| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive |
| // stores that can be put together into vector-stores. Next, it attempts to |
| // construct vectorizable tree using the use-def chains. If a profitable tree |
| // was found, the SLP vectorizer performs vectorization on the tree. |
| // |
| // The pass is inspired by the work described in the paper: |
| // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/IVDescriptors.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #ifdef EXPENSIVE_CHECKS |
| #include "llvm/IR/Verifier.h" |
| #endif |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/DOTGraphTraits.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/InjectTLIMappings.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <optional> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| using namespace slpvectorizer; |
| |
| #define SV_NAME "slp-vectorizer" |
| #define DEBUG_TYPE "SLP" |
| |
| STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); |
| |
| DEBUG_COUNTER(VectorizedGraphs, "slp-vectorized", |
| "Controls which SLP graphs should be vectorized."); |
| |
| static cl::opt<bool> |
| RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, |
| cl::desc("Run the SLP vectorization passes")); |
| |
| static cl::opt<bool> |
| SLPReVec("slp-revec", cl::init(false), cl::Hidden, |
| cl::desc("Enable vectorization for wider vector utilization")); |
| |
| static cl::opt<int> |
| SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, |
| cl::desc("Only vectorize if you gain more than this " |
| "number ")); |
| |
| static cl::opt<bool> SLPSkipEarlyProfitabilityCheck( |
| "slp-skip-early-profitability-check", cl::init(false), cl::Hidden, |
| cl::desc("When true, SLP vectorizer bypasses profitability checks based on " |
| "heuristics and makes vectorization decision via cost modeling.")); |
| |
| static cl::opt<bool> |
| ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, |
| cl::desc("Attempt to vectorize horizontal reductions")); |
| |
| static cl::opt<bool> ShouldStartVectorizeHorAtStore( |
| "slp-vectorize-hor-store", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Attempt to vectorize horizontal reductions feeding into a store")); |
| |
| static cl::opt<int> |
| MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, |
| cl::desc("Attempt to vectorize for this register size in bits")); |
| |
| static cl::opt<unsigned> |
| MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, |
| cl::desc("Maximum SLP vectorization factor (0=unlimited)")); |
| |
| /// Limits the size of scheduling regions in a block. |
| /// It avoid long compile times for _very_ large blocks where vector |
| /// instructions are spread over a wide range. |
| /// This limit is way higher than needed by real-world functions. |
| static cl::opt<int> |
| ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, |
| cl::desc("Limit the size of the SLP scheduling region per block")); |
| |
| static cl::opt<int> MinVectorRegSizeOption( |
| "slp-min-reg-size", cl::init(128), cl::Hidden, |
| cl::desc("Attempt to vectorize for this register size in bits")); |
| |
| static cl::opt<unsigned> RecursionMaxDepth( |
| "slp-recursion-max-depth", cl::init(12), cl::Hidden, |
| cl::desc("Limit the recursion depth when building a vectorizable tree")); |
| |
| static cl::opt<unsigned> MinTreeSize( |
| "slp-min-tree-size", cl::init(3), cl::Hidden, |
| cl::desc("Only vectorize small trees if they are fully vectorizable")); |
| |
| // The maximum depth that the look-ahead score heuristic will explore. |
| // The higher this value, the higher the compilation time overhead. |
| static cl::opt<int> LookAheadMaxDepth( |
| "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, |
| cl::desc("The maximum look-ahead depth for operand reordering scores")); |
| |
| // The maximum depth that the look-ahead score heuristic will explore |
| // when it probing among candidates for vectorization tree roots. |
| // The higher this value, the higher the compilation time overhead but unlike |
| // similar limit for operands ordering this is less frequently used, hence |
| // impact of higher value is less noticeable. |
| static cl::opt<int> RootLookAheadMaxDepth( |
| "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, |
| cl::desc("The maximum look-ahead depth for searching best rooting option")); |
| |
| static cl::opt<unsigned> MinProfitableStridedLoads( |
| "slp-min-strided-loads", cl::init(2), cl::Hidden, |
| cl::desc("The minimum number of loads, which should be considered strided, " |
| "if the stride is > 1 or is runtime value")); |
| |
| static cl::opt<unsigned> MaxProfitableLoadStride( |
| "slp-max-stride", cl::init(8), cl::Hidden, |
| cl::desc("The maximum stride, considered to be profitable.")); |
| |
| static cl::opt<bool> |
| ViewSLPTree("view-slp-tree", cl::Hidden, |
| cl::desc("Display the SLP trees with Graphviz")); |
| |
| static cl::opt<bool> VectorizeNonPowerOf2( |
| "slp-vectorize-non-power-of-2", cl::init(false), cl::Hidden, |
| cl::desc("Try to vectorize with non-power-of-2 number of elements.")); |
| |
| // Limit the number of alias checks. The limit is chosen so that |
| // it has no negative effect on the llvm benchmarks. |
| static const unsigned AliasedCheckLimit = 10; |
| |
| // Limit of the number of uses for potentially transformed instructions/values, |
| // used in checks to avoid compile-time explode. |
| static constexpr int UsesLimit = 64; |
| |
| // Another limit for the alias checks: The maximum distance between load/store |
| // instructions where alias checks are done. |
| // This limit is useful for very large basic blocks. |
| static const unsigned MaxMemDepDistance = 160; |
| |
| /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling |
| /// regions to be handled. |
| static const int MinScheduleRegionSize = 16; |
| |
| /// Maximum allowed number of operands in the PHI nodes. |
| static const unsigned MaxPHINumOperands = 128; |
| |
| /// Predicate for the element types that the SLP vectorizer supports. |
| /// |
| /// The most important thing to filter here are types which are invalid in LLVM |
| /// vectors. We also filter target specific types which have absolutely no |
| /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just |
| /// avoids spending time checking the cost model and realizing that they will |
| /// be inevitably scalarized. |
| static bool isValidElementType(Type *Ty) { |
| // TODO: Support ScalableVectorType. |
| if (SLPReVec && isa<FixedVectorType>(Ty)) |
| Ty = Ty->getScalarType(); |
| return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && |
| !Ty->isPPC_FP128Ty(); |
| } |
| |
| /// Returns the type of the given value/instruction \p V. If it is store, |
| /// returns the type of its value operand, for Cmp - the types of the compare |
| /// operands and for insertelement - the type os the inserted operand. |
| /// Otherwise, just the type of the value is returned. |
| template <typename T> static Type *getValueType(T *V) { |
| if (auto *SI = dyn_cast<StoreInst>(V)) |
| return SI->getValueOperand()->getType(); |
| if (auto *CI = dyn_cast<CmpInst>(V)) |
| return CI->getOperand(0)->getType(); |
| if (auto *IE = dyn_cast<InsertElementInst>(V)) |
| return IE->getOperand(1)->getType(); |
| return V->getType(); |
| } |
| |
| /// \returns the number of elements for Ty. |
| static unsigned getNumElements(Type *Ty) { |
| assert(!isa<ScalableVectorType>(Ty) && |
| "ScalableVectorType is not supported."); |
| if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) |
| return VecTy->getNumElements(); |
| return 1; |
| } |
| |
| /// \returns the vector type of ScalarTy based on vectorization factor. |
| static FixedVectorType *getWidenedType(Type *ScalarTy, unsigned VF) { |
| return FixedVectorType::get(ScalarTy->getScalarType(), |
| VF * getNumElements(ScalarTy)); |
| } |
| |
| /// Returns the number of elements of the given type \p Ty, not less than \p Sz, |
| /// which forms type, which splits by \p TTI into whole vector types during |
| /// legalization. |
| static unsigned getFullVectorNumberOfElements(const TargetTransformInfo &TTI, |
| Type *Ty, unsigned Sz) { |
| if (!isValidElementType(Ty)) |
| return bit_ceil(Sz); |
| // Find the number of elements, which forms full vectors. |
| const unsigned NumParts = TTI.getNumberOfParts(getWidenedType(Ty, Sz)); |
| if (NumParts == 0 || NumParts >= Sz) |
| return bit_ceil(Sz); |
| return bit_ceil(divideCeil(Sz, NumParts)) * NumParts; |
| } |
| |
| static void transformScalarShuffleIndiciesToVector(unsigned VecTyNumElements, |
| SmallVectorImpl<int> &Mask) { |
| // The ShuffleBuilder implementation use shufflevector to splat an "element". |
| // But the element have different meaning for SLP (scalar) and REVEC |
| // (vector). We need to expand Mask into masks which shufflevector can use |
| // directly. |
| SmallVector<int> NewMask(Mask.size() * VecTyNumElements); |
| for (unsigned I : seq<unsigned>(Mask.size())) |
| for (auto [J, MaskV] : enumerate(MutableArrayRef(NewMask).slice( |
| I * VecTyNumElements, VecTyNumElements))) |
| MaskV = Mask[I] == PoisonMaskElem ? PoisonMaskElem |
| : Mask[I] * VecTyNumElements + J; |
| Mask.swap(NewMask); |
| } |
| |
| /// \returns the number of groups of shufflevector |
| /// A group has the following features |
| /// 1. All of value in a group are shufflevector. |
| /// 2. The mask of all shufflevector is isExtractSubvectorMask. |
| /// 3. The mask of all shufflevector uses all of the elements of the source. |
| /// e.g., it is 1 group (%0) |
| /// %1 = shufflevector <16 x i8> %0, <16 x i8> poison, |
| /// <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7> |
| /// %2 = shufflevector <16 x i8> %0, <16 x i8> poison, |
| /// <8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15> |
| /// it is 2 groups (%3 and %4) |
| /// %5 = shufflevector <8 x i16> %3, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| /// %6 = shufflevector <8 x i16> %3, <8 x i16> poison, |
| /// <4 x i32> <i32 4, i32 5, i32 6, i32 7> |
| /// %7 = shufflevector <8 x i16> %4, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| /// %8 = shufflevector <8 x i16> %4, <8 x i16> poison, |
| /// <4 x i32> <i32 4, i32 5, i32 6, i32 7> |
| /// it is 0 group |
| /// %12 = shufflevector <8 x i16> %10, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| /// %13 = shufflevector <8 x i16> %11, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| static unsigned getShufflevectorNumGroups(ArrayRef<Value *> VL) { |
| if (VL.empty()) |
| return 0; |
| if (!all_of(VL, IsaPred<ShuffleVectorInst>)) |
| return 0; |
| auto *SV = cast<ShuffleVectorInst>(VL.front()); |
| unsigned SVNumElements = |
| cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements(); |
| unsigned ShuffleMaskSize = SV->getShuffleMask().size(); |
| unsigned GroupSize = SVNumElements / ShuffleMaskSize; |
| if (GroupSize == 0 || (VL.size() % GroupSize) != 0) |
| return 0; |
| unsigned NumGroup = 0; |
| for (size_t I = 0, E = VL.size(); I != E; I += GroupSize) { |
| auto *SV = cast<ShuffleVectorInst>(VL[I]); |
| Value *Src = SV->getOperand(0); |
| ArrayRef<Value *> Group = VL.slice(I, GroupSize); |
| SmallBitVector ExpectedIndex(GroupSize); |
| if (!all_of(Group, [&](Value *V) { |
| auto *SV = cast<ShuffleVectorInst>(V); |
| // From the same source. |
| if (SV->getOperand(0) != Src) |
| return false; |
| int Index; |
| if (!SV->isExtractSubvectorMask(Index)) |
| return false; |
| ExpectedIndex.set(Index / ShuffleMaskSize); |
| return true; |
| })) |
| return 0; |
| if (!ExpectedIndex.all()) |
| return 0; |
| ++NumGroup; |
| } |
| assert(NumGroup == (VL.size() / GroupSize) && "Unexpected number of groups"); |
| return NumGroup; |
| } |
| |
| /// \returns a shufflevector mask which is used to vectorize shufflevectors |
| /// e.g., |
| /// %5 = shufflevector <8 x i16> %3, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| /// %6 = shufflevector <8 x i16> %3, <8 x i16> poison, |
| /// <4 x i32> <i32 4, i32 5, i32 6, i32 7> |
| /// %7 = shufflevector <8 x i16> %4, <8 x i16> poison, |
| /// <4 x i32> <i32 0, i32 1, i32 2, i32 3> |
| /// %8 = shufflevector <8 x i16> %4, <8 x i16> poison, |
| /// <4 x i32> <i32 4, i32 5, i32 6, i32 7> |
| /// the result is |
| /// <0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 28, 29, 30, 31> |
| static SmallVector<int> calculateShufflevectorMask(ArrayRef<Value *> VL) { |
| assert(getShufflevectorNumGroups(VL) && "Not supported shufflevector usage."); |
| auto *SV = cast<ShuffleVectorInst>(VL.front()); |
| unsigned SVNumElements = |
| cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements(); |
| SmallVector<int> Mask; |
| unsigned AccumulateLength = 0; |
| for (Value *V : VL) { |
| auto *SV = cast<ShuffleVectorInst>(V); |
| for (int M : SV->getShuffleMask()) |
| Mask.push_back(M == PoisonMaskElem ? PoisonMaskElem |
| : AccumulateLength + M); |
| AccumulateLength += SVNumElements; |
| } |
| return Mask; |
| } |
| |
| /// \returns True if the value is a constant (but not globals/constant |
| /// expressions). |
| static bool isConstant(Value *V) { |
| return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V); |
| } |
| |
| /// Checks if \p V is one of vector-like instructions, i.e. undef, |
| /// insertelement/extractelement with constant indices for fixed vector type or |
| /// extractvalue instruction. |
| static bool isVectorLikeInstWithConstOps(Value *V) { |
| if (!isa<InsertElementInst, ExtractElementInst>(V) && |
| !isa<ExtractValueInst, UndefValue>(V)) |
| return false; |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I || isa<ExtractValueInst>(I)) |
| return true; |
| if (!isa<FixedVectorType>(I->getOperand(0)->getType())) |
| return false; |
| if (isa<ExtractElementInst>(I)) |
| return isConstant(I->getOperand(1)); |
| assert(isa<InsertElementInst>(V) && "Expected only insertelement."); |
| return isConstant(I->getOperand(2)); |
| } |
| |
| /// Returns power-of-2 number of elements in a single register (part), given the |
| /// total number of elements \p Size and number of registers (parts) \p |
| /// NumParts. |
| static unsigned getPartNumElems(unsigned Size, unsigned NumParts) { |
| return std::min<unsigned>(Size, bit_ceil(divideCeil(Size, NumParts))); |
| } |
| |
| /// Returns correct remaining number of elements, considering total amount \p |
| /// Size, (power-of-2 number) of elements in a single register \p PartNumElems |
| /// and current register (part) \p Part. |
| static unsigned getNumElems(unsigned Size, unsigned PartNumElems, |
| unsigned Part) { |
| return std::min<unsigned>(PartNumElems, Size - Part * PartNumElems); |
| } |
| |
| #if !defined(NDEBUG) |
| /// Print a short descriptor of the instruction bundle suitable for debug output. |
| static std::string shortBundleName(ArrayRef<Value *> VL, int Idx = -1) { |
| std::string Result; |
| raw_string_ostream OS(Result); |
| if (Idx >= 0) |
| OS << "Idx: " << Idx << ", "; |
| OS << "n=" << VL.size() << " [" << *VL.front() << ", ..]"; |
| return Result; |
| } |
| #endif |
| |
| /// \returns true if all of the instructions in \p VL are in the same block or |
| /// false otherwise. |
| static bool allSameBlock(ArrayRef<Value *> VL) { |
| Instruction *I0 = dyn_cast<Instruction>(VL[0]); |
| if (!I0) |
| return false; |
| if (all_of(VL, isVectorLikeInstWithConstOps)) |
| return true; |
| |
| BasicBlock *BB = I0->getParent(); |
| for (int I = 1, E = VL.size(); I < E; I++) { |
| auto *II = dyn_cast<Instruction>(VL[I]); |
| if (!II) |
| return false; |
| |
| if (BB != II->getParent()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \returns True if all of the values in \p VL are constants (but not |
| /// globals/constant expressions). |
| static bool allConstant(ArrayRef<Value *> VL) { |
| // Constant expressions and globals can't be vectorized like normal integer/FP |
| // constants. |
| return all_of(VL, isConstant); |
| } |
| |
| /// \returns True if all of the values in \p VL are identical or some of them |
| /// are UndefValue. |
| static bool isSplat(ArrayRef<Value *> VL) { |
| Value *FirstNonUndef = nullptr; |
| for (Value *V : VL) { |
| if (isa<UndefValue>(V)) |
| continue; |
| if (!FirstNonUndef) { |
| FirstNonUndef = V; |
| continue; |
| } |
| if (V != FirstNonUndef) |
| return false; |
| } |
| return FirstNonUndef != nullptr; |
| } |
| |
| /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. |
| static bool isCommutative(Instruction *I) { |
| if (auto *Cmp = dyn_cast<CmpInst>(I)) |
| return Cmp->isCommutative(); |
| if (auto *BO = dyn_cast<BinaryOperator>(I)) |
| return BO->isCommutative() || |
| (BO->getOpcode() == Instruction::Sub && |
| !BO->hasNUsesOrMore(UsesLimit) && |
| all_of( |
| BO->uses(), |
| [](const Use &U) { |
| // Commutative, if icmp eq/ne sub, 0 |
| ICmpInst::Predicate Pred; |
| if (match(U.getUser(), |
| m_ICmp(Pred, m_Specific(U.get()), m_Zero())) && |
| (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) |
| return true; |
| // Commutative, if abs(sub nsw, true) or abs(sub, false). |
| ConstantInt *Flag; |
| return match(U.getUser(), |
| m_Intrinsic<Intrinsic::abs>( |
| m_Specific(U.get()), m_ConstantInt(Flag))) && |
| (!cast<Instruction>(U.get())->hasNoSignedWrap() || |
| Flag->isOne()); |
| })) || |
| (BO->getOpcode() == Instruction::FSub && |
| !BO->hasNUsesOrMore(UsesLimit) && |
| all_of(BO->uses(), [](const Use &U) { |
| return match(U.getUser(), |
| m_Intrinsic<Intrinsic::fabs>(m_Specific(U.get()))); |
| })); |
| return I->isCommutative(); |
| } |
| |
| template <typename T> |
| static std::optional<unsigned> getInsertExtractIndex(const Value *Inst, |
| unsigned Offset) { |
| static_assert(std::is_same_v<T, InsertElementInst> || |
| std::is_same_v<T, ExtractElementInst>, |
| "unsupported T"); |
| int Index = Offset; |
| if (const auto *IE = dyn_cast<T>(Inst)) { |
| const auto *VT = dyn_cast<FixedVectorType>(IE->getType()); |
| if (!VT) |
| return std::nullopt; |
| const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); |
| if (!CI) |
| return std::nullopt; |
| if (CI->getValue().uge(VT->getNumElements())) |
| return std::nullopt; |
| Index *= VT->getNumElements(); |
| Index += CI->getZExtValue(); |
| return Index; |
| } |
| return std::nullopt; |
| } |
| |
| /// \returns inserting or extracting index of InsertElement, ExtractElement or |
| /// InsertValue instruction, using Offset as base offset for index. |
| /// \returns std::nullopt if the index is not an immediate. |
| static std::optional<unsigned> getElementIndex(const Value *Inst, |
| unsigned Offset = 0) { |
| if (auto Index = getInsertExtractIndex<InsertElementInst>(Inst, Offset)) |
| return Index; |
| if (auto Index = getInsertExtractIndex<ExtractElementInst>(Inst, Offset)) |
| return Index; |
| |
| int Index = Offset; |
| |
| const auto *IV = dyn_cast<InsertValueInst>(Inst); |
| if (!IV) |
| return std::nullopt; |
| |
| Type *CurrentType = IV->getType(); |
| for (unsigned I : IV->indices()) { |
| if (const auto *ST = dyn_cast<StructType>(CurrentType)) { |
| Index *= ST->getNumElements(); |
| CurrentType = ST->getElementType(I); |
| } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { |
| Index *= AT->getNumElements(); |
| CurrentType = AT->getElementType(); |
| } else { |
| return std::nullopt; |
| } |
| Index += I; |
| } |
| return Index; |
| } |
| |
| namespace { |
| /// Specifies the way the mask should be analyzed for undefs/poisonous elements |
| /// in the shuffle mask. |
| enum class UseMask { |
| FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors, |
| ///< check for the mask elements for the first argument (mask |
| ///< indices are in range [0:VF)). |
| SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check |
| ///< for the mask elements for the second argument (mask indices |
| ///< are in range [VF:2*VF)) |
| UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for |
| ///< future shuffle elements and mark them as ones as being used |
| ///< in future. Non-undef elements are considered as unused since |
| ///< they're already marked as used in the mask. |
| }; |
| } // namespace |
| |
| /// Prepares a use bitset for the given mask either for the first argument or |
| /// for the second. |
| static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask, |
| UseMask MaskArg) { |
| SmallBitVector UseMask(VF, true); |
| for (auto [Idx, Value] : enumerate(Mask)) { |
| if (Value == PoisonMaskElem) { |
| if (MaskArg == UseMask::UndefsAsMask) |
| UseMask.reset(Idx); |
| continue; |
| } |
| if (MaskArg == UseMask::FirstArg && Value < VF) |
| UseMask.reset(Value); |
| else if (MaskArg == UseMask::SecondArg && Value >= VF) |
| UseMask.reset(Value - VF); |
| } |
| return UseMask; |
| } |
| |
| /// Checks if the given value is actually an undefined constant vector. |
| /// Also, if the \p UseMask is not empty, tries to check if the non-masked |
| /// elements actually mask the insertelement buildvector, if any. |
| template <bool IsPoisonOnly = false> |
| static SmallBitVector isUndefVector(const Value *V, |
| const SmallBitVector &UseMask = {}) { |
| SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true); |
| using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>; |
| if (isa<T>(V)) |
| return Res; |
| auto *VecTy = dyn_cast<FixedVectorType>(V->getType()); |
| if (!VecTy) |
| return Res.reset(); |
| auto *C = dyn_cast<Constant>(V); |
| if (!C) { |
| if (!UseMask.empty()) { |
| const Value *Base = V; |
| while (auto *II = dyn_cast<InsertElementInst>(Base)) { |
| Base = II->getOperand(0); |
| if (isa<T>(II->getOperand(1))) |
| continue; |
| std::optional<unsigned> Idx = getElementIndex(II); |
| if (!Idx) { |
| Res.reset(); |
| return Res; |
| } |
| if (*Idx < UseMask.size() && !UseMask.test(*Idx)) |
| Res.reset(*Idx); |
| } |
| // TODO: Add analysis for shuffles here too. |
| if (V == Base) { |
| Res.reset(); |
| } else { |
| SmallBitVector SubMask(UseMask.size(), false); |
| Res &= isUndefVector<IsPoisonOnly>(Base, SubMask); |
| } |
| } else { |
| Res.reset(); |
| } |
| return Res; |
| } |
| for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { |
| if (Constant *Elem = C->getAggregateElement(I)) |
| if (!isa<T>(Elem) && |
| (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I)))) |
| Res.reset(I); |
| } |
| return Res; |
| } |
| |
| /// Checks if the vector of instructions can be represented as a shuffle, like: |
| /// %x0 = extractelement <4 x i8> %x, i32 0 |
| /// %x3 = extractelement <4 x i8> %x, i32 3 |
| /// %y1 = extractelement <4 x i8> %y, i32 1 |
| /// %y2 = extractelement <4 x i8> %y, i32 2 |
| /// %x0x0 = mul i8 %x0, %x0 |
| /// %x3x3 = mul i8 %x3, %x3 |
| /// %y1y1 = mul i8 %y1, %y1 |
| /// %y2y2 = mul i8 %y2, %y2 |
| /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 |
| /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 |
| /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 |
| /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 |
| /// ret <4 x i8> %ins4 |
| /// can be transformed into: |
| /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, |
| /// i32 6> |
| /// %2 = mul <4 x i8> %1, %1 |
| /// ret <4 x i8> %2 |
| /// Mask will return the Shuffle Mask equivalent to the extracted elements. |
| /// TODO: Can we split off and reuse the shuffle mask detection from |
| /// ShuffleVectorInst/getShuffleCost? |
| static std::optional<TargetTransformInfo::ShuffleKind> |
| isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { |
| const auto *It = find_if(VL, IsaPred<ExtractElementInst>); |
| if (It == VL.end()) |
| return std::nullopt; |
| unsigned Size = |
| std::accumulate(VL.begin(), VL.end(), 0u, [](unsigned S, Value *V) { |
| auto *EI = dyn_cast<ExtractElementInst>(V); |
| if (!EI) |
| return S; |
| auto *VTy = dyn_cast<FixedVectorType>(EI->getVectorOperandType()); |
| if (!VTy) |
| return S; |
| return std::max(S, VTy->getNumElements()); |
| }); |
| |
| Value *Vec1 = nullptr; |
| Value *Vec2 = nullptr; |
| bool HasNonUndefVec = any_of(VL, [](Value *V) { |
| auto *EE = dyn_cast<ExtractElementInst>(V); |
| if (!EE) |
| return false; |
| Value *Vec = EE->getVectorOperand(); |
| if (isa<UndefValue>(Vec)) |
| return false; |
| return isGuaranteedNotToBePoison(Vec); |
| }); |
| enum ShuffleMode { Unknown, Select, Permute }; |
| ShuffleMode CommonShuffleMode = Unknown; |
| Mask.assign(VL.size(), PoisonMaskElem); |
| for (unsigned I = 0, E = VL.size(); I < E; ++I) { |
| // Undef can be represented as an undef element in a vector. |
| if (isa<UndefValue>(VL[I])) |
| continue; |
| auto *EI = cast<ExtractElementInst>(VL[I]); |
| if (isa<ScalableVectorType>(EI->getVectorOperandType())) |
| return std::nullopt; |
| auto *Vec = EI->getVectorOperand(); |
| // We can extractelement from undef or poison vector. |
| if (isUndefVector</*isPoisonOnly=*/true>(Vec).all()) |
| continue; |
| // All vector operands must have the same number of vector elements. |
| if (isa<UndefValue>(Vec)) { |
| Mask[I] = I; |
| } else { |
| if (isa<UndefValue>(EI->getIndexOperand())) |
| continue; |
| auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); |
| if (!Idx) |
| return std::nullopt; |
| // Undefined behavior if Idx is negative or >= Size. |
| if (Idx->getValue().uge(Size)) |
| continue; |
| unsigned IntIdx = Idx->getValue().getZExtValue(); |
| Mask[I] = IntIdx; |
| } |
| if (isUndefVector(Vec).all() && HasNonUndefVec) |
| continue; |
| // For correct shuffling we have to have at most 2 different vector operands |
| // in all extractelement instructions. |
| if (!Vec1 || Vec1 == Vec) { |
| Vec1 = Vec; |
| } else if (!Vec2 || Vec2 == Vec) { |
| Vec2 = Vec; |
| Mask[I] += Size; |
| } else { |
| return std::nullopt; |
| } |
| if (CommonShuffleMode == Permute) |
| continue; |
| // If the extract index is not the same as the operation number, it is a |
| // permutation. |
| if (Mask[I] % Size != I) { |
| CommonShuffleMode = Permute; |
| continue; |
| } |
| CommonShuffleMode = Select; |
| } |
| // If we're not crossing lanes in different vectors, consider it as blending. |
| if (CommonShuffleMode == Select && Vec2) |
| return TargetTransformInfo::SK_Select; |
| // If Vec2 was never used, we have a permutation of a single vector, otherwise |
| // we have permutation of 2 vectors. |
| return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc |
| : TargetTransformInfo::SK_PermuteSingleSrc; |
| } |
| |
| /// \returns True if Extract{Value,Element} instruction extracts element Idx. |
| static std::optional<unsigned> getExtractIndex(Instruction *E) { |
| unsigned Opcode = E->getOpcode(); |
| assert((Opcode == Instruction::ExtractElement || |
| Opcode == Instruction::ExtractValue) && |
| "Expected extractelement or extractvalue instruction."); |
| if (Opcode == Instruction::ExtractElement) { |
| auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); |
| if (!CI) |
| return std::nullopt; |
| return CI->getZExtValue(); |
| } |
| auto *EI = cast<ExtractValueInst>(E); |
| if (EI->getNumIndices() != 1) |
| return std::nullopt; |
| return *EI->idx_begin(); |
| } |
| |
| namespace { |
| |
| /// Main data required for vectorization of instructions. |
| struct InstructionsState { |
| /// The very first instruction in the list with the main opcode. |
| Value *OpValue = nullptr; |
| |
| /// The main/alternate instruction. |
| Instruction *MainOp = nullptr; |
| Instruction *AltOp = nullptr; |
| |
| /// The main/alternate opcodes for the list of instructions. |
| unsigned getOpcode() const { |
| return MainOp ? MainOp->getOpcode() : 0; |
| } |
| |
| unsigned getAltOpcode() const { |
| return AltOp ? AltOp->getOpcode() : 0; |
| } |
| |
| /// Some of the instructions in the list have alternate opcodes. |
| bool isAltShuffle() const { return AltOp != MainOp; } |
| |
| bool isOpcodeOrAlt(Instruction *I) const { |
| unsigned CheckedOpcode = I->getOpcode(); |
| return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; |
| } |
| |
| InstructionsState() = delete; |
| InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) |
| : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// \returns true if \p Opcode is allowed as part of the main/alternate |
| /// instruction for SLP vectorization. |
| /// |
| /// Example of unsupported opcode is SDIV that can potentially cause UB if the |
| /// "shuffled out" lane would result in division by zero. |
| static bool isValidForAlternation(unsigned Opcode) { |
| if (Instruction::isIntDivRem(Opcode)) |
| return false; |
| |
| return true; |
| } |
| |
| static InstructionsState getSameOpcode(ArrayRef<Value *> VL, |
| const TargetLibraryInfo &TLI); |
| |
| /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. |
| /// compatible instructions or constants, or just some other regular values. |
| static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, |
| Value *Op1, const TargetLibraryInfo &TLI) { |
| return (isConstant(BaseOp0) && isConstant(Op0)) || |
| (isConstant(BaseOp1) && isConstant(Op1)) || |
| (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && |
| !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || |
| BaseOp0 == Op0 || BaseOp1 == Op1 || |
| getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() || |
| getSameOpcode({BaseOp1, Op1}, TLI).getOpcode(); |
| } |
| |
| /// \returns true if a compare instruction \p CI has similar "look" and |
| /// same predicate as \p BaseCI, "as is" or with its operands and predicate |
| /// swapped, false otherwise. |
| static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI, |
| const TargetLibraryInfo &TLI) { |
| assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && |
| "Assessing comparisons of different types?"); |
| CmpInst::Predicate BasePred = BaseCI->getPredicate(); |
| CmpInst::Predicate Pred = CI->getPredicate(); |
| CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred); |
| |
| Value *BaseOp0 = BaseCI->getOperand(0); |
| Value *BaseOp1 = BaseCI->getOperand(1); |
| Value *Op0 = CI->getOperand(0); |
| Value *Op1 = CI->getOperand(1); |
| |
| return (BasePred == Pred && |
| areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) || |
| (BasePred == SwappedPred && |
| areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI)); |
| } |
| |
| /// \returns analysis of the Instructions in \p VL described in |
| /// InstructionsState, the Opcode that we suppose the whole list |
| /// could be vectorized even if its structure is diverse. |
| static InstructionsState getSameOpcode(ArrayRef<Value *> VL, |
| const TargetLibraryInfo &TLI) { |
| constexpr unsigned BaseIndex = 0; |
| // Make sure these are all Instructions. |
| if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| |
| bool IsCastOp = isa<CastInst>(VL[BaseIndex]); |
| bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); |
| bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); |
| CmpInst::Predicate BasePred = |
| IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() |
| : CmpInst::BAD_ICMP_PREDICATE; |
| unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); |
| unsigned AltOpcode = Opcode; |
| unsigned AltIndex = BaseIndex; |
| |
| bool SwappedPredsCompatible = [&]() { |
| if (!IsCmpOp) |
| return false; |
| SetVector<unsigned> UniquePreds, UniqueNonSwappedPreds; |
| UniquePreds.insert(BasePred); |
| UniqueNonSwappedPreds.insert(BasePred); |
| for (Value *V : VL) { |
| auto *I = dyn_cast<CmpInst>(V); |
| if (!I) |
| return false; |
| CmpInst::Predicate CurrentPred = I->getPredicate(); |
| CmpInst::Predicate SwappedCurrentPred = |
| CmpInst::getSwappedPredicate(CurrentPred); |
| UniqueNonSwappedPreds.insert(CurrentPred); |
| if (!UniquePreds.contains(CurrentPred) && |
| !UniquePreds.contains(SwappedCurrentPred)) |
| UniquePreds.insert(CurrentPred); |
| } |
| // Total number of predicates > 2, but if consider swapped predicates |
| // compatible only 2, consider swappable predicates as compatible opcodes, |
| // not alternate. |
| return UniqueNonSwappedPreds.size() > 2 && UniquePreds.size() == 2; |
| }(); |
| // Check for one alternate opcode from another BinaryOperator. |
| // TODO - generalize to support all operators (types, calls etc.). |
| auto *IBase = cast<Instruction>(VL[BaseIndex]); |
| Intrinsic::ID BaseID = 0; |
| SmallVector<VFInfo> BaseMappings; |
| if (auto *CallBase = dyn_cast<CallInst>(IBase)) { |
| BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI); |
| BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase); |
| if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { |
| auto *I = cast<Instruction>(VL[Cnt]); |
| unsigned InstOpcode = I->getOpcode(); |
| if (IsBinOp && isa<BinaryOperator>(I)) { |
| if (InstOpcode == Opcode || InstOpcode == AltOpcode) |
| continue; |
| if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && |
| isValidForAlternation(Opcode)) { |
| AltOpcode = InstOpcode; |
| AltIndex = Cnt; |
| continue; |
| } |
| } else if (IsCastOp && isa<CastInst>(I)) { |
| Value *Op0 = IBase->getOperand(0); |
| Type *Ty0 = Op0->getType(); |
| Value *Op1 = I->getOperand(0); |
| Type *Ty1 = Op1->getType(); |
| if (Ty0 == Ty1) { |
| if (InstOpcode == Opcode || InstOpcode == AltOpcode) |
| continue; |
| if (Opcode == AltOpcode) { |
| assert(isValidForAlternation(Opcode) && |
| isValidForAlternation(InstOpcode) && |
| "Cast isn't safe for alternation, logic needs to be updated!"); |
| AltOpcode = InstOpcode; |
| AltIndex = Cnt; |
| continue; |
| } |
| } |
| } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) { |
| auto *BaseInst = cast<CmpInst>(VL[BaseIndex]); |
| Type *Ty0 = BaseInst->getOperand(0)->getType(); |
| Type *Ty1 = Inst->getOperand(0)->getType(); |
| if (Ty0 == Ty1) { |
| assert(InstOpcode == Opcode && "Expected same CmpInst opcode."); |
| // Check for compatible operands. If the corresponding operands are not |
| // compatible - need to perform alternate vectorization. |
| CmpInst::Predicate CurrentPred = Inst->getPredicate(); |
| CmpInst::Predicate SwappedCurrentPred = |
| CmpInst::getSwappedPredicate(CurrentPred); |
| |
| if ((E == 2 || SwappedPredsCompatible) && |
| (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) |
| continue; |
| |
| if (isCmpSameOrSwapped(BaseInst, Inst, TLI)) |
| continue; |
| auto *AltInst = cast<CmpInst>(VL[AltIndex]); |
| if (AltIndex != BaseIndex) { |
| if (isCmpSameOrSwapped(AltInst, Inst, TLI)) |
| continue; |
| } else if (BasePred != CurrentPred) { |
| assert( |
| isValidForAlternation(InstOpcode) && |
| "CmpInst isn't safe for alternation, logic needs to be updated!"); |
| AltIndex = Cnt; |
| continue; |
| } |
| CmpInst::Predicate AltPred = AltInst->getPredicate(); |
| if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || |
| AltPred == CurrentPred || AltPred == SwappedCurrentPred) |
| continue; |
| } |
| } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) { |
| if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { |
| if (Gep->getNumOperands() != 2 || |
| Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) { |
| if (!isVectorLikeInstWithConstOps(EI)) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *LI = dyn_cast<LoadInst>(I)) { |
| auto *BaseLI = cast<LoadInst>(IBase); |
| if (!LI->isSimple() || !BaseLI->isSimple()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *Call = dyn_cast<CallInst>(I)) { |
| auto *CallBase = cast<CallInst>(IBase); |
| if (Call->getCalledFunction() != CallBase->getCalledFunction()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| if (Call->hasOperandBundles() && (!CallBase->hasOperandBundles() || |
| !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(), |
| Call->op_begin() + Call->getBundleOperandsEndIndex(), |
| CallBase->op_begin() + |
| CallBase->getBundleOperandsStartIndex()))) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI); |
| if (ID != BaseID) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| if (!ID) { |
| SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call); |
| if (Mappings.size() != BaseMappings.size() || |
| Mappings.front().ISA != BaseMappings.front().ISA || |
| Mappings.front().ScalarName != BaseMappings.front().ScalarName || |
| Mappings.front().VectorName != BaseMappings.front().VectorName || |
| Mappings.front().Shape.VF != BaseMappings.front().Shape.VF || |
| Mappings.front().Shape.Parameters != |
| BaseMappings.front().Shape.Parameters) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| } |
| continue; |
| } |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| |
| return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), |
| cast<Instruction>(VL[AltIndex])); |
| } |
| |
| /// \returns true if all of the values in \p VL have the same type or false |
| /// otherwise. |
| static bool allSameType(ArrayRef<Value *> VL) { |
| Type *Ty = VL.front()->getType(); |
| return all_of(VL.drop_front(), [&](Value *V) { return V->getType() == Ty; }); |
| } |
| |
| /// \returns True if in-tree use also needs extract. This refers to |
| /// possible scalar operand in vectorized instruction. |
| static bool doesInTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, |
| TargetLibraryInfo *TLI) { |
| if (!UserInst) |
| return false; |
| unsigned Opcode = UserInst->getOpcode(); |
| switch (Opcode) { |
| case Instruction::Load: { |
| LoadInst *LI = cast<LoadInst>(UserInst); |
| return (LI->getPointerOperand() == Scalar); |
| } |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(UserInst); |
| return (SI->getPointerOperand() == Scalar); |
| } |
| case Instruction::Call: { |
| CallInst *CI = cast<CallInst>(UserInst); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| return any_of(enumerate(CI->args()), [&](auto &&Arg) { |
| return isVectorIntrinsicWithScalarOpAtArg(ID, Arg.index()) && |
| Arg.value().get() == Scalar; |
| }); |
| } |
| default: |
| return false; |
| } |
| } |
| |
| /// \returns the AA location that is being access by the instruction. |
| static MemoryLocation getLocation(Instruction *I) { |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return MemoryLocation::get(SI); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return MemoryLocation::get(LI); |
| return MemoryLocation(); |
| } |
| |
| /// \returns True if the instruction is not a volatile or atomic load/store. |
| static bool isSimple(Instruction *I) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->isSimple(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return SI->isSimple(); |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) |
| return !MI->isVolatile(); |
| return true; |
| } |
| |
| /// Shuffles \p Mask in accordance with the given \p SubMask. |
| /// \param ExtendingManyInputs Supports reshuffling of the mask with not only |
| /// one but two input vectors. |
| static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask, |
| bool ExtendingManyInputs = false) { |
| if (SubMask.empty()) |
| return; |
| assert( |
| (!ExtendingManyInputs || SubMask.size() > Mask.size() || |
| // Check if input scalars were extended to match the size of other node. |
| (SubMask.size() == Mask.size() && |
| std::all_of(std::next(Mask.begin(), Mask.size() / 2), Mask.end(), |
| [](int Idx) { return Idx == PoisonMaskElem; }))) && |
| "SubMask with many inputs support must be larger than the mask."); |
| if (Mask.empty()) { |
| Mask.append(SubMask.begin(), SubMask.end()); |
| return; |
| } |
| SmallVector<int> NewMask(SubMask.size(), PoisonMaskElem); |
| int TermValue = std::min(Mask.size(), SubMask.size()); |
| for (int I = 0, E = SubMask.size(); I < E; ++I) { |
| if (SubMask[I] == PoisonMaskElem || |
| (!ExtendingManyInputs && |
| (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue))) |
| continue; |
| NewMask[I] = Mask[SubMask[I]]; |
| } |
| Mask.swap(NewMask); |
| } |
| |
| /// Order may have elements assigned special value (size) which is out of |
| /// bounds. Such indices only appear on places which correspond to undef values |
| /// (see canReuseExtract for details) and used in order to avoid undef values |
| /// have effect on operands ordering. |
| /// The first loop below simply finds all unused indices and then the next loop |
| /// nest assigns these indices for undef values positions. |
| /// As an example below Order has two undef positions and they have assigned |
| /// values 3 and 7 respectively: |
| /// before: 6 9 5 4 9 2 1 0 |
| /// after: 6 3 5 4 7 2 1 0 |
| static void fixupOrderingIndices(MutableArrayRef<unsigned> Order) { |
| const unsigned Sz = Order.size(); |
| SmallBitVector UnusedIndices(Sz, /*t=*/true); |
| SmallBitVector MaskedIndices(Sz); |
| for (unsigned I = 0; I < Sz; ++I) { |
| if (Order[I] < Sz) |
| UnusedIndices.reset(Order[I]); |
| else |
| MaskedIndices.set(I); |
| } |
| if (MaskedIndices.none()) |
| return; |
| assert(UnusedIndices.count() == MaskedIndices.count() && |
| "Non-synced masked/available indices."); |
| int Idx = UnusedIndices.find_first(); |
| int MIdx = MaskedIndices.find_first(); |
| while (MIdx >= 0) { |
| assert(Idx >= 0 && "Indices must be synced."); |
| Order[MIdx] = Idx; |
| Idx = UnusedIndices.find_next(Idx); |
| MIdx = MaskedIndices.find_next(MIdx); |
| } |
| } |
| |
| /// \returns a bitset for selecting opcodes. false for Opcode0 and true for |
| /// Opcode1. |
| static SmallBitVector getAltInstrMask(ArrayRef<Value *> VL, unsigned Opcode0, |
| unsigned Opcode1) { |
| Type *ScalarTy = VL[0]->getType(); |
| unsigned ScalarTyNumElements = getNumElements(ScalarTy); |
| SmallBitVector OpcodeMask(VL.size() * ScalarTyNumElements, false); |
| for (unsigned Lane : seq<unsigned>(VL.size())) |
| if (cast<Instruction>(VL[Lane])->getOpcode() == Opcode1) |
| OpcodeMask.set(Lane * ScalarTyNumElements, |
| Lane * ScalarTyNumElements + ScalarTyNumElements); |
| return OpcodeMask; |
| } |
| |
| namespace llvm { |
| |
| static void inversePermutation(ArrayRef<unsigned> Indices, |
| SmallVectorImpl<int> &Mask) { |
| Mask.clear(); |
| const unsigned E = Indices.size(); |
| Mask.resize(E, PoisonMaskElem); |
| for (unsigned I = 0; I < E; ++I) |
| Mask[Indices[I]] = I; |
| } |
| |
| /// Reorders the list of scalars in accordance with the given \p Mask. |
| static void reorderScalars(SmallVectorImpl<Value *> &Scalars, |
| ArrayRef<int> Mask) { |
| assert(!Mask.empty() && "Expected non-empty mask."); |
| SmallVector<Value *> Prev(Scalars.size(), |
| PoisonValue::get(Scalars.front()->getType())); |
| Prev.swap(Scalars); |
| for (unsigned I = 0, E = Prev.size(); I < E; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Scalars[Mask[I]] = Prev[I]; |
| } |
| |
| /// Checks if the provided value does not require scheduling. It does not |
| /// require scheduling if this is not an instruction or it is an instruction |
| /// that does not read/write memory and all operands are either not instructions |
| /// or phi nodes or instructions from different blocks. |
| static bool areAllOperandsNonInsts(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| return !mayHaveNonDefUseDependency(*I) && |
| all_of(I->operands(), [I](Value *V) { |
| auto *IO = dyn_cast<Instruction>(V); |
| if (!IO) |
| return true; |
| return isa<PHINode>(IO) || IO->getParent() != I->getParent(); |
| }); |
| } |
| |
| /// Checks if the provided value does not require scheduling. It does not |
| /// require scheduling if this is not an instruction or it is an instruction |
| /// that does not read/write memory and all users are phi nodes or instructions |
| /// from the different blocks. |
| static bool isUsedOutsideBlock(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| // Limits the number of uses to save compile time. |
| return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && |
| all_of(I->users(), [I](User *U) { |
| auto *IU = dyn_cast<Instruction>(U); |
| if (!IU) |
| return true; |
| return IU->getParent() != I->getParent() || isa<PHINode>(IU); |
| }); |
| } |
| |
| /// Checks if the specified value does not require scheduling. It does not |
| /// require scheduling if all operands and all users do not need to be scheduled |
| /// in the current basic block. |
| static bool doesNotNeedToBeScheduled(Value *V) { |
| return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); |
| } |
| |
| /// Checks if the specified array of instructions does not require scheduling. |
