | 
|  | return false; | 
|  |  | 
|  | // This function is viable for outlining, so return true. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | outliner::InstrType | 
|  | X86InstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI, | 
|  | MachineBasicBlock::iterator &MIT, | 
|  | unsigned Flags) const { | 
|  | MachineInstr &MI = *MIT; | 
|  |  | 
|  | // Is this a terminator for a basic block? | 
|  | if (MI.isTerminator()) | 
|  | // TargetInstrInfo::getOutliningType has already filtered out anything | 
|  | // that would break this, so we can allow it here. | 
|  | return outliner::InstrType::Legal; | 
|  |  | 
|  | // Don't outline anything that modifies or reads from the stack pointer. | 
|  | // | 
|  | // FIXME: There are instructions which are being manually built without | 
|  | // explicit uses/defs so we also have to check the MCInstrDesc. We should be | 
|  | // able to remove the extra checks once those are fixed up. For example, | 
|  | // sometimes we might get something like %rax = POP64r 1. This won't be | 
|  | // caught by modifiesRegister or readsRegister even though the instruction | 
|  | // really ought to be formed so that modifiesRegister/readsRegister would | 
|  | // catch it. | 
|  | if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || | 
|  | MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || | 
|  | MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | // Outlined calls change the instruction pointer, so don't read from it. | 
|  | if (MI.readsRegister(X86::RIP, &RI) || | 
|  | MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || | 
|  | MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | // Don't outline CFI instructions. | 
|  | if (MI.isCFIInstruction()) | 
|  | return outliner::InstrType::Illegal; | 
|  |  | 
|  | return outliner::InstrType::Legal; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::buildOutlinedFrame( | 
|  | MachineBasicBlock &MBB, MachineFunction &MF, | 
|  | const outliner::OutlinedFunction &OF) const { | 
|  | // If we're a tail call, we already have a return, so don't do anything. | 
|  | if (OF.FrameConstructionID == MachineOutlinerTailCall) | 
|  | return; | 
|  |  | 
|  | // We're a normal call, so our sequence doesn't have a return instruction. | 
|  | // Add it in. | 
|  | MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64)); | 
|  | MBB.insert(MBB.end(), retq); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall( | 
|  | Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, | 
|  | MachineFunction &MF, outliner::Candidate &C) const { | 
|  | // Is it a tail call? | 
|  | if (C.CallConstructionID == MachineOutlinerTailCall) { | 
|  | // Yes, just insert a JMP. | 
|  | It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) | 
|  | .addGlobalAddress(M.getNamedValue(MF.getName()))); | 
|  | } else { | 
|  | // No, insert a call. | 
|  | It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) | 
|  | .addGlobalAddress(M.getNamedValue(MF.getName()))); | 
|  | } | 
|  |  | 
|  | return It; | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator Iter, | 
|  | DebugLoc &DL, | 
|  | bool AllowSideEffects) const { | 
|  | const MachineFunction &MF = *MBB.getParent(); | 
|  | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); | 
|  | const TargetRegisterInfo &TRI = getRegisterInfo(); | 
|  |  | 
|  | if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) | 