| /// It is so if all either instructions have operands that do not require |
| /// scheduling or their users do not require scheduling since they are phis or |
| /// in other basic blocks. |
| static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { |
| return !VL.empty() && |
| (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); |
| } |
| |
| /// Returns true if widened type of \p Ty elements with size \p Sz represents |
| /// full vector type, i.e. adding extra element results in extra parts upon type |
| /// legalization. |
| static bool hasFullVectorsOrPowerOf2(const TargetTransformInfo &TTI, Type *Ty, |
| unsigned Sz) { |
| if (Sz <= 1) |
| return false; |
| if (!isValidElementType(Ty) && !isa<FixedVectorType>(Ty)) |
| return false; |
| if (has_single_bit(Sz)) |
| return true; |
| const unsigned NumParts = TTI.getNumberOfParts(getWidenedType(Ty, Sz)); |
| return NumParts > 0 && NumParts < Sz && has_single_bit(Sz / NumParts) && |
| Sz % NumParts == 0; |
| } |
| |
| namespace slpvectorizer { |
| |
| /// Bottom Up SLP Vectorizer. |
| class BoUpSLP { |
| struct TreeEntry; |
| struct ScheduleData; |
| class ShuffleCostEstimator; |
| class ShuffleInstructionBuilder; |
| |
| public: |
| /// Tracks the state we can represent the loads in the given sequence. |
| enum class LoadsState { |
| Gather, |
| Vectorize, |
| ScatterVectorize, |
| StridedVectorize |
| }; |
| |
| using ValueList = SmallVector<Value *, 8>; |
| using InstrList = SmallVector<Instruction *, 16>; |
| using ValueSet = SmallPtrSet<Value *, 16>; |
| using StoreList = SmallVector<StoreInst *, 8>; |
| using ExtraValueToDebugLocsMap = |
| MapVector<Value *, SmallVector<Instruction *, 2>>; |
| using OrdersType = SmallVector<unsigned, 4>; |
| |
| BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, |
| TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, |
| DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, |
| const DataLayout *DL, OptimizationRemarkEmitter *ORE) |
| : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), DT(Dt), |
| AC(AC), DB(DB), DL(DL), ORE(ORE), |
| Builder(Se->getContext(), TargetFolder(*DL)) { |
| CodeMetrics::collectEphemeralValues(F, AC, EphValues); |
| // Use the vector register size specified by the target unless overridden |
| // by a command-line option. |
| // TODO: It would be better to limit the vectorization factor based on |
| // data type rather than just register size. For example, x86 AVX has |
| // 256-bit registers, but it does not support integer operations |
| // at that width (that requires AVX2). |
| if (MaxVectorRegSizeOption.getNumOccurrences()) |
| MaxVecRegSize = MaxVectorRegSizeOption; |
| else |
| MaxVecRegSize = |
| TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) |
| .getFixedValue(); |
| |
| if (MinVectorRegSizeOption.getNumOccurrences()) |
| MinVecRegSize = MinVectorRegSizeOption; |
| else |
| MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); |
| } |
| |
| /// Vectorize the tree that starts with the elements in \p VL. |
| /// Returns the vectorized root. |
| Value *vectorizeTree(); |
| |
| /// Vectorize the tree but with the list of externally used values \p |
| /// ExternallyUsedValues. Values in this MapVector can be replaced but the |
| /// generated extractvalue instructions. |
| Value * |
| vectorizeTree(const ExtraValueToDebugLocsMap &ExternallyUsedValues, |
| Instruction *ReductionRoot = nullptr); |
| |
| /// \returns the cost incurred by unwanted spills and fills, caused by |
| /// holding live values over call sites. |
| InstructionCost getSpillCost() const; |
| |
| /// \returns the vectorization cost of the subtree that starts at \p VL. |
| /// A negative number means that this is profitable. |
| InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = {}); |
| |
| /// Construct a vectorizable tree that starts at \p Roots, ignoring users for |
| /// the purpose of scheduling and extraction in the \p UserIgnoreLst. |
| void buildTree(ArrayRef<Value *> Roots, |
| const SmallDenseSet<Value *> &UserIgnoreLst); |
| |
| /// Construct a vectorizable tree that starts at \p Roots. |
| void buildTree(ArrayRef<Value *> Roots); |
| |
| /// Returns whether the root node has in-tree uses. |
| bool doesRootHaveInTreeUses() const { |
| return !VectorizableTree.empty() && |
| !VectorizableTree.front()->UserTreeIndices.empty(); |
| } |
| |
| /// Return the scalars of the root node. |
| ArrayRef<Value *> getRootNodeScalars() const { |
| assert(!VectorizableTree.empty() && "No graph to get the first node from"); |
| return VectorizableTree.front()->Scalars; |
| } |
| |
| /// Checks if the root graph node can be emitted with narrower bitwidth at |
| /// codegen and returns it signedness, if so. |
| bool isSignedMinBitwidthRootNode() const { |
| return MinBWs.at(VectorizableTree.front().get()).second; |
| } |
| |
| /// Builds external uses of the vectorized scalars, i.e. the list of |
| /// vectorized scalars to be extracted, their lanes and their scalar users. \p |
| /// ExternallyUsedValues contains additional list of external uses to handle |
| /// vectorization of reductions. |
| void |
| buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); |
| |
| /// Transforms graph nodes to target specific representations, if profitable. |
| void transformNodes(); |
| |
| /// Clear the internal data structures that are created by 'buildTree'. |
| void deleteTree() { |
| VectorizableTree.clear(); |
| ScalarToTreeEntry.clear(); |
| MultiNodeScalars.clear(); |
| MustGather.clear(); |
| NonScheduledFirst.clear(); |
| EntryToLastInstruction.clear(); |
| GatheredLoadsEntriesFirst.reset(); |
| ExternalUses.clear(); |
| ExternalUsesAsOriginalScalar.clear(); |
| for (auto &Iter : BlocksSchedules) { |
| BlockScheduling *BS = Iter.second.get(); |
| BS->clear(); |
| } |
| MinBWs.clear(); |
| ReductionBitWidth = 0; |
| BaseGraphSize = 1; |
| CastMaxMinBWSizes.reset(); |
| ExtraBitWidthNodes.clear(); |
| InstrElementSize.clear(); |
| UserIgnoreList = nullptr; |
| PostponedGathers.clear(); |
| ValueToGatherNodes.clear(); |
| } |
| |
| unsigned getTreeSize() const { return VectorizableTree.size(); } |
| |
| /// Returns the base graph size, before any transformations. |
| unsigned getCanonicalGraphSize() const { return BaseGraphSize; } |
| |
| /// Perform LICM and CSE on the newly generated gather sequences. |
| void optimizeGatherSequence(); |
| |
| /// Does this non-empty order represent an identity order? Identity |
| /// should be represented as an empty order, so this is used to |
| /// decide if we can canonicalize a computed order. Undef elements |
| /// (represented as size) are ignored. |
| bool isIdentityOrder(ArrayRef<unsigned> Order) const { |
| assert(!Order.empty() && "expected non-empty order"); |
| const unsigned Sz = Order.size(); |
| return all_of(enumerate(Order), [&](const auto &P) { |
| return P.value() == P.index() || P.value() == Sz; |
| }); |
| } |
| |
| /// Checks if the specified gather tree entry \p TE can be represented as a |
| /// shuffled vector entry + (possibly) permutation with other gathers. It |
| /// implements the checks only for possibly ordered scalars (Loads, |
| /// ExtractElement, ExtractValue), which can be part of the graph. |
| std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); |
| |
| /// Sort loads into increasing pointers offsets to allow greater clustering. |
| std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); |
| |
| /// Gets reordering data for the given tree entry. If the entry is vectorized |
| /// - just return ReorderIndices, otherwise check if the scalars can be |
| /// reordered and return the most optimal order. |
| /// \return std::nullopt if ordering is not important, empty order, if |
| /// identity order is important, or the actual order. |
| /// \param TopToBottom If true, include the order of vectorized stores and |
| /// insertelement nodes, otherwise skip them. |
| std::optional<OrdersType> getReorderingData(const TreeEntry &TE, |
| bool TopToBottom); |
| |
| /// Reorders the current graph to the most profitable order starting from the |
| /// root node to the leaf nodes. The best order is chosen only from the nodes |
| /// of the same size (vectorization factor). Smaller nodes are considered |
| /// parts of subgraph with smaller VF and they are reordered independently. We |
| /// can make it because we still need to extend smaller nodes to the wider VF |
| /// and we can merge reordering shuffles with the widening shuffles. |
| void reorderTopToBottom(); |
| |
| /// Reorders the current graph to the most profitable order starting from |
| /// leaves to the root. It allows to rotate small subgraphs and reduce the |
| /// number of reshuffles if the leaf nodes use the same order. In this case we |
| /// can merge the orders and just shuffle user node instead of shuffling its |
| /// operands. Plus, even the leaf nodes have different orders, it allows to |
| /// sink reordering in the graph closer to the root node and merge it later |
| /// during analysis. |
| void reorderBottomToTop(bool IgnoreReorder = false); |
| |
| /// \return The vector element size in bits to use when vectorizing the |
| /// expression tree ending at \p V. If V is a store, the size is the width of |
| /// the stored value. Otherwise, the size is the width of the largest loaded |
| /// value reaching V. This method is used by the vectorizer to calculate |
| /// vectorization factors. |
| unsigned getVectorElementSize(Value *V); |
| |
| /// Compute the minimum type sizes required to represent the entries in a |
| /// vectorizable tree. |
| void computeMinimumValueSizes(); |
| |
| // \returns maximum vector register size as set by TTI or overridden by cl::opt. |
| unsigned getMaxVecRegSize() const { |
| return MaxVecRegSize; |
| } |
| |
| // \returns minimum vector register size as set by cl::opt. |
| unsigned getMinVecRegSize() const { |
| return MinVecRegSize; |
| } |
| |
| unsigned getMinVF(unsigned Sz) const { |
| return std::max(2U, getMinVecRegSize() / Sz); |
| } |
| |
| unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { |
| unsigned MaxVF = MaxVFOption.getNumOccurrences() ? |
| MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); |
| return MaxVF ? MaxVF : UINT_MAX; |
| } |
| |
| /// Check if homogeneous aggregate is isomorphic to some VectorType. |
| /// Accepts homogeneous multidimensional aggregate of scalars/vectors like |
| /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, |
| /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. |
| /// |
| /// \returns number of elements in vector if isomorphism exists, 0 otherwise. |
| unsigned canMapToVector(Type *T) const; |
| |
| /// \returns True if the VectorizableTree is both tiny and not fully |
| /// vectorizable. We do not vectorize such trees. |
| bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; |
| |
| /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values |
| /// can be load combined in the backend. Load combining may not be allowed in |
| /// the IR optimizer, so we do not want to alter the pattern. For example, |
| /// partially transforming a scalar bswap() pattern into vector code is |
| /// effectively impossible for the backend to undo. |
| /// TODO: If load combining is allowed in the IR optimizer, this analysis |
| /// may not be necessary. |
| bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; |
| |
| /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values |
| /// can be load combined in the backend. Load combining may not be allowed in |
| /// the IR optimizer, so we do not want to alter the pattern. For example, |
| /// partially transforming a scalar bswap() pattern into vector code is |
| /// effectively impossible for the backend to undo. |
| /// TODO: If load combining is allowed in the IR optimizer, this analysis |
| /// may not be necessary. |
| bool isLoadCombineCandidate(ArrayRef<Value *> Stores) const; |
| |
| /// Checks if the given array of loads can be represented as a vectorized, |
| /// scatter or just simple gather. |
| /// \param VL list of loads. |
| /// \param VL0 main load value. |
| /// \param Order returned order of load instructions. |
| /// \param PointerOps returned list of pointer operands. |
| /// \param BestVF return best vector factor, if recursive check found better |
| /// vectorization sequences rather than masked gather. |
| /// \param TryRecursiveCheck used to check if long masked gather can be |
| /// represented as a serie of loads/insert subvector, if profitable. |
| LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, |
| SmallVectorImpl<unsigned> &Order, |
| SmallVectorImpl<Value *> &PointerOps, |
| unsigned *BestVF = nullptr, |
| bool TryRecursiveCheck = true) const; |
| |
| /// Registers non-vectorizable sequence of loads |
| template <typename T> void registerNonVectorizableLoads(ArrayRef<T *> VL) { |
| ListOfKnonwnNonVectorizableLoads.insert(hash_value(VL)); |
| } |
| |
| /// Checks if the given loads sequence is known as not vectorizable |
| template <typename T> |
| bool areKnownNonVectorizableLoads(ArrayRef<T *> VL) const { |
| return ListOfKnonwnNonVectorizableLoads.contains(hash_value(VL)); |
| } |
| |
| OptimizationRemarkEmitter *getORE() { return ORE; } |
| |
| /// This structure holds any data we need about the edges being traversed |
| /// during buildTree_rec(). We keep track of: |
| /// (i) the user TreeEntry index, and |
| /// (ii) the index of the edge. |
| struct EdgeInfo { |
| EdgeInfo() = default; |
| EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) |
| : UserTE(UserTE), EdgeIdx(EdgeIdx) {} |
| /// The user TreeEntry. |
| TreeEntry *UserTE = nullptr; |
| /// The operand index of the use. |
| unsigned EdgeIdx = UINT_MAX; |
| #ifndef NDEBUG |
| friend inline raw_ostream &operator<<(raw_ostream &OS, |
| const BoUpSLP::EdgeInfo &EI) { |
| EI.dump(OS); |
| return OS; |
| } |
| /// Debug print. |
| void dump(raw_ostream &OS) const { |
| OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") |
| << " EdgeIdx:" << EdgeIdx << "}"; |
| } |
| LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } |
| #endif |
| bool operator == (const EdgeInfo &Other) const { |
| return UserTE == Other.UserTE && EdgeIdx == Other.EdgeIdx; |
| } |
| }; |
| |
| /// A helper class used for scoring candidates for two consecutive lanes. |
| class LookAheadHeuristics { |
| const TargetLibraryInfo &TLI; |
| const DataLayout &DL; |
| ScalarEvolution &SE; |
| const BoUpSLP &R; |
| int NumLanes; // Total number of lanes (aka vectorization factor). |
| int MaxLevel; // The maximum recursion depth for accumulating score. |
| |
| public: |
| LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL, |
| ScalarEvolution &SE, const BoUpSLP &R, int NumLanes, |
| int MaxLevel) |
| : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes), |
| MaxLevel(MaxLevel) {} |
| |
| // The hard-coded scores listed here are not very important, though it shall |
| // be higher for better matches to improve the resulting cost. When |
| // computing the scores of matching one sub-tree with another, we are |
| // basically counting the number of values that are matching. So even if all |
| // scores are set to 1, we would still get a decent matching result. |
| // However, sometimes we have to break ties. For example we may have to |
| // choose between matching loads vs matching opcodes. This is what these |
| // scores are helping us with: they provide the order of preference. Also, |
| // this is important if the scalar is externally used or used in another |
| // tree entry node in the different lane. |
| |
| /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). |
| static const int ScoreConsecutiveLoads = 4; |
| /// The same load multiple times. This should have a better score than |
| /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it |
| /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for |
| /// a vector load and 1.0 for a broadcast. |
| static const int ScoreSplatLoads = 3; |
| /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). |
| static const int ScoreReversedLoads = 3; |
| /// A load candidate for masked gather. |
| static const int ScoreMaskedGatherCandidate = 1; |
| /// ExtractElementInst from same vector and consecutive indexes. |
| static const int ScoreConsecutiveExtracts = 4; |
| /// ExtractElementInst from same vector and reversed indices. |
| static const int ScoreReversedExtracts = 3; |
| /// Constants. |
| static const int ScoreConstants = 2; |
| /// Instructions with the same opcode. |
| static const int ScoreSameOpcode = 2; |
| /// Instructions with alt opcodes (e.g, add + sub). |
| static const int ScoreAltOpcodes = 1; |
| /// Identical instructions (a.k.a. splat or broadcast). |
| static const int ScoreSplat = 1; |
| /// Matching with an undef is preferable to failing. |
| static const int ScoreUndef = 1; |
| /// Score for failing to find a decent match. |
| static const int ScoreFail = 0; |
| /// Score if all users are vectorized. |
| static const int ScoreAllUserVectorized = 1; |
| |
| /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. |
| /// \p U1 and \p U2 are the users of \p V1 and \p V2. |
| /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p |
| /// MainAltOps. |
| int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, |
| ArrayRef<Value *> MainAltOps) const { |
| if (!isValidElementType(V1->getType()) || |
| !isValidElementType(V2->getType())) |
| return LookAheadHeuristics::ScoreFail; |
| |
| if (V1 == V2) { |
| if (isa<LoadInst>(V1)) { |
| // Retruns true if the users of V1 and V2 won't need to be extracted. |
| auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { |
| // Bail out if we have too many uses to save compilation time. |
| if (V1->hasNUsesOrMore(UsesLimit) || V2->hasNUsesOrMore(UsesLimit)) |
| return false; |
| |
| auto AllUsersVectorized = [U1, U2, this](Value *V) { |
| return llvm::all_of(V->users(), [U1, U2, this](Value *U) { |
| return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; |
| }); |
| }; |
| return AllUsersVectorized(V1) && AllUsersVectorized(V2); |
| }; |
| // A broadcast of a load can be cheaper on some targets. |
| if (R.TTI->isLegalBroadcastLoad(V1->getType(), |
| ElementCount::getFixed(NumLanes)) && |
| ((int)V1->getNumUses() == NumLanes || |
| AllUsersAreInternal(V1, V2))) |
| return LookAheadHeuristics::ScoreSplatLoads; |
| } |
| return LookAheadHeuristics::ScoreSplat; |
| } |
| |
| auto CheckSameEntryOrFail = [&]() { |
| if (const TreeEntry *TE1 = R.getTreeEntry(V1); |
| TE1 && TE1 == R.getTreeEntry(V2)) |
| return LookAheadHeuristics::ScoreSplatLoads; |
| return LookAheadHeuristics::ScoreFail; |
| }; |
| |
| auto *LI1 = dyn_cast<LoadInst>(V1); |
| auto *LI2 = dyn_cast<LoadInst>(V2); |
| if (LI1 && LI2) { |
| if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() || |
| !LI2->isSimple()) |
| return CheckSameEntryOrFail(); |
| |
| std::optional<int> Dist = getPointersDiff( |
| LI1->getType(), LI1->getPointerOperand(), LI2->getType(), |
| LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); |
| if (!Dist || *Dist == 0) { |
| if (getUnderlyingObject(LI1->getPointerOperand()) == |
| getUnderlyingObject(LI2->getPointerOperand()) && |
| R.TTI->isLegalMaskedGather( |
| getWidenedType(LI1->getType(), NumLanes), LI1->getAlign())) |
| return LookAheadHeuristics::ScoreMaskedGatherCandidate; |
| return CheckSameEntryOrFail(); |
| } |
| // The distance is too large - still may be profitable to use masked |
| // loads/gathers. |
| if (std::abs(*Dist) > NumLanes / 2) |
| return LookAheadHeuristics::ScoreMaskedGatherCandidate; |
| // This still will detect consecutive loads, but we might have "holes" |
| // in some cases. It is ok for non-power-2 vectorization and may produce |
| // better results. It should not affect current vectorization. |
| return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads |
| : LookAheadHeuristics::ScoreReversedLoads; |
| } |
| |
| auto *C1 = dyn_cast<Constant>(V1); |
| auto *C2 = dyn_cast<Constant>(V2); |
| if (C1 && C2) |
| return LookAheadHeuristics::ScoreConstants; |
| |
| // Extracts from consecutive indexes of the same vector better score as |
| // the extracts could be optimized away. |
| Value *EV1; |
| ConstantInt *Ex1Idx; |
| if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { |
| // Undefs are always profitable for extractelements. |
| // Compiler can easily combine poison and extractelement <non-poison> or |
| // undef and extractelement <poison>. But combining undef + |
| // extractelement <non-poison-but-may-produce-poison> requires some |
| // extra operations. |
| if (isa<UndefValue>(V2)) |
| return (isa<PoisonValue>(V2) || isUndefVector(EV1).all()) |
| ? LookAheadHeuristics::ScoreConsecutiveExtracts |
| : LookAheadHeuristics::ScoreSameOpcode; |
| Value *EV2 = nullptr; |
| ConstantInt *Ex2Idx = nullptr; |
| if (match(V2, |
| m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), |
| m_Undef())))) { |
| // Undefs are always profitable for extractelements. |
| if (!Ex2Idx) |
| return LookAheadHeuristics::ScoreConsecutiveExtracts; |
| if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType()) |
| return LookAheadHeuristics::ScoreConsecutiveExtracts; |
| if (EV2 == EV1) { |
| int Idx1 = Ex1Idx->getZExtValue(); |
| int Idx2 = Ex2Idx->getZExtValue(); |
| int Dist = Idx2 - Idx1; |
| // The distance is too large - still may be profitable to use |
| // shuffles. |
| if (std::abs(Dist) == 0) |
| return LookAheadHeuristics::ScoreSplat; |
| if (std::abs(Dist) > NumLanes / 2) |
| return LookAheadHeuristics::ScoreSameOpcode; |
| return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts |
| : LookAheadHeuristics::ScoreReversedExtracts; |
| } |
| return LookAheadHeuristics::ScoreAltOpcodes; |
| } |
| return CheckSameEntryOrFail(); |
| } |
| |
| auto *I1 = dyn_cast<Instruction>(V1); |
| auto *I2 = dyn_cast<Instruction>(V2); |
| if (I1 && I2) { |
| if (I1->getParent() != I2->getParent()) |
| return CheckSameEntryOrFail(); |
| SmallVector<Value *, 4> Ops(MainAltOps); |
| Ops.push_back(I1); |
| Ops.push_back(I2); |
| InstructionsState S = getSameOpcode(Ops, TLI); |
| // Note: Only consider instructions with <= 2 operands to avoid |
| // complexity explosion. |
| if (S.getOpcode() && |
| (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || |
| !S.isAltShuffle()) && |
| all_of(Ops, [&S](Value *V) { |
| return cast<Instruction>(V)->getNumOperands() == |
| S.MainOp->getNumOperands(); |
| })) |
| return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes |
| : LookAheadHeuristics::ScoreSameOpcode; |
| } |
| |
| if (isa<UndefValue>(V2)) |
| return LookAheadHeuristics::ScoreUndef; |
| |
| return CheckSameEntryOrFail(); |
| } |
| |
| /// Go through the operands of \p LHS and \p RHS recursively until |
| /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are |
| /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands |
| /// of \p U1 and \p U2), except at the beginning of the recursion where |
| /// these are set to nullptr. |
| /// |
| /// For example: |
| /// \verbatim |
| /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] |
| /// \ / \ / \ / \ / |
| /// + + + + |
| /// G1 G2 G3 G4 |
| /// \endverbatim |
| /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at |
| /// each level recursively, accumulating the score. It starts from matching |
| /// the additions at level 0, then moves on to the loads (level 1). The |
| /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and |
| /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while |
| /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. |
| /// Please note that the order of the operands does not matter, as we |
| /// evaluate the score of all profitable combinations of operands. In |
| /// other words the score of G1 and G4 is the same as G1 and G2. This |
| /// heuristic is based on ideas described in: |
| /// Look-ahead SLP: Auto-vectorization in the presence of commutative |
| /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, |
| /// LuÃs F. W. Góes |
| int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, |
| Instruction *U2, int CurrLevel, |
| ArrayRef<Value *> MainAltOps) const { |
| |
| // Get the shallow score of V1 and V2. |
| int ShallowScoreAtThisLevel = |
| getShallowScore(LHS, RHS, U1, U2, MainAltOps); |
| |
| // If reached MaxLevel, |
| // or if V1 and V2 are not instructions, |
| // or if they are SPLAT, |
| // or if they are not consecutive, |
| // or if profitable to vectorize loads or extractelements, early return |
| // the current cost. |
| auto *I1 = dyn_cast<Instruction>(LHS); |
| auto *I2 = dyn_cast<Instruction>(RHS); |
| if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || |
| ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || |
| (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || |
| (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || |
| (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && |
| ShallowScoreAtThisLevel)) |
| return ShallowScoreAtThisLevel; |
| assert(I1 && I2 && "Should have early exited."); |
| |
| // Contains the I2 operand indexes that got matched with I1 operands. |
| SmallSet<unsigned, 4> Op2Used; |
| |
| // Recursion towards the operands of I1 and I2. We are trying all possible |
| // operand pairs, and keeping track of the best score. |
| for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); |
| OpIdx1 != NumOperands1; ++OpIdx1) { |
| // Try to pair op1I with the best operand of I2. |
| int MaxTmpScore = 0; |
| unsigned MaxOpIdx2 = 0; |
| bool FoundBest = false; |
| // If I2 is commutative try all combinations. |
| unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; |
| unsigned ToIdx = isCommutative(I2) |
| ? I2->getNumOperands() |
| : std::min(I2->getNumOperands(), OpIdx1 + 1); |
| assert(FromIdx <= ToIdx && "Bad index"); |
| for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { |
| // Skip operands already paired with OpIdx1. |
| if (Op2Used.count(OpIdx2)) |
| continue; |
| // Recursively calculate the cost at each level |
| int TmpScore = |
| getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), |
| I1, I2, CurrLevel + 1, {}); |
| // Look for the best score. |
| if (TmpScore > LookAheadHeuristics::ScoreFail && |
| TmpScore > MaxTmpScore) { |
| MaxTmpScore = TmpScore; |
| MaxOpIdx2 = OpIdx2; |
| FoundBest = true; |
| } |
| } |
| if (FoundBest) { |
| // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. |
| Op2Used.insert(MaxOpIdx2); |
| ShallowScoreAtThisLevel += MaxTmpScore; |
| } |
| } |
| return ShallowScoreAtThisLevel; |
| } |
| }; |
| /// A helper data structure to hold the operands of a vector of instructions. |
| /// This supports a fixed vector length for all operand vectors. |
| class VLOperands { |
| /// For each operand we need (i) the value, and (ii) the opcode that it |
| /// would be attached to if the expression was in a left-linearized form. |
| /// This is required to avoid illegal operand reordering. |
| /// For example: |
| /// \verbatim |
| /// 0 Op1 |
| /// |/ |
| /// Op1 Op2 Linearized + Op2 |
| /// \ / ----------> |/ |
| /// - - |
| /// |
| /// Op1 - Op2 (0 + Op1) - Op2 |
| /// \endverbatim |
| /// |
| /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. |
| /// |
| /// Another way to think of this is to track all the operations across the |
| /// path from the operand all the way to the root of the tree and to |
| /// calculate the operation that corresponds to this path. For example, the |
| /// path from Op2 to the root crosses the RHS of the '-', therefore the |
| /// corresponding operation is a '-' (which matches the one in the |
| /// linearized tree, as shown above). |
| /// |
| /// For lack of a better term, we refer to this operation as Accumulated |
| /// Path Operation (APO). |
| struct OperandData { |
| OperandData() = default; |
| OperandData(Value *V, bool APO, bool IsUsed) |
| : V(V), APO(APO), IsUsed(IsUsed) {} |
| /// The operand value. |
| Value *V = nullptr; |
| /// TreeEntries only allow a single opcode, or an alternate sequence of |
| /// them (e.g, +, -). Therefore, we can safely use a boolean value for the |
| /// APO. It is set to 'true' if 'V' is attached to an inverse operation |
| /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise |
| /// (e.g., Add/Mul) |
| bool APO = false; |
| /// Helper data for the reordering function. |
| bool IsUsed = false; |
| }; |
| |
| /// During operand reordering, we are trying to select the operand at lane |
| /// that matches best with the operand at the neighboring lane. Our |
| /// selection is based on the type of value we are looking for. For example, |
| /// if the neighboring lane has a load, we need to look for a load that is |
| /// accessing a consecutive address. These strategies are summarized in the |
| /// 'ReorderingMode' enumerator. |
| enum class ReorderingMode { |
| Load, ///< Matching loads to consecutive memory addresses |
| Opcode, ///< Matching instructions based on opcode (same or alternate) |
| Constant, ///< Matching constants |
| Splat, ///< Matching the same instruction multiple times (broadcast) |
| Failed, ///< We failed to create a vectorizable group |
| }; |
| |
| using OperandDataVec = SmallVector<OperandData, 2>; |
| |
| /// A vector of operand vectors. |
| SmallVector<OperandDataVec, 4> OpsVec; |
| |
| const TargetLibraryInfo &TLI; |
| const DataLayout &DL; |
| ScalarEvolution &SE; |
| const BoUpSLP &R; |
| const Loop *L = nullptr; |
| |
| /// \returns the operand data at \p OpIdx and \p Lane. |
| OperandData &getData(unsigned OpIdx, unsigned Lane) { |
| return OpsVec[OpIdx][Lane]; |
| } |
| |
| /// \returns the operand data at \p OpIdx and \p Lane. Const version. |
| const OperandData &getData(unsigned OpIdx, unsigned Lane) const { |
| return OpsVec[OpIdx][Lane]; |
| } |
| |
| /// Clears the used flag for all entries. |
| void clearUsed() { |
| for (unsigned OpIdx = 0, NumOperands = getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) |
| for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; |
| ++Lane) |
| OpsVec[OpIdx][Lane].IsUsed = false; |
| } |
| |
| /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. |
| void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { |
| std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); |
| } |
| |
| /// \param Lane lane of the operands under analysis. |
| /// \param OpIdx operand index in \p Lane lane we're looking the best |
| /// candidate for. |
| /// \param Idx operand index of the current candidate value. |
| /// \returns The additional score due to possible broadcasting of the |
| /// elements in the lane. It is more profitable to have power-of-2 unique |
| /// elements in the lane, it will be vectorized with higher probability |
| /// after removing duplicates. Currently the SLP vectorizer supports only |
| /// vectorization of the power-of-2 number of unique scalars. |
| int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx, |
| const SmallBitVector &UsedLanes) const { |
| Value *IdxLaneV = getData(Idx, Lane).V; |
| if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V || |
| isa<ExtractElementInst>(IdxLaneV)) |
| return 0; |
| SmallDenseMap<Value *, unsigned, 4> Uniques; |
| for (unsigned Ln : seq<unsigned>(getNumLanes())) { |
| if (Ln == Lane) |
| continue; |
| Value *OpIdxLnV = getData(OpIdx, Ln).V; |
| if (!isa<Instruction>(OpIdxLnV)) |
| return 0; |
| Uniques.try_emplace(OpIdxLnV, Ln); |
| } |
| unsigned UniquesCount = Uniques.size(); |
| auto IdxIt = Uniques.find(IdxLaneV); |
| unsigned UniquesCntWithIdxLaneV = |
| IdxIt != Uniques.end() ? UniquesCount : UniquesCount + 1; |
| Value *OpIdxLaneV = getData(OpIdx, Lane).V; |
| auto OpIdxIt = Uniques.find(OpIdxLaneV); |
| unsigned UniquesCntWithOpIdxLaneV = |
| OpIdxIt != Uniques.end() ? UniquesCount : UniquesCount + 1; |
| if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) |
| return 0; |
| return std::min(bit_ceil(UniquesCntWithOpIdxLaneV) - |
| UniquesCntWithOpIdxLaneV, |
| UniquesCntWithOpIdxLaneV - |
| bit_floor(UniquesCntWithOpIdxLaneV)) - |
| ((IdxIt != Uniques.end() && UsedLanes.test(IdxIt->second)) |
| ? UniquesCntWithIdxLaneV - bit_floor(UniquesCntWithIdxLaneV) |
| : bit_ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); |
| } |
| |
| /// \param Lane lane of the operands under analysis. |
| /// \param OpIdx operand index in \p Lane lane we're looking the best |
| /// candidate for. |
| /// \param Idx operand index of the current candidate value. |
| /// \returns The additional score for the scalar which users are all |
| /// vectorized. |
| int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { |
| Value *IdxLaneV = getData(Idx, Lane).V; |
| Value *OpIdxLaneV = getData(OpIdx, Lane).V; |
| // Do not care about number of uses for vector-like instructions |
| // (extractelement/extractvalue with constant indices), they are extracts |
| // themselves and already externally used. Vectorization of such |
| // instructions does not add extra extractelement instruction, just may |
| // remove it. |
| if (isVectorLikeInstWithConstOps(IdxLaneV) && |
| isVectorLikeInstWithConstOps(OpIdxLaneV)) |
| return LookAheadHeuristics::ScoreAllUserVectorized; |
| auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); |
| if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) |
| return 0; |
| return R.areAllUsersVectorized(IdxLaneI) |
| ? LookAheadHeuristics::ScoreAllUserVectorized |
| : 0; |
| } |
| |
| /// Score scaling factor for fully compatible instructions but with |
| /// different number of external uses. Allows better selection of the |
| /// instructions with less external uses. |
| static const int ScoreScaleFactor = 10; |
| |
| /// \Returns the look-ahead score, which tells us how much the sub-trees |
| /// rooted at \p LHS and \p RHS match, the more they match the higher the |
| /// score. This helps break ties in an informed way when we cannot decide on |
| /// the order of the operands by just considering the immediate |
| /// predecessors. |
| int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, |
| int Lane, unsigned OpIdx, unsigned Idx, |
| bool &IsUsed, const SmallBitVector &UsedLanes) { |
| LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(), |
| LookAheadMaxDepth); |
| // Keep track of the instruction stack as we recurse into the operands |
| // during the look-ahead score exploration. |
| int Score = |
| LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, |
| /*CurrLevel=*/1, MainAltOps); |
| if (Score) { |
| int SplatScore = getSplatScore(Lane, OpIdx, Idx, UsedLanes); |
| if (Score <= -SplatScore) { |
| // Failed score. |
| Score = 0; |
| } else { |
| Score += SplatScore; |
| // Scale score to see the difference between different operands |
| // and similar operands but all vectorized/not all vectorized |
| // uses. It does not affect actual selection of the best |
| // compatible operand in general, just allows to select the |
| // operand with all vectorized uses. |
| Score *= ScoreScaleFactor; |
| Score += getExternalUseScore(Lane, OpIdx, Idx); |
| IsUsed = true; |
| } |
| } |
| return Score; |
| } |
| |
| /// Best defined scores per lanes between the passes. Used to choose the |
| /// best operand (with the highest score) between the passes. |
| /// The key - {Operand Index, Lane}. |
| /// The value - the best score between the passes for the lane and the |
| /// operand. |
| SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> |
| BestScoresPerLanes; |
| |
| // Search all operands in Ops[*][Lane] for the one that matches best |
| // Ops[OpIdx][LastLane] and return its opreand index. |
| // If no good match can be found, return std::nullopt. |
| std::optional<unsigned> |
| getBestOperand(unsigned OpIdx, int Lane, int LastLane, |
| ArrayRef<ReorderingMode> ReorderingModes, |
| ArrayRef<Value *> MainAltOps, |
| const SmallBitVector &UsedLanes) { |
| unsigned NumOperands = getNumOperands(); |
| |
| // The operand of the previous lane at OpIdx. |
| Value *OpLastLane = getData(OpIdx, LastLane).V; |
| |
| // Our strategy mode for OpIdx. |
| ReorderingMode RMode = ReorderingModes[OpIdx]; |
| if (RMode == ReorderingMode::Failed) |
| return std::nullopt; |
| |
| // The linearized opcode of the operand at OpIdx, Lane. |
| bool OpIdxAPO = getData(OpIdx, Lane).APO; |
| |
| // The best operand index and its score. |
| // Sometimes we have more than one option (e.g., Opcode and Undefs), so we |
| // are using the score to differentiate between the two. |
| struct BestOpData { |
| std::optional<unsigned> Idx; |
| unsigned Score = 0; |
| } BestOp; |
| BestOp.Score = |
| BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) |
| .first->second; |
| |
| // Track if the operand must be marked as used. If the operand is set to |
| // Score 1 explicitly (because of non power-of-2 unique scalars, we may |
| // want to reestimate the operands again on the following iterations). |
| bool IsUsed = RMode == ReorderingMode::Splat || |
| RMode == ReorderingMode::Constant || |
| RMode == ReorderingMode::Load; |
| // Iterate through all unused operands and look for the best. |
| for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { |
| // Get the operand at Idx and Lane. |
| OperandData &OpData = getData(Idx, Lane); |
| Value *Op = OpData.V; |
| bool OpAPO = OpData.APO; |
| |
| // Skip already selected operands. |
| if (OpData.IsUsed) |
| continue; |
| |
| // Skip if we are trying to move the operand to a position with a |
| // different opcode in the linearized tree form. This would break the |
| // semantics. |
| if (OpAPO != OpIdxAPO) |
| continue; |
| |
| // Look for an operand that matches the current mode. |
| switch (RMode) { |
| case ReorderingMode::Load: |
| case ReorderingMode::Opcode: { |
| bool LeftToRight = Lane > LastLane; |
| Value *OpLeft = (LeftToRight) ? OpLastLane : Op; |
| Value *OpRight = (LeftToRight) ? Op : OpLastLane; |
| int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, |
| OpIdx, Idx, IsUsed, UsedLanes); |
| if (Score > static_cast<int>(BestOp.Score) || |
| (Score > 0 && Score == static_cast<int>(BestOp.Score) && |
| Idx == OpIdx)) { |
| BestOp.Idx = Idx; |
| BestOp.Score = Score; |
| BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; |
| } |
| break; |
| } |
| case ReorderingMode::Constant: |
| if (isa<Constant>(Op) || |
| (!BestOp.Score && L && L->isLoopInvariant(Op))) { |
| BestOp.Idx = Idx; |
| if (isa<Constant>(Op)) { |
| BestOp.Score = LookAheadHeuristics::ScoreConstants; |
| BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = |
| LookAheadHeuristics::ScoreConstants; |
| } |
| if (isa<UndefValue>(Op) || !isa<Constant>(Op)) |
| IsUsed = false; |
| } |
| break; |
| case ReorderingMode::Splat: |
| if (Op == OpLastLane || (!BestOp.Score && isa<Constant>(Op))) { |
| IsUsed = Op == OpLastLane; |
| if (Op == OpLastLane) { |
| BestOp.Score = LookAheadHeuristics::ScoreSplat; |
| BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = |
| LookAheadHeuristics::ScoreSplat; |
| } |
| BestOp.Idx = Idx; |
| } |
| break; |
| case ReorderingMode::Failed: |
| llvm_unreachable("Not expected Failed reordering mode."); |
| } |
| } |
| |
| if (BestOp.Idx) { |
| getData(*BestOp.Idx, Lane).IsUsed = IsUsed; |
| return BestOp.Idx; |
| } |
| // If we could not find a good match return std::nullopt. |
| return std::nullopt; |
| } |
| |
| /// Helper for reorderOperandVecs. |
| /// \returns the lane that we should start reordering from. This is the one |
| /// which has the least number of operands that can freely move about or |
| /// less profitable because it already has the most optimal set of operands. |
| unsigned getBestLaneToStartReordering() const { |
| unsigned Min = UINT_MAX; |
| unsigned SameOpNumber = 0; |
| // std::pair<unsigned, unsigned> is used to implement a simple voting |
| // algorithm and choose the lane with the least number of operands that |
| // can freely move about or less profitable because it already has the |
| // most optimal set of operands. The first unsigned is a counter for |
| // voting, the second unsigned is the counter of lanes with instructions |
| // with same/alternate opcodes and same parent basic block. |
| MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; |
| // Try to be closer to the original results, if we have multiple lanes |
| // with same cost. If 2 lanes have the same cost, use the one with the |
| // lowest index. |
| for (int I = getNumLanes(); I > 0; --I) { |
| unsigned Lane = I - 1; |
| OperandsOrderData NumFreeOpsHash = |
| getMaxNumOperandsThatCanBeReordered(Lane); |
| // Compare the number of operands that can move and choose the one with |
| // the least number. |
| if (NumFreeOpsHash.NumOfAPOs < Min) { |
| Min = NumFreeOpsHash.NumOfAPOs; |
| SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; |
| HashMap.clear(); |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| } else if (NumFreeOpsHash.NumOfAPOs == Min && |
| NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { |
| // Select the most optimal lane in terms of number of operands that |
| // should be moved around. |
| SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| } else if (NumFreeOpsHash.NumOfAPOs == Min && |
| NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { |
| auto *It = HashMap.find(NumFreeOpsHash.Hash); |
| if (It == HashMap.end()) |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| else |
| ++It->second.first; |
| } |
| } |
| // Select the lane with the minimum counter. |
| unsigned BestLane = 0; |
| unsigned CntMin = UINT_MAX; |
| for (const auto &Data : reverse(HashMap)) { |
| if (Data.second.first < CntMin) { |
| CntMin = Data.second.first; |
| BestLane = Data.second.second; |
| } |
| } |
| return BestLane; |
| } |
| |
| /// Data structure that helps to reorder operands. |
| struct OperandsOrderData { |
| /// The best number of operands with the same APOs, which can be |
| /// reordered. |
| unsigned NumOfAPOs = UINT_MAX; |
| /// Number of operands with the same/alternate instruction opcode and |
| /// parent. |
| unsigned NumOpsWithSameOpcodeParent = 0; |
| /// Hash for the actual operands ordering. |
| /// Used to count operands, actually their position id and opcode |
| /// value. It is used in the voting mechanism to find the lane with the |
| /// least number of operands that can freely move about or less profitable |
| /// because it already has the most optimal set of operands. Can be |
| /// replaced with SmallVector<unsigned> instead but hash code is faster |
| /// and requires less memory. |
| unsigned Hash = 0; |
| }; |
| /// \returns the maximum number of operands that are allowed to be reordered |
| /// for \p Lane and the number of compatible instructions(with the same |
| /// parent/opcode). This is used as a heuristic for selecting the first lane |
| /// to start operand reordering. |
| OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { |
| unsigned CntTrue = 0; |
| unsigned NumOperands = getNumOperands(); |
| // Operands with the same APO can be reordered. We therefore need to count |
| // how many of them we have for each APO, like this: Cnt[APO] = x. |
| // Since we only have two APOs, namely true and false, we can avoid using |
| // a map. Instead we can simply count the number of operands that |
| // correspond to one of them (in this case the 'true' APO), and calculate |
| // the other by subtracting it from the total number of operands. |
| // Operands with the same instruction opcode and parent are more |
| // profitable since we don't need to move them in many cases, with a high |
| // probability such lane already can be vectorized effectively. |
| bool AllUndefs = true; |
| unsigned NumOpsWithSameOpcodeParent = 0; |
| Instruction *OpcodeI = nullptr; |
| BasicBlock *Parent = nullptr; |
| unsigned Hash = 0; |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| const OperandData &OpData = getData(OpIdx, Lane); |
| if (OpData.APO) |
| ++CntTrue; |
| // Use Boyer-Moore majority voting for finding the majority opcode and |
| // the number of times it occurs. |
| if (auto *I = dyn_cast<Instruction>(OpData.V)) { |
| if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() || |
| I->getParent() != Parent) { |
| if (NumOpsWithSameOpcodeParent == 0) { |
| NumOpsWithSameOpcodeParent = 1; |
| OpcodeI = I; |
| Parent = I->getParent(); |
| } else { |
| --NumOpsWithSameOpcodeParent; |
| } |
| } else { |
| ++NumOpsWithSameOpcodeParent; |
| } |
| } |
| Hash = hash_combine( |
| Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); |
| AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); |
| } |
| if (AllUndefs) |
| return {}; |
| OperandsOrderData Data; |
| Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); |
| Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; |
| Data.Hash = Hash; |
| return Data; |
| } |
| |
| /// Go through the instructions in VL and append their operands. |
| void appendOperandsOfVL(ArrayRef<Value *> VL) { |
| assert(!VL.empty() && "Bad VL"); |
| assert((empty() || VL.size() == getNumLanes()) && |
| "Expected same number of lanes"); |
| assert(isa<Instruction>(VL[0]) && "Expected instruction"); |
| constexpr unsigned IntrinsicNumOperands = 2; |
| unsigned NumOperands = isa<IntrinsicInst>(VL[0]) |
| ? IntrinsicNumOperands |
| : cast<Instruction>(VL[0])->getNumOperands(); |
| OpsVec.resize(NumOperands); |
| unsigned NumLanes = VL.size(); |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| OpsVec[OpIdx].resize(NumLanes); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); |
| // Our tree has just 3 nodes: the root and two operands. |
| // It is therefore trivial to get the APO. We only need to check the |
| // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or |
| // RHS operand. The LHS operand of both add and sub is never attached |
| // to an inversese operation in the linearized form, therefore its APO |
| // is false. The RHS is true only if VL[Lane] is an inverse operation. |
| |
| // Since operand reordering is performed on groups of commutative |
| // operations or alternating sequences (e.g., +, -), we can safely |
| // tell the inverse operations by checking commutativity. |
| bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); |
| bool APO = (OpIdx == 0) ? false : IsInverseOperation; |
| OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), |
| APO, false}; |
| } |
| } |
| } |
| |
| /// \returns the number of operands. |
| unsigned getNumOperands() const { return OpsVec.size(); } |
| |
| /// \returns the number of lanes. |
| unsigned getNumLanes() const { return OpsVec[0].size(); } |
| |
| /// \returns the operand value at \p OpIdx and \p Lane. |
| Value *getValue(unsigned OpIdx, unsigned Lane) const { |
| return getData(OpIdx, Lane).V; |
| } |
| |
| /// \returns true if the data structure is empty. |
| bool empty() const { return OpsVec.empty(); } |
| |
| /// Clears the data. |
| void clear() { OpsVec.clear(); } |
| |
| /// \Returns true if there are enough operands identical to \p Op to fill |
| /// the whole vector (it is mixed with constants or loop invariant values). |
| /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. |
| bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { |
| bool OpAPO = getData(OpIdx, Lane).APO; |
| bool IsInvariant = L && L->isLoopInvariant(Op); |
| unsigned Cnt = 0; |
| for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { |
| if (Ln == Lane) |
| continue; |
| // This is set to true if we found a candidate for broadcast at Lane. |
| bool FoundCandidate = false; |
| for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { |
| OperandData &Data = getData(OpI, Ln); |
| if (Data.APO != OpAPO || Data.IsUsed) |
| continue; |
| Value *OpILane = getValue(OpI, Lane); |
| bool IsConstantOp = isa<Constant>(OpILane); |
| // Consider the broadcast candidate if: |
| // 1. Same value is found in one of the operands. |
| if (Data.V == Op || |
| // 2. The operand in the given lane is not constant but there is a |
| // constant operand in another lane (which can be moved to the |
| // given lane). In this case we can represent it as a simple |
| // permutation of constant and broadcast. |
| (!IsConstantOp && |
| ((Lns > 2 && isa<Constant>(Data.V)) || |
| // 2.1. If we have only 2 lanes, need to check that value in the |
| // next lane does not build same opcode sequence. |
| (Lns == 2 && |
| !getSameOpcode({Op, getValue((OpI + 1) % OpE, Ln)}, TLI) |
| .getOpcode() && |
| isa<Constant>(Data.V)))) || |
| // 3. The operand in the current lane is loop invariant (can be |
| // hoisted out) and another operand is also a loop invariant |
| // (though not a constant). In this case the whole vector can be |
| // hoisted out. |
| // FIXME: need to teach the cost model about this case for better |
| // estimation. |
| (IsInvariant && !isa<Constant>(Data.V) && |
| !getSameOpcode({Op, Data.V}, TLI).getOpcode() && |
| L->isLoopInvariant(Data.V))) { |
| FoundCandidate = true; |
| Data.IsUsed = Data.V == Op; |
| if (Data.V == Op) |
| ++Cnt; |
| break; |
| } |
| } |
| if (!FoundCandidate) |
| return false; |
| } |
| return getNumLanes() == 2 || Cnt > 1; |
| } |
| |
| /// Checks if there is at least single compatible operand in lanes other |
| /// than \p Lane, compatible with the operand \p Op. |
| bool canBeVectorized(Instruction *Op, unsigned OpIdx, unsigned Lane) const { |
| bool OpAPO = getData(OpIdx, Lane).APO; |
| for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { |
| if (Ln == Lane) |
| continue; |
| if (any_of(seq<unsigned>(getNumOperands()), [&](unsigned OpI) { |
| const OperandData &Data = getData(OpI, Ln); |
| if (Data.APO != OpAPO || Data.IsUsed) |
| return true; |
| Value *OpILn = getValue(OpI, Ln); |
| return (L && L->isLoopInvariant(OpILn)) || |
| (getSameOpcode({Op, OpILn}, TLI).getOpcode() && |
| Op->getParent() == cast<Instruction>(OpILn)->getParent()); |
| })) |
| return true; |
| } |
| return false; |
| } |
| |
| public: |
| /// Initialize with all the operands of the instruction vector \p RootVL. |
| VLOperands(ArrayRef<Value *> RootVL, const BoUpSLP &R) |
| : TLI(*R.TLI), DL(*R.DL), SE(*R.SE), R(R), |
| L(R.LI->getLoopFor( |
| (cast<Instruction>(RootVL.front())->getParent()))) { |
| // Append all the operands of RootVL. |
| appendOperandsOfVL(RootVL); |
| } |
| |
| /// \Returns a value vector with the operands across all lanes for the |
| /// opearnd at \p OpIdx. |
| ValueList getVL(unsigned OpIdx) const { |
| ValueList OpVL(OpsVec[OpIdx].size()); |
| assert(OpsVec[OpIdx].size() == getNumLanes() && |
| "Expected same num of lanes across all operands"); |
| for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) |
| OpVL[Lane] = OpsVec[OpIdx][Lane].V; |
| return OpVL; |
| } |
| |
| // Performs operand reordering for 2 or more operands. |
| // The original operands are in OrigOps[OpIdx][Lane]. |
| // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. |
| void reorder() { |
| unsigned NumOperands = getNumOperands(); |
| unsigned NumLanes = getNumLanes(); |
| // Each operand has its own mode. We are using this mode to help us select |
| // the instructions for each lane, so that they match best with the ones |
| // we have selected so far. |
| SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); |
| |
| // This is a greedy single-pass algorithm. We are going over each lane |
| // once and deciding on the best order right away with no back-tracking. |
| // However, in order to increase its effectiveness, we start with the lane |
| // that has operands that can move the least. For example, given the |
| // following lanes: |
| // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd |
| // Lane 1 : A[1] = C[1] - B[1] // Visited 1st |
| // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd |
| // Lane 3 : A[3] = C[3] - B[3] // Visited 4th |
| // we will start at Lane 1, since the operands of the subtraction cannot |
| // be reordered. Then we will visit the rest of the lanes in a circular |
| // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. |
| |
| // Find the first lane that we will start our search from. |
| unsigned FirstLane = getBestLaneToStartReordering(); |
| |
| // Initialize the modes. |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| Value *OpLane0 = getValue(OpIdx, FirstLane); |
| // Keep track if we have instructions with all the same opcode on one |
| // side. |
| if (isa<LoadInst>(OpLane0)) |
| ReorderingModes[OpIdx] = ReorderingMode::Load; |
| else if (auto *OpILane0 = dyn_cast<Instruction>(OpLane0)) { |
| // Check if OpLane0 should be broadcast. |
| if (shouldBroadcast(OpLane0, OpIdx, FirstLane) || |
| !canBeVectorized(OpILane0, OpIdx, FirstLane)) |
| ReorderingModes[OpIdx] = ReorderingMode::Splat; |
| else |
| ReorderingModes[OpIdx] = ReorderingMode::Opcode; |
| } else if (isa<Constant>(OpLane0)) |
| ReorderingModes[OpIdx] = ReorderingMode::Constant; |
| else if (isa<Argument>(OpLane0)) |
| // Our best hope is a Splat. It may save some cost in some cases. |
| ReorderingModes[OpIdx] = ReorderingMode::Splat; |
| else |
| // NOTE: This should be unreachable. |
| ReorderingModes[OpIdx] = ReorderingMode::Failed; |
| } |
| |
| // Check that we don't have same operands. No need to reorder if operands |
| // are just perfect diamond or shuffled diamond match. Do not do it only |
| // for possible broadcasts or non-power of 2 number of scalars (just for |
| // now). |
| auto &&SkipReordering = [this]() { |
| SmallPtrSet<Value *, 4> UniqueValues; |
| ArrayRef<OperandData> Op0 = OpsVec.front(); |
| for (const OperandData &Data : Op0) |
| UniqueValues.insert(Data.V); |
| for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { |
| if (any_of(Op, [&UniqueValues](const OperandData &Data) { |
| return !UniqueValues.contains(Data.V); |
| })) |
| return false; |
| } |
| // TODO: Check if we can remove a check for non-power-2 number of |
| // scalars after full support of non-power-2 vectorization. |
| return UniqueValues.size() != 2 && has_single_bit(UniqueValues.size()); |
| }; |
| |
| // If the initial strategy fails for any of the operand indexes, then we |
| // perform reordering again in a second pass. This helps avoid assigning |
| // high priority to the failed strategy, and should improve reordering for |
| // the non-failed operand indexes. |
| for (int Pass = 0; Pass != 2; ++Pass) { |
| // Check if no need to reorder operands since they're are perfect or |
| // shuffled diamond match. |
| // Need to do it to avoid extra external use cost counting for |
| // shuffled matches, which may cause regressions. |
| if (SkipReordering()) |
| break; |
| // Skip the second pass if the first pass did not fail. |
| bool StrategyFailed = false; |
| // Mark all operand data as free to use. |
| clearUsed(); |
| // We keep the original operand order for the FirstLane, so reorder the |
| // rest of the lanes. We are visiting the nodes in a circular fashion, |
| // using FirstLane as the center point and increasing the radius |
| // distance. |
| SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); |
| for (unsigned I = 0; I < NumOperands; ++I) |
| MainAltOps[I].push_back(getData(I, FirstLane).V); |
| |
| SmallBitVector UsedLanes(NumLanes); |
| UsedLanes.set(FirstLane); |
| for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { |
| // Visit the lane on the right and then the lane on the left. |
| for (int Direction : {+1, -1}) { |
| int Lane = FirstLane + Direction * Distance; |
| if (Lane < 0 || Lane >= (int)NumLanes) |
| continue; |
| UsedLanes.set(Lane); |
| int LastLane = Lane - Direction; |
| assert(LastLane >= 0 && LastLane < (int)NumLanes && |
| "Out of bounds"); |
| // Look for a good match for each operand. |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| // Search for the operand that matches SortedOps[OpIdx][Lane-1]. |
| std::optional<unsigned> BestIdx = |
| getBestOperand(OpIdx, Lane, LastLane, ReorderingModes, |
| MainAltOps[OpIdx], UsedLanes); |
| // By not selecting a value, we allow the operands that follow to |
| // select a better matching value. We will get a non-null value in |
| // the next run of getBestOperand(). |
| if (BestIdx) { |
| // Swap the current operand with the one returned by |
| // getBestOperand(). |
| swap(OpIdx, *BestIdx, Lane); |
| } else { |
| // Enable the second pass. |
| StrategyFailed = true; |
| } |
| // Try to get the alternate opcode and follow it during analysis. |
| if (MainAltOps[OpIdx].size() != 2) { |
| OperandData &AltOp = getData(OpIdx, Lane); |
| InstructionsState OpS = |
| getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI); |
| if (OpS.getOpcode() && OpS.isAltShuffle()) |
| MainAltOps[OpIdx].push_back(AltOp.V); |
| } |
| } |
| } |
| } |
| // Skip second pass if the strategy did not fail. |
| if (!StrategyFailed) |
| break; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { |
| switch (RMode) { |
| case ReorderingMode::Load: |
| return "Load"; |
| case ReorderingMode::Opcode: |
| return "Opcode"; |
| case ReorderingMode::Constant: |
| return "Constant"; |
| case ReorderingMode::Splat: |
| return "Splat"; |
| case ReorderingMode::Failed: |
| return "Failed"; |
| } |
| llvm_unreachable("Unimplemented Reordering Type"); |
| } |
| |
| LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, |
| raw_ostream &OS) { |
| return OS << getModeStr(RMode); |
| } |
| |
| /// Debug print. |
| LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { |
| printMode(RMode, dbgs()); |
| } |
| |
| friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { |
| return printMode(RMode, OS); |
| } |
| |
| LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { |
| const unsigned Indent = 2; |
| unsigned Cnt = 0; |
| for (const OperandDataVec &OpDataVec : OpsVec) { |
| OS << "Operand " << Cnt++ << "\n"; |
| for (const OperandData &OpData : OpDataVec) { |
| OS.indent(Indent) << "{"; |
| if (Value *V = OpData.V) |
| OS << *V; |
| else |
| OS << "null"; |
| OS << ", APO:" << OpData.APO << "}\n"; |
| } |
| OS << "\n"; |
| } |
| return OS; |
| } |
| |
| /// Debug print. |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| }; |
| |
| /// Evaluate each pair in \p Candidates and return index into \p Candidates |
| /// for a pair which have highest score deemed to have best chance to form |
| /// root of profitable tree to vectorize. Return std::nullopt if no candidate |
| /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit |
| /// of the cost, considered to be good enough score. |
| std::optional<int> |
| findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, |
| int Limit = LookAheadHeuristics::ScoreFail) const { |
| LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2, |
| RootLookAheadMaxDepth); |
| int BestScore = Limit; |
| std::optional<int> Index; |
| for (int I : seq<int>(0, Candidates.size())) { |
| int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, |
| Candidates[I].second, |
| /*U1=*/nullptr, /*U2=*/nullptr, |
| /*CurrLevel=*/1, {}); |
| if (Score > BestScore) { |
| BestScore = Score; |
| Index = I; |
| } |
| } |
| return Index; |
| } |
| |
| /// Checks if the instruction is marked for deletion. |
| bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } |
| |
| /// Removes an instruction from its block and eventually deletes it. |
| /// It's like Instruction::eraseFromParent() except that the actual deletion |
| /// is delayed until BoUpSLP is destructed. |
| void eraseInstruction(Instruction *I) { |
| DeletedInstructions.insert(I); |
| } |
| |
| /// Remove instructions from the parent function and clear the operands of \p |
| /// DeadVals instructions, marking for deletion trivially dead operands. |
| template <typename T> |
| void removeInstructionsAndOperands(ArrayRef<T *> DeadVals) { |
| SmallVector<WeakTrackingVH> DeadInsts; |
| for (T *V : DeadVals) { |
| auto *I = cast<Instruction>(V); |
| DeletedInstructions.insert(I); |
| } |
| DenseSet<Value *> Processed; |
| for (T *V : DeadVals) { |
| if (!V || !Processed.insert(V).second) |
| continue; |
| auto *I = cast<Instruction>(V); |
| salvageDebugInfo(*I); |
| SmallVector<const TreeEntry *> Entries; |
| if (const TreeEntry *Entry = getTreeEntry(I)) { |
| Entries.push_back(Entry); |
| auto It = MultiNodeScalars.find(I); |
| if (It != MultiNodeScalars.end()) |
| Entries.append(It->second.begin(), It->second.end()); |
| } |
| for (Use &U : I->operands()) { |
| if (auto *OpI = dyn_cast_if_present<Instruction>(U.get()); |
| OpI && !DeletedInstructions.contains(OpI) && OpI->hasOneUser() && |
| wouldInstructionBeTriviallyDead(OpI, TLI) && |
| (Entries.empty() || none_of(Entries, [&](const TreeEntry *Entry) { |
| return Entry->VectorizedValue == OpI; |
| }))) |
| DeadInsts.push_back(OpI); |
| } |
| I->dropAllReferences(); |
| } |
| for (T *V : DeadVals) { |
| auto *I = cast<Instruction>(V); |
| if (!I->getParent()) |
| continue; |
| assert((I->use_empty() || all_of(I->uses(), |
| [&](Use &U) { |
| return isDeleted( |
| cast<Instruction>(U.getUser())); |
| })) && |
| "trying to erase instruction with users."); |
| I->removeFromParent(); |
| SE->forgetValue(I); |
| } |
| // Process the dead instruction list until empty. |
| while (!DeadInsts.empty()) { |
| Value *V = DeadInsts.pop_back_val(); |
| Instruction *VI = cast_or_null<Instruction>(V); |
| if (!VI || !VI->getParent()) |
| continue; |
| assert(isInstructionTriviallyDead(VI, TLI) && |
| "Live instruction found in dead worklist!"); |
| assert(VI->use_empty() && "Instructions with uses are not dead."); |
| |
| // Don't lose the debug info while deleting the instructions. |
| salvageDebugInfo(*VI); |
| |
| // Null out all of the instruction's operands to see if any operand |
| // becomes dead as we go. |
| for (Use &OpU : VI->operands()) { |
| Value *OpV = OpU.get(); |
| if (!OpV) |
| continue; |
| OpU.set(nullptr); |
| |
| if (!OpV->use_empty()) |
| continue; |
| |
| // If the operand is an instruction that became dead as we nulled out |
| // the operand, and if it is 'trivially' dead, delete it in a future |
| // loop iteration. |
| if (auto *OpI = dyn_cast<Instruction>(OpV)) |
| if (!DeletedInstructions.contains(OpI) && |
| isInstructionTriviallyDead(OpI, TLI)) |
| DeadInsts.push_back(OpI); |
| } |
| |
| VI->removeFromParent(); |
| DeletedInstructions.insert(VI); |
| SE->forgetValue(VI); |
| } |
| } |
| |
| /// Checks if the instruction was already analyzed for being possible |
| /// reduction root. |
| bool isAnalyzedReductionRoot(Instruction *I) const { |
| return AnalyzedReductionsRoots.count(I); |
| } |
| /// Register given instruction as already analyzed for being possible |
| /// reduction root. |
| void analyzedReductionRoot(Instruction *I) { |
| AnalyzedReductionsRoots.insert(I); |
| } |
| /// Checks if the provided list of reduced values was checked already for |
| /// vectorization. |
| bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const { |
| return AnalyzedReductionVals.contains(hash_value(VL)); |
| } |
| /// Adds the list of reduced values to list of already checked values for the |
| /// vectorization. |
| void analyzedReductionVals(ArrayRef<Value *> VL) { |
| AnalyzedReductionVals.insert(hash_value(VL)); |
| } |
| /// Clear the list of the analyzed reduction root instructions. |
| void clearReductionData() { |
| AnalyzedReductionsRoots.clear(); |
| AnalyzedReductionVals.clear(); |
| AnalyzedMinBWVals.clear(); |
| } |
| /// Checks if the given value is gathered in one of the nodes. |
| bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { |
| return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); |
| } |
| /// Checks if the given value is gathered in one of the nodes. |
| bool isGathered(const Value *V) const { |
| return MustGather.contains(V); |
| } |
| /// Checks if the specified value was not schedule. |
| bool isNotScheduled(const Value *V) const { |
| return NonScheduledFirst.contains(V); |
| } |
| |
| /// Check if the value is vectorized in the tree. |
| bool isVectorized(Value *V) const { return getTreeEntry(V); } |
| |
| ~BoUpSLP(); |
| |
| private: |
| /// Determine if a node \p E in can be demoted to a smaller type with a |
| /// truncation. We collect the entries that will be demoted in ToDemote. |
| /// \param E Node for analysis |
| /// \param ToDemote indices of the nodes to be demoted. |
| bool collectValuesToDemote(const TreeEntry &E, bool IsProfitableToDemoteRoot, |
| unsigned &BitWidth, |
| SmallVectorImpl<unsigned> &ToDemote, |
| DenseSet<const TreeEntry *> &Visited, |
| unsigned &MaxDepthLevel, |
| bool &IsProfitableToDemote, |
| bool IsTruncRoot) const; |
| |
| /// Check if the operands on the edges \p Edges of the \p UserTE allows |
| /// reordering (i.e. the operands can be reordered because they have only one |
| /// user and reordarable). |
| /// \param ReorderableGathers List of all gather nodes that require reordering |
| /// (e.g., gather of extractlements or partially vectorizable loads). |
| /// \param GatherOps List of gather operand nodes for \p UserTE that require |
| /// reordering, subset of \p NonVectorized. |
| bool |
| canReorderOperands(TreeEntry *UserTE, |
| SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, |
| ArrayRef<TreeEntry *> ReorderableGathers, |
| SmallVectorImpl<TreeEntry *> &GatherOps); |
| |
| /// Checks if the given \p TE is a gather node with clustered reused scalars |
| /// and reorders it per given \p Mask. |
| void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const; |
| |
| /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, |
| /// if any. If it is not vectorized (gather node), returns nullptr. |
| TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { |
| ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); |
| TreeEntry *TE = nullptr; |
| const auto *It = find_if(VL, [&](Value *V) { |
| TE = getTreeEntry(V); |
| if (TE && is_contained(TE->UserTreeIndices, EdgeInfo(UserTE, OpIdx))) |
| return true; |
| auto It = MultiNodeScalars.find(V); |
| if (It != MultiNodeScalars.end()) { |
| for (TreeEntry *E : It->second) { |
| if (is_contained(E->UserTreeIndices, EdgeInfo(UserTE, OpIdx))) { |
| TE = E; |
| return true; |
| } |
| } |
| } |
| return false; |
| }); |
| if (It != VL.end()) { |
| assert(TE->isSame(VL) && "Expected same scalars."); |
| return TE; |
| } |
| return nullptr; |
| } |
| |
| /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, |
| /// if any. If it is not vectorized (gather node), returns nullptr. |
| const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, |
| unsigned OpIdx) const { |
| return const_cast<BoUpSLP *>(this)->getVectorizedOperand( |
| const_cast<TreeEntry *>(UserTE), OpIdx); |
| } |
| |
| /// Checks if all users of \p I are the part of the vectorization tree. |
| bool areAllUsersVectorized( |
| Instruction *I, |
| const SmallDenseSet<Value *> *VectorizedVals = nullptr) const; |
| |
| /// Return information about the vector formed for the specified index |
| /// of a vector of (the same) instruction. |
| TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> Ops); |
| |
| /// \ returns the graph entry for the \p Idx operand of the \p E entry. |
| const TreeEntry *getOperandEntry(const TreeEntry *E, unsigned Idx) const; |
| |
| /// Gets the root instruction for the given node. If the node is a strided |
| /// load/store node with the reverse order, the root instruction is the last |
| /// one. |
| Instruction *getRootEntryInstruction(const TreeEntry &Entry) const; |
| |
| /// \returns Cast context for the given graph node. |
| TargetTransformInfo::CastContextHint |
| getCastContextHint(const TreeEntry &TE) const; |
| |
| /// \returns the cost of the vectorizable entry. |
| InstructionCost getEntryCost(const TreeEntry *E, |
| ArrayRef<Value *> VectorizedVals, |
| SmallPtrSetImpl<Value *> &CheckedExtracts); |
| |
| /// This is the recursive part of buildTree. |
| void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, |
| const EdgeInfo &EI); |
| |
| /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can |
| /// be vectorized to use the original vector (or aggregate "bitcast" to a |
| /// vector) and sets \p CurrentOrder to the identity permutation; otherwise |
| /// returns false, setting \p CurrentOrder to either an empty vector or a |
| /// non-identity permutation that allows to reuse extract instructions. |
| /// \param ResizeAllowed indicates whether it is allowed to handle subvector |
| /// extract order. |
| bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, |
| SmallVectorImpl<unsigned> &CurrentOrder, |
| bool ResizeAllowed = false) const; |
| |
| /// Vectorize a single entry in the tree. |
| /// \param PostponedPHIs true, if need to postpone emission of phi nodes to |
| /// avoid issues with def-use order. |
| Value *vectorizeTree(TreeEntry *E, bool PostponedPHIs); |
| |
| /// Returns vectorized operand node, that matches the order of the scalars |
| /// operand number \p NodeIdx in entry \p E. |
| TreeEntry *getMatchedVectorizedOperand(const TreeEntry *E, unsigned NodeIdx); |
| const TreeEntry *getMatchedVectorizedOperand(const TreeEntry *E, |
| unsigned NodeIdx) const { |
| return const_cast<BoUpSLP *>(this)->getMatchedVectorizedOperand(E, NodeIdx); |
| } |
| |
| /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry |
| /// \p E. |
| /// \param PostponedPHIs true, if need to postpone emission of phi nodes to |
| /// avoid issues with def-use order. |
| Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx, bool PostponedPHIs); |
| |
| /// Create a new vector from a list of scalar values. Produces a sequence |
| /// which exploits values reused across lanes, and arranges the inserts |
| /// for ease of later optimization. |
| template <typename BVTy, typename ResTy, typename... Args> |
| ResTy processBuildVector(const TreeEntry *E, Type *ScalarTy, Args &...Params); |
| |
| /// Create a new vector from a list of scalar values. Produces a sequence |
| /// which exploits values reused across lanes, and arranges the inserts |
| /// for ease of later optimization. |
| Value *createBuildVector(const TreeEntry *E, Type *ScalarTy, |
| bool PostponedPHIs); |
| |
| /// Returns the instruction in the bundle, which can be used as a base point |
| /// for scheduling. Usually it is the last instruction in the bundle, except |
| /// for the case when all operands are external (in this case, it is the first |
| /// instruction in the list). |
| Instruction &getLastInstructionInBundle(const TreeEntry *E); |
| |
| /// Tries to find extractelement instructions with constant indices from fixed |
| /// vector type and gather such instructions into a bunch, which highly likely |
| /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt |
| /// was successful, the matched scalars are replaced by poison values in \p VL |
| /// for future analysis. |
| std::optional<TargetTransformInfo::ShuffleKind> |
| tryToGatherSingleRegisterExtractElements(MutableArrayRef<Value *> VL, |
| SmallVectorImpl<int> &Mask) const; |
| |
| /// Tries to find extractelement instructions with constant indices from fixed |
| /// vector type and gather such instructions into a bunch, which highly likely |
| /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt |
| /// was successful, the matched scalars are replaced by poison values in \p VL |
| /// for future analysis. |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> |
| tryToGatherExtractElements(SmallVectorImpl<Value *> &VL, |
| SmallVectorImpl<int> &Mask, |
| unsigned NumParts) const; |
| |
| /// Checks if the gathered \p VL can be represented as a single register |
| /// shuffle(s) of previous tree entries. |
| /// \param TE Tree entry checked for permutation. |
| /// \param VL List of scalars (a subset of the TE scalar), checked for |
| /// permutations. Must form single-register vector. |
| /// \param ForOrder Tries to fetch the best candidates for ordering info. Also |
| /// commands to build the mask using the original vector value, without |
| /// relying on the potential reordering. |
| /// \returns ShuffleKind, if gathered values can be represented as shuffles of |
| /// previous tree entries. \p Part of \p Mask is filled with the shuffle mask. |
| std::optional<TargetTransformInfo::ShuffleKind> |
| isGatherShuffledSingleRegisterEntry( |
| const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask, |
| SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part, |
| bool ForOrder); |
| |
| /// Checks if the gathered \p VL can be represented as multi-register |
| /// shuffle(s) of previous tree entries. |
| /// \param TE Tree entry checked for permutation. |
| /// \param VL List of scalars (a subset of the TE scalar), checked for |
| /// permutations. |
| /// \param ForOrder Tries to fetch the best candidates for ordering info. Also |
| /// commands to build the mask using the original vector value, without |
| /// relying on the potential reordering. |
| /// \returns per-register series of ShuffleKind, if gathered values can be |
| /// represented as shuffles of previous tree entries. \p Mask is filled with |
| /// the shuffle mask (also on per-register base). |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> |
| isGatherShuffledEntry( |
| const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries, |
| unsigned NumParts, bool ForOrder = false); |
| |
| /// \returns the scalarization cost for this list of values. Assuming that |
| /// this subtree gets vectorized, we may need to extract the values from the |
| /// roots. This method calculates the cost of extracting the values. |
| /// \param ForPoisonSrc true if initial vector is poison, false otherwise. |
| InstructionCost getGatherCost(ArrayRef<Value *> VL, bool ForPoisonSrc, |
| Type *ScalarTy) const; |
| |
| /// Set the Builder insert point to one after the last instruction in |
| /// the bundle |
| void setInsertPointAfterBundle(const TreeEntry *E); |
| |
| /// \returns a vector from a collection of scalars in \p VL. if \p Root is not |
| /// specified, the starting vector value is poison. |
| Value *gather(ArrayRef<Value *> VL, Value *Root, Type *ScalarTy); |
| |
| /// \returns whether the VectorizableTree is fully vectorizable and will |
| /// be beneficial even the tree height is tiny. |
| bool isFullyVectorizableTinyTree(bool ForReduction) const; |
| |
| /// Run through the list of all gathered loads in the graph and try to find |
| /// vector loads/masked gathers instead of regular gathers. Later these loads |
| /// are reshufled to build final gathered nodes. |
| void tryToVectorizeGatheredLoads( |
| ArrayRef<SmallVector<std::pair<LoadInst *, int>>> GatheredLoads); |
| |
| /// Reorder commutative or alt operands to get better probability of |
| /// generating vectorized code. |
| static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, |
| SmallVectorImpl<Value *> &Left, |
| SmallVectorImpl<Value *> &Right, |
| const BoUpSLP &R); |
| |
| /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the |
| /// users of \p TE and collects the stores. It returns the map from the store |
| /// pointers to the collected stores. |
| DenseMap<Value *, SmallVector<StoreInst *>> |
| collectUserStores(const BoUpSLP::TreeEntry *TE) const; |
| |
| /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the |
| /// stores in \p StoresVec can form a vector instruction. If so it returns |
| /// true and populates \p ReorderIndices with the shuffle indices of the |
| /// stores when compared to the sorted vector. |
| bool canFormVector(ArrayRef<StoreInst *> StoresVec, |
| OrdersType &ReorderIndices) const; |
| |
| /// Iterates through the users of \p TE, looking for scalar stores that can be |
| /// potentially vectorized in a future SLP-tree. If found, it keeps track of |
| /// their order and builds an order index vector for each store bundle. It |
| /// returns all these order vectors found. |
| /// We run this after the tree has formed, otherwise we may come across user |
| /// instructions that are not yet in the tree. |
| SmallVector<OrdersType, 1> |
| findExternalStoreUsersReorderIndices(TreeEntry *TE) const; |
| |
| struct TreeEntry { |
| using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; |
| TreeEntry(VecTreeTy &Container) : Container(Container) {} |
| |
| /// \returns Common mask for reorder indices and reused scalars. |
| SmallVector<int> getCommonMask() const { |
| SmallVector<int> Mask; |
| inversePermutation(ReorderIndices, Mask); |
| ::addMask(Mask, ReuseShuffleIndices); |
| return Mask; |
| } |
| |
| /// \returns true if the scalars in VL are equal to this entry. |
| bool isSame(ArrayRef<Value *> VL) const { |
| auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { |
| if (Mask.size() != VL.size() && VL.size() == Scalars.size()) |
| return std::equal(VL.begin(), VL.end(), Scalars.begin()); |
| return VL.size() == Mask.size() && |
| std::equal(VL.begin(), VL.end(), Mask.begin(), |
| [Scalars](Value *V, int Idx) { |
| return (isa<UndefValue>(V) && |
| Idx == PoisonMaskElem) || |
| (Idx != PoisonMaskElem && V == Scalars[Idx]); |
| }); |
| }; |
| if (!ReorderIndices.empty()) { |
| // TODO: implement matching if the nodes are just reordered, still can |
| // treat the vector as the same if the list of scalars matches VL |
| // directly, without reordering. |
| SmallVector<int> Mask; |
| inversePermutation(ReorderIndices, Mask); |
| if (VL.size() == Scalars.size()) |
| return IsSame(Scalars, Mask); |
| if (VL.size() == ReuseShuffleIndices.size()) { |
| ::addMask(Mask, ReuseShuffleIndices); |
| return IsSame(Scalars, Mask); |
| } |
| return false; |
| } |
| return IsSame(Scalars, ReuseShuffleIndices); |
| } |
| |
| bool isOperandGatherNode(const EdgeInfo &UserEI) const { |
| return isGather() && !UserTreeIndices.empty() && |
| UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx && |
| UserTreeIndices.front().UserTE == UserEI.UserTE; |
| } |
| |
| /// \returns true if current entry has same operands as \p TE. |
| bool hasEqualOperands(const TreeEntry &TE) const { |
| if (TE.getNumOperands() != getNumOperands()) |
| return false; |
| SmallBitVector Used(getNumOperands()); |
| for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { |
| unsigned PrevCount = Used.count(); |
| for (unsigned K = 0; K < E; ++K) { |
| if (Used.test(K)) |
| continue; |
| if (getOperand(K) == TE.getOperand(I)) { |
| Used.set(K); |
| break; |
| } |
| } |
| // Check if we actually found the matching operand. |
| if (PrevCount == Used.count()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \return Final vectorization factor for the node. Defined by the total |
| /// number of vectorized scalars, including those, used several times in the |
| /// entry and counted in the \a ReuseShuffleIndices, if any. |
| unsigned getVectorFactor() const { |
| if (!ReuseShuffleIndices.empty()) |
| return ReuseShuffleIndices.size(); |
| return Scalars.size(); |
| }; |
| |
| /// Checks if the current node is a gather node. |
| bool isGather() const {return State == NeedToGather; } |
| |
| /// A vector of scalars. |
| ValueList Scalars; |
| |
| /// The Scalars are vectorized into this value. It is initialized to Null. |
| WeakTrackingVH VectorizedValue = nullptr; |
| |
| /// New vector phi instructions emitted for the vectorized phi nodes. |
| PHINode *PHI = nullptr; |
| |
| /// Do we need to gather this sequence or vectorize it |
| /// (either with vector instruction or with scatter/gather |
| /// intrinsics for store/load)? |
| enum EntryState { |
| Vectorize, ///< The node is regularly vectorized. |
| ScatterVectorize, ///< Masked scatter/gather node. |
| StridedVectorize, ///< Strided loads (and stores) |
| NeedToGather, ///< Gather/buildvector node. |
| CombinedVectorize, ///< Vectorized node, combined with its user into more |
| ///< complex node like select/cmp to minmax, mul/add to |
| ///< fma, etc. Must be used for the following nodes in |
| ///< the pattern, not the very first one. |
| }; |
| EntryState State; |
| |
| /// List of combined opcodes supported by the vectorizer. |
| enum CombinedOpcode { |
| NotCombinedOp = -1, |
| MinMax = Instruction::OtherOpsEnd + 1, |
| }; |
| CombinedOpcode CombinedOp = NotCombinedOp; |
| |
| /// Does this sequence require some shuffling? |
| SmallVector<int, 4> ReuseShuffleIndices; |
| |
| /// Does this entry require reordering? |
| SmallVector<unsigned, 4> ReorderIndices; |
| |
| /// Points back to the VectorizableTree. |
| /// |
| /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has |
| /// to be a pointer and needs to be able to initialize the child iterator. |
| /// Thus we need a reference back to the container to translate the indices |
| /// to entries. |
| VecTreeTy &Container; |
| |
| /// The TreeEntry index containing the user of this entry. We can actually |
| /// have multiple users so the data structure is not truly a tree. |
| SmallVector<EdgeInfo, 1> UserTreeIndices; |
| |
| /// The index of this treeEntry in VectorizableTree. |
| unsigned Idx = 0; |
| |
| /// For gather/buildvector/alt opcode (TODO) nodes, which are combined from |
| /// other nodes as a series of insertvector instructions. |
| SmallVector<std::pair<unsigned, unsigned>, 0> CombinedEntriesWithIndices; |
| |
| private: |
| /// The operands of each instruction in each lane Operands[op_index][lane]. |
| /// Note: This helps avoid the replication of the code that performs the |
| /// reordering of operands during buildTree_rec() and vectorizeTree(). |
| SmallVector<ValueList, 2> Operands; |
| |
| /// The main/alternate instruction. |
| Instruction *MainOp = nullptr; |
| Instruction *AltOp = nullptr; |
| |
| public: |
| /// Set this bundle's \p OpIdx'th operand to \p OpVL. |
| void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { |
| if (Operands.size() < OpIdx + 1) |
| Operands.resize(OpIdx + 1); |
| assert(Operands[OpIdx].empty() && "Already resized?"); |
| assert(OpVL.size() <= Scalars.size() && |
| "Number of operands is greater than the number of scalars."); |
| Operands[OpIdx].resize(OpVL.size()); |
| copy(OpVL, Operands[OpIdx].begin()); |
| } |
| |
| /// Set the operands of this bundle in their original order. |
| void setOperandsInOrder() { |
| assert(Operands.empty() && "Already initialized?"); |
| auto *I0 = cast<Instruction>(Scalars[0]); |
| Operands.resize(I0->getNumOperands()); |
| unsigned NumLanes = Scalars.size(); |
| for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) { |
| Operands[OpIdx].resize(NumLanes); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| auto *I = cast<Instruction>(Scalars[Lane]); |
| assert(I->getNumOperands() == NumOperands && |
| "Expected same number of operands"); |
| Operands[OpIdx][Lane] = I->getOperand(OpIdx); |
| } |
| } |
| } |
| |
| /// Reorders operands of the node to the given mask \p Mask. |
| void reorderOperands(ArrayRef<int> Mask) { |
| for (ValueList &Operand : Operands) |
| reorderScalars(Operand, Mask); |
| } |
| |
| /// \returns the \p OpIdx operand of this TreeEntry. |
| ValueList &getOperand(unsigned OpIdx) { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| return Operands[OpIdx]; |
| } |
| |
| /// \returns the \p OpIdx operand of this TreeEntry. |
| ArrayRef<Value *> getOperand(unsigned OpIdx) const { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| return Operands[OpIdx]; |
| } |
| |
| /// \returns the number of operands. |
| unsigned getNumOperands() const { return Operands.size(); } |
| |
| /// \return the single \p OpIdx operand. |
| Value *getSingleOperand(unsigned OpIdx) const { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| assert(!Operands[OpIdx].empty() && "No operand available"); |
| return Operands[OpIdx][0]; |
| } |
| |
| /// Some of the instructions in the list have alternate opcodes. |
| bool isAltShuffle() const { return MainOp != AltOp; } |
| |
| bool isOpcodeOrAlt(Instruction *I) const { |
| unsigned CheckedOpcode = I->getOpcode(); |
| return (getOpcode() == CheckedOpcode || |
| getAltOpcode() == CheckedOpcode); |
| } |
| |
| /// Chooses the correct key for scheduling data. If \p Op has the same (or |
| /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is |
| /// \p OpValue. |
| Value *isOneOf(Value *Op) const { |
| auto *I = dyn_cast<Instruction>(Op); |
| if (I && isOpcodeOrAlt(I)) |
| return Op; |
| return MainOp; |
| } |
| |
| void setOperations(const InstructionsState &S) { |
| MainOp = S.MainOp; |
| AltOp = S.AltOp; |
| } |
| |
| Instruction *getMainOp() const { |
| return MainOp; |
| } |
| |
| Instruction *getAltOp() const { |
| return AltOp; |
| } |
| |
| /// The main/alternate opcodes for the list of instructions. |
| unsigned getOpcode() const { |
| return MainOp ? MainOp->getOpcode() : 0; |
| } |
| |
| unsigned getAltOpcode() const { |
| return AltOp ? AltOp->getOpcode() : 0; |
| } |
| |
| /// When ReuseReorderShuffleIndices is empty it just returns position of \p |
| /// V within vector of Scalars. Otherwise, try to remap on its reuse index. |
| int findLaneForValue(Value *V) const { |
| unsigned FoundLane = getVectorFactor(); |
| for (auto *It = find(Scalars, V), *End = Scalars.end(); It != End; |
| std::advance(It, 1)) { |
| if (*It != V) |
| continue; |
| FoundLane = std::distance(Scalars.begin(), It); |
| assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); |
| if (!ReorderIndices.empty()) |
| FoundLane = ReorderIndices[FoundLane]; |
| assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); |
| if (ReuseShuffleIndices.empty()) |
| break; |
| if (auto *RIt = find(ReuseShuffleIndices, FoundLane); |
| RIt != ReuseShuffleIndices.end()) { |
| FoundLane = std::distance(ReuseShuffleIndices.begin(), RIt); |
| break; |
| } |
| } |
| assert(FoundLane < getVectorFactor() && "Unable to find given value."); |
| return FoundLane; |
| } |
| |
| /// Build a shuffle mask for graph entry which represents a merge of main |
| /// and alternate operations. |
| void |
| buildAltOpShuffleMask(const function_ref<bool(Instruction *)> IsAltOp, |
| SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<Value *> *OpScalars = nullptr, |
| SmallVectorImpl<Value *> *AltScalars = nullptr) const; |
| |
| /// Return true if this is a non-power-of-2 node. |
| bool isNonPowOf2Vec() const { |
| bool IsNonPowerOf2 = !has_single_bit(Scalars.size()); |
| return IsNonPowerOf2; |
| } |
| |
| /// Return true if this is a node, which tries to vectorize number of |
| /// elements, forming whole vectors. |
| bool |
| hasNonWholeRegisterOrNonPowerOf2Vec(const TargetTransformInfo &TTI) const { |
| bool IsNonPowerOf2 = !hasFullVectorsOrPowerOf2( |
| TTI, getValueType(Scalars.front()), Scalars.size()); |
| assert((!IsNonPowerOf2 || ReuseShuffleIndices.empty()) && |
| "Reshuffling not supported with non-power-of-2 vectors yet."); |
| return IsNonPowerOf2; |
| } |
| |
| #ifndef NDEBUG |
| /// Debug printer. |
| LLVM_DUMP_METHOD void dump() const { |
| dbgs() << Idx << ".\n"; |
| for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { |
| dbgs() << "Operand " << OpI << ":\n"; |
| for (const Value *V : Operands[OpI]) |
| dbgs().indent(2) << *V << "\n"; |
| } |
| dbgs() << "Scalars: \n"; |
| for (Value *V : Scalars) |
| dbgs().indent(2) << *V << "\n"; |
| dbgs() << "State: "; |
| switch (State) { |
| case Vectorize: |
| dbgs() << "Vectorize\n"; |
| break; |
| case ScatterVectorize: |
| dbgs() << "ScatterVectorize\n"; |
| break; |
| case StridedVectorize: |
| dbgs() << "StridedVectorize\n"; |
| break; |
| case NeedToGather: |
| dbgs() << "NeedToGather\n"; |
| break; |
| case CombinedVectorize: |
| dbgs() << "CombinedVectorize\n"; |
| break; |
| } |
| dbgs() << "MainOp: "; |
| if (MainOp) |
| dbgs() << *MainOp << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "AltOp: "; |
| if (AltOp) |
| dbgs() << *AltOp << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "VectorizedValue: "; |
| if (VectorizedValue) |
| dbgs() << *VectorizedValue << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "ReuseShuffleIndices: "; |
| if (ReuseShuffleIndices.empty()) |
| dbgs() << "Empty"; |
| else |
| for (int ReuseIdx : ReuseShuffleIndices) |
| dbgs() << ReuseIdx << ", "; |
| dbgs() << "\n"; |
| dbgs() << "ReorderIndices: "; |
| for (unsigned ReorderIdx : ReorderIndices) |
| dbgs() << ReorderIdx << ", "; |
| dbgs() << "\n"; |
| dbgs() << "UserTreeIndices: "; |
| for (const auto &EInfo : UserTreeIndices) |
| dbgs() << EInfo << ", "; |
| dbgs() << "\n"; |
| } |
| #endif |
| }; |
| |
| #ifndef NDEBUG |