|  | // FIXME: Should we ignore MMX registers? | 
|  | return; | 
|  |  | 
|  | if (TRI.isGeneralPurposeRegister(MF, Reg)) { | 
|  | // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the | 
|  | // upper bits of a 64-bit register automagically. | 
|  | Reg = getX86SubSuperRegister(Reg, 32); | 
|  |  | 
|  | if (!AllowSideEffects) | 
|  | // XOR affects flags, so use a MOV instead. | 
|  | BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0); | 
|  | else | 
|  | BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | } else if (X86::VR128RegClass.contains(Reg)) { | 
|  | // XMM# | 
|  | if (!ST.hasSSE1()) | 
|  | return; | 
|  |  | 
|  | // PXOR is safe to use because it doesn't affect flags. | 
|  | BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | } else if (X86::VR256RegClass.contains(Reg)) { | 
|  | // YMM# | 
|  | if (!ST.hasAVX()) | 
|  | return; | 
|  |  | 
|  | // VPXOR is safe to use because it doesn't affect flags. | 
|  | BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | } else if (X86::VR512RegClass.contains(Reg)) { | 
|  | // ZMM# | 
|  | if (!ST.hasAVX512()) | 
|  | return; | 
|  |  | 
|  | // VPXORY is safe to use because it doesn't affect flags. | 
|  | BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) || | 
|  | X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) || | 
|  | X86::VK16RegClass.contains(Reg)) { | 
|  | if (!ST.hasVLX()) | 
|  | return; | 
|  |  | 
|  | // KXOR is safe to use because it doesn't affect flags. | 
|  | unsigned Op = ST.hasBWI() ? X86::KXORQkk : X86::KXORWkk; | 
|  | BuildMI(MBB, Iter, DL, get(Op), Reg) | 
|  | .addReg(Reg, RegState::Undef) | 
|  | .addReg(Reg, RegState::Undef); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86InstrInfo::getMachineCombinerPatterns( | 
|  | MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, | 
|  | bool DoRegPressureReduce) const { | 
|  | unsigned Opc = Root.getOpcode(); | 
|  | switch (Opc) { | 
|  | case X86::VPDPWSSDrr: | 
|  | case X86::VPDPWSSDrm: | 
|  | case X86::VPDPWSSDYrr: | 
|  | case X86::VPDPWSSDYrm: { | 
|  | if (!Subtarget.hasFastDPWSSD()) { | 
|  | Patterns.push_back(X86MachineCombinerPattern::DPWSSD); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86::VPDPWSSDZ128r: | 
|  | case X86::VPDPWSSDZ128m: | 
|  | case X86::VPDPWSSDZ256r: | 
|  | case X86::VPDPWSSDZ256m: | 
|  | case X86::VPDPWSSDZr: | 
|  | case X86::VPDPWSSDZm: { | 
|  | if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) { | 
|  | Patterns.push_back(X86MachineCombinerPattern::DPWSSD); | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return TargetInstrInfo::getMachineCombinerPatterns(Root, | 
|  | Patterns, DoRegPressureReduce); | 
|  | } | 
|  |  | 
|  | static void | 
|  | genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, | 
|  | SmallVectorImpl<MachineInstr *> &InsInstrs, | 
|  | SmallVectorImpl<MachineInstr *> &DelInstrs, | 
|  | DenseMap<Register, unsigned> &InstrIdxForVirtReg) { | 
|  | MachineFunction *MF = Root.getMF(); | 
|  | MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
|  |  | 
|  | unsigned Opc = Root.getOpcode(); | 
|  | unsigned AddOpc = 0; | 
|  | unsigned MaddOpc = 0; | 
|  | switch (Opc) { | 
|  | default: | 
|  | assert(false && "It should not reach here"); | 
|  | break; | 
|  | // vpdpwssd xmm2,xmm3,xmm1 | 
|  | // --> | 
|  | // vpmaddwd xmm3,xmm3,xmm1 | 
|  | // vpaddd xmm2,xmm2,xmm3 | 