| void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, |
| InstructionCost VecCost, InstructionCost ScalarCost, |
| StringRef Banner) const { |
| dbgs() << "SLP: " << Banner << ":\n"; |
| E->dump(); |
| dbgs() << "SLP: Costs:\n"; |
| dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; |
| dbgs() << "SLP: VectorCost = " << VecCost << "\n"; |
| dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; |
| dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " |
| << ReuseShuffleCost + VecCost - ScalarCost << "\n"; |
| } |
| #endif |
| |
| /// Create a new VectorizableTree entry. |
| TreeEntry *newTreeEntry(ArrayRef<Value *> VL, |
| std::optional<ScheduleData *> Bundle, |
| const InstructionsState &S, |
| const EdgeInfo &UserTreeIdx, |
| ArrayRef<int> ReuseShuffleIndices = {}, |
| ArrayRef<unsigned> ReorderIndices = {}) { |
| TreeEntry::EntryState EntryState = |
| Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; |
| return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, |
| ReuseShuffleIndices, ReorderIndices); |
| } |
| |
| TreeEntry *newTreeEntry(ArrayRef<Value *> VL, |
| TreeEntry::EntryState EntryState, |
| std::optional<ScheduleData *> Bundle, |
| const InstructionsState &S, |
| const EdgeInfo &UserTreeIdx, |
| ArrayRef<int> ReuseShuffleIndices = {}, |
| ArrayRef<unsigned> ReorderIndices = {}) { |
| assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || |
| (Bundle && EntryState != TreeEntry::NeedToGather)) && |
| "Need to vectorize gather entry?"); |
| // Gathered loads still gathered? Do not create entry, use the original one. |
| if (GatheredLoadsEntriesFirst.has_value() && |
| EntryState == TreeEntry::NeedToGather && |
| S.getOpcode() == Instruction::Load && UserTreeIdx.EdgeIdx == UINT_MAX && |
| !UserTreeIdx.UserTE) |
| return nullptr; |
| VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); |
| TreeEntry *Last = VectorizableTree.back().get(); |
| Last->Idx = VectorizableTree.size() - 1; |
| Last->State = EntryState; |
| // FIXME: Remove once support for ReuseShuffleIndices has been implemented |
| // for non-power-of-two vectors. |
| assert( |
| (hasFullVectorsOrPowerOf2(*TTI, getValueType(VL.front()), VL.size()) || |
| ReuseShuffleIndices.empty()) && |
| "Reshuffling scalars not yet supported for nodes with padding"); |
| Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), |
| ReuseShuffleIndices.end()); |
| if (ReorderIndices.empty()) { |
| Last->Scalars.assign(VL.begin(), VL.end()); |
| Last->setOperations(S); |
| } else { |
| // Reorder scalars and build final mask. |
| Last->Scalars.assign(VL.size(), nullptr); |
| transform(ReorderIndices, Last->Scalars.begin(), |
| [VL](unsigned Idx) -> Value * { |
| if (Idx >= VL.size()) |
| return UndefValue::get(VL.front()->getType()); |
| return VL[Idx]; |
| }); |
| InstructionsState S = getSameOpcode(Last->Scalars, *TLI); |
| Last->setOperations(S); |
| Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); |
| } |
| if (!Last->isGather()) { |
| for (Value *V : VL) { |
| const TreeEntry *TE = getTreeEntry(V); |
| assert((!TE || TE == Last || doesNotNeedToBeScheduled(V)) && |
| "Scalar already in tree!"); |
| if (TE) { |
| if (TE != Last) |
| MultiNodeScalars.try_emplace(V).first->getSecond().push_back(Last); |
| continue; |
| } |
| ScalarToTreeEntry[V] = Last; |
| } |
| // Update the scheduler bundle to point to this TreeEntry. |
| ScheduleData *BundleMember = *Bundle; |
| assert((BundleMember || isa<PHINode>(S.MainOp) || |
| isVectorLikeInstWithConstOps(S.MainOp) || |
| doesNotNeedToSchedule(VL)) && |
| "Bundle and VL out of sync"); |
| if (BundleMember) { |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| if (!BundleMember) |
| continue; |
| BundleMember->TE = Last; |
| BundleMember = BundleMember->NextInBundle; |
| } |
| } |
| assert(!BundleMember && "Bundle and VL out of sync"); |
| } else { |
| // Build a map for gathered scalars to the nodes where they are used. |
| bool AllConstsOrCasts = true; |
| for (Value *V : VL) |
| if (!isConstant(V)) { |
| auto *I = dyn_cast<CastInst>(V); |
| AllConstsOrCasts &= I && I->getType()->isIntegerTy(); |
| if (UserTreeIdx.EdgeIdx != UINT_MAX || !UserTreeIdx.UserTE || |
| !UserTreeIdx.UserTE->isGather()) |
| ValueToGatherNodes.try_emplace(V).first->getSecond().insert(Last); |
| } |
| if (AllConstsOrCasts) |
| CastMaxMinBWSizes = |
| std::make_pair(std::numeric_limits<unsigned>::max(), 1); |
| MustGather.insert(VL.begin(), VL.end()); |
| } |
| |
| if (UserTreeIdx.UserTE) |
| Last->UserTreeIndices.push_back(UserTreeIdx); |
| return Last; |
| } |
| |
| /// -- Vectorization State -- |
| /// Holds all of the tree entries. |
| TreeEntry::VecTreeTy VectorizableTree; |
| |
| #ifndef NDEBUG |
| /// Debug printer. |
| LLVM_DUMP_METHOD void dumpVectorizableTree() const { |
| for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { |
| VectorizableTree[Id]->dump(); |
| dbgs() << "\n"; |
| } |
| } |
| #endif |
| |
| TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } |
| |
| const TreeEntry *getTreeEntry(Value *V) const { |
| return ScalarToTreeEntry.lookup(V); |
| } |
| |
| /// Check that the operand node of alternate node does not generate |
| /// buildvector sequence. If it is, then probably not worth it to build |
| /// alternate shuffle, if number of buildvector operands + alternate |
| /// instruction > than the number of buildvector instructions. |
| /// \param S the instructions state of the analyzed values. |
| /// \param VL list of the instructions with alternate opcodes. |
| bool areAltOperandsProfitable(const InstructionsState &S, |
| ArrayRef<Value *> VL) const; |
| |
| /// Checks if the specified list of the instructions/values can be vectorized |
| /// and fills required data before actual scheduling of the instructions. |
| TreeEntry::EntryState getScalarsVectorizationState( |
| InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE, |
| OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps); |
| |
| /// Maps a specific scalar to its tree entry. |
| SmallDenseMap<Value *, TreeEntry *> ScalarToTreeEntry; |
| |
| /// List of scalars, used in several vectorize nodes, and the list of the |
| /// nodes. |
| SmallDenseMap<Value *, SmallVector<TreeEntry *>> MultiNodeScalars; |
| |
| /// Maps a value to the proposed vectorizable size. |
| SmallDenseMap<Value *, unsigned> InstrElementSize; |
| |
| /// A list of scalars that we found that we need to keep as scalars. |
| ValueSet MustGather; |
| |
| /// A set of first non-schedulable values. |
| ValueSet NonScheduledFirst; |
| |
| /// A map between the vectorized entries and the last instructions in the |
| /// bundles. The bundles are built in use order, not in the def order of the |
| /// instructions. So, we cannot rely directly on the last instruction in the |
| /// bundle being the last instruction in the program order during |
| /// vectorization process since the basic blocks are affected, need to |
| /// pre-gather them before. |
| DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction; |
| |
| /// List of gather nodes, depending on other gather/vector nodes, which should |
| /// be emitted after the vector instruction emission process to correctly |
| /// handle order of the vector instructions and shuffles. |
| SetVector<const TreeEntry *> PostponedGathers; |
| |
| using ValueToGatherNodesMap = |
| DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>>; |
| ValueToGatherNodesMap ValueToGatherNodes; |
| |
| /// The index of the first gathered load entry in the VectorizeTree. |
| std::optional<unsigned> GatheredLoadsEntriesFirst; |
| |
| /// This POD struct describes one external user in the vectorized tree. |
| struct ExternalUser { |
| ExternalUser(Value *S, llvm::User *U, int L) |
| : Scalar(S), User(U), Lane(L) {} |
| |
| // Which scalar in our function. |
| Value *Scalar; |
| |
| // Which user that uses the scalar. |
| llvm::User *User; |
| |
| // Which lane does the scalar belong to. |
| int Lane; |
| }; |
| using UserList = SmallVector<ExternalUser, 16>; |
| |
| /// Checks if two instructions may access the same memory. |
| /// |
| /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it |
| /// is invariant in the calling loop. |
| bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, |
| Instruction *Inst2) { |
| if (!Loc1.Ptr || !isSimple(Inst1) || !isSimple(Inst2)) |
| return true; |
| // First check if the result is already in the cache. |
| AliasCacheKey Key = std::make_pair(Inst1, Inst2); |
| auto It = AliasCache.find(Key); |
| if (It != AliasCache.end()) |
| return It->second; |
| bool Aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); |
| // Store the result in the cache. |
| AliasCache.try_emplace(Key, Aliased); |
| AliasCache.try_emplace(std::make_pair(Inst2, Inst1), Aliased); |
| return Aliased; |
| } |
| |
| using AliasCacheKey = std::pair<Instruction *, Instruction *>; |
| |
| /// Cache for alias results. |
| /// TODO: consider moving this to the AliasAnalysis itself. |
| DenseMap<AliasCacheKey, bool> AliasCache; |
| |
| // Cache for pointerMayBeCaptured calls inside AA. This is preserved |
| // globally through SLP because we don't perform any action which |
| // invalidates capture results. |
| BatchAAResults BatchAA; |
| |
| /// Temporary store for deleted instructions. Instructions will be deleted |
| /// eventually when the BoUpSLP is destructed. The deferral is required to |
| /// ensure that there are no incorrect collisions in the AliasCache, which |
| /// can happen if a new instruction is allocated at the same address as a |
| /// previously deleted instruction. |
| DenseSet<Instruction *> DeletedInstructions; |
| |
| /// Set of the instruction, being analyzed already for reductions. |
| SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; |
| |
| /// Set of hashes for the list of reduction values already being analyzed. |
| DenseSet<size_t> AnalyzedReductionVals; |
| |
| /// Values, already been analyzed for mininmal bitwidth and found to be |
| /// non-profitable. |
| DenseSet<Value *> AnalyzedMinBWVals; |
| |
| /// A list of values that need to extracted out of the tree. |
| /// This list holds pairs of (Internal Scalar : External User). External User |
| /// can be nullptr, it means that this Internal Scalar will be used later, |
| /// after vectorization. |
| UserList ExternalUses; |
| |
| /// A list of GEPs which can be reaplced by scalar GEPs instead of |
| /// extractelement instructions. |
| SmallPtrSet<Value *, 4> ExternalUsesAsOriginalScalar; |
| |
| /// Values used only by @llvm.assume calls. |
| SmallPtrSet<const Value *, 32> EphValues; |
| |
| /// Holds all of the instructions that we gathered, shuffle instructions and |
| /// extractelements. |
| SetVector<Instruction *> GatherShuffleExtractSeq; |
| |
| /// A list of blocks that we are going to CSE. |
| DenseSet<BasicBlock *> CSEBlocks; |
| |
| /// List of hashes of vector of loads, which are known to be non vectorizable. |
| DenseSet<size_t> ListOfKnonwnNonVectorizableLoads; |
| |
| /// Contains all scheduling relevant data for an instruction. |
| /// A ScheduleData either represents a single instruction or a member of an |
| /// instruction bundle (= a group of instructions which is combined into a |
| /// vector instruction). |
| struct ScheduleData { |
| // The initial value for the dependency counters. It means that the |
| // dependencies are not calculated yet. |
| enum { InvalidDeps = -1 }; |
| |
| ScheduleData() = default; |
| |
| void init(int BlockSchedulingRegionID, Instruction *I) { |
| FirstInBundle = this; |
| NextInBundle = nullptr; |
| NextLoadStore = nullptr; |
| IsScheduled = false; |
| SchedulingRegionID = BlockSchedulingRegionID; |
| clearDependencies(); |
| Inst = I; |
| TE = nullptr; |
| } |
| |
| /// Verify basic self consistency properties |
| void verify() { |
| if (hasValidDependencies()) { |
| assert(UnscheduledDeps <= Dependencies && "invariant"); |
| } else { |
| assert(UnscheduledDeps == Dependencies && "invariant"); |
| } |
| |
| if (IsScheduled) { |
| assert(isSchedulingEntity() && |
| "unexpected scheduled state"); |
| for (const ScheduleData *BundleMember = this; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| assert(BundleMember->hasValidDependencies() && |
| BundleMember->UnscheduledDeps == 0 && |
| "unexpected scheduled state"); |
| assert((BundleMember == this || !BundleMember->IsScheduled) && |
| "only bundle is marked scheduled"); |
| } |
| } |
| |
| assert(Inst->getParent() == FirstInBundle->Inst->getParent() && |
| "all bundle members must be in same basic block"); |
| } |
| |
| /// Returns true if the dependency information has been calculated. |
| /// Note that depenendency validity can vary between instructions within |
| /// a single bundle. |
| bool hasValidDependencies() const { return Dependencies != InvalidDeps; } |
| |
| /// Returns true for single instructions and for bundle representatives |
| /// (= the head of a bundle). |
| bool isSchedulingEntity() const { return FirstInBundle == this; } |
| |
| /// Returns true if it represents an instruction bundle and not only a |
| /// single instruction. |
| bool isPartOfBundle() const { |
| return NextInBundle != nullptr || FirstInBundle != this || TE; |
| } |
| |
| /// Returns true if it is ready for scheduling, i.e. it has no more |
| /// unscheduled depending instructions/bundles. |
| bool isReady() const { |
| assert(isSchedulingEntity() && |
| "can't consider non-scheduling entity for ready list"); |
| return unscheduledDepsInBundle() == 0 && !IsScheduled; |
| } |
| |
| /// Modifies the number of unscheduled dependencies for this instruction, |
| /// and returns the number of remaining dependencies for the containing |
| /// bundle. |
| int incrementUnscheduledDeps(int Incr) { |
| assert(hasValidDependencies() && |
| "increment of unscheduled deps would be meaningless"); |
| UnscheduledDeps += Incr; |
| return FirstInBundle->unscheduledDepsInBundle(); |
| } |
| |
| /// Sets the number of unscheduled dependencies to the number of |
| /// dependencies. |
| void resetUnscheduledDeps() { |
| UnscheduledDeps = Dependencies; |
| } |
| |
| /// Clears all dependency information. |
| void clearDependencies() { |
| Dependencies = InvalidDeps; |
| resetUnscheduledDeps(); |
| MemoryDependencies.clear(); |
| ControlDependencies.clear(); |
| } |
| |
| int unscheduledDepsInBundle() const { |
| assert(isSchedulingEntity() && "only meaningful on the bundle"); |
| int Sum = 0; |
| for (const ScheduleData *BundleMember = this; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| if (BundleMember->UnscheduledDeps == InvalidDeps) |
| return InvalidDeps; |
| Sum += BundleMember->UnscheduledDeps; |
| } |
| return Sum; |
| } |
| |
| void dump(raw_ostream &os) const { |
| if (!isSchedulingEntity()) { |
| os << "/ " << *Inst; |
| } else if (NextInBundle) { |
| os << '[' << *Inst; |
| ScheduleData *SD = NextInBundle; |
| while (SD) { |
| os << ';' << *SD->Inst; |
| SD = SD->NextInBundle; |
| } |
| os << ']'; |
| } else { |
| os << *Inst; |
| } |
| } |
| |
| Instruction *Inst = nullptr; |
| |
| /// The TreeEntry that this instruction corresponds to. |
| TreeEntry *TE = nullptr; |
| |
| /// Points to the head in an instruction bundle (and always to this for |
| /// single instructions). |
| ScheduleData *FirstInBundle = nullptr; |
| |
| /// Single linked list of all instructions in a bundle. Null if it is a |
| /// single instruction. |
| ScheduleData *NextInBundle = nullptr; |
| |
| /// Single linked list of all memory instructions (e.g. load, store, call) |
| /// in the block - until the end of the scheduling region. |
| ScheduleData *NextLoadStore = nullptr; |
| |
| /// The dependent memory instructions. |
| /// This list is derived on demand in calculateDependencies(). |
| SmallVector<ScheduleData *, 4> MemoryDependencies; |
| |
| /// List of instructions which this instruction could be control dependent |
| /// on. Allowing such nodes to be scheduled below this one could introduce |
| /// a runtime fault which didn't exist in the original program. |
| /// ex: this is a load or udiv following a readonly call which inf loops |
| SmallVector<ScheduleData *, 4> ControlDependencies; |
| |
| /// This ScheduleData is in the current scheduling region if this matches |
| /// the current SchedulingRegionID of BlockScheduling. |
| int SchedulingRegionID = 0; |
| |
| /// Used for getting a "good" final ordering of instructions. |
| int SchedulingPriority = 0; |
| |
| /// The number of dependencies. Constitutes of the number of users of the |
| /// instruction plus the number of dependent memory instructions (if any). |
| /// This value is calculated on demand. |
| /// If InvalidDeps, the number of dependencies is not calculated yet. |
| int Dependencies = InvalidDeps; |
| |
| /// The number of dependencies minus the number of dependencies of scheduled |
| /// instructions. As soon as this is zero, the instruction/bundle gets ready |
| /// for scheduling. |
| /// Note that this is negative as long as Dependencies is not calculated. |
| int UnscheduledDeps = InvalidDeps; |
| |
| /// True if this instruction is scheduled (or considered as scheduled in the |
| /// dry-run). |
| bool IsScheduled = false; |
| }; |
| |
| #ifndef NDEBUG |
| friend inline raw_ostream &operator<<(raw_ostream &os, |
| const BoUpSLP::ScheduleData &SD) { |
| SD.dump(os); |
| return os; |
| } |
| #endif |
| |
| friend struct GraphTraits<BoUpSLP *>; |
| friend struct DOTGraphTraits<BoUpSLP *>; |
| |
| /// Contains all scheduling data for a basic block. |
| /// It does not schedules instructions, which are not memory read/write |
| /// instructions and their operands are either constants, or arguments, or |
| /// phis, or instructions from others blocks, or their users are phis or from |
| /// the other blocks. The resulting vector instructions can be placed at the |
| /// beginning of the basic block without scheduling (if operands does not need |
| /// to be scheduled) or at the end of the block (if users are outside of the |
| /// block). It allows to save some compile time and memory used by the |
| /// compiler. |
| /// ScheduleData is assigned for each instruction in between the boundaries of |
| /// the tree entry, even for those, which are not part of the graph. It is |
| /// required to correctly follow the dependencies between the instructions and |
| /// their correct scheduling. The ScheduleData is not allocated for the |
| /// instructions, which do not require scheduling, like phis, nodes with |
| /// extractelements/insertelements only or nodes with instructions, with |
| /// uses/operands outside of the block. |
| struct BlockScheduling { |
| BlockScheduling(BasicBlock *BB) |
| : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} |
| |
| void clear() { |
| ReadyInsts.clear(); |
| ScheduleStart = nullptr; |
| ScheduleEnd = nullptr; |
| FirstLoadStoreInRegion = nullptr; |
| LastLoadStoreInRegion = nullptr; |
| RegionHasStackSave = false; |
| |
| // Reduce the maximum schedule region size by the size of the |
| // previous scheduling run. |
| ScheduleRegionSizeLimit -= ScheduleRegionSize; |
| if (ScheduleRegionSizeLimit < MinScheduleRegionSize) |
| ScheduleRegionSizeLimit = MinScheduleRegionSize; |
| ScheduleRegionSize = 0; |
| |
| // Make a new scheduling region, i.e. all existing ScheduleData is not |
| // in the new region yet. |
| ++SchedulingRegionID; |
| } |
| |
| ScheduleData *getScheduleData(Instruction *I) { |
| if (BB != I->getParent()) |
| // Avoid lookup if can't possibly be in map. |
| return nullptr; |
| ScheduleData *SD = ScheduleDataMap.lookup(I); |
| if (SD && isInSchedulingRegion(SD)) |
| return SD; |
| return nullptr; |
| } |
| |
| ScheduleData *getScheduleData(Value *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return getScheduleData(I); |
| return nullptr; |
| } |
| |
| bool isInSchedulingRegion(ScheduleData *SD) const { |
| return SD->SchedulingRegionID == SchedulingRegionID; |
| } |
| |
| /// Marks an instruction as scheduled and puts all dependent ready |
| /// instructions into the ready-list. |
| template <typename ReadyListType> |
| void schedule(ScheduleData *SD, ReadyListType &ReadyList) { |
| SD->IsScheduled = true; |
| LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); |
| |
| for (ScheduleData *BundleMember = SD; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| |
| // Handle the def-use chain dependencies. |
| |
| // Decrement the unscheduled counter and insert to ready list if ready. |
| auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { |
| ScheduleData *OpDef = getScheduleData(I); |
| if (OpDef && OpDef->hasValidDependencies() && |
| OpDef->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after |
| // decrementing, so we can put the dependent instruction |
| // into the ready list. |
| ScheduleData *DepBundle = OpDef->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (def): " << *DepBundle << "\n"); |
| } |
| }; |
| |
| // If BundleMember is a vector bundle, its operands may have been |
| // reordered during buildTree(). We therefore need to get its operands |
| // through the TreeEntry. |
| if (TreeEntry *TE = BundleMember->TE) { |
| // Need to search for the lane since the tree entry can be reordered. |
| int Lane = std::distance(TE->Scalars.begin(), |
| find(TE->Scalars, BundleMember->Inst)); |
| assert(Lane >= 0 && "Lane not set"); |
| |
| // Since vectorization tree is being built recursively this assertion |
| // ensures that the tree entry has all operands set before reaching |
| // this code. Couple of exceptions known at the moment are extracts |
| // where their second (immediate) operand is not added. Since |
| // immediates do not affect scheduler behavior this is considered |
| // okay. |
| auto *In = BundleMember->Inst; |
| assert( |
| In && |
| (isa<ExtractValueInst, ExtractElementInst, IntrinsicInst>(In) || |
| In->getNumOperands() == TE->getNumOperands()) && |
| "Missed TreeEntry operands?"); |
| (void)In; // fake use to avoid build failure when assertions disabled |
| |
| for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) |
| if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) |
| DecrUnsched(I); |
| } else { |
| // If BundleMember is a stand-alone instruction, no operand reordering |
| // has taken place, so we directly access its operands. |
| for (Use &U : BundleMember->Inst->operands()) |
| if (auto *I = dyn_cast<Instruction>(U.get())) |
| DecrUnsched(I); |
| } |
| // Handle the memory dependencies. |
| for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { |
| if (MemoryDepSD->hasValidDependencies() && |
| MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after decrementing, |
| // so we can put the dependent instruction into the ready list. |
| ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (mem): " << *DepBundle << "\n"); |
| } |
| } |
| // Handle the control dependencies. |
| for (ScheduleData *DepSD : BundleMember->ControlDependencies) { |
| if (DepSD->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after decrementing, |
| // so we can put the dependent instruction into the ready list. |
| ScheduleData *DepBundle = DepSD->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (ctl): " << *DepBundle << "\n"); |
| } |
| } |
| } |
| } |
| |
| /// Verify basic self consistency properties of the data structure. |
| void verify() { |
| if (!ScheduleStart) |
| return; |
| |
| assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && |
| ScheduleStart->comesBefore(ScheduleEnd) && |
| "Not a valid scheduling region?"); |
| |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| auto *SD = getScheduleData(I); |
| if (!SD) |
| continue; |
| assert(isInSchedulingRegion(SD) && |
| "primary schedule data not in window?"); |
| assert(isInSchedulingRegion(SD->FirstInBundle) && |
| "entire bundle in window!"); |
| SD->verify(); |
| } |
| |
| for (auto *SD : ReadyInsts) { |
| assert(SD->isSchedulingEntity() && SD->isReady() && |
| "item in ready list not ready?"); |
| (void)SD; |
| } |
| } |
| |
| /// Put all instructions into the ReadyList which are ready for scheduling. |
| template <typename ReadyListType> |
| void initialFillReadyList(ReadyListType &ReadyList) { |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| ScheduleData *SD = getScheduleData(I); |
| if (SD && SD->isSchedulingEntity() && SD->hasValidDependencies() && |
| SD->isReady()) { |
| ReadyList.insert(SD); |
| LLVM_DEBUG(dbgs() |
| << "SLP: initially in ready list: " << *SD << "\n"); |
| } |
| } |
| } |
| |
| /// Build a bundle from the ScheduleData nodes corresponding to the |
| /// scalar instruction for each lane. |
| ScheduleData *buildBundle(ArrayRef<Value *> VL); |
| |
| /// Checks if a bundle of instructions can be scheduled, i.e. has no |
| /// cyclic dependencies. This is only a dry-run, no instructions are |
| /// actually moved at this stage. |
| /// \returns the scheduling bundle. The returned Optional value is not |
| /// std::nullopt if \p VL is allowed to be scheduled. |
| std::optional<ScheduleData *> |
| tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, |
| const InstructionsState &S); |
| |
| /// Un-bundles a group of instructions. |
| void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); |
| |
| /// Allocates schedule data chunk. |
| ScheduleData *allocateScheduleDataChunks(); |
| |
| /// Extends the scheduling region so that V is inside the region. |
| /// \returns true if the region size is within the limit. |
| bool extendSchedulingRegion(Value *V, const InstructionsState &S); |
| |
| /// Initialize the ScheduleData structures for new instructions in the |
| /// scheduling region. |
| void initScheduleData(Instruction *FromI, Instruction *ToI, |
| ScheduleData *PrevLoadStore, |
| ScheduleData *NextLoadStore); |
| |
| /// Updates the dependency information of a bundle and of all instructions/ |
| /// bundles which depend on the original bundle. |
| void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, |
| BoUpSLP *SLP); |
| |
| /// Sets all instruction in the scheduling region to un-scheduled. |
| void resetSchedule(); |
| |
| BasicBlock *BB; |
| |
| /// Simple memory allocation for ScheduleData. |
| SmallVector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; |
| |
| /// The size of a ScheduleData array in ScheduleDataChunks. |
| int ChunkSize; |
| |
| /// The allocator position in the current chunk, which is the last entry |
| /// of ScheduleDataChunks. |
| int ChunkPos; |
| |
| /// Attaches ScheduleData to Instruction. |
| /// Note that the mapping survives during all vectorization iterations, i.e. |
| /// ScheduleData structures are recycled. |
| DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; |
| |
| /// The ready-list for scheduling (only used for the dry-run). |
| SetVector<ScheduleData *> ReadyInsts; |
| |
| /// The first instruction of the scheduling region. |
| Instruction *ScheduleStart = nullptr; |
| |
| /// The first instruction _after_ the scheduling region. |
| Instruction *ScheduleEnd = nullptr; |
| |
| /// The first memory accessing instruction in the scheduling region |
| /// (can be null). |
| ScheduleData *FirstLoadStoreInRegion = nullptr; |
| |
| /// The last memory accessing instruction in the scheduling region |
| /// (can be null). |
| ScheduleData *LastLoadStoreInRegion = nullptr; |
| |
| /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling |
| /// region? Used to optimize the dependence calculation for the |
| /// common case where there isn't. |
| bool RegionHasStackSave = false; |
| |
| /// The current size of the scheduling region. |
| int ScheduleRegionSize = 0; |
| |
| /// The maximum size allowed for the scheduling region. |
| int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; |
| |
| /// The ID of the scheduling region. For a new vectorization iteration this |
| /// is incremented which "removes" all ScheduleData from the region. |
| /// Make sure that the initial SchedulingRegionID is greater than the |
| /// initial SchedulingRegionID in ScheduleData (which is 0). |
| int SchedulingRegionID = 1; |
| }; |
| |
| /// Attaches the BlockScheduling structures to basic blocks. |
| MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; |
| |
| /// Performs the "real" scheduling. Done before vectorization is actually |
| /// performed in a basic block. |
| void scheduleBlock(BlockScheduling *BS); |
| |
| /// List of users to ignore during scheduling and that don't need extracting. |
| const SmallDenseSet<Value *> *UserIgnoreList = nullptr; |
| |
| /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of |
| /// sorted SmallVectors of unsigned. |
| struct OrdersTypeDenseMapInfo { |
| static OrdersType getEmptyKey() { |
| OrdersType V; |
| V.push_back(~1U); |
| return V; |
| } |
| |
| static OrdersType getTombstoneKey() { |
| OrdersType V; |
| V.push_back(~2U); |
| return V; |
| } |
| |
| static unsigned getHashValue(const OrdersType &V) { |
| return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); |
| } |
| |
| static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| // Analysis and block reference. |
| Function *F; |
| ScalarEvolution *SE; |
| TargetTransformInfo *TTI; |
| TargetLibraryInfo *TLI; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| AssumptionCache *AC; |
| DemandedBits *DB; |
| const DataLayout *DL; |
| OptimizationRemarkEmitter *ORE; |
| |
| unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. |
| unsigned MinVecRegSize; // Set by cl::opt (default: 128). |
| |
| /// Instruction builder to construct the vectorized tree. |
| IRBuilder<TargetFolder> Builder; |
| |
| /// A map of scalar integer values to the smallest bit width with which they |
| /// can legally be represented. The values map to (width, signed) pairs, |
| /// where "width" indicates the minimum bit width and "signed" is True if the |
| /// value must be signed-extended, rather than zero-extended, back to its |
| /// original width. |
| DenseMap<const TreeEntry *, std::pair<uint64_t, bool>> MinBWs; |
| |
| /// Final size of the reduced vector, if the current graph represents the |
| /// input for the reduction and it was possible to narrow the size of the |
| /// reduction. |
| unsigned ReductionBitWidth = 0; |
| |
| /// Canonical graph size before the transformations. |
| unsigned BaseGraphSize = 1; |
| |
| /// If the tree contains any zext/sext/trunc nodes, contains max-min pair of |
| /// type sizes, used in the tree. |
| std::optional<std::pair<unsigned, unsigned>> CastMaxMinBWSizes; |
| |
| /// Indices of the vectorized nodes, which supposed to be the roots of the new |
| /// bitwidth analysis attempt, like trunc, IToFP or ICmp. |
| DenseSet<unsigned> ExtraBitWidthNodes; |
| }; |
| |
| } // end namespace slpvectorizer |
| |
| template <> struct GraphTraits<BoUpSLP *> { |
| using TreeEntry = BoUpSLP::TreeEntry; |
| |
| /// NodeRef has to be a pointer per the GraphWriter. |
| using NodeRef = TreeEntry *; |
| |
| using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; |
| |
| /// Add the VectorizableTree to the index iterator to be able to return |
| /// TreeEntry pointers. |
| struct ChildIteratorType |
| : public iterator_adaptor_base< |
| ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { |
| ContainerTy &VectorizableTree; |
| |
| ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, |
| ContainerTy &VT) |
| : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} |
| |
| NodeRef operator*() { return I->UserTE; } |
| }; |
| |
| static NodeRef getEntryNode(BoUpSLP &R) { |
| return R.VectorizableTree[0].get(); |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { |
| return {N->UserTreeIndices.begin(), N->Container}; |
| } |
| |
| static ChildIteratorType child_end(NodeRef N) { |
| return {N->UserTreeIndices.end(), N->Container}; |
| } |
| |
| /// For the node iterator we just need to turn the TreeEntry iterator into a |
| /// TreeEntry* iterator so that it dereferences to NodeRef. |
| class nodes_iterator { |
| using ItTy = ContainerTy::iterator; |
| ItTy It; |
| |
| public: |
| nodes_iterator(const ItTy &It2) : It(It2) {} |
| NodeRef operator*() { return It->get(); } |
| nodes_iterator operator++() { |
| ++It; |
| return *this; |
| } |
| bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } |
| }; |
| |
| static nodes_iterator nodes_begin(BoUpSLP *R) { |
| return nodes_iterator(R->VectorizableTree.begin()); |
| } |
| |
| static nodes_iterator nodes_end(BoUpSLP *R) { |
| return nodes_iterator(R->VectorizableTree.end()); |
| } |
| |
| static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } |
| }; |
| |
| template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { |
| using TreeEntry = BoUpSLP::TreeEntry; |
| |
| DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} |
| |
| std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { |
| std::string Str; |
| raw_string_ostream OS(Str); |
| OS << Entry->Idx << ".\n"; |
| if (isSplat(Entry->Scalars)) |
| OS << "<splat> "; |
| for (auto *V : Entry->Scalars) { |
| OS << *V; |
| if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { |
| return EU.Scalar == V; |
| })) |
| OS << " <extract>"; |
| OS << "\n"; |
| } |
| return Str; |
| } |
| |
| static std::string getNodeAttributes(const TreeEntry *Entry, |
| const BoUpSLP *) { |
| if (Entry->isGather()) |
| return "color=red"; |
| if (Entry->State == TreeEntry::ScatterVectorize || |
| Entry->State == TreeEntry::StridedVectorize) |
| return "color=blue"; |
| return ""; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| BoUpSLP::~BoUpSLP() { |
| SmallVector<WeakTrackingVH> DeadInsts; |
| for (auto *I : DeletedInstructions) { |
| if (!I->getParent()) { |
| // Temporarily insert instruction back to erase them from parent and |
| // memory later. |
| if (isa<PHINode>(I)) |
| // Phi nodes must be the very first instructions in the block. |
| I->insertBefore(F->getEntryBlock(), |
| F->getEntryBlock().getFirstNonPHIIt()); |
| else |
| I->insertBefore(F->getEntryBlock().getTerminator()); |
| continue; |
| } |
| for (Use &U : I->operands()) { |
| auto *Op = dyn_cast<Instruction>(U.get()); |
| if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && |
| wouldInstructionBeTriviallyDead(Op, TLI)) |
| DeadInsts.emplace_back(Op); |
| } |
| I->dropAllReferences(); |
| } |
| for (auto *I : DeletedInstructions) { |
| assert(I->use_empty() && |
| "trying to erase instruction with users."); |
| I->eraseFromParent(); |
| } |
| |
| // Cleanup any dead scalar code feeding the vectorized instructions |
| RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); |
| |
| #ifdef EXPENSIVE_CHECKS |
| // If we could guarantee that this call is not extremely slow, we could |
| // remove the ifdef limitation (see PR47712). |
| assert(!verifyFunction(*F, &dbgs())); |
| #endif |
| } |
| |
| /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses |
| /// contains original mask for the scalars reused in the node. Procedure |
| /// transform this mask in accordance with the given \p Mask. |
| static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { |
| assert(!Mask.empty() && Reuses.size() == Mask.size() && |
| "Expected non-empty mask."); |
| SmallVector<int> Prev(Reuses.begin(), Reuses.end()); |
| Prev.swap(Reuses); |
| for (unsigned I = 0, E = Prev.size(); I < E; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Reuses[Mask[I]] = Prev[I]; |
| } |
| |
| /// Reorders the given \p Order according to the given \p Mask. \p Order - is |
| /// the original order of the scalars. Procedure transforms the provided order |
| /// in accordance with the given \p Mask. If the resulting \p Order is just an |
| /// identity order, \p Order is cleared. |
| static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask, |
| bool BottomOrder = false) { |
| assert(!Mask.empty() && "Expected non-empty mask."); |
| unsigned Sz = Mask.size(); |
| if (BottomOrder) { |
| SmallVector<unsigned> PrevOrder; |
| if (Order.empty()) { |
| PrevOrder.resize(Sz); |
| std::iota(PrevOrder.begin(), PrevOrder.end(), 0); |
| } else { |
| PrevOrder.swap(Order); |
| } |
| Order.assign(Sz, Sz); |
| for (unsigned I = 0; I < Sz; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Order[I] = PrevOrder[Mask[I]]; |
| if (all_of(enumerate(Order), [&](const auto &Data) { |
| return Data.value() == Sz || Data.index() == Data.value(); |
| })) { |
| Order.clear(); |
| return; |
| } |
| fixupOrderingIndices(Order); |
| return; |
| } |
| SmallVector<int> MaskOrder; |
| if (Order.empty()) { |
| MaskOrder.resize(Sz); |
| std::iota(MaskOrder.begin(), MaskOrder.end(), 0); |
| } else { |
| inversePermutation(Order, MaskOrder); |
| } |
| reorderReuses(MaskOrder, Mask); |
| if (ShuffleVectorInst::isIdentityMask(MaskOrder, Sz)) { |
| Order.clear(); |
| return; |
| } |
| Order.assign(Sz, Sz); |
| for (unsigned I = 0; I < Sz; ++I) |
| if (MaskOrder[I] != PoisonMaskElem) |
| Order[MaskOrder[I]] = I; |
| fixupOrderingIndices(Order); |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { |
| assert(TE.isGather() && "Expected gather node only."); |
| // Try to find subvector extract/insert patterns and reorder only such |
| // patterns. |
| SmallVector<Value *> GatheredScalars(TE.Scalars.begin(), TE.Scalars.end()); |
| Type *ScalarTy = GatheredScalars.front()->getType(); |
| int NumScalars = GatheredScalars.size(); |
| if (!isValidElementType(ScalarTy)) |
| return std::nullopt; |
| auto *VecTy = getWidenedType(ScalarTy, NumScalars); |
| int NumParts = TTI->getNumberOfParts(VecTy); |
| if (NumParts == 0 || NumParts >= NumScalars || |
| VecTy->getNumElements() % NumParts != 0 || |
| !hasFullVectorsOrPowerOf2(*TTI, VecTy->getElementType(), |
| VecTy->getNumElements() / NumParts)) |
| NumParts = 1; |
| SmallVector<int> ExtractMask; |
| SmallVector<int> Mask; |
| SmallVector<SmallVector<const TreeEntry *>> Entries; |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> ExtractShuffles = |
| tryToGatherExtractElements(GatheredScalars, ExtractMask, NumParts); |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> GatherShuffles = |
| isGatherShuffledEntry(&TE, GatheredScalars, Mask, Entries, NumParts, |
| /*ForOrder=*/true); |
| // No shuffled operands - ignore. |
| if (GatherShuffles.empty() && ExtractShuffles.empty()) |
| return std::nullopt; |
| OrdersType CurrentOrder(NumScalars, NumScalars); |
| if (GatherShuffles.size() == 1 && |
| *GatherShuffles.front() == TTI::SK_PermuteSingleSrc && |
| Entries.front().front()->isSame(TE.Scalars)) { |
| // Perfect match in the graph, will reuse the previously vectorized |
| // node. Cost is 0. |
| std::iota(CurrentOrder.begin(), CurrentOrder.end(), 0); |
| return CurrentOrder; |
| } |
| auto IsSplatMask = [](ArrayRef<int> Mask) { |
| int SingleElt = PoisonMaskElem; |
| return all_of(Mask, [&](int I) { |
| if (SingleElt == PoisonMaskElem && I != PoisonMaskElem) |
| SingleElt = I; |
| return I == PoisonMaskElem || I == SingleElt; |
| }); |
| }; |
| // Exclusive broadcast mask - ignore. |
| if ((ExtractShuffles.empty() && IsSplatMask(Mask) && |
| (Entries.size() != 1 || |
| Entries.front().front()->ReorderIndices.empty())) || |
| (GatherShuffles.empty() && IsSplatMask(ExtractMask))) |
| return std::nullopt; |
| SmallBitVector ShuffledSubMasks(NumParts); |
| auto TransformMaskToOrder = [&](MutableArrayRef<unsigned> CurrentOrder, |
| ArrayRef<int> Mask, int PartSz, int NumParts, |
| function_ref<unsigned(unsigned)> GetVF) { |
| for (int I : seq<int>(0, NumParts)) { |
| if (ShuffledSubMasks.test(I)) |
| continue; |
| const int VF = GetVF(I); |
| if (VF == 0) |
| continue; |
| unsigned Limit = getNumElems(CurrentOrder.size(), PartSz, I); |
| MutableArrayRef<unsigned> Slice = CurrentOrder.slice(I * PartSz, Limit); |
| // Shuffle of at least 2 vectors - ignore. |
| if (any_of(Slice, [&](int I) { return I != NumScalars; })) { |
| std::fill(Slice.begin(), Slice.end(), NumScalars); |
| ShuffledSubMasks.set(I); |
| continue; |
| } |
| // Try to include as much elements from the mask as possible. |
| int FirstMin = INT_MAX; |
| int SecondVecFound = false; |
| for (int K : seq<int>(Limit)) { |
| int Idx = Mask[I * PartSz + K]; |
| if (Idx == PoisonMaskElem) { |
| Value *V = GatheredScalars[I * PartSz + K]; |
| if (isConstant(V) && !isa<PoisonValue>(V)) { |
| SecondVecFound = true; |
| break; |
| } |
| continue; |
| } |
| if (Idx < VF) { |
| if (FirstMin > Idx) |
| FirstMin = Idx; |
| } else { |
| SecondVecFound = true; |
| break; |
| } |
| } |
| FirstMin = (FirstMin / PartSz) * PartSz; |
| // Shuffle of at least 2 vectors - ignore. |
| if (SecondVecFound) { |
| std::fill(Slice.begin(), Slice.end(), NumScalars); |
| ShuffledSubMasks.set(I); |
| continue; |
| } |
| for (int K : seq<int>(Limit)) { |
| int Idx = Mask[I * PartSz + K]; |
| if (Idx == PoisonMaskElem) |
| continue; |
| Idx -= FirstMin; |
| if (Idx >= PartSz) { |
| SecondVecFound = true; |
| break; |
| } |
| if (CurrentOrder[I * PartSz + Idx] > |
| static_cast<unsigned>(I * PartSz + K) && |
| CurrentOrder[I * PartSz + Idx] != |
| static_cast<unsigned>(I * PartSz + Idx)) |
| CurrentOrder[I * PartSz + Idx] = I * PartSz + K; |
| } |
| // Shuffle of at least 2 vectors - ignore. |
| if (SecondVecFound) { |
| std::fill(Slice.begin(), Slice.end(), NumScalars); |
| ShuffledSubMasks.set(I); |
| continue; |
| } |
| } |
| }; |
| int PartSz = getPartNumElems(NumScalars, NumParts); |
| if (!ExtractShuffles.empty()) |
| TransformMaskToOrder( |
| CurrentOrder, ExtractMask, PartSz, NumParts, [&](unsigned I) { |
| if (!ExtractShuffles[I]) |
| return 0U; |
| unsigned VF = 0; |
| unsigned Sz = getNumElems(TE.getVectorFactor(), PartSz, I); |
| for (unsigned Idx : seq<unsigned>(Sz)) { |
| int K = I * PartSz + Idx; |
| if (ExtractMask[K] == PoisonMaskElem) |
| continue; |
| if (!TE.ReuseShuffleIndices.empty()) |
| K = TE.ReuseShuffleIndices[K]; |
| if (K == PoisonMaskElem) |
| continue; |
| if (!TE.ReorderIndices.empty()) |
| K = std::distance(TE.ReorderIndices.begin(), |
| find(TE.ReorderIndices, K)); |
| auto *EI = dyn_cast<ExtractElementInst>(TE.Scalars[K]); |
| if (!EI) |
| continue; |
| VF = std::max(VF, cast<VectorType>(EI->getVectorOperandType()) |
| ->getElementCount() |
| .getKnownMinValue()); |
| } |
| return VF; |
| }); |
| // Check special corner case - single shuffle of the same entry. |
| if (GatherShuffles.size() == 1 && NumParts != 1) { |
| if (ShuffledSubMasks.any()) |
| return std::nullopt; |
| PartSz = NumScalars; |
| NumParts = 1; |
| } |
| if (!Entries.empty()) |
| TransformMaskToOrder(CurrentOrder, Mask, PartSz, NumParts, [&](unsigned I) { |
| if (!GatherShuffles[I]) |
| return 0U; |
| return std::max(Entries[I].front()->getVectorFactor(), |
| Entries[I].back()->getVectorFactor()); |
| }); |
| int NumUndefs = |
| count_if(CurrentOrder, [&](int Idx) { return Idx == NumScalars; }); |
| if (ShuffledSubMasks.all() || (NumScalars > 2 && NumUndefs >= NumScalars / 2)) |
| return std::nullopt; |
| return std::move(CurrentOrder); |
| } |
| |
| static bool arePointersCompatible(Value *Ptr1, Value *Ptr2, |
| const TargetLibraryInfo &TLI, |
| bool CompareOpcodes = true) { |
| if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2)) |
| return false; |
| auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); |
| if (!GEP1) |
| return false; |
| auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); |
| if (!GEP2) |
| return false; |
| return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 && |
| ((isConstant(GEP1->getOperand(1)) && |
| isConstant(GEP2->getOperand(1))) || |
| !CompareOpcodes || |
| getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI) |
| .getOpcode()); |
| } |
| |
| /// Calculates minimal alignment as a common alignment. |
| template <typename T> |
| static Align computeCommonAlignment(ArrayRef<Value *> VL) { |
| Align CommonAlignment = cast<T>(VL.front())->getAlign(); |
| for (Value *V : VL.drop_front()) |
| CommonAlignment = std::min(CommonAlignment, cast<T>(V)->getAlign()); |
| return CommonAlignment; |
| } |
| |
| /// Check if \p Order represents reverse order. |
| static bool isReverseOrder(ArrayRef<unsigned> Order) { |
| unsigned Sz = Order.size(); |
| return !Order.empty() && all_of(enumerate(Order), [&](const auto &Pair) { |
| return Pair.value() == Sz || Sz - Pair.index() - 1 == Pair.value(); |
| }); |
| } |
| |
| /// Checks if the provided list of pointers \p Pointers represents the strided |
| /// pointers for type ElemTy. If they are not, std::nullopt is returned. |
| /// Otherwise, if \p Inst is not specified, just initialized optional value is |
| /// returned to show that the pointers represent strided pointers. If \p Inst |
| /// specified, the runtime stride is materialized before the given \p Inst. |
| /// \returns std::nullopt if the pointers are not pointers with the runtime |
| /// stride, nullptr or actual stride value, otherwise. |
| static std::optional<Value *> |
| calculateRtStride(ArrayRef<Value *> PointerOps, Type *ElemTy, |
| const DataLayout &DL, ScalarEvolution &SE, |
| SmallVectorImpl<unsigned> &SortedIndices, |
| Instruction *Inst = nullptr) { |
| SmallVector<const SCEV *> SCEVs; |
| const SCEV *PtrSCEVLowest = nullptr; |
| const SCEV *PtrSCEVHighest = nullptr; |
| // Find lower/upper pointers from the PointerOps (i.e. with lowest and highest |
| // addresses). |
| for (Value *Ptr : PointerOps) { |
| const SCEV *PtrSCEV = SE.getSCEV(Ptr); |
| if (!PtrSCEV) |
| return std::nullopt; |
| SCEVs.push_back(PtrSCEV); |
| if (!PtrSCEVLowest && !PtrSCEVHighest) { |
| PtrSCEVLowest = PtrSCEVHighest = PtrSCEV; |
| continue; |
| } |
| const SCEV *Diff = SE.getMinusSCEV(PtrSCEV, PtrSCEVLowest); |
| if (isa<SCEVCouldNotCompute>(Diff)) |
| return std::nullopt; |
| if (Diff->isNonConstantNegative()) { |
| PtrSCEVLowest = PtrSCEV; |
| continue; |
| } |
| const SCEV *Diff1 = SE.getMinusSCEV(PtrSCEVHighest, PtrSCEV); |
| if (isa<SCEVCouldNotCompute>(Diff1)) |
| return std::nullopt; |
| if (Diff1->isNonConstantNegative()) { |
| PtrSCEVHighest = PtrSCEV; |
| continue; |
| } |
| } |
| // Dist = PtrSCEVHighest - PtrSCEVLowest; |
| const SCEV *Dist = SE.getMinusSCEV(PtrSCEVHighest, PtrSCEVLowest); |
| if (isa<SCEVCouldNotCompute>(Dist)) |
| return std::nullopt; |
| int Size = DL.getTypeStoreSize(ElemTy); |
| auto TryGetStride = [&](const SCEV *Dist, |
| const SCEV *Multiplier) -> const SCEV * { |
| if (const auto *M = dyn_cast<SCEVMulExpr>(Dist)) { |
| if (M->getOperand(0) == Multiplier) |
| return M->getOperand(1); |
| if (M->getOperand(1) == Multiplier) |
| return M->getOperand(0); |
| return nullptr; |
| } |
| if (Multiplier == Dist) |
| return SE.getConstant(Dist->getType(), 1); |
| return SE.getUDivExactExpr(Dist, Multiplier); |
| }; |
| // Stride_in_elements = Dist / element_size * (num_elems - 1). |
| const SCEV *Stride = nullptr; |
| if (Size != 1 || SCEVs.size() > 2) { |
| const SCEV *Sz = SE.getConstant(Dist->getType(), Size * (SCEVs.size() - 1)); |
| Stride = TryGetStride(Dist, Sz); |
| if (!Stride) |
| return std::nullopt; |
| } |
| if (!Stride || isa<SCEVConstant>(Stride)) |
| return std::nullopt; |
| // Iterate through all pointers and check if all distances are |
| // unique multiple of Stride. |
| using DistOrdPair = std::pair<int64_t, int>; |
| auto Compare = llvm::less_first(); |
| std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); |
| int Cnt = 0; |
| bool IsConsecutive = true; |
| for (const SCEV *PtrSCEV : SCEVs) { |
| unsigned Dist = 0; |
| if (PtrSCEV != PtrSCEVLowest) { |
| const SCEV *Diff = SE.getMinusSCEV(PtrSCEV, PtrSCEVLowest); |
| const SCEV *Coeff = TryGetStride(Diff, Stride); |
| if (!Coeff) |
| return std::nullopt; |
| const auto *SC = dyn_cast<SCEVConstant>(Coeff); |
| if (!SC || isa<SCEVCouldNotCompute>(SC)) |
| return std::nullopt; |
| if (!SE.getMinusSCEV(PtrSCEV, SE.getAddExpr(PtrSCEVLowest, |
| SE.getMulExpr(Stride, SC))) |
| ->isZero()) |
| return std::nullopt; |
| Dist = SC->getAPInt().getZExtValue(); |
| } |
| // If the strides are not the same or repeated, we can't vectorize. |
| if ((Dist / Size) * Size != Dist || (Dist / Size) >= SCEVs.size()) |
| return std::nullopt; |
| auto Res = Offsets.emplace(Dist, Cnt); |
| if (!Res.second) |
| return std::nullopt; |
| // Consecutive order if the inserted element is the last one. |
| IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); |
| ++Cnt; |
| } |
| if (Offsets.size() != SCEVs.size()) |
| return std::nullopt; |
| SortedIndices.clear(); |
| if (!IsConsecutive) { |
| // Fill SortedIndices array only if it is non-consecutive. |
| SortedIndices.resize(PointerOps.size()); |
| Cnt = 0; |
| for (const std::pair<int64_t, int> &Pair : Offsets) { |
| SortedIndices[Cnt] = Pair.second; |
| ++Cnt; |
| } |
| } |
| if (!Inst) |
| return nullptr; |
| SCEVExpander Expander(SE, DL, "strided-load-vec"); |
| return Expander.expandCodeFor(Stride, Stride->getType(), Inst); |
| } |
| |
| static std::pair<InstructionCost, InstructionCost> |
| getGEPCosts(const TargetTransformInfo &TTI, ArrayRef<Value *> Ptrs, |
| Value *BasePtr, unsigned Opcode, TTI::TargetCostKind CostKind, |
| Type *ScalarTy, VectorType *VecTy); |
| |
| /// Returns the cost of the shuffle instructions with the given \p Kind, vector |
| /// type \p Tp and optional \p Mask. Adds SLP-specifc cost estimation for insert |
| /// subvector pattern. |
| static InstructionCost |
| getShuffleCost(const TargetTransformInfo &TTI, TTI::ShuffleKind Kind, |
| VectorType *Tp, ArrayRef<int> Mask = {}, |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, |
| int Index = 0, VectorType *SubTp = nullptr, |
| ArrayRef<const Value *> Args = {}) { |
| if (Kind != TTI::SK_PermuteTwoSrc) |
| return TTI.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args); |
| int NumSrcElts = Tp->getElementCount().getKnownMinValue(); |
| int NumSubElts; |
| if (Mask.size() > 2 && ShuffleVectorInst::isInsertSubvectorMask( |
| Mask, NumSrcElts, NumSubElts, Index)) { |
| if (Index + NumSubElts > NumSrcElts && |
| Index + NumSrcElts <= static_cast<int>(Mask.size())) |
| return TTI.getShuffleCost( |
| TTI::SK_InsertSubvector, |
| getWidenedType(Tp->getElementType(), Mask.size()), Mask, |
| TTI::TCK_RecipThroughput, Index, Tp); |
| } |
| return TTI.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args); |
| } |
| |
| BoUpSLP::LoadsState |
| BoUpSLP::canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, |
| SmallVectorImpl<unsigned> &Order, |
| SmallVectorImpl<Value *> &PointerOps, |
| unsigned *BestVF, bool TryRecursiveCheck) const { |
| // Check that a vectorized load would load the same memory as a scalar |
| // load. For example, we don't want to vectorize loads that are smaller |
| // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM |
| // treats loading/storing it as an i8 struct. If we vectorize loads/stores |
| // from such a struct, we read/write packed bits disagreeing with the |
| // unvectorized version. |
| if (BestVF) |
| *BestVF = 0; |
| if (areKnownNonVectorizableLoads(VL)) |
| return LoadsState::Gather; |
| Type *ScalarTy = VL0->getType(); |
| |
| if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) |
| return LoadsState::Gather; |
| |
| // Make sure all loads in the bundle are simple - we can't vectorize |
| // atomic or volatile loads. |
| PointerOps.clear(); |
| const unsigned Sz = VL.size(); |
| PointerOps.resize(Sz); |
| auto *POIter = PointerOps.begin(); |
| for (Value *V : VL) { |
| auto *L = cast<LoadInst>(V); |
| if (!L->isSimple()) |
| return LoadsState::Gather; |
| *POIter = L->getPointerOperand(); |
| ++POIter; |
| } |
| |
| Order.clear(); |
| // Check the order of pointer operands or that all pointers are the same. |
| bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, Order); |
| |
| auto *VecTy = getWidenedType(ScalarTy, Sz); |
| Align CommonAlignment = computeCommonAlignment<LoadInst>(VL); |
| if (!IsSorted) { |
| if (Sz > MinProfitableStridedLoads && TTI->isTypeLegal(VecTy)) { |
| if (TTI->isLegalStridedLoadStore(VecTy, CommonAlignment) && |
| calculateRtStride(PointerOps, ScalarTy, *DL, *SE, Order)) |
| return LoadsState::StridedVectorize; |
| } |
| |
| if (!TTI->isLegalMaskedGather(VecTy, CommonAlignment) || |
| TTI->forceScalarizeMaskedGather(VecTy, CommonAlignment)) |
| return LoadsState::Gather; |
| |
| if (!all_of(PointerOps, [&](Value *P) { |
| return arePointersCompatible(P, PointerOps.front(), *TLI); |
| })) |
| return LoadsState::Gather; |
| |
| } else { |
| Value *Ptr0; |
| Value *PtrN; |
| if (Order.empty()) { |
| Ptr0 = PointerOps.front(); |
| PtrN = PointerOps.back(); |
| } else { |
| Ptr0 = PointerOps[Order.front()]; |
| PtrN = PointerOps[Order.back()]; |
| } |
| std::optional<int> Diff = |
| getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); |
| // Check that the sorted loads are consecutive. |
| if (static_cast<unsigned>(*Diff) == Sz - 1) |
| return LoadsState::Vectorize; |
| if (!TTI->isLegalMaskedGather(VecTy, CommonAlignment) || |
| TTI->forceScalarizeMaskedGather(VecTy, CommonAlignment)) |
| return LoadsState::Gather; |
| // Simple check if not a strided access - clear order. |
| bool IsPossibleStrided = *Diff % (Sz - 1) == 0; |
| // Try to generate strided load node if: |
| // 1. Target with strided load support is detected. |
| // 2. The number of loads is greater than MinProfitableStridedLoads, |
| // or the potential stride <= MaxProfitableLoadStride and the |
| // potential stride is power-of-2 (to avoid perf regressions for the very |
| // small number of loads) and max distance > number of loads, or potential |
| // stride is -1. |
| // 3. The loads are ordered, or number of unordered loads <= |
| // MaxProfitableUnorderedLoads, or loads are in reversed order. |
| // (this check is to avoid extra costs for very expensive shuffles). |
| // 4. Any pointer operand is an instruction with the users outside of the |
| // current graph (for masked gathers extra extractelement instructions |
| // might be required). |
| auto IsAnyPointerUsedOutGraph = |
| IsPossibleStrided && any_of(PointerOps, [&](Value *V) { |
| return isa<Instruction>(V) && any_of(V->users(), [&](User *U) { |
| return !getTreeEntry(U) && !MustGather.contains(U); |
| }); |
| }); |
| const unsigned AbsoluteDiff = std::abs(*Diff); |
| if (IsPossibleStrided && (IsAnyPointerUsedOutGraph || |
| ((Sz > MinProfitableStridedLoads || |
| (AbsoluteDiff <= MaxProfitableLoadStride * Sz && |
| has_single_bit(AbsoluteDiff))) && |
| AbsoluteDiff > Sz) || |
| *Diff == -(static_cast<int>(Sz) - 1))) { |
| int Stride = *Diff / static_cast<int>(Sz - 1); |
| if (*Diff == Stride * static_cast<int>(Sz - 1)) { |
| Align Alignment = |
| cast<LoadInst>(Order.empty() ? VL.front() : VL[Order.front()]) |
| ->getAlign(); |
| if (TTI->isLegalStridedLoadStore(VecTy, Alignment)) { |
| // Iterate through all pointers and check if all distances are |
| // unique multiple of Dist. |
| SmallSet<int, 4> Dists; |
| for (Value *Ptr : PointerOps) { |
| int Dist = 0; |
| if (Ptr == PtrN) |
| Dist = *Diff; |
| else if (Ptr != Ptr0) |
| Dist = *getPointersDiff(ScalarTy, Ptr0, ScalarTy, Ptr, *DL, *SE); |
| // If the strides are not the same or repeated, we can't |
| // vectorize. |
| if (((Dist / Stride) * Stride) != Dist || |
| !Dists.insert(Dist).second) |
| break; |
| } |
| if (Dists.size() == Sz) |
| return LoadsState::StridedVectorize; |
| } |
| } |
| } |
| } |
| // Correctly identify compare the cost of loads + shuffles rather than |
| // strided/masked gather loads. Returns true if vectorized + shuffles |
| // representation is better than just gather. |
| auto CheckForShuffledLoads = [&, &TTI = *TTI](Align CommonAlignment, |
| unsigned *BestVF, |
| bool ProfitableGatherPointers) { |
| if (BestVF) |
| *BestVF = 0; |
| // Compare masked gather cost and loads + insert subvector costs. |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| auto [ScalarGEPCost, VectorGEPCost] = |
| getGEPCosts(TTI, PointerOps, PointerOps.front(), |
| Instruction::GetElementPtr, CostKind, ScalarTy, VecTy); |
| // Estimate the cost of masked gather GEP. If not a splat, roughly |
| // estimate as a buildvector, otherwise estimate as splat. |
| APInt DemandedElts = APInt::getAllOnes(VecTy->getNumElements()); |
| VectorType *PtrVecTy = |
| getWidenedType(PointerOps.front()->getType()->getScalarType(), |
| VecTy->getNumElements()); |
| if (static_cast<unsigned>(count_if( |
| PointerOps, IsaPred<GetElementPtrInst>)) < PointerOps.size() - 1 || |
| any_of(PointerOps, [&](Value *V) { |
| return getUnderlyingObject(V) != |
| getUnderlyingObject(PointerOps.front()); |
| })) |
| VectorGEPCost += TTI.getScalarizationOverhead( |
| PtrVecTy, DemandedElts, /*Insert=*/true, /*Extract=*/false, CostKind); |
| else |
| VectorGEPCost += |
| TTI.getScalarizationOverhead( |
| PtrVecTy, APInt::getOneBitSet(VecTy->getNumElements(), 0), |
| /*Insert=*/true, /*Extract=*/false, CostKind) + |
| ::getShuffleCost(TTI, TTI::SK_Broadcast, PtrVecTy, {}, CostKind); |
| // The cost of scalar loads. |
| InstructionCost ScalarLoadsCost = |
| std::accumulate(VL.begin(), VL.end(), InstructionCost(), |
| [&](InstructionCost C, Value *V) { |
| return C + TTI.getInstructionCost( |
| cast<Instruction>(V), CostKind); |
| }) + |
| ScalarGEPCost; |
| // The cost of masked gather. |
| InstructionCost MaskedGatherCost = |
| TTI.getGatherScatterOpCost( |
| Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind) + |
| (ProfitableGatherPointers ? 0 : VectorGEPCost); |
| InstructionCost GatherCost = |
| TTI.getScalarizationOverhead(VecTy, DemandedElts, /*Insert=*/true, |
| /*Extract=*/false, CostKind) + |
| ScalarLoadsCost; |
| // The list of loads is small or perform partial check already - directly |
| // compare masked gather cost and gather cost. |
| constexpr unsigned ListLimit = 4; |
| if (!TryRecursiveCheck || VL.size() < ListLimit) |
| return MaskedGatherCost - GatherCost >= -SLPCostThreshold; |
| |
| // FIXME: The following code has not been updated for non-power-of-2 |
| // vectors. The splitting logic here does not cover the original |
| // vector if the vector factor is not a power of two. FIXME |
| if (!has_single_bit(VL.size())) |
| return false; |
| |
| unsigned Sz = DL->getTypeSizeInBits(ScalarTy); |
| unsigned MinVF = getMinVF(2 * Sz); |
| DemandedElts.clearAllBits(); |
| // Iterate through possible vectorization factors and check if vectorized + |
| // shuffles is better than just gather. |
| for (unsigned VF = VL.size() / 2; VF >= MinVF; VF /= 2) { |
| SmallVector<LoadsState> States; |
| for (unsigned Cnt = 0, End = VL.size(); Cnt + VF <= End; Cnt += VF) { |
| ArrayRef<Value *> Slice = VL.slice(Cnt, VF); |
| SmallVector<unsigned> Order; |
| SmallVector<Value *> PointerOps; |
| LoadsState LS = |
| canVectorizeLoads(Slice, Slice.front(), Order, PointerOps, BestVF, |
| /*TryRecursiveCheck=*/false); |
| // Check that the sorted loads are consecutive. |
| if (LS == LoadsState::Gather) { |
| if (BestVF) { |
| DemandedElts.setAllBits(); |
| break; |
| } |
| DemandedElts.setBits(Cnt, Cnt + VF); |
| continue; |
| } |
| // If need the reorder - consider as high-cost masked gather for now. |
| if ((LS == LoadsState::Vectorize || |
| LS == LoadsState::StridedVectorize) && |
| !Order.empty() && !isReverseOrder(Order)) |
| LS = LoadsState::ScatterVectorize; |
| States.push_back(LS); |
| } |
| if (DemandedElts.isAllOnes()) |
| // All loads gathered - try smaller VF. |
| continue; |
| // Can be vectorized later as a serie of loads/insertelements. |
| InstructionCost VecLdCost = 0; |
| if (!DemandedElts.isZero()) { |
| VecLdCost = |
| TTI.getScalarizationOverhead(VecTy, DemandedElts, /*Insert=*/true, |
| /*Extract=*/false, CostKind) + |
| ScalarGEPCost; |
| for (unsigned Idx : seq<unsigned>(VL.size())) |
| if (DemandedElts[Idx]) |
| VecLdCost += |
| TTI.getInstructionCost(cast<Instruction>(VL[Idx]), CostKind); |
| } |
| auto *SubVecTy = getWidenedType(ScalarTy, VF); |
| for (auto [I, LS] : enumerate(States)) { |
| auto *LI0 = cast<LoadInst>(VL[I * VF]); |
| InstructionCost VectorGEPCost = |
| (LS == LoadsState::ScatterVectorize && ProfitableGatherPointers) |
| ? 0 |
| : getGEPCosts(TTI, ArrayRef(PointerOps).slice(I * VF, VF), |
| LI0->getPointerOperand(), |
| Instruction::GetElementPtr, CostKind, ScalarTy, |
| SubVecTy) |
| .second; |
| if (LS == LoadsState::ScatterVectorize) { |
| if (static_cast<unsigned>( |
| count_if(PointerOps, IsaPred<GetElementPtrInst>)) < |
| PointerOps.size() - 1 || |
| any_of(PointerOps, [&](Value *V) { |
| return getUnderlyingObject(V) != |
| getUnderlyingObject(PointerOps.front()); |
| })) |
| VectorGEPCost += TTI.getScalarizationOverhead( |
| SubVecTy, APInt::getAllOnes(VF), |
| /*Insert=*/true, /*Extract=*/false, CostKind); |
| else |
| VectorGEPCost += TTI.getScalarizationOverhead( |
| SubVecTy, APInt::getOneBitSet(VF, 0), |
| /*Insert=*/true, /*Extract=*/false, CostKind) + |
| ::getShuffleCost(TTI, TTI::SK_Broadcast, SubVecTy, |
| {}, CostKind); |
| } |
| switch (LS) { |
| case LoadsState::Vectorize: |
| VecLdCost += |
| TTI.getMemoryOpCost(Instruction::Load, SubVecTy, LI0->getAlign(), |
| LI0->getPointerAddressSpace(), CostKind, |
| TTI::OperandValueInfo()) + |
| VectorGEPCost; |
| break; |
| case LoadsState::StridedVectorize: |
| VecLdCost += TTI.getStridedMemoryOpCost(Instruction::Load, SubVecTy, |
| LI0->getPointerOperand(), |
| /*VariableMask=*/false, |
| CommonAlignment, CostKind) + |
| VectorGEPCost; |
| break; |
| case LoadsState::ScatterVectorize: |
| VecLdCost += TTI.getGatherScatterOpCost(Instruction::Load, SubVecTy, |
| LI0->getPointerOperand(), |
| /*VariableMask=*/false, |
| CommonAlignment, CostKind) + |
| VectorGEPCost; |
| break; |
| case LoadsState::Gather: |
| // Gathers are already calculated - ignore. |
| continue; |
| } |
| SmallVector<int> ShuffleMask(VL.size()); |
| for (int Idx : seq<int>(0, VL.size())) |
| ShuffleMask[Idx] = Idx / VF == I ? VL.size() + Idx % VF : Idx; |
| if (I > 0) |
| VecLdCost += |
| ::getShuffleCost(TTI, TTI::SK_InsertSubvector, VecTy, ShuffleMask, |
| CostKind, I * VF, SubVecTy); |
| } |
| // If masked gather cost is higher - better to vectorize, so |
| // consider it as a gather node. It will be better estimated |
| // later. |
| if (MaskedGatherCost >= VecLdCost && |
| VecLdCost - GatherCost < -SLPCostThreshold) { |
| if (BestVF) |
| *BestVF = VF; |
| return true; |
| } |
| } |
| return MaskedGatherCost - GatherCost >= -SLPCostThreshold; |
| }; |
| // TODO: need to improve analysis of the pointers, if not all of them are |
| // GEPs or have > 2 operands, we end up with a gather node, which just |
| // increases the cost. |
| Loop *L = LI->getLoopFor(cast<LoadInst>(VL0)->getParent()); |
| bool ProfitableGatherPointers = |
| L && Sz > 2 && static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { |
| return L->isLoopInvariant(V); |
| })) <= Sz / 2; |
| if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(P); |
| return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || |
| (GEP && GEP->getNumOperands() == 2 && |
| isa<Constant, Instruction>(GEP->getOperand(1))); |
| })) { |
| // Check if potential masked gather can be represented as series |
| // of loads + insertsubvectors. |
| // If masked gather cost is higher - better to vectorize, so |
| // consider it as a gather node. It will be better estimated |
| // later. |
| if (!TryRecursiveCheck || !CheckForShuffledLoads(CommonAlignment, BestVF, |
| ProfitableGatherPointers)) |
| return LoadsState::ScatterVectorize; |
| } |
| |
| return LoadsState::Gather; |
| } |
| |
| static bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, |
| const DataLayout &DL, ScalarEvolution &SE, |
| SmallVectorImpl<unsigned> &SortedIndices) { |
| assert(llvm::all_of( |
| VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && |
| "Expected list of pointer operands."); |
| // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each |
| // Ptr into, sort and return the sorted indices with values next to one |
| // another. |
| MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; |
| Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); |
| |
| unsigned Cnt = 1; |
| for (Value *Ptr : VL.drop_front()) { |
| bool Found = any_of(Bases, [&](auto &Base) { |
| std::optional<int> Diff = |
| getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, |
| /*StrictCheck=*/true); |
| if (!Diff) |
| return false; |
| |
| Base.second.emplace_back(Ptr, *Diff, Cnt++); |
| return true; |
| }); |
| |
| if (!Found) { |
| // If we haven't found enough to usefully cluster, return early. |
| if (Bases.size() > VL.size() / 2 - 1) |
| return false; |
| |
| // Not found already - add a new Base |
| Bases[Ptr].emplace_back(Ptr, 0, Cnt++); |
| } |
| } |
| |
| // For each of the bases sort the pointers by Offset and check if any of the |
| // base become consecutively allocated. |
| bool AnyConsecutive = false; |
| for (auto &Base : Bases) { |
| auto &Vec = Base.second; |
| if (Vec.size() > 1) { |
| llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, |
| const std::tuple<Value *, int, unsigned> &Y) { |
| return std::get<1>(X) < std::get<1>(Y); |
| }); |
| int InitialOffset = std::get<1>(Vec[0]); |
| AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](const auto &P) { |
| return std::get<1>(P.value()) == int(P.index()) + InitialOffset; |
| }); |
| } |
| } |
| |
| // Fill SortedIndices array only if it looks worth-while to sort the ptrs. |
| SortedIndices.clear(); |
| if (!AnyConsecutive) |
| return false; |
| |
| // If we have a better order, also sort the base pointers by increasing |
| // (variable) values if possible, to try and keep the order more regular. In |
| // order to create a valid strict-weak order we cluster by the Root of gep |
| // chains and sort within each. |
| SmallVector<std::tuple<Value *, Value *, Value *>> SortedBases; |
| for (auto &Base : Bases) { |
| Value *Strip = Base.first->stripInBoundsConstantOffsets(); |
| Value *Root = Strip; |
| while (auto *Gep = dyn_cast<GetElementPtrInst>(Root)) |
| Root = Gep->getOperand(0); |
| SortedBases.emplace_back(Base.first, Strip, Root); |
| } |
| auto *Begin = SortedBases.begin(); |
| auto *End = SortedBases.end(); |
| while (Begin != End) { |
| Value *Root = std::get<2>(*Begin); |
| auto *Mid = std::stable_partition( |
| Begin, End, [&Root](auto V) { return std::get<2>(V) == Root; }); |
| DenseMap<Value *, DenseMap<Value *, bool>> LessThan; |
| for (auto *I = Begin; I < Mid; ++I) |
| LessThan.try_emplace(std::get<1>(*I)); |
| for (auto *I = Begin; I < Mid; ++I) { |
| Value *V = std::get<1>(*I); |
| while (auto *Gep = dyn_cast<GetElementPtrInst>(V)) { |
| V = Gep->getOperand(0); |
| if (LessThan.contains(V)) |
| LessThan[V][std::get<1>(*I)] = true; |
| } |
| } |
| std::stable_sort(Begin, Mid, [&LessThan](auto &V1, auto &V2) { |
| return LessThan[std::get<1>(V1)][std::get<1>(V2)]; |
| }); |
| Begin = Mid; |
| } |
| |
| // Collect the final order of sorted indices |
| for (auto Base : SortedBases) |
| for (auto &T : Bases[std::get<0>(Base)]) |
| SortedIndices.push_back(std::get<2>(T)); |
| |
| assert(SortedIndices.size() == VL.size() && |
| "Expected SortedIndices to be the size of VL"); |
| return true; |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { |
| assert(TE.isGather() && "Expected gather node only."); |
| Type *ScalarTy = TE.Scalars[0]->getType(); |
| |
| SmallVector<Value *> Ptrs; |
| Ptrs.reserve(TE.Scalars.size()); |
| for (Value *V : TE.Scalars) { |
| auto *L = dyn_cast<LoadInst>(V); |
| if (!L || !L->isSimple()) |
| return std::nullopt; |
| Ptrs.push_back(L->getPointerOperand()); |
| } |
| |
| BoUpSLP::OrdersType Order; |
| if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) |
| return std::move(Order); |
| return std::nullopt; |
| } |
| |
| /// Check if two insertelement instructions are from the same buildvector. |
| static bool areTwoInsertFromSameBuildVector( |
| InsertElementInst *VU, InsertElementInst *V, |
| function_ref<Value *(InsertElementInst *)> GetBaseOperand) { |
| // Instructions must be from the same basic blocks. |
| if (VU->getParent() != V->getParent()) |
| return false; |
| // Checks if 2 insertelements are from the same buildvector. |
| if (VU->getType() != V->getType()) |
| return false; |
| // Multiple used inserts are separate nodes. |
| if (!VU->hasOneUse() && !V->hasOneUse()) |
| return false; |
| auto *IE1 = VU; |
| auto *IE2 = V; |
| std::optional<unsigned> Idx1 = getElementIndex(IE1); |
| std::optional<unsigned> Idx2 = getElementIndex(IE2); |
| if (Idx1 == std::nullopt || Idx2 == std::nullopt) |
| return false; |
| // Go through the vector operand of insertelement instructions trying to find |
| // either VU as the original vector for IE2 or V as the original vector for |
| // IE1. |
| SmallBitVector ReusedIdx( |
| cast<VectorType>(VU->getType())->getElementCount().getKnownMinValue()); |
| bool IsReusedIdx = false; |
| do { |
| if (IE2 == VU && !IE1) |
| return VU->hasOneUse(); |
| if (IE1 == V && !IE2) |
| return V->hasOneUse(); |
| if (IE1 && IE1 != V) { |
| unsigned Idx1 = getElementIndex(IE1).value_or(*Idx2); |
| IsReusedIdx |= ReusedIdx.test(Idx1); |
| ReusedIdx.set(Idx1); |
| if ((IE1 != VU && !IE1->hasOneUse()) || IsReusedIdx) |
| IE1 = nullptr; |
| else |
| IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1)); |
| } |
| if (IE2 && IE2 != VU) { |
| unsigned Idx2 = getElementIndex(IE2).value_or(*Idx1); |
| IsReusedIdx |= ReusedIdx.test(Idx2); |
| ReusedIdx.set(Idx2); |
| if ((IE2 != V && !IE2->hasOneUse()) || IsReusedIdx) |
| IE2 = nullptr; |
| else |
| IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2)); |
| } |
| } while (!IsReusedIdx && (IE1 || IE2)); |
| return false; |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::getReorderingData(const TreeEntry &TE, bool TopToBottom) { |
| // No need to reorder if need to shuffle reuses, still need to shuffle the |
| // node. |
| if (!TE.ReuseShuffleIndices.empty()) { |
| // FIXME: Support ReuseShuffleIndices for non-power-of-two vectors. |
| assert(!TE.hasNonWholeRegisterOrNonPowerOf2Vec(*TTI) && |
| "Reshuffling scalars not yet supported for nodes with padding"); |
| |
| if (isSplat(TE.Scalars)) |
| return std::nullopt; |
| // Check if reuse shuffle indices can be improved by reordering. |
| // For this, check that reuse mask is "clustered", i.e. each scalar values |
| // is used once in each submask of size <number_of_scalars>. |
| // Example: 4 scalar values. |
| // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered. |
| // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because |
| // element 3 is used twice in the second submask. |
| unsigned Sz = TE.Scalars.size(); |
| if (TE.isGather()) { |
| if (std::optional<OrdersType> CurrentOrder = |
| findReusedOrderedScalars(TE)) { |
| SmallVector<int> Mask; |
| fixupOrderingIndices(*CurrentOrder); |
| inversePermutation(*CurrentOrder, Mask); |
| ::addMask(Mask, TE.ReuseShuffleIndices); |
| OrdersType Res(TE.getVectorFactor(), TE.getVectorFactor()); |
| unsigned Sz = TE.Scalars.size(); |
| for (int K = 0, E = TE.getVectorFactor() / Sz; K < E; ++K) { |
| for (auto [I, Idx] : enumerate(ArrayRef(Mask).slice(K * Sz, Sz))) |
| if (Idx != PoisonMaskElem) |
| Res[Idx + K * Sz] = I + K * Sz; |
| } |
| return std::move(Res); |
| } |
| } |
| if (Sz == 2 && TE.getVectorFactor() == 4 && |
| TTI->getNumberOfParts(getWidenedType(TE.Scalars.front()->getType(), |
| 2 * TE.getVectorFactor())) == 1) |
| return std::nullopt; |
| if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, |
| Sz)) { |
| SmallVector<int> ReorderMask(Sz, PoisonMaskElem); |
| if (TE.ReorderIndices.empty()) |
| std::iota(ReorderMask.begin(), ReorderMask.end(), 0); |
| else |
| inversePermutation(TE.ReorderIndices, ReorderMask); |
| ::addMask(ReorderMask, TE.ReuseShuffleIndices); |
| unsigned VF = ReorderMask.size(); |
| OrdersType ResOrder(VF, VF); |
| unsigned NumParts = divideCeil(VF, Sz); |
| SmallBitVector UsedVals(NumParts); |
| for (unsigned I = 0; I < VF; I += Sz) { |
| int Val = PoisonMaskElem; |
| unsigned UndefCnt = 0; |
| unsigned Limit = std::min(Sz, VF - I); |
| if (any_of(ArrayRef(ReorderMask).slice(I, Limit), |
| [&](int Idx) { |
| if (Val == PoisonMaskElem && Idx != PoisonMaskElem) |
| Val = Idx; |
| if (Idx == PoisonMaskElem) |
| ++UndefCnt; |
| return Idx != PoisonMaskElem && Idx != Val; |
| }) || |
| Val >= static_cast<int>(NumParts) || UsedVals.test(Val) || |
| UndefCnt > Sz / 2) |
| return std::nullopt; |
| UsedVals.set(Val); |
| for (unsigned K = 0; K < NumParts; ++K) { |
| unsigned Idx = Val + Sz * K; |
| if (Idx < VF) |
| ResOrder[Idx] = I + K; |
| } |
| } |
| return std::move(ResOrder); |
| } |
| unsigned VF = TE.getVectorFactor(); |
| // Try build correct order for extractelement instructions. |
| SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(), |
| TE.ReuseShuffleIndices.end()); |
| if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() && |
| all_of(TE.Scalars, [Sz](Value *V) { |
| std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V)); |
| return Idx && *Idx < Sz; |
| })) { |
| SmallVector<int> ReorderMask(Sz, PoisonMaskElem); |
| if (TE.ReorderIndices.empty()) |
| std::iota(ReorderMask.begin(), ReorderMask.end(), 0); |
| else |
| inversePermutation(TE.ReorderIndices, ReorderMask); |
| for (unsigned I = 0; I < VF; ++I) { |
| int &Idx = ReusedMask[I]; |
| if (Idx == PoisonMaskElem) |
| continue; |
| Value *V = TE.Scalars[ReorderMask[Idx]]; |
| std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V)); |
| Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI)); |
| } |
| } |
| // Build the order of the VF size, need to reorder reuses shuffles, they are |
| // always of VF size. |
| OrdersType ResOrder(VF); |
| std::iota(ResOrder.begin(), ResOrder.end(), 0); |
| auto *It = ResOrder.begin(); |
| for (unsigned K = 0; K < VF; K += Sz) { |
| OrdersType CurrentOrder(TE.ReorderIndices); |
| SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)}; |
| if (SubMask.front() == PoisonMaskElem) |
| std::iota(SubMask.begin(), SubMask.end(), 0); |
| reorderOrder(CurrentOrder, SubMask); |
| transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; }); |
| std::advance(It, Sz); |
| } |
| if (TE.isGather() && all_of(enumerate(ResOrder), [](const auto &Data) { |
| return Data.index() == Data.value(); |
| })) |
| return std::nullopt; // No need to reorder. |
| return std::move(ResOrder); |
| } |
| if (TE.State == TreeEntry::StridedVectorize && !TopToBottom && |
| any_of(TE.UserTreeIndices, |
| [](const EdgeInfo &EI) { |
| return !Instruction::isBinaryOp(EI.UserTE->getOpcode()); |
| }) && |
| (TE.ReorderIndices.empty() || isReverseOrder(TE.ReorderIndices))) |
| return std::nullopt; |
| if ((TE.State == TreeEntry::Vectorize || |
| TE.State == TreeEntry::StridedVectorize) && |
| (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || |
| (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && |
| !TE.isAltShuffle()) |
| return TE.ReorderIndices; |
| if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) { |
| if (!TE.ReorderIndices.empty()) |
| return TE.ReorderIndices; |
| |
| SmallVector<Instruction *> UserBVHead(TE.Scalars.size()); |
| for (auto [I, V] : zip(UserBVHead, TE.Scalars)) { |
| if (!V->hasNUsesOrMore(1)) |
| continue; |
| auto *II = dyn_cast<InsertElementInst>(*V->user_begin()); |
| if (!II) |
| continue; |
| Instruction *BVHead = nullptr; |
| BasicBlock *BB = II->getParent(); |
| while (II && II->hasOneUse() && II->getParent() == BB) { |
| BVHead = II; |
| II = dyn_cast<InsertElementInst>(II->getOperand(0)); |
| } |
| I = BVHead; |
| } |
| |
| auto CompareByBasicBlocks = [&](BasicBlock *BB1, BasicBlock *BB2) { |
| assert(BB1 != BB2 && "Expected different basic blocks."); |
| auto *NodeA = DT->getNode(BB1); |
| auto *NodeB = DT->getNode(BB2); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == |
| (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); |
| }; |
| auto PHICompare = [&](unsigned I1, unsigned I2) { |
| Value *V1 = TE.Scalars[I1]; |
| Value *V2 = TE.Scalars[I2]; |
| if (V1 == V2 || (V1->getNumUses() == 0 && V2->getNumUses() == 0)) |
| return false; |
| if (V1->getNumUses() < V2->getNumUses()) |
| return true; |
| if (V1->getNumUses() > V2->getNumUses()) |
| return false; |
| auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin()); |
| auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin()); |
| if (FirstUserOfPhi1->getParent() != FirstUserOfPhi2->getParent()) |
| return CompareByBasicBlocks(FirstUserOfPhi1->getParent(), |
| FirstUserOfPhi2->getParent()); |
| auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1); |
| auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2); |
| auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1); |
| auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2); |
| if (IE1 && !IE2) |
| return true; |
| if (!IE1 && IE2) |
| return false; |
| if (IE1 && IE2) { |
| if (UserBVHead[I1] && !UserBVHead[I2]) |
| return true; |
| if (!UserBVHead[I1]) |
| return false; |
| if (UserBVHead[I1] == UserBVHead[I2]) |
| return getElementIndex(IE1) < getElementIndex(IE2); |
| if (UserBVHead[I1]->getParent() != UserBVHead[I2]->getParent()) |
| return CompareByBasicBlocks(UserBVHead[I1]->getParent(), |
| UserBVHead[I2]->getParent()); |
| return UserBVHead[I1]->comesBefore(UserBVHead[I2]); |
| } |
| if (EE1 && !EE2) |
| return true; |
| if (!EE1 && EE2) |
| return false; |
| if (EE1 && EE2) { |
| auto *Inst1 = dyn_cast<Instruction>(EE1->getOperand(0)); |
| auto *Inst2 = dyn_cast<Instruction>(EE2->getOperand(0)); |
| auto *P1 = dyn_cast<Argument>(EE1->getOperand(0)); |
| auto *P2 = dyn_cast<Argument>(EE2->getOperand(0)); |
| if (!Inst2 && !P2) |
| return Inst1 || P1; |
| if (EE1->getOperand(0) == EE2->getOperand(0)) |
| return getElementIndex(EE1) < getElementIndex(EE2); |
| if (!Inst1 && Inst2) |
| return false; |
| if (Inst1 && Inst2) { |
| if (Inst1->getParent() != Inst2->getParent()) |
| return CompareByBasicBlocks(Inst1->getParent(), Inst2->getParent()); |
| return Inst1->comesBefore(Inst2); |
| } |
| if (!P1 && P2) |
| return false; |
| assert(P1 && P2 && |
| "Expected either instructions or arguments vector operands."); |
| return P1->getArgNo() < P2->getArgNo(); |
| } |
| return false; |
| }; |
| SmallDenseMap<unsigned, unsigned, 16> PhiToId; |
| SmallVector<unsigned> Phis(TE.Scalars.size()); |
| std::iota(Phis.begin(), Phis.end(), 0); |
| OrdersType ResOrder(TE.Scalars.size()); |
| for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) |
| PhiToId[Id] = Id; |
| stable_sort(Phis, PHICompare); |
| for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id) |
| ResOrder[Id] = PhiToId[Phis[Id]]; |
| if (isIdentityOrder(ResOrder)) |
| return std::nullopt; // No need to reorder. |
| return std::move(ResOrder); |
| } |
| if (TE.isGather() && !TE.isAltShuffle() && allSameType(TE.Scalars)) { |
| // TODO: add analysis of other gather nodes with extractelement |
| // instructions and other values/instructions, not only undefs. |
| if ((TE.getOpcode() == Instruction::ExtractElement || |
| (all_of(TE.Scalars, IsaPred<UndefValue, ExtractElementInst>) && |
| any_of(TE.Scalars, IsaPred<ExtractElementInst>))) && |
| all_of(TE.Scalars, [](Value *V) { |
| auto *EE = dyn_cast<ExtractElementInst>(V); |
| return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); |
| })) { |
| // Check that gather of extractelements can be represented as |
| // just a shuffle of a single vector. |
| OrdersType CurrentOrder; |
| bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder, |
| /*ResizeAllowed=*/true); |
| if (Reuse || !CurrentOrder.empty()) |
| return std::move(CurrentOrder); |
| } |
| // If the gather node is <undef, v, .., poison> and |
| // insertelement poison, v, 0 [+ permute] |
| // is cheaper than |
| // insertelement poison, v, n - try to reorder. |
| // If rotating the whole graph, exclude the permute cost, the whole graph |
| // might be transformed. |
| int Sz = TE.Scalars.size(); |
| if (isSplat(TE.Scalars) && !allConstant(TE.Scalars) && |
| count_if(TE.Scalars, IsaPred<UndefValue>) == Sz - 1) { |
| const auto *It = |
| find_if(TE.Scalars, [](Value *V) { return !isConstant(V); }); |
| if (It == TE.Scalars.begin()) |
| return OrdersType(); |
| auto *Ty = getWidenedType(TE.Scalars.front()->getType(), Sz); |
| if (It != TE.Scalars.end()) { |
| OrdersType Order(Sz, Sz); |
| unsigned Idx = std::distance(TE.Scalars.begin(), It); |
| Order[Idx] = 0; |
| fixupOrderingIndices(Order); |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| InstructionCost PermuteCost = |
| TopToBottom |
| ? 0 |
| : ::getShuffleCost(*TTI, TTI::SK_PermuteSingleSrc, Ty, Mask); |
| InstructionCost InsertFirstCost = TTI->getVectorInstrCost( |
| Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, 0, |
| PoisonValue::get(Ty), *It); |
| InstructionCost InsertIdxCost = TTI->getVectorInstrCost( |
| Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, Idx, |
| PoisonValue::get(Ty), *It); |
| if (InsertFirstCost + PermuteCost < InsertIdxCost) { |
| OrdersType Order(Sz, Sz); |
| Order[Idx] = 0; |
| return std::move(Order); |
| } |
| } |
| } |
| if (isSplat(TE.Scalars)) |
| return std::nullopt; |
| if (TE.Scalars.size() >= 3) |
| if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) |
| return Order; |
| // Check if can include the order of vectorized loads. For masked gathers do |
| // extra analysis later, so include such nodes into a special list. |
| if (TE.isGather() && TE.getOpcode() == Instruction::Load) { |
| SmallVector<Value *> PointerOps; |
| OrdersType CurrentOrder; |
| LoadsState Res = canVectorizeLoads(TE.Scalars, TE.Scalars.front(), |
| CurrentOrder, PointerOps); |
| if (Res == LoadsState::Vectorize || Res == LoadsState::StridedVectorize) |
| return std::move(CurrentOrder); |
| } |
| // FIXME: Remove the non-power-of-two check once findReusedOrderedScalars |
| // has been auditted for correctness with non-power-of-two vectors. |
| if (!TE.hasNonWholeRegisterOrNonPowerOf2Vec(*TTI)) |
| if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) |
| return CurrentOrder; |
| } |
| return std::nullopt; |
| } |
| |
| /// Checks if the given mask is a "clustered" mask with the same clusters of |
| /// size \p Sz, which are not identity submasks. |
| static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask, |
| unsigned Sz) { |
| ArrayRef<int> FirstCluster = Mask.slice(0, Sz); |
| if (ShuffleVectorInst::isIdentityMask(FirstCluster, Sz)) |
| return false; |
| for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) { |
| ArrayRef<int> Cluster = Mask.slice(I, Sz); |
| if (Cluster != FirstCluster) |
| return false; |
| } |
| return true; |
| } |
| |
| void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const { |
| // Reorder reuses mask. |
| reorderReuses(TE.ReuseShuffleIndices, Mask); |
| const unsigned Sz = TE.Scalars.size(); |
| // For vectorized and non-clustered reused no need to do anything else. |
| if (!TE.isGather() || |
| !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, |
| Sz) || |
| !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz)) |
| return; |
| SmallVector<int> NewMask; |
| inversePermutation(TE.ReorderIndices, NewMask); |
| addMask(NewMask, TE.ReuseShuffleIndices); |
| // Clear reorder since it is going to be applied to the new mask. |
| TE.ReorderIndices.clear(); |
| // Try to improve gathered nodes with clustered reuses, if possible. |
| ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz); |
| SmallVector<unsigned> NewOrder(Slice); |
| inversePermutation(NewOrder, NewMask); |
| reorderScalars(TE.Scalars, NewMask); |
| // Fill the reuses mask with the identity submasks. |
| for (auto *It = TE.ReuseShuffleIndices.begin(), |
| *End = TE.ReuseShuffleIndices.end(); |
| It != End; std::advance(It, Sz)) |
| std::iota(It, std::next(It, Sz), 0); |
| } |
| |
| static void combineOrders(MutableArrayRef<unsigned> Order, |
| ArrayRef<unsigned> SecondaryOrder) { |
| assert((SecondaryOrder.empty() || Order.size() == SecondaryOrder.size()) && |
| "Expected same size of orders"); |
| unsigned Sz = Order.size(); |
| SmallBitVector UsedIndices(Sz); |
| for (unsigned Idx : seq<unsigned>(0, Sz)) { |
| if (Order[Idx] != Sz) |
| UsedIndices.set(Order[Idx]); |
| } |
| if (SecondaryOrder.empty()) { |
| for (unsigned Idx : seq<unsigned>(0, Sz)) |
| if (Order[Idx] == Sz && !UsedIndices.test(Idx)) |
| Order[Idx] = Idx; |
| } else { |
| for (unsigned Idx : seq<unsigned>(0, Sz)) |
| if (SecondaryOrder[Idx] != Sz && Order[Idx] == Sz && |
| !UsedIndices.test(SecondaryOrder[Idx])) |
| Order[Idx] = SecondaryOrder[Idx]; |
| } |
| } |
| |
| void BoUpSLP::reorderTopToBottom() { |
| // Maps VF to the graph nodes. |
| DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; |
| // ExtractElement gather nodes which can be vectorized and need to handle |
| // their ordering. |
| DenseMap<const TreeEntry *, OrdersType> GathersToOrders; |
| |
| // Phi nodes can have preferred ordering based on their result users |
| DenseMap<const TreeEntry *, OrdersType> PhisToOrders; |
| |
| // AltShuffles can also have a preferred ordering that leads to fewer |
| // instructions, e.g., the addsub instruction in x86. |
| DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; |
| |
| // Maps a TreeEntry to the reorder indices of external users. |
| DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> |
| ExternalUserReorderMap; |
| // Find all reorderable nodes with the given VF. |
| // Currently the are vectorized stores,loads,extracts + some gathering of |
| // extracts. |
| for_each(VectorizableTree, [&, &TTIRef = *TTI]( |
| const std::unique_ptr<TreeEntry> &TE) { |
| // Look for external users that will probably be vectorized. |
| SmallVector<OrdersType, 1> ExternalUserReorderIndices = |
| findExternalStoreUsersReorderIndices(TE.get()); |
| if (!ExternalUserReorderIndices.empty()) { |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| ExternalUserReorderMap.try_emplace(TE.get(), |
| std::move(ExternalUserReorderIndices)); |
| } |
| |
| // Patterns like [fadd,fsub] can be combined into a single instruction in |
| // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need |
| // to take into account their order when looking for the most used order. |
| if (TE->isAltShuffle()) { |
| VectorType *VecTy = |
| getWidenedType(TE->Scalars[0]->getType(), TE->Scalars.size()); |
| unsigned Opcode0 = TE->getOpcode(); |
| unsigned Opcode1 = TE->getAltOpcode(); |
| SmallBitVector OpcodeMask(getAltInstrMask(TE->Scalars, Opcode0, Opcode1)); |
| // If this pattern is supported by the target then we consider the order. |
| if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); |
| } |
| // TODO: Check the reverse order too. |
| } |
| |
| if (std::optional<OrdersType> CurrentOrder = |
| getReorderingData(*TE, /*TopToBottom=*/true)) { |
| // Do not include ordering for nodes used in the alt opcode vectorization, |
| // better to reorder them during bottom-to-top stage. If follow the order |
| // here, it causes reordering of the whole graph though actually it is |
| // profitable just to reorder the subgraph that starts from the alternate |
| // opcode vectorization node. Such nodes already end-up with the shuffle |
| // instruction and it is just enough to change this shuffle rather than |
| // rotate the scalars for the whole graph. |
| unsigned Cnt = 0; |
| const TreeEntry *UserTE = TE.get(); |
| while (UserTE && Cnt < RecursionMaxDepth) { |
| if (UserTE->UserTreeIndices.size() != 1) |
| break; |
| if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { |
| return EI.UserTE->State == TreeEntry::Vectorize && |
| EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; |
| })) |
| return; |
| UserTE = UserTE->UserTreeIndices.back().UserTE; |
| ++Cnt; |
| } |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| if (!(TE->State == TreeEntry::Vectorize || |
| TE->State == TreeEntry::StridedVectorize) || |
| !TE->ReuseShuffleIndices.empty()) |
| GathersToOrders.try_emplace(TE.get(), *CurrentOrder); |
| if (TE->State == TreeEntry::Vectorize && |
| TE->getOpcode() == Instruction::PHI) |
| PhisToOrders.try_emplace(TE.get(), *CurrentOrder); |
| } |
| }); |
| |
| // Reorder the graph nodes according to their vectorization factor. |
| for (unsigned VF = VectorizableTree.front()->getVectorFactor(); |
| !VFToOrderedEntries.empty() && VF > 1; VF -= 2 - (VF & 1U)) { |
| auto It = VFToOrderedEntries.find(VF); |