|  | case X86::VPDPWSSDrr: | 
|  | MaddOpc = X86::VPMADDWDrr; | 
|  | AddOpc = X86::VPADDDrr; | 
|  | break; | 
|  | case X86::VPDPWSSDrm: | 
|  | MaddOpc = X86::VPMADDWDrm; | 
|  | AddOpc = X86::VPADDDrr; | 
|  | break; | 
|  | case X86::VPDPWSSDZ128r: | 
|  | MaddOpc = X86::VPMADDWDZ128rr; | 
|  | AddOpc = X86::VPADDDZ128rr; | 
|  | break; | 
|  | case X86::VPDPWSSDZ128m: | 
|  | MaddOpc = X86::VPMADDWDZ128rm; | 
|  | AddOpc = X86::VPADDDZ128rr; | 
|  | break; | 
|  | // vpdpwssd ymm2,ymm3,ymm1 | 
|  | // --> | 
|  | // vpmaddwd ymm3,ymm3,ymm1 | 
|  | // vpaddd ymm2,ymm2,ymm3 | 
|  | case X86::VPDPWSSDYrr: | 
|  | MaddOpc = X86::VPMADDWDYrr; | 
|  | AddOpc = X86::VPADDDYrr; | 
|  | break; | 
|  | case X86::VPDPWSSDYrm: | 
|  | MaddOpc = X86::VPMADDWDYrm; | 
|  | AddOpc = X86::VPADDDYrr; | 
|  | break; | 
|  | case X86::VPDPWSSDZ256r: | 
|  | MaddOpc = X86::VPMADDWDZ256rr; | 
|  | AddOpc = X86::VPADDDZ256rr; | 
|  | break; | 
|  | case X86::VPDPWSSDZ256m: | 
|  | MaddOpc = X86::VPMADDWDZ256rm; | 
|  | AddOpc = X86::VPADDDZ256rr; | 
|  | break; | 
|  | // vpdpwssd zmm2,zmm3,zmm1 | 
|  | // --> | 
|  | // vpmaddwd zmm3,zmm3,zmm1 | 
|  | // vpaddd zmm2,zmm2,zmm3 | 
|  | case X86::VPDPWSSDZr: | 
|  | MaddOpc = X86::VPMADDWDZrr; | 
|  | AddOpc = X86::VPADDDZrr; | 
|  | break; | 
|  | case X86::VPDPWSSDZm: | 
|  | MaddOpc = X86::VPMADDWDZrm; | 
|  | AddOpc = X86::VPADDDZrr; | 
|  | break; | 
|  | } | 
|  | // Create vpmaddwd. | 
|  | const TargetRegisterClass *RC = | 
|  | RegInfo.getRegClass(Root.getOperand(0).getReg()); | 
|  | Register NewReg = RegInfo.createVirtualRegister(RC); | 
|  | MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root); | 
|  | Madd->setDesc(TII.get(MaddOpc)); | 
|  | Madd->untieRegOperand(1); | 
|  | Madd->removeOperand(1); | 
|  | Madd->getOperand(0).setReg(NewReg); | 
|  | InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0)); | 
|  | // Create vpaddd. | 
|  | Register DstReg = Root.getOperand(0).getReg(); | 
|  | bool IsKill = Root.getOperand(1).isKill(); | 
|  | MachineInstr *Add = | 
|  | BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg) | 
|  | .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill)) | 
|  | .addReg(Madd->getOperand(0).getReg(), getKillRegState(true)); | 
|  | InsInstrs.push_back(Madd); | 
|  | InsInstrs.push_back(Add); | 
|  | DelInstrs.push_back(&Root); | 
|  | } | 
|  |  | 
|  | void X86InstrInfo::genAlternativeCodeSequence( | 
|  | MachineInstr &Root, unsigned Pattern, | 
|  | SmallVectorImpl<MachineInstr *> &InsInstrs, | 
|  | SmallVectorImpl<MachineInstr *> &DelInstrs, | 
|  | DenseMap<Register, unsigned> &InstrIdxForVirtReg) const { | 
|  | switch (Pattern) { | 
|  | default: | 
|  | // Reassociate instructions. | 
|  | TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, | 
|  | DelInstrs, InstrIdxForVirtReg); | 
|  | return; | 
|  | case X86MachineCombinerPattern::DPWSSD: | 
|  | genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs, | 
|  | InstrIdxForVirtReg); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand(). | 
|  | void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops, | 
|  | int FI) const { | 
|  | X86AddressMode M; | 
|  | M.BaseType = X86AddressMode::FrameIndexBase; | 
|  | M.Base.FrameIndex = FI; | 
|  | M.getFullAddress(Ops); | 
|  | } | 
|  |  | 
|  | #define GET_INSTRINFO_HELPERS | 
|  | #include "X86GenInstrInfo.inc" |