| if (It == VFToOrderedEntries.end()) |
| continue; |
| // Try to find the most profitable order. We just are looking for the most |
| // used order and reorder scalar elements in the nodes according to this |
| // mostly used order. |
| ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); |
| // Delete VF entry upon exit. |
| auto Cleanup = make_scope_exit([&]() { VFToOrderedEntries.erase(It); }); |
| |
| // All operands are reordered and used only in this node - propagate the |
| // most used order to the user node. |
| MapVector<OrdersType, unsigned, |
| DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> |
| OrdersUses; |
| SmallPtrSet<const TreeEntry *, 4> VisitedOps; |
| for (const TreeEntry *OpTE : OrderedEntries) { |
| // No need to reorder this nodes, still need to extend and to use shuffle, |
| // just need to merge reordering shuffle and the reuse shuffle. |
| if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) |
| continue; |
| // Count number of orders uses. |
| const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders, |
| &PhisToOrders]() -> const OrdersType & { |
| if (OpTE->isGather() || !OpTE->ReuseShuffleIndices.empty()) { |
| auto It = GathersToOrders.find(OpTE); |
| if (It != GathersToOrders.end()) |
| return It->second; |
| } |
| if (OpTE->isAltShuffle()) { |
| auto It = AltShufflesToOrders.find(OpTE); |
| if (It != AltShufflesToOrders.end()) |
| return It->second; |
| } |
| if (OpTE->State == TreeEntry::Vectorize && |
| OpTE->getOpcode() == Instruction::PHI) { |
| auto It = PhisToOrders.find(OpTE); |
| if (It != PhisToOrders.end()) |
| return It->second; |
| } |
| return OpTE->ReorderIndices; |
| }(); |
| // First consider the order of the external scalar users. |
| auto It = ExternalUserReorderMap.find(OpTE); |
| if (It != ExternalUserReorderMap.end()) { |
| const auto &ExternalUserReorderIndices = It->second; |
| // If the OpTE vector factor != number of scalars - use natural order, |
| // it is an attempt to reorder node with reused scalars but with |
| // external uses. |
| if (OpTE->getVectorFactor() != OpTE->Scalars.size()) { |
| OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += |
| ExternalUserReorderIndices.size(); |
| } else { |
| for (const OrdersType &ExtOrder : ExternalUserReorderIndices) |
| ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; |
| } |
| // No other useful reorder data in this entry. |
| if (Order.empty()) |
| continue; |
| } |
| // Stores actually store the mask, not the order, need to invert. |
| if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && |
| OpTE->getOpcode() == Instruction::Store && !Order.empty()) { |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| unsigned E = Order.size(); |
| OrdersType CurrentOrder(E, E); |
| transform(Mask, CurrentOrder.begin(), [E](int Idx) { |
| return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx); |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; |
| } else { |
| ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; |
| } |
| } |
| if (OrdersUses.empty()) |
| continue; |
| // Choose the most used order. |
| unsigned IdentityCnt = 0; |
| unsigned FilledIdentityCnt = 0; |
| OrdersType IdentityOrder(VF, VF); |
| for (auto &Pair : OrdersUses) { |
| if (Pair.first.empty() || isIdentityOrder(Pair.first)) { |
| if (!Pair.first.empty()) |
| FilledIdentityCnt += Pair.second; |
| IdentityCnt += Pair.second; |
| combineOrders(IdentityOrder, Pair.first); |
| } |
| } |
| MutableArrayRef<unsigned> BestOrder = IdentityOrder; |
| unsigned Cnt = IdentityCnt; |
| for (auto &Pair : OrdersUses) { |
| // Prefer identity order. But, if filled identity found (non-empty order) |
| // with same number of uses, as the new candidate order, we can choose |
| // this candidate order. |
| if (Cnt < Pair.second || |
| (Cnt == IdentityCnt && IdentityCnt == FilledIdentityCnt && |
| Cnt == Pair.second && !BestOrder.empty() && |
| isIdentityOrder(BestOrder))) { |
| combineOrders(Pair.first, BestOrder); |
| BestOrder = Pair.first; |
| Cnt = Pair.second; |
| } else { |
| combineOrders(BestOrder, Pair.first); |
| } |
| } |
| // Set order of the user node. |
| if (isIdentityOrder(BestOrder)) |
| continue; |
| fixupOrderingIndices(BestOrder); |
| SmallVector<int> Mask; |
| inversePermutation(BestOrder, Mask); |
| SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem); |
| unsigned E = BestOrder.size(); |
| transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { |
| return I < E ? static_cast<int>(I) : PoisonMaskElem; |
| }); |
| // Do an actual reordering, if profitable. |
| for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| // Just do the reordering for the nodes with the given VF. |
| if (TE->Scalars.size() != VF) { |
| if (TE->ReuseShuffleIndices.size() == VF) { |
| // Need to reorder the reuses masks of the operands with smaller VF to |
| // be able to find the match between the graph nodes and scalar |
| // operands of the given node during vectorization/cost estimation. |
| assert(all_of(TE->UserTreeIndices, |
| [VF, &TE](const EdgeInfo &EI) { |
| return EI.UserTE->Scalars.size() == VF || |
| EI.UserTE->Scalars.size() == |
| TE->Scalars.size(); |
| }) && |
| "All users must be of VF size."); |
| // Update ordering of the operands with the smaller VF than the given |
| // one. |
| reorderNodeWithReuses(*TE, Mask); |
| } |
| continue; |
| } |
| if ((TE->State == TreeEntry::Vectorize || |
| TE->State == TreeEntry::StridedVectorize) && |
| isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, |
| InsertElementInst>(TE->getMainOp()) && |
| !TE->isAltShuffle()) { |
| // Build correct orders for extract{element,value}, loads and |
| // stores. |
| reorderOrder(TE->ReorderIndices, Mask); |
| if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) |
| TE->reorderOperands(Mask); |
| } else { |
| // Reorder the node and its operands. |
| TE->reorderOperands(Mask); |
| assert(TE->ReorderIndices.empty() && |
| "Expected empty reorder sequence."); |
| reorderScalars(TE->Scalars, Mask); |
| } |
| if (!TE->ReuseShuffleIndices.empty()) { |
| // Apply reversed order to keep the original ordering of the reused |
| // elements to avoid extra reorder indices shuffling. |
| OrdersType CurrentOrder; |
| reorderOrder(CurrentOrder, MaskOrder); |
| SmallVector<int> NewReuses; |
| inversePermutation(CurrentOrder, NewReuses); |
| addMask(NewReuses, TE->ReuseShuffleIndices); |
| TE->ReuseShuffleIndices.swap(NewReuses); |
| } |
| } |
| } |
| } |
| |
| bool BoUpSLP::canReorderOperands( |
| TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, |
| ArrayRef<TreeEntry *> ReorderableGathers, |
| SmallVectorImpl<TreeEntry *> &GatherOps) { |
| for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { |
| if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { |
| return OpData.first == I && |
| (OpData.second->State == TreeEntry::Vectorize || |
| OpData.second->State == TreeEntry::StridedVectorize); |
| })) |
| continue; |
| if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { |
| // Do not reorder if operand node is used by many user nodes. |
| if (any_of(TE->UserTreeIndices, |
| [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) |
| return false; |
| // Add the node to the list of the ordered nodes with the identity |
| // order. |
| Edges.emplace_back(I, TE); |
| // Add ScatterVectorize nodes to the list of operands, where just |
| // reordering of the scalars is required. Similar to the gathers, so |
| // simply add to the list of gathered ops. |
| // If there are reused scalars, process this node as a regular vectorize |
| // node, just reorder reuses mask. |
| if (TE->State != TreeEntry::Vectorize && |
| TE->State != TreeEntry::StridedVectorize && |
| TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) |
| GatherOps.push_back(TE); |
| continue; |
| } |
| TreeEntry *Gather = nullptr; |
| if (count_if(ReorderableGathers, |
| [&Gather, UserTE, I](TreeEntry *TE) { |
| assert(TE->State != TreeEntry::Vectorize && |
| TE->State != TreeEntry::StridedVectorize && |
| "Only non-vectorized nodes are expected."); |
| if (any_of(TE->UserTreeIndices, |
| [UserTE, I](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE && EI.EdgeIdx == I; |
| })) { |
| assert(TE->isSame(UserTE->getOperand(I)) && |
| "Operand entry does not match operands."); |
| Gather = TE; |
| return true; |
| } |
| return false; |
| }) > 1 && |
| !allConstant(UserTE->getOperand(I))) |
| return false; |
| if (Gather) |
| GatherOps.push_back(Gather); |
| } |
| return true; |
| } |
| |
| void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { |
| SetVector<TreeEntry *> OrderedEntries; |
| DenseSet<const TreeEntry *> GathersToOrders; |
| // Find all reorderable leaf nodes with the given VF. |
| // Currently the are vectorized loads,extracts without alternate operands + |
| // some gathering of extracts. |
| SmallVector<TreeEntry *> NonVectorized; |
| for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| if (TE->State != TreeEntry::Vectorize && |
| TE->State != TreeEntry::StridedVectorize) |
| NonVectorized.push_back(TE.get()); |
| if (std::optional<OrdersType> CurrentOrder = |
| getReorderingData(*TE, /*TopToBottom=*/false)) { |
| OrderedEntries.insert(TE.get()); |
| if (!(TE->State == TreeEntry::Vectorize || |
| TE->State == TreeEntry::StridedVectorize) || |
| !TE->ReuseShuffleIndices.empty()) |
| GathersToOrders.insert(TE.get()); |
| } |
| } |
| |
| // 1. Propagate order to the graph nodes, which use only reordered nodes. |
| // I.e., if the node has operands, that are reordered, try to make at least |
| // one operand order in the natural order and reorder others + reorder the |
| // user node itself. |
| SmallPtrSet<const TreeEntry *, 4> Visited; |
| while (!OrderedEntries.empty()) { |
| // 1. Filter out only reordered nodes. |
| // 2. If the entry has multiple uses - skip it and jump to the next node. |
| DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; |
| SmallVector<TreeEntry *> Filtered; |
| for (TreeEntry *TE : OrderedEntries) { |
| if (!(TE->State == TreeEntry::Vectorize || |
| TE->State == TreeEntry::StridedVectorize || |
| (TE->isGather() && GathersToOrders.contains(TE))) || |
| TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || |
| !all_of(drop_begin(TE->UserTreeIndices), |
| [TE](const EdgeInfo &EI) { |
| return EI.UserTE == TE->UserTreeIndices.front().UserTE; |
| }) || |
| !Visited.insert(TE).second) { |
| Filtered.push_back(TE); |
| continue; |
| } |
| // Build a map between user nodes and their operands order to speedup |
| // search. The graph currently does not provide this dependency directly. |
| for (EdgeInfo &EI : TE->UserTreeIndices) |
| Users[EI.UserTE].emplace_back(EI.EdgeIdx, TE); |
| } |
| // Erase filtered entries. |
| for (TreeEntry *TE : Filtered) |
| OrderedEntries.remove(TE); |
| SmallVector< |
| std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> |
| UsersVec(Users.begin(), Users.end()); |
| sort(UsersVec, [](const auto &Data1, const auto &Data2) { |
| return Data1.first->Idx > Data2.first->Idx; |
| }); |
| for (auto &Data : UsersVec) { |
| // Check that operands are used only in the User node. |
| SmallVector<TreeEntry *> GatherOps; |
| if (!canReorderOperands(Data.first, Data.second, NonVectorized, |
| GatherOps)) { |
| for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) |
| OrderedEntries.remove(Op.second); |
| continue; |
| } |
| // All operands are reordered and used only in this node - propagate the |
| // most used order to the user node. |
| MapVector<OrdersType, unsigned, |
| DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> |
| OrdersUses; |
| // Do the analysis for each tree entry only once, otherwise the order of |
| // the same node my be considered several times, though might be not |
| // profitable. |
| SmallPtrSet<const TreeEntry *, 4> VisitedOps; |
| SmallPtrSet<const TreeEntry *, 4> VisitedUsers; |
| for (const auto &Op : Data.second) { |
| TreeEntry *OpTE = Op.second; |
| if (!VisitedOps.insert(OpTE).second) |
| continue; |
| if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) |
| continue; |
| const auto Order = [&]() -> const OrdersType { |
| if (OpTE->isGather() || !OpTE->ReuseShuffleIndices.empty()) |
| return getReorderingData(*OpTE, /*TopToBottom=*/false) |
| .value_or(OrdersType(1)); |
| return OpTE->ReorderIndices; |
| }(); |
| // The order is partially ordered, skip it in favor of fully non-ordered |
| // orders. |
| if (Order.size() == 1) |
| continue; |
| unsigned NumOps = count_if( |
| Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { |
| return P.second == OpTE; |
| }); |
| // Stores actually store the mask, not the order, need to invert. |
| if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && |
| OpTE->getOpcode() == Instruction::Store && !Order.empty()) { |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| unsigned E = Order.size(); |
| OrdersType CurrentOrder(E, E); |
| transform(Mask, CurrentOrder.begin(), [E](int Idx) { |
| return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx); |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += |
| NumOps; |
| } else { |
| OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; |
| } |
| auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); |
| const auto AllowsReordering = [&](const TreeEntry *TE) { |
| if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || |
| (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || |
| (IgnoreReorder && TE->Idx == 0)) |
| return true; |
| if (TE->isGather()) { |
| if (GathersToOrders.contains(TE)) |
| return !getReorderingData(*TE, /*TopToBottom=*/false) |
| .value_or(OrdersType(1)) |
| .empty(); |
| return true; |
| } |
| return false; |
| }; |
| for (const EdgeInfo &EI : OpTE->UserTreeIndices) { |
| TreeEntry *UserTE = EI.UserTE; |
| if (!VisitedUsers.insert(UserTE).second) |
| continue; |
| // May reorder user node if it requires reordering, has reused |
| // scalars, is an alternate op vectorize node or its op nodes require |
| // reordering. |
| if (AllowsReordering(UserTE)) |
| continue; |
| // Check if users allow reordering. |
| // Currently look up just 1 level of operands to avoid increase of |
| // the compile time. |
| // Profitable to reorder if definitely more operands allow |
| // reordering rather than those with natural order. |
| ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; |
| if (static_cast<unsigned>(count_if( |
| Ops, [UserTE, &AllowsReordering]( |
| const std::pair<unsigned, TreeEntry *> &Op) { |
| return AllowsReordering(Op.second) && |
| all_of(Op.second->UserTreeIndices, |
| [UserTE](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE; |
| }); |
| })) <= Ops.size() / 2) |
| ++Res.first->second; |
| } |
| } |
| if (OrdersUses.empty()) { |
| for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) |
| OrderedEntries.remove(Op.second); |
| continue; |
| } |
| // Choose the most used order. |
| unsigned IdentityCnt = 0; |
| unsigned VF = Data.second.front().second->getVectorFactor(); |
| OrdersType IdentityOrder(VF, VF); |
| for (auto &Pair : OrdersUses) { |
| if (Pair.first.empty() || isIdentityOrder(Pair.first)) { |
| IdentityCnt += Pair.second; |
| combineOrders(IdentityOrder, Pair.first); |
| } |
| } |
| MutableArrayRef<unsigned> BestOrder = IdentityOrder; |
| unsigned Cnt = IdentityCnt; |
| for (auto &Pair : OrdersUses) { |
| // Prefer identity order. But, if filled identity found (non-empty |
| // order) with same number of uses, as the new candidate order, we can |
| // choose this candidate order. |
| if (Cnt < Pair.second) { |
| combineOrders(Pair.first, BestOrder); |
| BestOrder = Pair.first; |
| Cnt = Pair.second; |
| } else { |
| combineOrders(BestOrder, Pair.first); |
| } |
| } |
| // Set order of the user node. |
| if (isIdentityOrder(BestOrder)) { |
| for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) |
| OrderedEntries.remove(Op.second); |
| continue; |
| } |
| fixupOrderingIndices(BestOrder); |
| // Erase operands from OrderedEntries list and adjust their orders. |
| VisitedOps.clear(); |
| SmallVector<int> Mask; |
| inversePermutation(BestOrder, Mask); |
| SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem); |
| unsigned E = BestOrder.size(); |
| transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { |
| return I < E ? static_cast<int>(I) : PoisonMaskElem; |
| }); |
| for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { |
| TreeEntry *TE = Op.second; |
| OrderedEntries.remove(TE); |
| if (!VisitedOps.insert(TE).second) |
| continue; |
| if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { |
| reorderNodeWithReuses(*TE, Mask); |
| continue; |
| } |
| // Gathers are processed separately. |
| if (TE->State != TreeEntry::Vectorize && |
| TE->State != TreeEntry::StridedVectorize && |
| (TE->State != TreeEntry::ScatterVectorize || |
| TE->ReorderIndices.empty())) |
| continue; |
| assert((BestOrder.size() == TE->ReorderIndices.size() || |
| TE->ReorderIndices.empty()) && |
| "Non-matching sizes of user/operand entries."); |
| reorderOrder(TE->ReorderIndices, Mask); |
| if (IgnoreReorder && TE == VectorizableTree.front().get()) |
| IgnoreReorder = false; |
| } |
| // For gathers just need to reorder its scalars. |
| for (TreeEntry *Gather : GatherOps) { |
| assert(Gather->ReorderIndices.empty() && |
| "Unexpected reordering of gathers."); |
| if (!Gather->ReuseShuffleIndices.empty()) { |
| // Just reorder reuses indices. |
| reorderReuses(Gather->ReuseShuffleIndices, Mask); |
| continue; |
| } |
| reorderScalars(Gather->Scalars, Mask); |
| OrderedEntries.remove(Gather); |
| } |
| // Reorder operands of the user node and set the ordering for the user |
| // node itself. |
| if (Data.first->State != TreeEntry::Vectorize || |
| !isa<ExtractElementInst, ExtractValueInst, LoadInst>( |
| Data.first->getMainOp()) || |
| Data.first->isAltShuffle()) |
| Data.first->reorderOperands(Mask); |
| if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || |
| Data.first->isAltShuffle() || |
| Data.first->State == TreeEntry::StridedVectorize) { |
| reorderScalars(Data.first->Scalars, Mask); |
| reorderOrder(Data.first->ReorderIndices, MaskOrder, |
| /*BottomOrder=*/true); |
| if (Data.first->ReuseShuffleIndices.empty() && |
| !Data.first->ReorderIndices.empty() && |
| !Data.first->isAltShuffle()) { |
| // Insert user node to the list to try to sink reordering deeper in |
| // the graph. |
| OrderedEntries.insert(Data.first); |
| } |
| } else { |
| reorderOrder(Data.first->ReorderIndices, Mask); |
| } |
| } |
| } |
| // If the reordering is unnecessary, just remove the reorder. |
| if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && |
| VectorizableTree.front()->ReuseShuffleIndices.empty()) |
| VectorizableTree.front()->ReorderIndices.clear(); |
| } |
| |
| Instruction *BoUpSLP::getRootEntryInstruction(const TreeEntry &Entry) const { |
| if ((Entry.getOpcode() == Instruction::Store || |
| Entry.getOpcode() == Instruction::Load) && |
| Entry.State == TreeEntry::StridedVectorize && |
| !Entry.ReorderIndices.empty() && isReverseOrder(Entry.ReorderIndices)) |
| return dyn_cast<Instruction>(Entry.Scalars[Entry.ReorderIndices.front()]); |
| return dyn_cast<Instruction>(Entry.Scalars.front()); |
| } |
| |
| void BoUpSLP::buildExternalUses( |
| const ExtraValueToDebugLocsMap &ExternallyUsedValues) { |
| DenseMap<Value *, unsigned> ScalarToExtUses; |
| // Collect the values that we need to extract from the tree. |
| for (auto &TEPtr : VectorizableTree) { |
| TreeEntry *Entry = TEPtr.get(); |
| |
| // No need to handle users of gathered values. |
| if (Entry->isGather()) |
| continue; |
| |
| // For each lane: |
| for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { |
| Value *Scalar = Entry->Scalars[Lane]; |
| if (!isa<Instruction>(Scalar)) |
| continue; |
| // All uses must be replaced already? No need to do it again. |
| auto It = ScalarToExtUses.find(Scalar); |
| if (It != ScalarToExtUses.end() && !ExternalUses[It->second].User) |
| continue; |
| |
| // Check if the scalar is externally used as an extra arg. |
| const auto *ExtI = ExternallyUsedValues.find(Scalar); |
| if (ExtI != ExternallyUsedValues.end()) { |
| int FoundLane = Entry->findLaneForValue(Scalar); |
| LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " |
| << FoundLane << " from " << *Scalar << ".\n"); |
| ScalarToExtUses.try_emplace(Scalar, ExternalUses.size()); |
| ExternalUses.emplace_back(Scalar, nullptr, FoundLane); |
| continue; |
| } |
| for (User *U : Scalar->users()) { |
| LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); |
| |
| Instruction *UserInst = dyn_cast<Instruction>(U); |
| if (!UserInst || isDeleted(UserInst)) |
| continue; |
| |
| // Ignore users in the user ignore list. |
| if (UserIgnoreList && UserIgnoreList->contains(UserInst)) |
| continue; |
| |
| // Skip in-tree scalars that become vectors |
| if (TreeEntry *UseEntry = getTreeEntry(U)) { |
| // Some in-tree scalars will remain as scalar in vectorized |
| // instructions. If that is the case, the one in FoundLane will |
| // be used. |
| if (UseEntry->State == TreeEntry::ScatterVectorize || |
| !doesInTreeUserNeedToExtract( |
| Scalar, getRootEntryInstruction(*UseEntry), TLI)) { |
| LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U |
| << ".\n"); |
| assert(!UseEntry->isGather() && "Bad state"); |
| continue; |
| } |
| U = nullptr; |
| if (It != ScalarToExtUses.end()) { |
| ExternalUses[It->second].User = nullptr; |
| break; |
| } |
| } |
| |
| if (U && Scalar->hasNUsesOrMore(UsesLimit)) |
| U = nullptr; |
| int FoundLane = Entry->findLaneForValue(Scalar); |
| LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *UserInst |
| << " from lane " << FoundLane << " from " << *Scalar |
| << ".\n"); |
| It = ScalarToExtUses.try_emplace(Scalar, ExternalUses.size()).first; |
| ExternalUses.emplace_back(Scalar, U, FoundLane); |
| if (!U) |
| break; |
| } |
| } |
| } |
| } |
| |
| DenseMap<Value *, SmallVector<StoreInst *>> |
| BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { |
| DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap; |
| for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { |
| Value *V = TE->Scalars[Lane]; |
| // Don't iterate over the users of constant data. |
| if (isa<ConstantData>(V)) |
| continue; |
| // To save compilation time we don't visit if we have too many users. |
| if (V->hasNUsesOrMore(UsesLimit)) |
| break; |
| |
| // Collect stores per pointer object. |
| for (User *U : V->users()) { |
| auto *SI = dyn_cast<StoreInst>(U); |
| // Test whether we can handle the store. V might be a global, which could |
| // be used in a different function. |
| if (SI == nullptr || !SI->isSimple() || SI->getFunction() != F || |
| !isValidElementType(SI->getValueOperand()->getType())) |
| continue; |
| // Skip entry if already |
| if (getTreeEntry(U)) |
| continue; |
| |
| Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); |
| auto &StoresVec = PtrToStoresMap[Ptr]; |
| // For now just keep one store per pointer object per lane. |
| // TODO: Extend this to support multiple stores per pointer per lane |
| if (StoresVec.size() > Lane) |
| continue; |
| // Skip if in different BBs. |
| if (!StoresVec.empty() && |
| SI->getParent() != StoresVec.back()->getParent()) |
| continue; |
| // Make sure that the stores are of the same type. |
| if (!StoresVec.empty() && |
| SI->getValueOperand()->getType() != |
| StoresVec.back()->getValueOperand()->getType()) |
| continue; |
| StoresVec.push_back(SI); |
| } |
| } |
| return PtrToStoresMap; |
| } |
| |
| bool BoUpSLP::canFormVector(ArrayRef<StoreInst *> StoresVec, |
| OrdersType &ReorderIndices) const { |
| // We check whether the stores in StoreVec can form a vector by sorting them |
| // and checking whether they are consecutive. |
| |
| // To avoid calling getPointersDiff() while sorting we create a vector of |
| // pairs {store, offset from first} and sort this instead. |
| SmallVector<std::pair<StoreInst *, int>> StoreOffsetVec(StoresVec.size()); |
| StoreInst *S0 = StoresVec[0]; |
| StoreOffsetVec[0] = {S0, 0}; |
| Type *S0Ty = S0->getValueOperand()->getType(); |
| Value *S0Ptr = S0->getPointerOperand(); |
| for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { |
| StoreInst *SI = StoresVec[Idx]; |
| std::optional<int> Diff = |
| getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), |
| SI->getPointerOperand(), *DL, *SE, |
| /*StrictCheck=*/true); |
| // We failed to compare the pointers so just abandon this StoresVec. |
| if (!Diff) |
| return false; |
| StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; |
| } |
| |
| // Sort the vector based on the pointers. We create a copy because we may |
| // need the original later for calculating the reorder (shuffle) indices. |
| stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, |
| const std::pair<StoreInst *, int> &Pair2) { |
| int Offset1 = Pair1.second; |
| int Offset2 = Pair2.second; |
| return Offset1 < Offset2; |
| }); |
| |
| // Check if the stores are consecutive by checking if their difference is 1. |
| for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) |
| if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx - 1].second + 1) |
| return false; |
| |
| // Calculate the shuffle indices according to their offset against the sorted |
| // StoreOffsetVec. |
| ReorderIndices.reserve(StoresVec.size()); |
| for (StoreInst *SI : StoresVec) { |
| unsigned Idx = find_if(StoreOffsetVec, |
| [SI](const std::pair<StoreInst *, int> &Pair) { |
| return Pair.first == SI; |
| }) - |
| StoreOffsetVec.begin(); |
| ReorderIndices.push_back(Idx); |
| } |
| // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in |
| // reorderTopToBottom() and reorderBottomToTop(), so we are following the |
| // same convention here. |
| if (isIdentityOrder(ReorderIndices)) |
| ReorderIndices.clear(); |
| |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { |
| for (unsigned Idx : Order) |
| dbgs() << Idx << ", "; |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| SmallVector<BoUpSLP::OrdersType, 1> |
| BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { |
| unsigned NumLanes = TE->Scalars.size(); |
| |
| DenseMap<Value *, SmallVector<StoreInst *>> PtrToStoresMap = |
| collectUserStores(TE); |
| |
| // Holds the reorder indices for each candidate store vector that is a user of |
| // the current TreeEntry. |
| SmallVector<OrdersType, 1> ExternalReorderIndices; |
| |
| // Now inspect the stores collected per pointer and look for vectorization |
| // candidates. For each candidate calculate the reorder index vector and push |
| // it into `ExternalReorderIndices` |
| for (const auto &Pair : PtrToStoresMap) { |
| auto &StoresVec = Pair.second; |
| // If we have fewer than NumLanes stores, then we can't form a vector. |
| if (StoresVec.size() != NumLanes) |
| continue; |
| |
| // If the stores are not consecutive then abandon this StoresVec. |
| OrdersType ReorderIndices; |
| if (!canFormVector(StoresVec, ReorderIndices)) |
| continue; |
| |
| // We now know that the scalars in StoresVec can form a vector instruction, |
| // so set the reorder indices. |
| ExternalReorderIndices.push_back(ReorderIndices); |
| } |
| return ExternalReorderIndices; |
| } |
| |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots, |
| const SmallDenseSet<Value *> &UserIgnoreLst) { |
| deleteTree(); |
| UserIgnoreList = &UserIgnoreLst; |
| if (!allSameType(Roots)) |
| return; |
| buildTree_rec(Roots, 0, EdgeInfo()); |
| } |
| |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { |
| deleteTree(); |
| if (!allSameType(Roots)) |
| return; |
| buildTree_rec(Roots, 0, EdgeInfo()); |
| } |
| |
| /// Tries to find subvector of loads and builds new vector of only loads if can |
| /// be profitable. |
| static void gatherPossiblyVectorizableLoads( |
| const BoUpSLP &R, ArrayRef<Value *> VL, const DataLayout &DL, |
| ScalarEvolution &SE, const TargetTransformInfo &TTI, |
| SmallVectorImpl<SmallVector<std::pair<LoadInst *, int>>> &GatheredLoads, |
| bool AddNew = true) { |
| if (VL.empty()) |
| return; |
| Type *ScalarTy = getValueType(VL.front()); |
| if (!isValidElementType(ScalarTy)) |
| return; |
| SmallVector<SmallVector<std::pair<LoadInst *, int>>> ClusteredLoads; |
| SmallVector<DenseMap<int, LoadInst *>> ClusteredDistToLoad; |
| for (Value *V : VL) { |
| auto *LI = dyn_cast<LoadInst>(V); |
| if (!LI) |
| continue; |
| if (R.isDeleted(LI) || R.isVectorized(LI) || !LI->isSimple()) |
| continue; |
| bool IsFound = false; |
| for (auto [Map, Data] : zip(ClusteredDistToLoad, ClusteredLoads)) { |
| if (LI->getParent() != Data.front().first->getParent() || |
| LI->getType() != Data.front().first->getType()) |
| continue; |
| std::optional<int> Dist = getPointersDiff( |
| LI->getType(), LI->getPointerOperand(), Data.front().first->getType(), |
| Data.front().first->getPointerOperand(), DL, SE, |
| /*StrictCheck=*/true); |
| if (!Dist) |
| continue; |
| auto It = Map.find(*Dist); |
| if (It != Map.end() && It->second != LI) |
| continue; |
| if (It == Map.end()) { |
| Data.emplace_back(LI, *Dist); |
| Map.try_emplace(*Dist, LI); |
| } |
| IsFound = true; |
| break; |
| } |
| if (!IsFound) { |
| ClusteredLoads.emplace_back().emplace_back(LI, 0); |
| ClusteredDistToLoad.emplace_back().try_emplace(0, LI); |
| } |
| } |
| auto FindMatchingLoads = |
| [&](ArrayRef<std::pair<LoadInst *, int>> Loads, |
| SmallVectorImpl<SmallVector<std::pair<LoadInst *, int>>> |
| &GatheredLoads, |
| SetVector<unsigned> &ToAdd, SetVector<unsigned> &Repeated, |
| int &Offset, unsigned &Start) { |
| if (Loads.empty()) |
| return GatheredLoads.end(); |
| SmallVector<std::pair<int, int>> Res; |
| LoadInst *LI = Loads.front().first; |
| for (auto [Idx, Data] : enumerate(GatheredLoads)) { |
| if (Idx < Start) |
| continue; |
| ToAdd.clear(); |
| if (LI->getParent() != Data.front().first->getParent() || |
| LI->getType() != Data.front().first->getType()) |
| continue; |
| std::optional<int> Dist = |
| getPointersDiff(LI->getType(), LI->getPointerOperand(), |
| Data.front().first->getType(), |
| Data.front().first->getPointerOperand(), DL, SE, |
| /*StrictCheck=*/true); |
| if (!Dist) |
| continue; |
| SmallSet<int, 4> DataDists; |
| SmallPtrSet<LoadInst *, 4> DataLoads; |
| for (std::pair<LoadInst *, int> P : Data) { |
| DataDists.insert(P.second); |
| DataLoads.insert(P.first); |
| } |
| // Found matching gathered loads - check if all loads are unique or |
| // can be effectively vectorized. |
| unsigned NumUniques = 0; |
| for (auto [Cnt, Pair] : enumerate(Loads)) { |
| bool Used = DataLoads.contains(Pair.first); |
| if (!Used && !DataDists.contains(*Dist + Pair.second)) { |
| ++NumUniques; |
| ToAdd.insert(Cnt); |
| } else if (Used) { |
| Repeated.insert(Cnt); |
| } |
| } |
| if (NumUniques > 0 && |
| (Loads.size() == NumUniques || |
| (Loads.size() - NumUniques >= 2 && |
| Loads.size() - NumUniques >= Loads.size() / 2 && |
| (has_single_bit(Data.size() + NumUniques) || |
| bit_ceil(Data.size()) < |
| bit_ceil(Data.size() + NumUniques))))) { |
| Offset = *Dist; |
| Start = Idx + 1; |
| return std::next(GatheredLoads.begin(), Idx); |
| } |
| } |
| ToAdd.clear(); |
| return GatheredLoads.end(); |
| }; |
| for (ArrayRef<std::pair<LoadInst *, int>> Data : ClusteredLoads) { |
| unsigned Start = 0; |
| SetVector<unsigned> ToAdd, LocalToAdd, Repeated; |
| int Offset = 0; |
| auto *It = FindMatchingLoads(Data, GatheredLoads, LocalToAdd, Repeated, |
| Offset, Start); |
| while (It != GatheredLoads.end()) { |
| assert(!LocalToAdd.empty() && "Expected some elements to add."); |
| for (unsigned Idx : LocalToAdd) |
| It->emplace_back(Data[Idx].first, Data[Idx].second + Offset); |
| ToAdd.insert(LocalToAdd.begin(), LocalToAdd.end()); |
| It = FindMatchingLoads(Data, GatheredLoads, LocalToAdd, Repeated, Offset, |
| Start); |
| } |
| if (any_of(seq<unsigned>(Data.size()), [&](unsigned Idx) { |
| return !ToAdd.contains(Idx) && !Repeated.contains(Idx); |
| })) { |
| auto AddNewLoads = |
| [&](SmallVectorImpl<std::pair<LoadInst *, int>> &Loads) { |
| for (unsigned Idx : seq<unsigned>(Data.size())) { |
| if (ToAdd.contains(Idx) || Repeated.contains(Idx)) |
| continue; |
| Loads.push_back(Data[Idx]); |
| } |
| }; |
| if (!AddNew) { |
| LoadInst *LI = Data.front().first; |
| It = find_if( |
| GatheredLoads, [&](ArrayRef<std::pair<LoadInst *, int>> PD) { |
| return PD.front().first->getParent() == LI->getParent() && |
| PD.front().first->getType() == LI->getType(); |
| }); |
| while (It != GatheredLoads.end()) { |
| AddNewLoads(*It); |
| It = std::find_if( |
| std::next(It), GatheredLoads.end(), |
| [&](ArrayRef<std::pair<LoadInst *, int>> PD) { |
| return PD.front().first->getParent() == LI->getParent() && |
| PD.front().first->getType() == LI->getType(); |
| }); |
| } |
| } |
| GatheredLoads.emplace_back().append(Data.begin(), Data.end()); |
| AddNewLoads(GatheredLoads.emplace_back()); |
| } |
| } |
| } |
| |
| void BoUpSLP::tryToVectorizeGatheredLoads( |
| ArrayRef<SmallVector<std::pair<LoadInst *, int>>> GatheredLoads) { |
| GatheredLoadsEntriesFirst = VectorizableTree.size(); |
| |
| // Sort loads by distance. |
| auto LoadSorter = [](const std::pair<LoadInst *, int> &L1, |
| const std::pair<LoadInst *, int> &L2) { |
| return L1.second > L2.second; |
| }; |
| |
| auto IsMaskedGatherSupported = [&](ArrayRef<LoadInst *> Loads) { |
| ArrayRef<Value *> Values(reinterpret_cast<Value *const *>(Loads.begin()), |
| Loads.size()); |
| Align Alignment = computeCommonAlignment<LoadInst>(Values); |
| auto *Ty = getWidenedType(Loads.front()->getType(), Loads.size()); |
| return TTI->isLegalMaskedGather(Ty, Alignment) && |
| !TTI->forceScalarizeMaskedGather(Ty, Alignment); |
| }; |
| |
| auto GetVectorizedRanges = [this](ArrayRef<LoadInst *> Loads, |
| BoUpSLP::ValueSet &VectorizedLoads, |
| SmallVectorImpl<LoadInst *> &NonVectorized, |
| bool Final, unsigned MaxVF) { |
| SmallVector<std::pair<ArrayRef<Value *>, LoadsState>> Results; |
| unsigned StartIdx = 0; |
| SmallVector<int> CandidateVFs; |
| if (VectorizeNonPowerOf2 && has_single_bit(MaxVF + 1)) |
| CandidateVFs.push_back(MaxVF); |
| for (int NumElts = bit_floor(MaxVF); NumElts > 1; NumElts /= 2) { |
| CandidateVFs.push_back(NumElts); |
| if (VectorizeNonPowerOf2 && NumElts > 2) |
| CandidateVFs.push_back(NumElts - 1); |
| } |
| |
| if (Final && CandidateVFs.empty()) |
| return Results; |
| |
| unsigned BestVF = Final ? CandidateVFs.back() : 0; |
| for (unsigned NumElts : CandidateVFs) { |
| if (Final && NumElts > BestVF) |
| continue; |
| SmallVector<unsigned> MaskedGatherVectorized; |
| for (unsigned Cnt = StartIdx, E = Loads.size(); Cnt + NumElts <= E; |
| ++Cnt) { |
| ArrayRef<LoadInst *> Slice = ArrayRef(Loads).slice(Cnt, NumElts); |
| if (VectorizedLoads.count(Slice.front()) || |
| VectorizedLoads.count(Slice.back()) || |
| areKnownNonVectorizableLoads(Slice)) |
| continue; |
| // Check if it is profitable to try vectorizing gathered loads. It is |
| // profitable if we have more than 3 consecutive loads or if we have |
| // less but all users are vectorized or deleted. |
| bool AllowToVectorize = |
| NumElts >= 3 || |
| any_of(ValueToGatherNodes.at(Slice.front()), |
| [=](const TreeEntry *TE) { |
| return TE->Scalars.size() == 2 && |
| ((TE->Scalars.front() == Slice.front() && |
| TE->Scalars.back() == Slice.back()) || |
| (TE->Scalars.front() == Slice.back() && |
| TE->Scalars.back() == Slice.front())); |
| }); |
| // Check if it is profitable to vectorize 2-elements loads. |
| if (NumElts == 2) { |
| bool IsLegalBroadcastLoad = TTI->isLegalBroadcastLoad( |
| Slice.front()->getType(), ElementCount::getFixed(NumElts)); |
| auto CheckIfAllowed = [=](ArrayRef<LoadInst *> Slice) { |
| for (LoadInst *LI : Slice) { |
| // If single use/user - allow to vectorize. |
| if (LI->hasOneUse()) |
| continue; |
| // 1. Check if number of uses equals number of users. |
| // 2. All users are deleted. |
| // 3. The load broadcasts are not allowed or the load is not |
| // broadcasted. |
| if (std::distance(LI->user_begin(), LI->user_end()) != |
| LI->getNumUses()) |
| return false; |
| if (!IsLegalBroadcastLoad) |
| continue; |
| if (LI->hasNUsesOrMore(UsesLimit)) |
| return false; |
| for (User *U : LI->users()) { |
| if (auto *UI = dyn_cast<Instruction>(U); UI && isDeleted(UI)) |
| continue; |
| if (const TreeEntry *UTE = getTreeEntry(U)) { |
| for (int I : seq<int>(UTE->getNumOperands())) { |
| if (all_of(UTE->getOperand(I), |
| [LI](Value *V) { return V == LI; })) |
| // Found legal broadcast - do not vectorize. |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| }; |
| AllowToVectorize = CheckIfAllowed(Slice); |
| } |
| if (AllowToVectorize) { |
| SmallVector<Value *> PointerOps; |
| OrdersType CurrentOrder; |
| // Try to build vector load. |
| ArrayRef<Value *> Values( |
| reinterpret_cast<Value *const *>(Slice.begin()), Slice.size()); |
| LoadsState LS = canVectorizeLoads(Values, Slice.front(), CurrentOrder, |
| PointerOps, &BestVF); |
| if (LS != LoadsState::Gather || |
| (BestVF > 1 && static_cast<unsigned>(NumElts) == 2 * BestVF)) { |
| if (LS == LoadsState::ScatterVectorize) { |
| if (MaskedGatherVectorized.empty() || |
| Cnt >= MaskedGatherVectorized.back() + NumElts) |
| MaskedGatherVectorized.push_back(Cnt); |
| continue; |
| } |
| if (LS != LoadsState::Gather) { |
| Results.emplace_back(Values, LS); |
| VectorizedLoads.insert(Slice.begin(), Slice.end()); |
| // If we vectorized initial block, no need to try to vectorize it |
| // again. |
| if (Cnt == StartIdx) |
| StartIdx += NumElts; |
| } |
| // Check if the whole array was vectorized already - exit. |
| if (StartIdx >= Loads.size()) |
| break; |
| // Erase last masked gather candidate, if another candidate within |
| // the range is found to be better. |
| if (!MaskedGatherVectorized.empty() && |
| Cnt < MaskedGatherVectorized.back() + NumElts) |
| MaskedGatherVectorized.pop_back(); |
| Cnt += NumElts - 1; |
| continue; |
| } |
| } |
| if (!AllowToVectorize || BestVF == 0) |
| registerNonVectorizableLoads(Slice); |
| } |
| // Mark masked gathers candidates as vectorized, if any. |
| for (unsigned Cnt : MaskedGatherVectorized) { |
| ArrayRef<LoadInst *> Slice = ArrayRef(Loads).slice(Cnt, NumElts); |
| ArrayRef<Value *> Values( |
| reinterpret_cast<Value *const *>(Slice.begin()), Slice.size()); |
| Results.emplace_back(Values, LoadsState::ScatterVectorize); |
| VectorizedLoads.insert(Slice.begin(), Slice.end()); |
| // If we vectorized initial block, no need to try to vectorize it again. |
| if (Cnt == StartIdx) |
| StartIdx += NumElts; |
| } |
| } |
| for (LoadInst *LI : Loads) { |
| if (!VectorizedLoads.contains(LI)) |
| NonVectorized.push_back(LI); |
| } |
| return Results; |
| }; |
| auto ProcessGatheredLoads = |
| [&](ArrayRef<SmallVector<std::pair<LoadInst *, int>>> GatheredLoads, |
| bool Final = false) { |
| SmallVector<LoadInst *> NonVectorized; |
| for (ArrayRef<std::pair<LoadInst *, int>> LoadsDists : GatheredLoads) { |
| if (LoadsDists.size() <= 1) { |
| NonVectorized.push_back(LoadsDists.back().first); |
| continue; |
| } |
| SmallVector<std::pair<LoadInst *, int>> LocalLoadsDists(LoadsDists); |
| SmallVector<LoadInst *> OriginalLoads(LocalLoadsDists.size()); |
| transform( |
| LoadsDists, OriginalLoads.begin(), |
| [](const std::pair<LoadInst *, int> &L) { return L.first; }); |
| stable_sort(LocalLoadsDists, LoadSorter); |
| SmallVector<LoadInst *> Loads; |
| unsigned MaxConsecutiveDistance = 0; |
| unsigned CurrentConsecutiveDist = 1; |
| int LastDist = LocalLoadsDists.front().second; |
| bool AllowMaskedGather = IsMaskedGatherSupported(OriginalLoads); |
| for (const std::pair<LoadInst *, int> &L : LocalLoadsDists) { |
| if (getTreeEntry(L.first)) |
| continue; |
| assert(LastDist >= L.second && |
| "Expected first distance always not less than second"); |
| if (static_cast<unsigned>(LastDist - L.second) == |
| CurrentConsecutiveDist) { |
| ++CurrentConsecutiveDist; |
| MaxConsecutiveDistance = |
| std::max(MaxConsecutiveDistance, CurrentConsecutiveDist); |
| Loads.push_back(L.first); |
| continue; |
| } |
| if (!AllowMaskedGather && CurrentConsecutiveDist == 1 && |
| !Loads.empty()) |
| Loads.pop_back(); |
| CurrentConsecutiveDist = 1; |
| LastDist = L.second; |
| Loads.push_back(L.first); |
| } |
| if (Loads.size() <= 1) |
| continue; |
| if (AllowMaskedGather) |
| MaxConsecutiveDistance = Loads.size(); |
| else if (MaxConsecutiveDistance < 2) |
| continue; |
| BoUpSLP::ValueSet VectorizedLoads; |
| SmallVector<LoadInst *> SortedNonVectorized; |
| SmallVector<std::pair<ArrayRef<Value *>, LoadsState>> Results = |
| GetVectorizedRanges(Loads, VectorizedLoads, SortedNonVectorized, |
| Final, MaxConsecutiveDistance); |
| if (!Results.empty() && !SortedNonVectorized.empty() && |
| OriginalLoads.size() == Loads.size() && |
| MaxConsecutiveDistance == Loads.size() && |
| all_of(Results, |
| [](const std::pair<ArrayRef<Value *>, LoadsState> &P) { |
| return P.second == LoadsState::ScatterVectorize; |
| })) { |
| VectorizedLoads.clear(); |
| SmallVector<LoadInst *> UnsortedNonVectorized; |
| SmallVector<std::pair<ArrayRef<Value *>, LoadsState>> |
| UnsortedResults = |
| GetVectorizedRanges(OriginalLoads, VectorizedLoads, |
| UnsortedNonVectorized, Final, |
| OriginalLoads.size()); |
| if (SortedNonVectorized.size() >= UnsortedNonVectorized.size()) { |
| SortedNonVectorized.swap(UnsortedNonVectorized); |
| Results.swap(UnsortedResults); |
| } |
| } |
| for (auto [Slice, _] : Results) { |
| LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize gathered loads (" |
| << Slice.size() << ")\n"); |
| if (any_of(Slice, [&](Value *V) { return getTreeEntry(V); })) { |
| for (Value *L : Slice) |
| if (!getTreeEntry(L)) |
| SortedNonVectorized.push_back(cast<LoadInst>(L)); |
| continue; |
| } |
| |
| // Select maximum VF as a maximum of user gathered nodes and |
| // distance between scalar loads in these nodes. |
| unsigned MaxVF = Slice.size(); |
| unsigned UserMaxVF = 0; |
| if (MaxVF == 2) { |
| UserMaxVF = MaxVF; |
| } else { |
| std::optional<unsigned> CommonVF = 0; |
| DenseMap<const TreeEntry *, unsigned> EntryToPosition; |
| for (auto [Idx, V] : enumerate(Slice)) { |
| for (const TreeEntry *E : ValueToGatherNodes.at(V)) { |
| UserMaxVF = std::max<unsigned>(UserMaxVF, E->Scalars.size()); |
| unsigned Pos = |
| EntryToPosition.try_emplace(E, Idx).first->second; |
| UserMaxVF = std::max<unsigned>(UserMaxVF, Idx - Pos + 1); |
| if (CommonVF) { |
| if (*CommonVF == 0) { |
| CommonVF = E->Scalars.size(); |
| continue; |
| } |
| if (*CommonVF != E->Scalars.size()) |
| CommonVF.reset(); |
| } |
| } |
| } |
| // Try to build long masked gather loads. |
| UserMaxVF = bit_ceil(UserMaxVF); |
| } |
| for (unsigned VF = MaxVF; VF >= 2; VF /= 2) { |
| bool IsVectorized = true; |
| for (unsigned I = 0, E = Slice.size(); I < E; I += VF) { |
| ArrayRef<Value *> SubSlice = |
| Slice.slice(I, std::min(VF, E - I)); |
| if (getTreeEntry(SubSlice.front())) |
| continue; |
| unsigned Sz = VectorizableTree.size(); |
| buildTree_rec(SubSlice, 0, EdgeInfo()); |
| if (Sz == VectorizableTree.size()) { |
| IsVectorized = false; |
| continue; |
| } |
| } |
| if (IsVectorized) |
| break; |
| } |
| } |
| NonVectorized.append(SortedNonVectorized); |
| } |
| return NonVectorized; |
| }; |
| SmallVector<LoadInst *> NonVectorized = ProcessGatheredLoads(GatheredLoads); |
| if (!GatheredLoads.empty() && !NonVectorized.empty() && |
| std::accumulate( |
| GatheredLoads.begin(), GatheredLoads.end(), 0u, |
| [](unsigned S, ArrayRef<std::pair<LoadInst *, int>> LoadsDists) { |
| return S + LoadsDists.size(); |
| }) != NonVectorized.size() && |
| IsMaskedGatherSupported(NonVectorized)) { |
| SmallVector<SmallVector<std::pair<LoadInst *, int>>> FinalGatheredLoads; |
| for (LoadInst *LI : NonVectorized) { |
| // Reinsert non-vectorized loads to other list of loads with the same |
| // base pointers. |
| gatherPossiblyVectorizableLoads(*this, LI, *DL, *SE, *TTI, |
| FinalGatheredLoads, |
| /*AddNew=*/false); |
| } |
| // Final attempt to vectorize non-vectorized loads. |
| (void)ProcessGatheredLoads(FinalGatheredLoads, /*Final=*/true); |
| } |
| // If no new entries created, consider it as no gathered loads entries must be |
| // handled. |
| if (static_cast<unsigned>(*GatheredLoadsEntriesFirst) == |
| VectorizableTree.size()) |
| GatheredLoadsEntriesFirst.reset(); |
| } |
| |
| /// \return true if the specified list of values has only one instruction that |
| /// requires scheduling, false otherwise. |
| #ifndef NDEBUG |
| static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { |
| Value *NeedsScheduling = nullptr; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| if (!NeedsScheduling) { |
| NeedsScheduling = V; |
| continue; |
| } |
| return false; |
| } |
| return NeedsScheduling; |
| } |
| #endif |
| |
| /// Generates key/subkey pair for the given value to provide effective sorting |
| /// of the values and better detection of the vectorizable values sequences. The |
| /// keys/subkeys can be used for better sorting of the values themselves (keys) |
| /// and in values subgroups (subkeys). |
| static std::pair<size_t, size_t> generateKeySubkey( |
| Value *V, const TargetLibraryInfo *TLI, |
| function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, |
| bool AllowAlternate) { |
| hash_code Key = hash_value(V->getValueID() + 2); |
| hash_code SubKey = hash_value(0); |
| // Sort the loads by the distance between the pointers. |
| if (auto *LI = dyn_cast<LoadInst>(V)) { |
| Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key); |
| if (LI->isSimple()) |
| SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); |
| else |
| Key = SubKey = hash_value(LI); |
| } else if (isVectorLikeInstWithConstOps(V)) { |
| // Sort extracts by the vector operands. |
| if (isa<ExtractElementInst, UndefValue>(V)) |
| Key = hash_value(Value::UndefValueVal + 1); |
| if (auto *EI = dyn_cast<ExtractElementInst>(V)) { |
| if (!isUndefVector(EI->getVectorOperand()).all() && |
| !isa<UndefValue>(EI->getIndexOperand())) |
| SubKey = hash_value(EI->getVectorOperand()); |
| } |
| } else if (auto *I = dyn_cast<Instruction>(V)) { |
| // Sort other instructions just by the opcodes except for CMPInst. |
| // For CMP also sort by the predicate kind. |
| if ((isa<BinaryOperator, CastInst>(I)) && |
| isValidForAlternation(I->getOpcode())) { |
| if (AllowAlternate) |
| Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); |
| else |
| Key = hash_combine(hash_value(I->getOpcode()), Key); |
| SubKey = hash_combine( |
| hash_value(I->getOpcode()), hash_value(I->getType()), |
| hash_value(isa<BinaryOperator>(I) |
| ? I->getType() |
| : cast<CastInst>(I)->getOperand(0)->getType())); |
| // For casts, look through the only operand to improve compile time. |
| if (isa<CastInst>(I)) { |
| std::pair<size_t, size_t> OpVals = |
| generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, |
| /*AllowAlternate=*/true); |
| Key = hash_combine(OpVals.first, Key); |
| SubKey = hash_combine(OpVals.first, SubKey); |
| } |
| } else if (auto *CI = dyn_cast<CmpInst>(I)) { |
| CmpInst::Predicate Pred = CI->getPredicate(); |
| if (CI->isCommutative()) |
| Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); |
| CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), |
| hash_value(SwapPred), |
| hash_value(CI->getOperand(0)->getType())); |
| } else if (auto *Call = dyn_cast<CallInst>(I)) { |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); |
| if (isTriviallyVectorizable(ID)) { |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); |
| } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { |
| SubKey = hash_combine(hash_value(I->getOpcode()), |
| hash_value(Call->getCalledFunction())); |
| } else { |
| Key = hash_combine(hash_value(Call), Key); |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); |
| } |
| for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) |
| SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), |
| hash_value(Op.Tag), SubKey); |
| } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { |
| if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) |
| SubKey = hash_value(Gep->getPointerOperand()); |
| else |
| SubKey = hash_value(Gep); |
| } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && |
| !isa<ConstantInt>(I->getOperand(1))) { |
| // Do not try to vectorize instructions with potentially high cost. |
| SubKey = hash_value(I); |
| } else { |
| SubKey = hash_value(I->getOpcode()); |
| } |
| Key = hash_combine(hash_value(I->getParent()), Key); |
| } |
| return std::make_pair(Key, SubKey); |
| } |
| |
| /// Checks if the specified instruction \p I is an alternate operation for |
| /// the given \p MainOp and \p AltOp instructions. |
| static bool isAlternateInstruction(const Instruction *I, |
| const Instruction *MainOp, |
| const Instruction *AltOp, |
| const TargetLibraryInfo &TLI); |
| |
| bool BoUpSLP::areAltOperandsProfitable(const InstructionsState &S, |
| ArrayRef<Value *> VL) const { |
| unsigned Opcode0 = S.getOpcode(); |
| unsigned Opcode1 = S.getAltOpcode(); |
| SmallBitVector OpcodeMask(getAltInstrMask(VL, Opcode0, Opcode1)); |
| // If this pattern is supported by the target then consider it profitable. |
| if (TTI->isLegalAltInstr(getWidenedType(S.MainOp->getType(), VL.size()), |
| Opcode0, Opcode1, OpcodeMask)) |
| return true; |
| SmallVector<ValueList> Operands; |
| for (unsigned I : seq<unsigned>(0, S.MainOp->getNumOperands())) { |
| Operands.emplace_back(); |
| // Prepare the operand vector. |
| for (Value *V : VL) |
| Operands.back().push_back(cast<Instruction>(V)->getOperand(I)); |
| } |
| if (Operands.size() == 2) { |
| // Try find best operands candidates. |
| for (unsigned I : seq<unsigned>(0, VL.size() - 1)) { |
| SmallVector<std::pair<Value *, Value *>> Candidates(3); |
| Candidates[0] = std::make_pair(Operands[0][I], Operands[0][I + 1]); |
| Candidates[1] = std::make_pair(Operands[0][I], Operands[1][I + 1]); |
| Candidates[2] = std::make_pair(Operands[1][I], Operands[0][I + 1]); |
| std::optional<int> Res = findBestRootPair(Candidates); |
| switch (Res.value_or(0)) { |
| case 0: |
| break; |
| case 1: |
| std::swap(Operands[0][I + 1], Operands[1][I + 1]); |
| break; |
| case 2: |
| std::swap(Operands[0][I], Operands[1][I]); |
| break; |
| default: |
| llvm_unreachable("Unexpected index."); |
| } |
| } |
| } |
| DenseSet<unsigned> UniqueOpcodes; |
| constexpr unsigned NumAltInsts = 3; // main + alt + shuffle. |
| unsigned NonInstCnt = 0; |
| // Estimate number of instructions, required for the vectorized node and for |
| // the buildvector node. |
| unsigned UndefCnt = 0; |
| // Count the number of extra shuffles, required for vector nodes. |
| unsigned ExtraShuffleInsts = 0; |
| // Check that operands do not contain same values and create either perfect |
| // diamond match or shuffled match. |
| if (Operands.size() == 2) { |
| // Do not count same operands twice. |
| if (Operands.front() == Operands.back()) { |
| Operands.erase(Operands.begin()); |
| } else if (!allConstant(Operands.front()) && |
| all_of(Operands.front(), [&](Value *V) { |
| return is_contained(Operands.back(), V); |
| })) { |
| Operands.erase(Operands.begin()); |
| ++ExtraShuffleInsts; |
| } |
| } |
| const Loop *L = LI->getLoopFor(S.MainOp->getParent()); |
| // Vectorize node, if: |
| // 1. at least single operand is constant or splat. |
| // 2. Operands have many loop invariants (the instructions are not loop |
| // invariants). |
| // 3. At least single unique operands is supposed to vectorized. |
| return none_of(Operands, |
| [&](ArrayRef<Value *> Op) { |
| if (allConstant(Op) || |
| (!isSplat(Op) && allSameBlock(Op) && allSameType(Op) && |
| getSameOpcode(Op, *TLI).MainOp)) |
| return false; |
| DenseMap<Value *, unsigned> Uniques; |
| for (Value *V : Op) { |
| if (isa<Constant, ExtractElementInst>(V) || |
| getTreeEntry(V) || (L && L->isLoopInvariant(V))) { |
| if (isa<UndefValue>(V)) |
| ++UndefCnt; |
| continue; |
| } |
| auto Res = Uniques.try_emplace(V, 0); |
| // Found first duplicate - need to add shuffle. |
| if (!Res.second && Res.first->second == 1) |
| ++ExtraShuffleInsts; |
| ++Res.first->getSecond(); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| UniqueOpcodes.insert(I->getOpcode()); |
| else if (Res.second) |
| ++NonInstCnt; |
| } |
| return none_of(Uniques, [&](const auto &P) { |
| return P.first->hasNUsesOrMore(P.second + 1) && |
| none_of(P.first->users(), [&](User *U) { |
| return getTreeEntry(U) || Uniques.contains(U); |
| }); |
| }); |
| }) || |
| // Do not vectorize node, if estimated number of vector instructions is |
| // more than estimated number of buildvector instructions. Number of |
| // vector operands is number of vector instructions + number of vector |
| // instructions for operands (buildvectors). Number of buildvector |
| // instructions is just number_of_operands * number_of_scalars. |
| (UndefCnt < (VL.size() - 1) * S.MainOp->getNumOperands() && |
| (UniqueOpcodes.size() + NonInstCnt + ExtraShuffleInsts + |
| NumAltInsts) < S.MainOp->getNumOperands() * VL.size()); |
| } |
| |
| BoUpSLP::TreeEntry::EntryState BoUpSLP::getScalarsVectorizationState( |
| InstructionsState &S, ArrayRef<Value *> VL, bool IsScatterVectorizeUserTE, |
| OrdersType &CurrentOrder, SmallVectorImpl<Value *> &PointerOps) { |
| assert(S.MainOp && "Expected instructions with same/alternate opcodes only."); |
| |
| if (S.MainOp->getType()->isFloatingPointTy() && |
| TTI->isFPVectorizationPotentiallyUnsafe() && any_of(VL, [](Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| return I && (I->isBinaryOp() || isa<CallInst>(I)) && !I->isFast(); |
| })) |
| return TreeEntry::NeedToGather; |
| |
| unsigned ShuffleOrOp = |
| S.isAltShuffle() ? (unsigned)Instruction::ShuffleVector : S.getOpcode(); |
| auto *VL0 = cast<Instruction>(S.OpValue); |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| // Too many operands - gather, most probably won't be vectorized. |
| if (VL0->getNumOperands() > MaxPHINumOperands) |
| return TreeEntry::NeedToGather; |
| // Check for terminator values (e.g. invoke). |
| for (Value *V : VL) |
| for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { |
| Instruction *Term = dyn_cast<Instruction>(Incoming); |
| if (Term && Term->isTerminator()) { |
| LLVM_DEBUG(dbgs() |
| << "SLP: Need to swizzle PHINodes (terminator use).\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::ExtractValue: |
| case Instruction::ExtractElement: { |
| bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); |
| // FIXME: Vectorizing is not supported yet for non-power-of-2 ops. |
| if (!has_single_bit(VL.size())) |
| return TreeEntry::NeedToGather; |
| if (Reuse || !CurrentOrder.empty()) |
| return TreeEntry::Vectorize; |
| LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| case Instruction::InsertElement: { |
| // Check that we have a buildvector and not a shuffle of 2 or more |
| // different vectors. |
| ValueSet SourceVectors; |
| for (Value *V : VL) { |
| SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); |
| assert(getElementIndex(V) != std::nullopt && |
| "Non-constant or undef index?"); |
| } |
| |
| if (count_if(VL, [&SourceVectors](Value *V) { |
| return !SourceVectors.contains(V); |
| }) >= 2) { |
| // Found 2nd source vector - cancel. |
| LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " |
| "different source vectors.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| |
| if (any_of(VL, [&SourceVectors](Value *V) { |
| // The last InsertElement can have multiple uses. |
| return SourceVectors.contains(V) && !V->hasOneUse(); |
| })) { |
| assert(SLPReVec && "Only supported by REVEC."); |
| LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " |
| "multiple uses.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::Load: { |
| // Check that a vectorized load would load the same memory as a scalar |
| // load. For example, we don't want to vectorize loads that are smaller |
| // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM |
| // treats loading/storing it as an i8 struct. If we vectorize loads/stores |
| // from such a struct, we read/write packed bits disagreeing with the |
| // unvectorized version. |
| switch (canVectorizeLoads(VL, VL0, CurrentOrder, PointerOps)) { |
| case LoadsState::Vectorize: |
| return TreeEntry::Vectorize; |
| case LoadsState::ScatterVectorize: |
| return TreeEntry::ScatterVectorize; |
| case LoadsState::StridedVectorize: |
| return TreeEntry::StridedVectorize; |
| case LoadsState::Gather: |
| #ifndef NDEBUG |
| Type *ScalarTy = VL0->getType(); |
| if (DL->getTypeSizeInBits(ScalarTy) != |
| DL->getTypeAllocSizeInBits(ScalarTy)) |
| LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); |
| else if (any_of(VL, |
| [](Value *V) { return !cast<LoadInst>(V)->isSimple(); })) |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); |
| else |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); |
| #endif // NDEBUG |
| registerNonVectorizableLoads(VL); |
| return TreeEntry::NeedToGather; |
| } |
| llvm_unreachable("Unexpected state of loads"); |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| Type *SrcTy = VL0->getOperand(0)->getType(); |
| for (Value *V : VL) { |
| Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); |
| if (Ty != SrcTy || !isValidElementType(Ty)) { |
| LLVM_DEBUG( |
| dbgs() << "SLP: Gathering casts with different src types.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::ICmp: |
| case Instruction::FCmp: { |
| // Check that all of the compares have the same predicate. |
| CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); |
| CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); |
| Type *ComparedTy = VL0->getOperand(0)->getType(); |
| for (Value *V : VL) { |
| CmpInst *Cmp = cast<CmpInst>(V); |
| if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || |
| Cmp->getOperand(0)->getType() != ComparedTy) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::Select: |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Freeze: |
| return TreeEntry::Vectorize; |
| case Instruction::GetElementPtr: { |
| // We don't combine GEPs with complicated (nested) indexing. |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| continue; |
| if (I->getNumOperands() != 2) { |
| LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| // We can't combine several GEPs into one vector if they operate on |
| // different types. |
| Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); |
| for (Value *V : VL) { |
| auto *GEP = dyn_cast<GEPOperator>(V); |
| if (!GEP) |
| continue; |
| Type *CurTy = GEP->getSourceElementType(); |
| if (Ty0 != CurTy) { |
| LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| // We don't combine GEPs with non-constant indexes. |
| Type *Ty1 = VL0->getOperand(1)->getType(); |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| continue; |
| auto *Op = I->getOperand(1); |
| if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || |
| (Op->getType() != Ty1 && |
| ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || |
| Op->getType()->getScalarSizeInBits() > |
| DL->getIndexSizeInBits( |
| V->getType()->getPointerAddressSpace())))) { |
| LLVM_DEBUG( |
| dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::Store: { |
| // Check if the stores are consecutive or if we need to swizzle them. |
| llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); |
| // Avoid types that are padded when being allocated as scalars, while |
| // being packed together in a vector (such as i1). |
| if (DL->getTypeSizeInBits(ScalarTy) != |
| DL->getTypeAllocSizeInBits(ScalarTy)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| // Make sure all stores in the bundle are simple - we can't vectorize |
| // atomic or volatile stores. |
| for (Value *V : VL) { |
| auto *SI = cast<StoreInst>(V); |
| if (!SI->isSimple()) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| PointerOps.push_back(SI->getPointerOperand()); |
| } |
| |
| // Check the order of pointer operands. |
| if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { |
| Value *Ptr0; |
| Value *PtrN; |
| if (CurrentOrder.empty()) { |
| Ptr0 = PointerOps.front(); |
| PtrN = PointerOps.back(); |
| } else { |
| Ptr0 = PointerOps[CurrentOrder.front()]; |
| PtrN = PointerOps[CurrentOrder.back()]; |
| } |
| std::optional<int> Dist = |
| getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); |
| // Check that the sorted pointer operands are consecutive. |
| if (static_cast<unsigned>(*Dist) == VL.size() - 1) |
| return TreeEntry::Vectorize; |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| case Instruction::Call: { |
| // Check if the calls are all to the same vectorizable intrinsic or |
| // library function. |
| CallInst *CI = cast<CallInst>(VL0); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| VFShape Shape = VFShape::get( |
| CI->getFunctionType(), |
| ElementCount::getFixed(static_cast<unsigned int>(VL.size())), |
| false /*HasGlobalPred*/); |
| Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); |
| |
| if (!VecFunc && !isTriviallyVectorizable(ID)) { |
| LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| Function *F = CI->getCalledFunction(); |
| unsigned NumArgs = CI->arg_size(); |
| SmallVector<Value *, 4> ScalarArgs(NumArgs, nullptr); |
| for (unsigned J = 0; J != NumArgs; ++J) |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) |
| ScalarArgs[J] = CI->getArgOperand(J); |
| for (Value *V : VL) { |
| CallInst *CI2 = dyn_cast<CallInst>(V); |
| if (!CI2 || CI2->getCalledFunction() != F || |
| getVectorIntrinsicIDForCall(CI2, TLI) != ID || |
| (VecFunc && |
| VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || |
| !CI->hasIdenticalOperandBundleSchema(*CI2)) { |
| LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V |
| << "\n"); |
| return TreeEntry::NeedToGather; |
| } |
| // Some intrinsics have scalar arguments and should be same in order for |
| // them to be vectorized. |
| for (unsigned J = 0; J != NumArgs; ++J) { |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) { |
| Value *A1J = CI2->getArgOperand(J); |
| if (ScalarArgs[J] != A1J) { |
| LLVM_DEBUG(dbgs() |
| << "SLP: mismatched arguments in call:" << *CI |
| << " argument " << ScalarArgs[J] << "!=" << A1J << "\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| } |
| // Verify that the bundle operands are identical between the two calls. |
| if (CI->hasOperandBundles() && |
| !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), |
| CI->op_begin() + CI->getBundleOperandsEndIndex(), |
| CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { |
| LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI |
| << "!=" << *V << '\n'); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| return TreeEntry::Vectorize; |
| } |
| case Instruction::ShuffleVector: { |
| if (!S.isAltShuffle()) { |
| // REVEC can support non alternate shuffle. |
| if (SLPReVec && getShufflevectorNumGroups(VL)) |
| return TreeEntry::Vectorize; |
| // If this is not an alternate sequence of opcode like add-sub |
| // then do not vectorize this instruction. |
| LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| if (!SLPSkipEarlyProfitabilityCheck && !areAltOperandsProfitable(S, VL)) { |
| LLVM_DEBUG( |
| dbgs() |
| << "SLP: ShuffleVector not vectorized, operands are buildvector and " |
| "the whole alt sequence is not profitable.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| |
| return TreeEntry::Vectorize; |
| } |
| default: |
| LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); |
| return TreeEntry::NeedToGather; |
| } |
| } |
| |
| namespace { |
| /// Allows to correctly handle operands of the phi nodes based on the \p Main |
| /// PHINode order of incoming basic blocks/values. |
| class PHIHandler { |
| DominatorTree &DT; |
| PHINode *Main = nullptr; |
| SmallVector<Value *> Phis; |
| SmallVector<SmallVector<Value *>> Operands; |
| |
| public: |
| PHIHandler() = delete; |
| PHIHandler(DominatorTree &DT, PHINode *Main, ArrayRef<Value *> Phis) |
| : DT(DT), Main(Main), Phis(Phis), |
| Operands(Main->getNumIncomingValues(), |
| SmallVector<Value *>(Phis.size(), nullptr)) {} |
| void buildOperands() { |
| constexpr unsigned FastLimit = 4; |
| if (Main->getNumIncomingValues() <= FastLimit) { |
| for (unsigned I : seq<unsigned>(0, Main->getNumIncomingValues())) { |
| BasicBlock *InBB = Main->getIncomingBlock(I); |
| if (!DT.isReachableFromEntry(InBB)) { |
| Operands[I].assign(Phis.size(), PoisonValue::get(Main->getType())); |
| continue; |
| } |
| // Prepare the operand vector. |
| for (auto [Idx, V] : enumerate(Phis)) { |
| auto *P = cast<PHINode>(V); |
| if (P->getIncomingBlock(I) == InBB) |
| Operands[I][Idx] = P->getIncomingValue(I); |
| else |
| Operands[I][Idx] = P->getIncomingValueForBlock(InBB); |
| } |
| } |
| return; |
| } |
| SmallDenseMap<BasicBlock *, SmallVector<unsigned>, 4> Blocks; |
| for (unsigned I : seq<unsigned>(0, Main->getNumIncomingValues())) { |
| BasicBlock *InBB = Main->getIncomingBlock(I); |
| if (!DT.isReachableFromEntry(InBB)) { |
| Operands[I].assign(Phis.size(), PoisonValue::get(Main->getType())); |
| continue; |
| } |
| Blocks.try_emplace(InBB).first->second.push_back(I); |
| } |
| for (auto [Idx, V] : enumerate(Phis)) { |
| auto *P = cast<PHINode>(V); |
| for (unsigned I : seq<unsigned>(0, P->getNumIncomingValues())) { |
| BasicBlock *InBB = P->getIncomingBlock(I); |
| if (InBB == Main->getIncomingBlock(I)) { |
| if (isa_and_nonnull<PoisonValue>(Operands[I][Idx])) |
| continue; |
| Operands[I][Idx] = P->getIncomingValue(I); |
| continue; |
| } |
| auto It = Blocks.find(InBB); |
| if (It == Blocks.end()) |
| continue; |
| Operands[It->second.front()][Idx] = P->getIncomingValue(I); |
| } |
| } |
| for (const auto &P : Blocks) { |
| if (P.getSecond().size() <= 1) |
| continue; |
| unsigned BasicI = P.getSecond().front(); |
| for (unsigned I : ArrayRef(P.getSecond()).drop_front()) { |
| assert(all_of(enumerate(Operands[I]), |
| [&](const auto &Data) { |
| return !Data.value() || |
| Data.value() == Operands[BasicI][Data.index()]; |
| }) && |
| "Expected empty operands list."); |
| Operands[I] = Operands[BasicI]; |
| } |
| } |
| } |
| ArrayRef<Value *> getOperands(unsigned I) const { return Operands[I]; } |
| }; |
| } // namespace |
| |
| void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, |
| const EdgeInfo &UserTreeIdx) { |
| assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); |
| |
| SmallVector<int> ReuseShuffleIndices; |
| SmallVector<Value *> UniqueValues; |
| SmallVector<Value *> NonUniqueValueVL; |
| auto TryToFindDuplicates = [&](const InstructionsState &S, |
| bool DoNotFail = false) { |
| // Check that every instruction appears once in this bundle. |
| SmallDenseMap<Value *, unsigned, 16> UniquePositions(VL.size()); |
| for (Value *V : VL) { |
| if (isConstant(V)) { |
| ReuseShuffleIndices.emplace_back( |
| isa<UndefValue>(V) ? PoisonMaskElem : UniqueValues.size()); |
| UniqueValues.emplace_back(V); |
| continue; |
| } |
| auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); |
| ReuseShuffleIndices.emplace_back(Res.first->second); |
| if (Res.second) |
| UniqueValues.emplace_back(V); |
| } |
| size_t NumUniqueScalarValues = UniqueValues.size(); |
| bool IsFullVectors = hasFullVectorsOrPowerOf2( |
| *TTI, UniqueValues.front()->getType(), NumUniqueScalarValues); |
| if (NumUniqueScalarValues == VL.size() && |
| (VectorizeNonPowerOf2 || IsFullVectors)) { |
| ReuseShuffleIndices.clear(); |
| } else { |
| // FIXME: Reshuffing scalars is not supported yet for non-power-of-2 ops. |
| if ((UserTreeIdx.UserTE && |
| UserTreeIdx.UserTE->hasNonWholeRegisterOrNonPowerOf2Vec(*TTI)) || |
| !has_single_bit(VL.size())) { |
| LLVM_DEBUG(dbgs() << "SLP: Reshuffling scalars not yet supported " |
| "for nodes with padding.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); |
| if (NumUniqueScalarValues <= 1 || !IsFullVectors || |
| (UniquePositions.size() == 1 && all_of(UniqueValues, [](Value *V) { |
| return isa<UndefValue>(V) || !isConstant(V); |
| }))) { |
| if (DoNotFail && UniquePositions.size() > 1 && |
| NumUniqueScalarValues > 1 && S.MainOp->isSafeToRemove() && |
| all_of(UniqueValues, [=](Value *V) { |
| return isa<ExtractElementInst>(V) || |
| areAllUsersVectorized(cast<Instruction>(V), |
| UserIgnoreList); |
| })) { |
| // Find the number of elements, which forms full vectors. |
| unsigned PWSz = getFullVectorNumberOfElements( |
| *TTI, UniqueValues.front()->getType(), UniqueValues.size()); |
| if (PWSz == VL.size()) { |
| ReuseShuffleIndices.clear(); |
| } else { |
| NonUniqueValueVL.assign(UniqueValues.begin(), UniqueValues.end()); |
| NonUniqueValueVL.append(PWSz - UniqueValues.size(), |
| UniqueValues.back()); |
| VL = NonUniqueValueVL; |
| } |
| return true; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return false; |
| } |
| VL = UniqueValues; |
| } |
| return true; |
| }; |
| |
| InstructionsState S = getSameOpcode(VL, *TLI); |
| |
| // Don't go into catchswitch blocks, which can happen with PHIs. |
| // Such blocks can only have PHIs and the catchswitch. There is no |
| // place to insert a shuffle if we need to, so just avoid that issue. |
| if (S.MainOp && |
| isa<CatchSwitchInst>(S.MainOp->getParent()->getTerminator())) { |
| LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // Check if this is a duplicate of another entry. |
| if (S.getOpcode()) { |
| if (TreeEntry *E = getTreeEntry(S.OpValue)) { |
| LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); |
| if (GatheredLoadsEntriesFirst.has_value() || !E->isSame(VL)) { |
| auto It = MultiNodeScalars.find(S.OpValue); |
| if (It != MultiNodeScalars.end()) { |
| auto *TEIt = find_if(It->getSecond(), |
| [&](TreeEntry *ME) { return ME->isSame(VL); }); |
| if (TEIt != It->getSecond().end()) |
| E = *TEIt; |
| else |
| E = nullptr; |
| } else { |
| E = nullptr; |
| } |
| } |
| if (!E) { |
| if (!doesNotNeedToBeScheduled(S.OpValue)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| SmallPtrSet<const TreeEntry *, 4> Nodes; |
| Nodes.insert(getTreeEntry(S.OpValue)); |
| for (const TreeEntry *E : MultiNodeScalars.lookup(S.OpValue)) |
| Nodes.insert(E); |
| SmallPtrSet<Value *, 8> Values(VL.begin(), VL.end()); |
| if (any_of(Nodes, [&](const TreeEntry *E) { |
| return all_of(E->Scalars, |
| [&](Value *V) { return Values.contains(V); }); |
| })) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to full overlap.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| } else { |
| // Record the reuse of the tree node. FIXME, currently this is only |
| // used to properly draw the graph rather than for the actual |
| // vectorization. |
| E->UserTreeIndices.push_back(UserTreeIdx); |
| LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue |
| << ".\n"); |
| return; |
| } |
| } |
| } |
| |
| // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of |
| // a load), in which case peek through to include it in the tree, without |
| // ballooning over-budget. |
| if (Depth >= RecursionMaxDepth && |
| !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp && |
| VL.size() >= 4 && |
| (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) { |
| return match(I, |
| m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) && |
| cast<Instruction>(I)->getOpcode() == |
| cast<Instruction>(S.MainOp)->getOpcode(); |
| })))) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| |
| // Don't handle scalable vectors |
| if (S.getOpcode() == Instruction::ExtractElement && |
| isa<ScalableVectorType>( |
| cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| |
| // Don't handle vectors. |
| if (!SLPReVec && getValueType(S.OpValue)->isVectorTy()) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // If all of the operands are identical or constant we have a simple solution. |
| // If we deal with insert/extract instructions, they all must have constant |
| // indices, otherwise we should gather them, not try to vectorize. |
| // If alternate op node with 2 elements with gathered operands - do not |
| // vectorize. |
| auto &&NotProfitableForVectorization = [&S, this, |
| Depth](ArrayRef<Value *> VL) { |
| if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) |
| return false; |
| if (VectorizableTree.size() < MinTreeSize) |
| return false; |
| if (Depth >= RecursionMaxDepth - 1) |
| return true; |
| // Check if all operands are extracts, part of vector node or can build a |
| // regular vectorize node. |
| SmallVector<unsigned, 2> InstsCount(VL.size(), 0); |
| for (Value *V : VL) { |
| auto *I = cast<Instruction>(V); |
| InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { |
| return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); |
| })); |
| } |
| bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); |
| if ((IsCommutative && |
| std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || |
| (!IsCommutative && |
| all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) |
| return true; |
| assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); |
| SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; |
| auto *I1 = cast<Instruction>(VL.front()); |
| auto *I2 = cast<Instruction>(VL.back()); |
| for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) |
| Candidates.emplace_back().emplace_back(I1->getOperand(Op), |
| I2->getOperand(Op)); |
| if (static_cast<unsigned>(count_if( |
| Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { |
| return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); |
| })) >= S.MainOp->getNumOperands() / 2) |
| return false; |
| if (S.MainOp->getNumOperands() > 2) |
| return true; |
| if (IsCommutative) { |
| // Check permuted operands. |
| Candidates.clear(); |
| for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) |
| Candidates.emplace_back().emplace_back(I1->getOperand(Op), |
| I2->getOperand((Op + 1) % E)); |
| if (any_of( |
| Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { |
| return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); |
| })) |
| return false; |
| } |
| return true; |
| }; |
| SmallVector<unsigned> SortedIndices; |
| BasicBlock *BB = nullptr; |
| bool IsScatterVectorizeUserTE = |
| UserTreeIdx.UserTE && |
| UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; |
| bool AreAllSameBlock = S.getOpcode() && allSameBlock(VL); |
| bool AreScatterAllGEPSameBlock = |
| (IsScatterVectorizeUserTE && S.OpValue->getType()->isPointerTy() && |
| VL.size() > 2 && |
| all_of(VL, |
| [&BB](Value *V) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| return doesNotNeedToBeScheduled(V); |
| if (!BB) |
| BB = I->getParent(); |
| return BB == I->getParent() && I->getNumOperands() == 2; |
| }) && |
| BB && |
| sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, |
| SortedIndices)); |
| bool AreAllSameInsts = AreAllSameBlock || AreScatterAllGEPSameBlock; |
| if (!AreAllSameInsts || (!S.getOpcode() && allConstant(VL)) || isSplat(VL) || |
| (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( |
| S.OpValue) && |
| !all_of(VL, isVectorLikeInstWithConstOps)) || |
| NotProfitableForVectorization(VL)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| |
| // Don't vectorize ephemeral values. |
| if (S.getOpcode() && !EphValues.empty()) { |
| for (Value *V : VL) { |
| if (EphValues.count(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V |
| << ") is ephemeral.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| } |
| } |
| |
| // We now know that this is a vector of instructions of the same type from |
| // the same block. |
| |
| // Check that none of the instructions in the bundle are already in the tree. |
| for (Value *V : VL) { |
| if ((!IsScatterVectorizeUserTE && !isa<Instruction>(V)) || |
| doesNotNeedToBeScheduled(V)) |
| continue; |
| if (getTreeEntry(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V |
| << ") is already in tree.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| } |
| |
| // The reduction nodes (stored in UserIgnoreList) also should stay scalar. |
| if (UserIgnoreList && !UserIgnoreList->empty()) { |
| for (Value *V : VL) { |
| if (UserIgnoreList->contains(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| } |
| } |
| |
| // Special processing for sorted pointers for ScatterVectorize node with |
| // constant indeces only. |
| if (!AreAllSameBlock && AreScatterAllGEPSameBlock) { |
| assert(S.OpValue->getType()->isPointerTy() && |
| count_if(VL, IsaPred<GetElementPtrInst>) >= 2 && |
| "Expected pointers only."); |
| // Reset S to make it GetElementPtr kind of node. |
| const auto *It = find_if(VL, IsaPred<GetElementPtrInst>); |
| assert(It != VL.end() && "Expected at least one GEP."); |
| S = getSameOpcode(*It, *TLI); |
| } |
| |
| // Check that all of the users of the scalars that we want to vectorize are |
| // schedulable. |
| auto *VL0 = cast<Instruction>(S.OpValue); |
| BB = VL0->getParent(); |
| |
| if (S.MainOp && !DT->isReachableFromEntry(BB)) { |
| // Don't go into unreachable blocks. They may contain instructions with |
| // dependency cycles which confuse the final scheduling. |
| LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // Check that every instruction appears once in this bundle. |
| if (!TryToFindDuplicates(S, /*DoNotFail=*/true)) |
| return; |
| |
| // Perform specific checks for each particular instruction kind. |
| OrdersType CurrentOrder; |
| SmallVector<Value *> PointerOps; |
| TreeEntry::EntryState State = getScalarsVectorizationState( |
| S, VL, IsScatterVectorizeUserTE, CurrentOrder, PointerOps); |
| if (State == TreeEntry::NeedToGather) { |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| return; |
| } |
| |
| auto &BSRef = BlocksSchedules[BB]; |
| if (!BSRef) |
| BSRef = std::make_unique<BlockScheduling>(BB); |
| |
| BlockScheduling &BS = *BSRef; |
| |
| std::optional<ScheduleData *> Bundle = |
| BS.tryScheduleBundle(UniqueValues, this, S); |
| #ifdef EXPENSIVE_CHECKS |
| // Make sure we didn't break any internal invariants |
| BS.verify(); |
| #endif |
| if (!Bundle) { |
| LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); |
| assert((!BS.getScheduleData(VL0) || |
| !BS.getScheduleData(VL0)->isPartOfBundle()) && |
| "tryScheduleBundle should cancelScheduling on failure"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| NonScheduledFirst.insert(VL.front()); |
| if (S.getOpcode() == Instruction::Load && |
| BS.ScheduleRegionSize < BS.ScheduleRegionSizeLimit) |
| registerNonVectorizableLoads(VL); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); |
| |
| unsigned ShuffleOrOp = S.isAltShuffle() ? |
| (unsigned) Instruction::ShuffleVector : S.getOpcode(); |
| auto CreateOperandNodes = [&](TreeEntry *TE, const auto &Operands) { |
| // Postpone PHI nodes creation |
| SmallVector<unsigned> PHIOps; |
| for (unsigned I : seq<unsigned>(Operands.size())) { |
| ArrayRef<Value *> Op = Operands[I]; |
| if (Op.empty()) |
| continue; |
| InstructionsState S = getSameOpcode(Op, *TLI); |
| if (S.getOpcode() != Instruction::PHI || S.isAltShuffle()) |
| buildTree_rec(Op, Depth + 1, {TE, I}); |
| else |
| PHIOps.push_back(I); |
| } |
| for (unsigned I : PHIOps) |
| buildTree_rec(Operands[I], Depth + 1, {TE, I}); |
| }; |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| auto *PH = cast<PHINode>(VL0); |
| |
| TreeEntry *TE = |
| newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); |
| |
| // Keeps the reordered operands to avoid code duplication. |
| PHIHandler Handler(*DT, PH, VL); |
| Handler.buildOperands(); |
| for (unsigned I : seq<unsigned>(PH->getNumOperands())) |
| TE->setOperand(I, Handler.getOperands(I)); |
| SmallVector<ArrayRef<Value *>> Operands(PH->getNumOperands()); |
| for (unsigned I : seq<unsigned>(PH->getNumOperands())) |
| Operands[I] = Handler.getOperands(I); |
| CreateOperandNodes(TE, Operands); |
| return; |
| } |
| case Instruction::ExtractValue: |
| case Instruction::ExtractElement: { |
| if (CurrentOrder.empty()) { |
| LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); |
| } else { |
| LLVM_DEBUG({ |
| dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " |
| "with order"; |
| for (unsigned Idx : CurrentOrder) |
| dbgs() << " " << Idx; |
| dbgs() << "\n"; |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| } |
| // Insert new order with initial value 0, if it does not exist, |
| // otherwise return the iterator to the existing one. |
| newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices, CurrentOrder); |
| // This is a special case, as it does not gather, but at the same time |
| // we are not extending buildTree_rec() towards the operands. |
| ValueList Op0; |
| Op0.assign(VL.size(), VL0->getOperand(0)); |
| VectorizableTree.back()->setOperand(0, Op0); |
| return; |
| } |
| case Instruction::InsertElement: { |
| assert(ReuseShuffleIndices.empty() && "All inserts should be unique"); |
| |
| auto OrdCompare = [](const std::pair<int, int> &P1, |
| const std::pair<int, int> &P2) { |
| return P1.first > P2.first; |
| }; |
| PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, |
| decltype(OrdCompare)> |
| Indices(OrdCompare); |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| unsigned Idx = *getElementIndex(VL[I]); |
| Indices.emplace(Idx, I); |
| } |
| OrdersType CurrentOrder(VL.size(), VL.size()); |
| bool IsIdentity = true; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| CurrentOrder[Indices.top().second] = I; |
| IsIdentity &= Indices.top().second == I; |
| Indices.pop(); |
| } |
| if (IsIdentity) |
| CurrentOrder.clear(); |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| {}, CurrentOrder); |
| LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); |
| |
| TE->setOperandsInOrder(); |
| buildTree_rec(TE->getOperand(1), Depth + 1, {TE, 1}); |
| return; |
| } |
| case Instruction::Load: { |
| // Check that a vectorized load would load the same memory as a scalar |
| // load. For example, we don't want to vectorize loads that are smaller |
| // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM |
| // treats loading/storing it as an i8 struct. If we vectorize loads/stores |
| // from such a struct, we read/write packed bits disagreeing with the |
| // unvectorized version. |
| TreeEntry *TE = nullptr; |
| fixupOrderingIndices(CurrentOrder); |
| switch (State) { |
| case TreeEntry::Vectorize: |
| TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices, CurrentOrder); |
| if (CurrentOrder.empty()) |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); |
| else |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); |
| TE->setOperandsInOrder(); |
| break; |
| case TreeEntry::StridedVectorize: |
| // Vectorizing non-consecutive loads with `llvm.masked.gather`. |
| TE = newTreeEntry(VL, TreeEntry::StridedVectorize, Bundle, S, |
| UserTreeIdx, ReuseShuffleIndices, CurrentOrder); |
| TE->setOperandsInOrder(); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of strided loads.\n"); |
| break; |
| case TreeEntry::ScatterVectorize: |
| // Vectorizing non-consecutive loads with `llvm.masked.gather`. |
| TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, |
| UserTreeIdx, ReuseShuffleIndices); |
| TE->setOperandsInOrder(); |
| buildTree_rec(PointerOps, Depth + 1, {TE, 0}); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); |
| break; |
| case TreeEntry::CombinedVectorize: |
| case TreeEntry::NeedToGather: |
| llvm_unreachable("Unexpected loads state."); |
| } |
| return; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| auto [PrevMaxBW, PrevMinBW] = CastMaxMinBWSizes.value_or( |
| std::make_pair(std::numeric_limits<unsigned>::min(), |
| std::numeric_limits<unsigned>::max())); |
| if (ShuffleOrOp == Instruction::ZExt || |
| ShuffleOrOp == Instruction::SExt) { |
| CastMaxMinBWSizes = std::make_pair( |
| std::max<unsigned>(DL->getTypeSizeInBits(VL0->getType()), |
| PrevMaxBW), |
| std::min<unsigned>( |
| DL->getTypeSizeInBits(VL0->getOperand(0)->getType()), |
| PrevMinBW)); |
| } else if (ShuffleOrOp == Instruction::Trunc) { |
| CastMaxMinBWSizes = std::make_pair( |
| std::max<unsigned>( |
| DL->getTypeSizeInBits(VL0->getOperand(0)->getType()), |
| PrevMaxBW), |
| std::min<unsigned>(DL->getTypeSizeInBits(VL0->getType()), |
| PrevMinBW)); |
| } |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); |
| |
| TE->setOperandsInOrder(); |
| for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) |
| buildTree_rec(TE->getOperand(I), Depth + 1, {TE, I}); |
| if (ShuffleOrOp == Instruction::Trunc) { |
| ExtraBitWidthNodes.insert(getOperandEntry(TE, 0)->Idx); |
| } else if (ShuffleOrOp == Instruction::SIToFP || |
| ShuffleOrOp == Instruction::UIToFP) { |
| unsigned NumSignBits = |
| ComputeNumSignBits(VL0->getOperand(0), *DL, 0, AC, nullptr, DT); |
| if (auto *OpI = dyn_cast<Instruction>(VL0->getOperand(0))) { |
| APInt Mask = DB->getDemandedBits(OpI); |
| NumSignBits = std::max(NumSignBits, Mask.countl_zero()); |
| } |
| if (NumSignBits * 2 >= |
| DL->getTypeSizeInBits(VL0->getOperand(0)->getType())) |
| ExtraBitWidthNodes.insert(getOperandEntry(TE, 0)->Idx); |
| } |
| return; |
| } |
| case Instruction::ICmp: |
| case Instruction::FCmp: { |
| // Check that all of the compares have the same predicate. |
| CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); |
| |
| ValueList Left, Right; |
| if (cast<CmpInst>(VL0)->isCommutative()) { |
| // Commutative predicate - collect + sort operands of the instructions |
| // so that each side is more likely to have the same opcode. |
| assert(P0 == CmpInst::getSwappedPredicate(P0) && |
| "Commutative Predicate mismatch"); |
| reorderInputsAccordingToOpcode(VL, Left, Right, *this); |
| } else { |
| // Collect operands - commute if it uses the swapped predicate. |
| for (Value *V : VL) { |
| auto *Cmp = cast<CmpInst>(V); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| if (Cmp->getPredicate() != P0) |
| std::swap(LHS, RHS); |
| Left.push_back(LHS); |
| Right.push_back(RHS); |
| } |
| } |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| if (ShuffleOrOp == Instruction::ICmp) { |
| unsigned NumSignBits0 = |
| ComputeNumSignBits(VL0->getOperand(0), *DL, 0, AC, nullptr, DT); |
| if (NumSignBits0 * 2 >= |
| DL->getTypeSizeInBits(VL0->getOperand(0)->getType())) |
| ExtraBitWidthNodes.insert(getOperandEntry(TE, 0)->Idx); |
| unsigned NumSignBits1 = |
| ComputeNumSignBits(VL0->getOperand(1), *DL, 0, AC, nullptr, DT); |
| if (NumSignBits1 * 2 >= |
| DL->getTypeSizeInBits(VL0->getOperand(1)->getType())) |
| ExtraBitWidthNodes.insert(getOperandEntry(TE, 1)->Idx); |
| } |
| return; |
| } |
| case Instruction::Select: |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::Freeze: { |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); |
| |
| // Sort operands of the instructions so that each side is more likely to |
| // have the same opcode. |
| if (isa<BinaryOperator>(VL0) && isCommutative(VL0)) { |
| ValueList Left, Right; |
| reorderInputsAccordingToOpcode(VL, Left, Right, *this); |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| return; |
| } |
| |
| TE->setOperandsInOrder(); |
| for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) |
| buildTree_rec(TE->getOperand(I), Depth + 1, {TE, I}); |
| return; |
| } |
| case Instruction::GetElementPtr: { |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); |
| SmallVector<ValueList, 2> Operands(2); |
| // Prepare the operand vector for pointer operands. |
| for (Value *V : VL) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) { |
| Operands.front().push_back(V); |
| continue; |
| } |
| Operands.front().push_back(GEP->getPointerOperand()); |
| } |
| TE->setOperand(0, Operands.front()); |
| // Need to cast all indices to the same type before vectorization to |
| // avoid crash. |
| // Required to be able to find correct matches between different gather |
| // nodes and reuse the vectorized values rather than trying to gather them |
| // again. |
| int IndexIdx = 1; |
| Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); |
| Type *Ty = all_of(VL, |
| [VL0Ty, IndexIdx](Value *V) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) |
| return true; |
| return VL0Ty == GEP->getOperand(IndexIdx)->getType(); |
| }) |
| ? VL0Ty |
| : DL->getIndexType(cast<GetElementPtrInst>(VL0) |
| ->getPointerOperandType() |
| ->getScalarType()); |
| // Prepare the operand vector. |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) { |
| Operands.back().push_back( |
| ConstantInt::get(Ty, 0, /*isSigned=*/false)); |
| continue; |
| } |
| auto *Op = I->getOperand(IndexIdx); |
| auto *CI = dyn_cast<ConstantInt>(Op); |
| if (!CI) |
| Operands.back().push_back(Op); |
| else |
| Operands.back().push_back(ConstantFoldIntegerCast( |
| CI, Ty, CI->getValue().isSignBitSet(), *DL)); |
| } |
| TE->setOperand(IndexIdx, Operands.back()); |
| |
| for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) |
| buildTree_rec(Operands[I], Depth + 1, {TE, I}); |
| return; |
| } |
| case Instruction::Store: { |
| bool Consecutive = CurrentOrder.empty(); |
| if (!Consecutive) |
| fixupOrderingIndices(CurrentOrder); |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices, CurrentOrder); |
| TE->setOperandsInOrder(); |
| buildTree_rec(TE->getOperand(0), Depth + 1, {TE, 0}); |
| if (Consecutive) |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); |
| else |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); |
| return; |
| } |
| case Instruction::Call: { |
| // Check if the calls are all to the same vectorizable intrinsic or |
| // library function. |
| CallInst *CI = cast<CallInst>(VL0); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| // Sort operands of the instructions so that each side is more likely to |
| // have the same opcode. |
| if (isCommutative(VL0)) { |
| ValueList Left, Right; |
| reorderInputsAccordingToOpcode(VL, Left, Right, *this); |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| SmallVector<ValueList> Operands; |
| for (unsigned I : seq<unsigned>(2, CI->arg_size())) { |
| Operands.emplace_back(); |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, I)) |
| continue; |
| for (Value *V : VL) { |
| auto *CI2 = cast<CallInst>(V); |
| Operands.back().push_back(CI2->getArgOperand(I)); |
| } |
| TE->setOperand(I, Operands.back()); |
| } |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| for (unsigned I : seq<unsigned>(2, CI->arg_size())) { |
| if (Operands[I - 2].empty()) |
| continue; |
| buildTree_rec(Operands[I - 2], Depth + 1, {TE, I}); |
| } |
| return; |
| } |
| TE->setOperandsInOrder(); |
| for (unsigned I : seq<unsigned>(0, CI->arg_size())) { |
| // For scalar operands no need to create an entry since no need to |
| // vectorize it. |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, I)) |
| continue; |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) { |
| auto *CI2 = cast<CallInst>(V); |
| Operands.push_back(CI2->getArgOperand(I)); |
| } |
| buildTree_rec(Operands, Depth + 1, {TE, I}); |
| } |
| return; |
| } |
| case Instruction::ShuffleVector: { |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndices); |
| LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); |
| |
| // Reorder operands if reordering would enable vectorization. |
| auto *CI = dyn_cast<CmpInst>(VL0); |
| if (isa<BinaryOperator>(VL0) || CI) { |
| ValueList Left, Right; |
| if (!CI || all_of(VL, [](Value *V) { |
| return cast<CmpInst>(V)->isCommutative(); |
| })) { |
| reorderInputsAccordingToOpcode(VL, Left, Right, *this); |
| } else { |
| auto *MainCI = cast<CmpInst>(S.MainOp); |
| auto *AltCI = cast<CmpInst>(S.AltOp); |
| CmpInst::Predicate MainP = MainCI->getPredicate(); |
| CmpInst::Predicate AltP = AltCI->getPredicate(); |
| assert(MainP != AltP && |
| "Expected different main/alternate predicates."); |
| // Collect operands - commute if it uses the swapped predicate or |
| // alternate operation. |
| for (Value *V : VL) { |
| auto *Cmp = cast<CmpInst>(V); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| |
| if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) { |
| if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) |
| std::swap(LHS, RHS); |
| } else { |
| if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) |
| std::swap(LHS, RHS); |
| } |
| Left.push_back(LHS); |
| Right.push_back(RHS); |
| } |
| } |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| return; |
| } |
| |
| TE->setOperandsInOrder(); |
| for (unsigned I : seq<unsigned>(0, VL0->getNumOperands())) |
| buildTree_rec(TE->getOperand(I), Depth + 1, {TE, I}); |
| return; |
| } |
| default: |
| break; |
| } |
| llvm_unreachable("Unexpected vectorization of the instructions."); |
| } |
| |
| unsigned BoUpSLP::canMapToVector(Type *T) const { |
| unsigned N = 1; |
| Type *EltTy = T; |
| |
| while (isa<StructType, ArrayType, FixedVectorType>(EltTy)) { |
| if (EltTy->isEmptyTy()) |
| return 0; |
| if (auto *ST = dyn_cast<StructType>(EltTy)) { |
| // Check that struct is homogeneous. |
| for (const auto *Ty : ST->elements()) |
| if (Ty != *ST->element_begin()) |
| return 0; |
| N *= ST->getNumElements(); |
| EltTy = *ST->element_begin(); |
| } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { |
| N *= AT->getNumElements(); |
| EltTy = AT->getElementType(); |
| } else { |
| auto *VT = cast<FixedVectorType>(EltTy); |
| N *= VT->getNumElements(); |
| EltTy = VT->getElementType(); |
| } |
| } |
| |
| if (!isValidElementType(EltTy)) |
| return 0; |
| uint64_t VTSize = DL->getTypeStoreSizeInBits(getWidenedType(EltTy, N)); |
| if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || |
| VTSize != DL->getTypeStoreSizeInBits(T)) |
| return 0; |
| return N; |
| } |
| |
| bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, |
| SmallVectorImpl<unsigned> &CurrentOrder, |
| bool ResizeAllowed) const { |
| const auto *It = find_if(VL, IsaPred<ExtractElementInst, ExtractValueInst>); |
| assert(It != VL.end() && "Expected at least one extract instruction."); |
| auto *E0 = cast<Instruction>(*It); |
| assert( |
| all_of(VL, IsaPred<UndefValue, ExtractElementInst, ExtractValueInst>) && |
| "Invalid opcode"); |
| // Check if all of the extracts come from the same vector and from the |
| // correct offset. |
| Value *Vec = E0->getOperand(0); |
| |
| CurrentOrder.clear(); |
| |
| // We have to extract from a vector/aggregate with the same number of elements. |
| unsigned NElts; |
| if (E0->getOpcode() == Instruction::ExtractValue) { |
| NElts = canMapToVector(Vec->getType()); |
| if (!NElts) |
| return false; |
| // Check if load can be rewritten as load of vector. |
| LoadInst *LI = dyn_cast<LoadInst>(Vec); |
| if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) |
| return false; |
| } else { |
| NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| } |
| |
| unsigned E = VL.size(); |
| if (!ResizeAllowed && NElts != E) |
| return false; |
| SmallVector<int> Indices(E, PoisonMaskElem); |
| unsigned MinIdx = NElts, MaxIdx = 0; |
| for (auto [I, V] : enumerate(VL)) { |
| auto *Inst = dyn_cast<Instruction>(V); |
| if (!Inst) |
| continue; |
| if (Inst->getOperand(0) != Vec) |
| return false; |
| if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) |
| if (isa<UndefValue>(EE->getIndexOperand())) |
| continue; |
| std::optional<unsigned> Idx = getExtractIndex(Inst); |
| if (!Idx) |
| return false; |
| const unsigned ExtIdx = *Idx; |
| if (ExtIdx >= NElts) |
| continue; |
| Indices[I] = ExtIdx; |
| if (MinIdx > ExtIdx) |
| MinIdx = ExtIdx; |
| if (MaxIdx < ExtIdx) |
| MaxIdx = ExtIdx; |
| } |
| if (MaxIdx - MinIdx + 1 > E) |
| return false; |
| if (MaxIdx + 1 <= E) |
| MinIdx = 0; |
| |
| // Check that all of the indices extract from the correct offset. |
| bool ShouldKeepOrder = true; |
| // Assign to all items the initial value E + 1 so we can check if the extract |
| // instruction index was used already. |
| // Also, later we can check that all the indices are used and we have a |
| // consecutive access in the extract instructions, by checking that no |
| // element of CurrentOrder still has value E + 1. |
| CurrentOrder.assign(E, E); |
| for (unsigned I = 0; I < E; ++I) { |
| if (Indices[I] == PoisonMaskElem) |
| continue; |
| const unsigned ExtIdx = Indices[I] - MinIdx; |
| if (CurrentOrder[ExtIdx] != E) { |
| CurrentOrder.clear(); |
| return false; |
| } |
| ShouldKeepOrder &= ExtIdx == I; |
| CurrentOrder[ExtIdx] = I; |
| } |
| if (ShouldKeepOrder) |
| CurrentOrder.clear(); |
| |
| return ShouldKeepOrder; |
| } |
| |
| bool BoUpSLP::areAllUsersVectorized( |
| Instruction *I, const SmallDenseSet<Value *> *VectorizedVals) const { |
| return (I->hasOneUse() && (!VectorizedVals || VectorizedVals->contains(I))) || |
| all_of(I->users(), [this](User *U) { |
| return ScalarToTreeEntry.contains(U) || |
| isVectorLikeInstWithConstOps(U) || |
| (isa<ExtractElementInst>(U) && MustGather.contains(U)); |
| }); |
| } |
| |
| static std::pair<InstructionCost, InstructionCost> |
| getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, |
| TargetTransformInfo *TTI, TargetLibraryInfo *TLI, |
| ArrayRef<Type *> ArgTys) { |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| // Calculate the cost of the scalar and vector calls. |
| FastMathFlags FMF; |
| if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) |
| FMF = FPCI->getFastMathFlags(); |
| SmallVector<const Value *> Arguments(CI->args()); |
| IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, ArgTys, FMF, |
| dyn_cast<IntrinsicInst>(CI)); |
| auto IntrinsicCost = |
| TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); |
| |
| auto Shape = VFShape::get(CI->getFunctionType(), |
| ElementCount::getFixed(VecTy->getNumElements()), |
| false /*HasGlobalPred*/); |
| Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); |
| auto LibCost = IntrinsicCost; |
| if (!CI->isNoBuiltin() && VecFunc) { |
| // Calculate the cost of the vector library call. |
| // If the corresponding vector call is cheaper, return its cost. |
| LibCost = |
| TTI->getCallInstrCost(nullptr, VecTy, ArgTys, TTI::TCK_RecipThroughput); |
| } |
| return {IntrinsicCost, LibCost}; |
| } |
| |
| void BoUpSLP::TreeEntry::buildAltOpShuffleMask( |
| const function_ref<bool(Instruction *)> IsAltOp, SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<Value *> *OpScalars, |
| SmallVectorImpl<Value *> *AltScalars) const { |
| unsigned Sz = Scalars.size(); |
| Mask.assign(Sz, PoisonMaskElem); |
| SmallVector<int> OrderMask; |
| if (!ReorderIndices.empty()) |
| inversePermutation(ReorderIndices, OrderMask); |
| for (unsigned I = 0; I < Sz; ++I) { |
| unsigned Idx = I; |
| if (!ReorderIndices.empty()) |
| Idx = OrderMask[I]; |
| auto *OpInst = cast<Instruction>(Scalars[Idx]); |
| if (IsAltOp(OpInst)) { |
| Mask[I] = Sz + Idx; |
| if (AltScalars) |
| AltScalars->push_back(OpInst); |
| } else { |
| Mask[I] = Idx; |
| if (OpScalars) |
| OpScalars->push_back(OpInst); |
| } |
| } |
| if (!ReuseShuffleIndices.empty()) { |
| SmallVector<int> NewMask(ReuseShuffleIndices.size(), PoisonMaskElem); |
| transform(ReuseShuffleIndices, NewMask.begin(), [&Mask](int Idx) { |
| return Idx != PoisonMaskElem ? Mask[Idx] : PoisonMaskElem; |
| }); |
| Mask.swap(NewMask); |
| } |
| } |
| |
| static bool isAlternateInstruction(const Instruction *I, |
| const Instruction *MainOp, |
| const Instruction *AltOp, |
| const TargetLibraryInfo &TLI) { |
| if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) { |
| auto *AltCI = cast<CmpInst>(AltOp); |
| CmpInst::Predicate MainP = MainCI->getPredicate(); |
| CmpInst::Predicate AltP = AltCI->getPredicate(); |
| assert(MainP != AltP && "Expected different main/alternate predicates."); |
| auto *CI = cast<CmpInst>(I); |
| if (isCmpSameOrSwapped(MainCI, CI, TLI)) |
| return false; |
| if (isCmpSameOrSwapped(AltCI, CI, TLI)) |
| return true; |
| CmpInst::Predicate P = CI->getPredicate(); |
| CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P); |
| |
| assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && |
| "CmpInst expected to match either main or alternate predicate or " |
| "their swap."); |
| (void)AltP; |
| return MainP != P && MainP != SwappedP; |
| } |
| return I->getOpcode() == AltOp->getOpcode(); |
| } |
| |
| TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> Ops) { |
| assert(!Ops.empty()); |
| const auto *Op0 = Ops.front(); |
| |
| const bool IsConstant = all_of(Ops, [](Value *V) { |
| // TODO: We should allow undef elements here |
| return isConstant(V) && !isa<UndefValue>(V); |
| }); |
| const bool IsUniform = all_of(Ops, [=](Value *V) { |
| // TODO: We should allow undef elements here |
| return V == Op0; |
| }); |
| const bool IsPowerOfTwo = all_of(Ops, [](Value *V) { |
| // TODO: We should allow undef elements here |
| if (auto *CI = dyn_cast<ConstantInt>(V)) |
| return CI->getValue().isPowerOf2(); |
| return false; |
| }); |
| const bool IsNegatedPowerOfTwo = all_of(Ops, [](Value *V) { |
| // TODO: We should allow undef elements here |
| if (auto *CI = dyn_cast<ConstantInt>(V)) |
| return CI->getValue().isNegatedPowerOf2(); |
| return false; |
| }); |
| |
| TTI::OperandValueKind VK = TTI::OK_AnyValue; |
| if (IsConstant && IsUniform) |
| VK = TTI::OK_UniformConstantValue; |
| else if (IsConstant) |
| VK = TTI::OK_NonUniformConstantValue; |
| else if (IsUniform) |
| VK = TTI::OK_UniformValue; |
| |
| TTI::OperandValueProperties VP = TTI::OP_None; |
| VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP; |
| VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP; |
| |
| return {VK, VP}; |
| } |
| |
| namespace { |
| /// The base class for shuffle instruction emission and shuffle cost estimation. |
| class BaseShuffleAnalysis { |
| protected: |
| Type *ScalarTy = nullptr; |
| |
| BaseShuffleAnalysis(Type *ScalarTy) : ScalarTy(ScalarTy) {} |
| |
| /// V is expected to be a vectorized value. |
| /// When REVEC is disabled, there is no difference between VF and |
| /// VNumElements. |
| /// When REVEC is enabled, VF is VNumElements / ScalarTyNumElements. |
| /// e.g., if ScalarTy is <4 x Ty> and V1 is <8 x Ty>, 2 is returned instead |
| /// of 8. |
| unsigned getVF(Value *V) const { |
| assert(V && "V cannot be nullptr"); |
| assert(isa<FixedVectorType>(V->getType()) && |
| "V does not have FixedVectorType"); |
| assert(ScalarTy && "ScalarTy cannot be nullptr"); |
| unsigned ScalarTyNumElements = getNumElements(ScalarTy); |
| unsigned VNumElements = |
| cast<FixedVectorType>(V->getType())->getNumElements(); |
| assert(VNumElements > ScalarTyNumElements && |
| "the number of elements of V is not large enough"); |
| assert(VNumElements % ScalarTyNumElements == 0 && |
| "the number of elements of V is not a vectorized value"); |
| return VNumElements / ScalarTyNumElements; |
| } |
| |
| /// Checks if the mask is an identity mask. |
| /// \param IsStrict if is true the function returns false if mask size does |
| /// not match vector size. |
| static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy, |
| bool IsStrict) { |
| int Limit = Mask.size(); |
| int VF = VecTy->getNumElements(); |
| int Index = -1; |
| if (VF == Limit && ShuffleVectorInst::isIdentityMask(Mask, Limit)) |
| return true; |
| if (!IsStrict) { |
| // Consider extract subvector starting from index 0. |
| if (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) && |
| Index == 0) |
| return true; |
| // All VF-size submasks are identity (e.g. |
| // <poison,poison,poison,poison,0,1,2,poison,poison,1,2,3> etc. for VF 4). |
| if (Limit % VF == 0 && all_of(seq<int>(0, Limit / VF), [=](int Idx) { |
| ArrayRef<int> Slice = Mask.slice(Idx * VF, VF); |
| return all_of(Slice, [](int I) { return I == PoisonMaskElem; }) || |
| ShuffleVectorInst::isIdentityMask(Slice, VF); |
| })) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Tries to combine 2 different masks into single one. |
| /// \param LocalVF Vector length of the permuted input vector. \p Mask may |
| /// change the size of the vector, \p LocalVF is the original size of the |
| /// shuffled vector. |
| static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask, |
| ArrayRef<int> ExtMask) { |
| unsigned VF = Mask.size(); |
| SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem); |
| for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { |
| if (ExtMask[I] == PoisonMaskElem) |
| continue; |
| int MaskedIdx = Mask[ExtMask[I] % VF]; |
| NewMask[I] = |
| MaskedIdx == PoisonMaskElem ? PoisonMaskElem : MaskedIdx % LocalVF; |
| } |
| Mask.swap(NewMask); |
| } |
| |
| /// Looks through shuffles trying to reduce final number of shuffles in the |
| /// code. The function looks through the previously emitted shuffle |
| /// instructions and properly mark indices in mask as undef. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will |
| /// look through %s1 and %s2 and select vectors %0 and %1 with mask |
| /// <0, 1, 2, 3> for the shuffle. |
| /// If 2 operands are of different size, the smallest one will be resized and |
| /// the mask recalculated properly. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will |
| /// look through %s1 and %s2 and select vectors %0 and %1 with mask |
| /// <0, 1, 2, 3> for the shuffle. |
| /// So, it tries to transform permutations to simple vector merge, if |
| /// possible. |
| /// \param V The input vector which must be shuffled using the given \p Mask. |
| /// If the better candidate is found, \p V is set to this best candidate |
| /// vector. |
| /// \param Mask The input mask for the shuffle. If the best candidate is found |
| /// during looking-through-shuffles attempt, it is updated accordingly. |
| /// \param SinglePermute true if the shuffle operation is originally a |
| /// single-value-permutation. In this case the look-through-shuffles procedure |
| /// may look for resizing shuffles as the best candidates. |
| /// \return true if the shuffle results in the non-resizing identity shuffle |
| /// (and thus can be ignored), false - otherwise. |
| static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask, |
| bool SinglePermute) { |
| Value *Op = V; |
| ShuffleVectorInst *IdentityOp = nullptr; |
| SmallVector<int> IdentityMask; |
| while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) { |
| // Exit if not a fixed vector type or changing size shuffle. |
| auto *SVTy = dyn_cast<FixedVectorType>(SV->getType()); |
| if (!SVTy) |
| break; |
| // Remember the identity or broadcast mask, if it is not a resizing |
| // shuffle. If no better candidates are found, this Op and Mask will be |
| // used in the final shuffle. |
| if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) { |
| if (!IdentityOp || !SinglePermute || |
| (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) && |
| !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask, |
| IdentityMask.size()))) { |
| IdentityOp = SV; |
| // Store current mask in the IdentityMask so later we did not lost |
| // this info if IdentityOp is selected as the best candidate for the |
| // permutation. |
| IdentityMask.assign(Mask); |
| } |
| } |
| // Remember the broadcast mask. If no better candidates are found, this Op |
| // and Mask will be used in the final shuffle. |
| // Zero splat can be used as identity too, since it might be used with |
| // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling. |
| // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is |
| // expensive, the analysis founds out, that the source vector is just a |
| // broadcast, this original mask can be transformed to identity mask <0, |
| // 1, 2, 3>. |
| // \code |
| // %0 = shuffle %v, poison, zeroinitalizer |
| // %res = shuffle %0, poison, <3, 1, 2, 0> |
| // \endcode |
| // may be transformed to |
| // \code |
| // %0 = shuffle %v, poison, zeroinitalizer |
| // %res = shuffle %0, poison, <0, 1, 2, 3> |
| // \endcode |
| if (SV->isZeroEltSplat()) { |
| IdentityOp = SV; |
| IdentityMask.assign(Mask); |
| } |
| int LocalVF = Mask.size(); |
| if (auto *SVOpTy = |
| dyn_cast<FixedVectorType>(SV->getOperand(0)->getType())) |
| LocalVF = SVOpTy->getNumElements(); |
| SmallVector<int> ExtMask(Mask.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(Mask)) { |
| if (I == PoisonMaskElem || |
| static_cast<unsigned>(I) >= SV->getShuffleMask().size()) |
| continue; |
| ExtMask[Idx] = SV->getMaskValue(I); |
| } |
| bool IsOp1Undef = |
| isUndefVector(SV->getOperand(0), |
| buildUseMask(LocalVF, ExtMask, UseMask::FirstArg)) |
| .all(); |
| bool IsOp2Undef = |
| isUndefVector(SV->getOperand(1), |
| buildUseMask(LocalVF, ExtMask, UseMask::SecondArg)) |
| .all(); |
| if (!IsOp1Undef && !IsOp2Undef) { |
| // Update mask and mark undef elems. |
| for (int &I : Mask) { |
| if (I == PoisonMaskElem) |
| continue; |
| if (SV->getMaskValue(I % SV->getShuffleMask().size()) == |
| PoisonMaskElem) |
| I = PoisonMaskElem; |
| } |
| break; |
| } |
| SmallVector<int> ShuffleMask(SV->getShuffleMask()); |
| combineMasks(LocalVF, ShuffleMask, Mask); |
| Mask.swap(ShuffleMask); |
| if (IsOp2Undef) |
| Op = SV->getOperand(0); |
| else |
| Op = SV->getOperand(1); |
| } |
| if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType()); |
| !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute) || |
| ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size())) { |
| if (IdentityOp) { |
| V = IdentityOp; |
| assert(Mask.size() == IdentityMask.size() && |
| "Expected masks of same sizes."); |
| // Clear known poison elements. |
| for (auto [I, Idx] : enumerate(Mask)) |
| if (Idx == PoisonMaskElem) |
| IdentityMask[I] = PoisonMaskElem; |
| Mask.swap(IdentityMask); |
| auto *Shuffle = dyn_cast<ShuffleVectorInst>(V); |
| return SinglePermute && |
| (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()), |
| /*IsStrict=*/true) || |
| (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() && |
| Shuffle->isZeroEltSplat() && |
| ShuffleVectorInst::isZeroEltSplatMask(Mask, Mask.size()))); |
| } |
| V = Op; |
| return false; |
| } |
| V = Op; |
| return true; |
| } |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| template <typename T, typename ShuffleBuilderTy> |
| static T createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask, |
| ShuffleBuilderTy &Builder) { |
| assert(V1 && "Expected at least one vector value."); |
| if (V2) |
| Builder.resizeToMatch(V1, V2); |
| int VF = Mask.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) |
| VF = FTy->getNumElements(); |
| if (V2 && |
| !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) { |
| // Peek through shuffles. |
| Value *Op1 = V1; |
| Value *Op2 = V2; |
| int VF = |
| cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); |
| SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem); |
| SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (Mask[I] < VF) |
| CombinedMask1[I] = Mask[I]; |
| else |
| CombinedMask2[I] = Mask[I] - VF; |
| } |
| Value *PrevOp1; |
| Value *PrevOp2; |
| do { |
| PrevOp1 = Op1; |
| PrevOp2 = Op2; |
| (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false); |
| (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false); |
| // Check if we have 2 resizing shuffles - need to peek through operands |
| // again. |
| if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) |
| if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) { |
| SmallVector<int> ExtMask1(Mask.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(CombinedMask1)) { |
| if (I == PoisonMaskElem) |
| continue; |
| ExtMask1[Idx] = SV1->getMaskValue(I); |
| } |
| SmallBitVector UseMask1 = buildUseMask( |
| cast<FixedVectorType>(SV1->getOperand(1)->getType()) |
| ->getNumElements(), |
| ExtMask1, UseMask::SecondArg); |
| SmallVector<int> ExtMask2(CombinedMask2.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(CombinedMask2)) { |
| if (I == PoisonMaskElem) |
| continue; |
| ExtMask2[Idx] = SV2->getMaskValue(I); |
| } |
| SmallBitVector UseMask2 = buildUseMask( |
| cast<FixedVectorType>(SV2->getOperand(1)->getType()) |
| ->getNumElements(), |
| ExtMask2, UseMask::SecondArg); |
| if (SV1->getOperand(0)->getType() == |
| SV2->getOperand(0)->getType() && |
| SV1->getOperand(0)->getType() != SV1->getType() && |
| isUndefVector(SV1->getOperand(1), UseMask1).all() && |
| isUndefVector(SV2->getOperand(1), UseMask2).all()) { |
| Op1 = SV1->getOperand(0); |
| Op2 = SV2->getOperand(0); |
| SmallVector<int> ShuffleMask1(SV1->getShuffleMask()); |
| int LocalVF = ShuffleMask1.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType())) |
| LocalVF = FTy->getNumElements(); |
| combineMasks(LocalVF, ShuffleMask1, CombinedMask1); |
| CombinedMask1.swap(ShuffleMask1); |
| SmallVector<int> ShuffleMask2(SV2->getShuffleMask()); |
| LocalVF = ShuffleMask2.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType())) |
| LocalVF = FTy->getNumElements(); |
| combineMasks(LocalVF, ShuffleMask2, CombinedMask2); |
| CombinedMask2.swap(ShuffleMask2); |
| } |
| } |
| } while (PrevOp1 != Op1 || PrevOp2 != Op2); |
| Builder.resizeToMatch(Op1, Op2); |
| VF = std::max(cast<VectorType>(Op1->getType()) |
| ->getElementCount() |
| .getKnownMinValue(), |
| cast<VectorType>(Op2->getType()) |
| ->getElementCount() |
| .getKnownMinValue()); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (CombinedMask2[I] != PoisonMaskElem) { |
| assert(CombinedMask1[I] == PoisonMaskElem && |
| "Expected undefined mask element"); |
| CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); |
| } |
| } |
| if (Op1 == Op2 && |
| (ShuffleVectorInst::isIdentityMask(CombinedMask1, VF) || |
| (ShuffleVectorInst::isZeroEltSplatMask(CombinedMask1, VF) && |
| isa<ShuffleVectorInst>(Op1) && |
| cast<ShuffleVectorInst>(Op1)->getShuffleMask() == |
| ArrayRef(CombinedMask1)))) |
| return Builder.createIdentity(Op1); |
| return Builder.createShuffleVector( |
| Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, |
| CombinedMask1); |
| } |
| if (isa<PoisonValue>(V1)) |
| return Builder.createPoison( |
| cast<VectorType>(V1->getType())->getElementType(), Mask.size()); |
| SmallVector<int> NewMask(Mask); |
| bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true); |
| assert(V1 && "Expected non-null value after looking through shuffles."); |
| |
| if (!IsIdentity) |
| return Builder.createShuffleVector(V1, NewMask); |
| return Builder.createIdentity(V1); |
| } |
| }; |
| } // namespace |
| |
| /// Calculate the scalar and the vector costs from vectorizing set of GEPs. |
| static std::pair<InstructionCost, InstructionCost> |
| getGEPCosts(const TargetTransformInfo &TTI, ArrayRef<Value *> Ptrs, |
| Value *BasePtr, unsigned Opcode, TTI::TargetCostKind CostKind, |
| Type *ScalarTy, VectorType *VecTy) { |
| InstructionCost ScalarCost = 0; |
| InstructionCost VecCost = 0; |
| // Here we differentiate two cases: (1) when Ptrs represent a regular |
| // vectorization tree node (as they are pointer arguments of scattered |
| // loads) or (2) when Ptrs are the arguments of loads or stores being |
| // vectorized as plane wide unit-stride load/store since all the |
| // loads/stores are known to be from/to adjacent locations. |
| if (Opcode == Instruction::Load || Opcode == Instruction::Store) { |
| // Case 2: estimate costs for pointer related costs when vectorizing to |
| // a wide load/store. |
| // Scalar cost is estimated as a set of pointers with known relationship |
| // between them. |
| // For vector code we will use BasePtr as argument for the wide load/store |
| // but we also need to account all the instructions which are going to |
| // stay in vectorized code due to uses outside of these scalar |
| // loads/stores. |
| ScalarCost = TTI.getPointersChainCost( |
| Ptrs, BasePtr, TTI::PointersChainInfo::getUnitStride(), ScalarTy, |
| CostKind); |
| |
| SmallVector<const Value *> PtrsRetainedInVecCode; |
| for (Value *V : Ptrs) { |
| if (V == BasePtr) { |
| PtrsRetainedInVecCode.push_back(V); |
| continue; |
| } |
| auto *Ptr = dyn_cast<GetElementPtrInst>(V); |
| // For simplicity assume Ptr to stay in vectorized code if it's not a |
| // GEP instruction. We don't care since it's cost considered free. |
| // TODO: We should check for any uses outside of vectorizable tree |
| // rather than just single use. |
| if (!Ptr || !Ptr->hasOneUse()) |
| PtrsRetainedInVecCode.push_back(V); |
| } |
| |
| if (PtrsRetainedInVecCode.size() == Ptrs.size()) { |
| // If all pointers stay in vectorized code then we don't have |
| // any savings on that. |
| return std::make_pair(TTI::TCC_Free, TTI::TCC_Free); |
| } |
| VecCost = TTI.getPointersChainCost(PtrsRetainedInVecCode, BasePtr, |
| TTI::PointersChainInfo::getKnownStride(), |
| VecTy, CostKind); |
| } else { |
| // Case 1: Ptrs are the arguments of loads that we are going to transform |
| // into masked gather load intrinsic. |
| // All the scalar GEPs will be removed as a result of vectorization. |
| // For any external uses of some lanes extract element instructions will |
| // be generated (which cost is estimated separately). |
| TTI::PointersChainInfo PtrsInfo = |
| all_of(Ptrs, |
| [](const Value *V) { |
| auto *Ptr = dyn_cast<GetElementPtrInst>(V); |
| return Ptr && !Ptr->hasAllConstantIndices(); |
| }) |
| ? TTI::PointersChainInfo::getUnknownStride() |
| : TTI::PointersChainInfo::getKnownStride(); |
| |
| ScalarCost = |
| TTI.getPointersChainCost(Ptrs, BasePtr, PtrsInfo, ScalarTy, CostKind); |
| auto *BaseGEP = dyn_cast<GEPOperator>(BasePtr); |
| if (!BaseGEP) { |
| auto *It = find_if(Ptrs, IsaPred<GEPOperator>); |
| if (It != Ptrs.end()) |
| BaseGEP = cast<GEPOperator>(*It); |
| } |
| if (BaseGEP) { |
| SmallVector<const Value *> Indices(BaseGEP->indices()); |
| VecCost = TTI.getGEPCost(BaseGEP->getSourceElementType(), |
| BaseGEP->getPointerOperand(), Indices, VecTy, |
| CostKind); |
| } |
| } |
| |
| return std::make_pair(ScalarCost, VecCost); |
| } |
| |
| void BoUpSLP::transformNodes() { |
| constexpr TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| BaseGraphSize = VectorizableTree.size(); |
| // Operands are profitable if they are: |
| // 1. At least one constant |
| // or |
| // 2. Splats |
| // or |
| // 3. Results in good vectorization opportunity, i.e. may generate vector |
| // nodes and reduce cost of the graph. |
| auto CheckOperandsProfitability = [this](Instruction *I1, Instruction *I2, |
| const InstructionsState &S) { |
| SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; |
| for (unsigned Op : seq<unsigned>(S.MainOp->getNumOperands())) |
| Candidates.emplace_back().emplace_back(I1->getOperand(Op), |
| I2->getOperand(Op)); |
| return all_of( |
| Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { |
| return all_of(Cand, |
| [](const std::pair<Value *, Value *> &P) { |
| return isa<Constant>(P.first) || |
| isa<Constant>(P.second) || P.first == P.second; |
| }) || |
| findBestRootPair(Cand, LookAheadHeuristics::ScoreSplatLoads); |
| }); |
| }; |
| // The tree may grow here, so iterate over nodes, built before. |
| for (unsigned Idx : seq<unsigned>(BaseGraphSize)) { |
| TreeEntry &E = *VectorizableTree[Idx]; |
| if (E.isGather()) { |
| ArrayRef<Value *> VL = E.Scalars; |
| const unsigned Sz = getVectorElementSize(VL.front()); |
| unsigned MinVF = getMinVF(2 * Sz); |
| // Do not try partial vectorization for small nodes (<= 2), nodes with the |
| // same opcode and same parent block or all constants. |
| if (VL.size() <= 2 || |
| !(!E.getOpcode() || E.getOpcode() == Instruction::Load || |
| E.isAltShuffle() || !allSameBlock(VL)) || |
| allConstant(VL) || isSplat(VL)) |
| continue; |
| // Try to find vectorizable sequences and transform them into a series of |
| // insertvector instructions. |
| unsigned StartIdx = 0; |
| unsigned End = VL.size(); |
| for (unsigned VF = VL.size() / 2; VF >= MinVF; VF = bit_ceil(VF) / 2) { |
| SmallVector<unsigned> Slices; |
| for (unsigned Cnt = StartIdx; Cnt + VF <= End; Cnt += VF) { |
| ArrayRef<Value *> Slice = VL.slice(Cnt, VF); |
| // If any instruction is vectorized already - do not try again. |
| // Reuse the existing node, if it fully matches the slice. |
| if (const TreeEntry *SE = getTreeEntry(Slice.front()); |
| SE || getTreeEntry(Slice.back())) { |
| if (!SE) |
| continue; |
| if (VF != SE->getVectorFactor() || !SE->isSame(Slice)) |
| continue; |
| } |
| // Constant already handled effectively - skip. |
| if (allConstant(Slice)) |
| continue; |
| // Do not try to vectorize small splats (less than vector register and |
| // only with the single non-undef element). |
| bool IsSplat = isSplat(Slice); |
| if (Slices.empty() || !IsSplat || |
| (VF <= 2 && 2 * std::clamp(TTI->getNumberOfParts(getWidenedType( |
| Slice.front()->getType(), VF)), |
| 1U, VF - 1) != |
| std::clamp(TTI->getNumberOfParts(getWidenedType( |
| Slice.front()->getType(), 2 * VF)), |
| 1U, 2 * VF)) || |
| count(Slice, Slice.front()) == |
| (isa<UndefValue>(Slice.front()) ? VF - 1 : 1)) { |
| if (IsSplat) |
| continue; |
| InstructionsState S = getSameOpcode(Slice, *TLI); |
| if (!S.getOpcode() || S.isAltShuffle() || !allSameBlock(Slice)) |
| continue; |
| if (VF == 2) { |
| // Try to vectorize reduced values or if all users are vectorized. |
| // For expensive instructions extra extracts might be profitable. |
| if ((!UserIgnoreList || E.Idx != 0) && |
| TTI->getInstructionCost(cast<Instruction>(Slice.front()), |
| CostKind) < TTI::TCC_Expensive && |
| !all_of(Slice, [&](Value *V) { |
| return areAllUsersVectorized(cast<Instruction>(V), |
| UserIgnoreList); |
| })) |
| continue; |
| if (S.getOpcode() == Instruction::Load) { |
| OrdersType Order; |
| SmallVector<Value *> PointerOps; |
| LoadsState Res = |
| canVectorizeLoads(Slice, Slice.front(), Order, PointerOps); |
| // Do not vectorize gathers. |
| if (Res == LoadsState::ScatterVectorize || |
| Res == LoadsState::Gather) |
| continue; |
| } else if (S.getOpcode() == Instruction::ExtractElement || |
| (TTI->getInstructionCost( |
| cast<Instruction>(Slice.front()), CostKind) < |
| TTI::TCC_Expensive && |
| !CheckOperandsProfitability( |
| cast<Instruction>(Slice.front()), |
| cast<Instruction>(Slice.back()), S))) { |
| // Do not vectorize extractelements (handled effectively |
| // alread). Do not vectorize non-profitable instructions (with |
| // low cost and non-vectorizable operands.) |
| continue; |
| } |
| } |
| } |
| Slices.emplace_back(Cnt); |
| } |
| auto AddCombinedNode = [&](unsigned Idx, unsigned Cnt) { |
| E.CombinedEntriesWithIndices.emplace_back(Idx, Cnt); |
| if (StartIdx == Cnt) |
| StartIdx = Cnt + VF; |
| if (End == Cnt + VF) |
| End = Cnt; |
| }; |
| for (unsigned Cnt : Slices) { |
| ArrayRef<Value *> Slice = VL.slice(Cnt, VF); |
| // If any instruction is vectorized already - do not try again. |
| if (TreeEntry *SE = getTreeEntry(Slice.front()); |
| SE || getTreeEntry(Slice.back())) { |
| if (!SE) |
| continue; |
| if (VF != SE->getVectorFactor() || !SE->isSame(Slice)) |
| continue; |
| SE->UserTreeIndices.emplace_back(&E, UINT_MAX); |
| AddCombinedNode(SE->Idx, Cnt); |
| continue; |
| } |
| unsigned PrevSize = VectorizableTree.size(); |
| buildTree_rec(Slice, 0, EdgeInfo(&E, UINT_MAX)); |
| if (PrevSize + 1 == VectorizableTree.size() && |
| VectorizableTree[PrevSize]->isGather() && |
| VectorizableTree[PrevSize]->getOpcode() != |
| Instruction::ExtractElement && |
| !isSplat(Slice)) { |
| VectorizableTree.pop_back(); |
| continue; |
| } |
| AddCombinedNode(PrevSize, Cnt); |
| } |
| } |
| } |
| switch (E.getOpcode()) { |
| case Instruction::Load: { |
| // No need to reorder masked gather loads, just reorder the scalar |
| // operands. |
| if (E.State != TreeEntry::Vectorize) |
| break; |
| Type *ScalarTy = E.getMainOp()->getType(); |
| auto *VecTy = getWidenedType(ScalarTy, E.Scalars.size()); |
| Align CommonAlignment = computeCommonAlignment<LoadInst>(E.Scalars); |
| // Check if profitable to represent consecutive load + reverse as strided |
| // load with stride -1. |
| if (isReverseOrder(E.ReorderIndices) && |
| TTI->isLegalStridedLoadStore(VecTy, CommonAlignment)) { |
| SmallVector<int> Mask; |
| inversePermutation(E.ReorderIndices, Mask); |
| auto *BaseLI = cast<LoadInst>(E.Scalars.back()); |
| InstructionCost OriginalVecCost = |
| TTI->getMemoryOpCost(Instruction::Load, VecTy, BaseLI->getAlign(), |
| BaseLI->getPointerAddressSpace(), CostKind, |
| TTI::OperandValueInfo()) + |
| ::getShuffleCost(*TTI, TTI::SK_Reverse, VecTy, Mask, CostKind); |
| InstructionCost StridedCost = TTI->getStridedMemoryOpCost( |
| Instruction::Load, VecTy, BaseLI->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind, BaseLI); |
| if (StridedCost < OriginalVecCost) |
| // Strided load is more profitable than consecutive load + reverse - |
| // transform the node to strided load. |
| E.State = TreeEntry::StridedVectorize; |
| } |
| break; |
| } |
| case Instruction::Store: { |
| Type *ScalarTy = |
| cast<StoreInst>(E.getMainOp())->getValueOperand()->getType(); |
| auto *VecTy = getWidenedType(ScalarTy, E.Scalars.size()); |
| Align CommonAlignment = computeCommonAlignment<StoreInst>(E.Scalars); |
| // Check if profitable to represent consecutive load + reverse as strided |
| // load with stride -1. |
| if (isReverseOrder(E.ReorderIndices) && |
| TTI->isLegalStridedLoadStore(VecTy, CommonAlignment)) { |
| SmallVector<int> Mask; |
| inversePermutation(E.ReorderIndices, Mask); |
| auto *BaseSI = cast<StoreInst>(E.Scalars.back()); |
| InstructionCost OriginalVecCost = |
| TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(), |
| BaseSI->getPointerAddressSpace(), CostKind, |
| TTI::OperandValueInfo()) + |
| ::getShuffleCost(*TTI, TTI::SK_Reverse, VecTy, Mask, CostKind); |
| InstructionCost StridedCost = TTI->getStridedMemoryOpCost( |
| Instruction::Store, VecTy, BaseSI->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind, BaseSI); |
| if (StridedCost < OriginalVecCost) |
| // Strided store is more profitable than reverse + consecutive store - |
| // transform the node to strided store. |
| E.State = TreeEntry::StridedVectorize; |
| } |
| break; |
| } |
| case Instruction::Select: { |
| if (E.State != TreeEntry::Vectorize) |
| break; |
| auto [MinMaxID, SelectOnly] = canConvertToMinOrMaxIntrinsic(E.Scalars); |
| if (MinMaxID == Intrinsic::not_intrinsic) |
| break; |
| // This node is a minmax node. |
| E.CombinedOp = TreeEntry::MinMax; |
| TreeEntry *CondEntry = const_cast<TreeEntry *>(getOperandEntry(&E, 0)); |
| if (SelectOnly && CondEntry->UserTreeIndices.size() == 1 && |
| CondEntry->State == TreeEntry::Vectorize) { |
| // The condition node is part of the combined minmax node. |
| CondEntry->State = TreeEntry::CombinedVectorize; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Single load node - exit. |
| if (VectorizableTree.size() <= 1 && |
| VectorizableTree.front()->getOpcode() == Instruction::Load) |
| return; |
| // Small graph with small VF - exit. |
| constexpr unsigned SmallTree = 3; |
| constexpr unsigned SmallVF = 2; |
| if ((VectorizableTree.size() <= SmallTree && |
| VectorizableTree.front()->Scalars.size() == SmallVF) || |
| (VectorizableTree.size() <= 2 && UserIgnoreList)) |
| return; |
| |
| // A list of loads to be gathered during the vectorization process. We can |
| // try to vectorize them at the end, if profitable. |
| SmallVector<SmallVector<std::pair<LoadInst *, int>>> GatheredLoads; |
| |
| for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| TreeEntry &E = *TE; |
| if (E.isGather() && |
| (E.getOpcode() == Instruction::Load || |
| (!E.getOpcode() && any_of(E.Scalars, |
| [&](Value *V) { |
| return isa<LoadInst>(V) && |
| !isVectorized(V) && |
| !isDeleted(cast<Instruction>(V)); |
| }))) && |
| !isSplat(E.Scalars)) |
| gatherPossiblyVectorizableLoads(*this, E.Scalars, *DL, *SE, *TTI, |
| GatheredLoads); |
| } |
| // Try to vectorize gathered loads if this is not just a gather of loads. |
| if (!GatheredLoads.empty()) |
| tryToVectorizeGatheredLoads(GatheredLoads); |
| } |
| |
| /// Merges shuffle masks and emits final shuffle instruction, if required. It |
| /// supports shuffling of 2 input vectors. It implements lazy shuffles emission, |
| /// when the actual shuffle instruction is generated only if this is actually |
| /// required. Otherwise, the shuffle instruction emission is delayed till the |
| /// end of the process, to reduce the number of emitted instructions and further |
| /// analysis/transformations. |
| class BoUpSLP::ShuffleCostEstimator : public BaseShuffleAnalysis { |
| bool IsFinalized = false; |
| SmallVector<int> CommonMask; |
| SmallVector<PointerUnion<Value *, const TreeEntry *>, 2> InVectors; |
| const TargetTransformInfo &TTI; |
| InstructionCost Cost = 0; |
| SmallDenseSet<Value *> VectorizedVals; |
| BoUpSLP &R; |
| SmallPtrSetImpl<Value *> &CheckedExtracts; |
| constexpr static TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| /// While set, still trying to estimate the cost for the same nodes and we |
| /// can delay actual cost estimation (virtual shuffle instruction emission). |
| /// May help better estimate the cost if same nodes must be permuted + allows |
| /// to move most of the long shuffles cost estimation to TTI. |
| bool SameNodesEstimated = true; |
| |
| static Constant *getAllOnesValue(const DataLayout &DL, Type *Ty) { |
| if (Ty->getScalarType()->isPointerTy()) { |
| Constant *Res = ConstantExpr::getIntToPtr( |
| ConstantInt::getAllOnesValue( |
| IntegerType::get(Ty->getContext(), |
| DL.getTypeStoreSizeInBits(Ty->getScalarType()))), |
| Ty->getScalarType()); |
| if (auto *VTy = dyn_cast<VectorType>(Ty)) |
| Res = ConstantVector::getSplat(VTy->getElementCount(), Res); |
| return Res; |
| } |
| return Constant::getAllOnesValue(Ty); |
| } |
| |
| InstructionCost getBuildVectorCost(ArrayRef<Value *> VL, Value *Root) { |
| if ((!Root && allConstant(VL)) || all_of(VL, IsaPred<UndefValue>)) |
| return TTI::TCC_Free; |
| auto *VecTy = getWidenedType(ScalarTy, VL.size()); |
| InstructionCost GatherCost = 0; |
| SmallVector<Value *> Gathers(VL); |
| if (!Root && isSplat(VL)) { |
| // Found the broadcasting of the single scalar, calculate the cost as |
| // the broadcast. |
| const auto *It = find_if_not(VL, IsaPred<UndefValue>); |
| assert(It != VL.end() && "Expected at least one non-undef value."); |
| // Add broadcast for non-identity shuffle only. |
| bool NeedShuffle = |
| count(VL, *It) > 1 && |
| (VL.front() != *It || !all_of(VL.drop_front(), IsaPred<UndefValue>)); |
| if (!NeedShuffle) { |
| if (isa<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| return TTI.getShuffleCost( |
| TTI::SK_InsertSubvector, VecTy, {}, CostKind, |
| std::distance(VL.begin(), It) * getNumElements(ScalarTy), |
| cast<FixedVectorType>(ScalarTy)); |
| } |
| return TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, |
| CostKind, std::distance(VL.begin(), It), |
| PoisonValue::get(VecTy), *It); |
| } |
| |
| SmallVector<int> ShuffleMask(VL.size(), PoisonMaskElem); |
| transform(VL, ShuffleMask.begin(), [](Value *V) { |
| return isa<PoisonValue>(V) ? PoisonMaskElem : 0; |
| }); |
| InstructionCost InsertCost = |
| TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0, |
| PoisonValue::get(VecTy), *It); |
| return InsertCost + ::getShuffleCost(TTI, |
| TargetTransformInfo::SK_Broadcast, |
| VecTy, ShuffleMask, CostKind, |
| /*Index=*/0, /*SubTp=*/nullptr, |
| /*Args=*/*It); |
| } |
| return GatherCost + |
| (all_of(Gathers, IsaPred<UndefValue>) |
| ? TTI::TCC_Free |
| : R.getGatherCost(Gathers, !Root && VL.equals(Gathers), |
| ScalarTy)); |
| }; |
| |
| /// Compute the cost of creating a vector containing the extracted values from |
| /// \p VL. |
| InstructionCost |
| computeExtractCost(ArrayRef<Value *> VL, ArrayRef<int> Mask, |
| ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds, |
| unsigned NumParts) { |
| assert(VL.size() > NumParts && "Unexpected scalarized shuffle."); |
| unsigned NumElts = |
| std::accumulate(VL.begin(), VL.end(), 0, [](unsigned Sz, Value *V) { |
| auto *EE = dyn_cast<ExtractElementInst>(V); |
| if (!EE) |
| return Sz; |
| auto *VecTy = dyn_cast<FixedVectorType>(EE->getVectorOperandType()); |
| if (!VecTy) |
| return Sz; |
| return std::max(Sz, VecTy->getNumElements()); |
| }); |
| // FIXME: this must be moved to TTI for better estimation. |
| unsigned EltsPerVector = getPartNumElems(VL.size(), NumParts); |
| auto CheckPerRegistersShuffle = [&](MutableArrayRef<int> Mask, |
| SmallVectorImpl<unsigned> &Indices) |
| -> std::optional<TTI::ShuffleKind> { |
| if (NumElts <= EltsPerVector) |
| return std::nullopt; |
| int OffsetReg0 = |
| alignDown(std::accumulate(Mask.begin(), Mask.end(), INT_MAX, |
| [](int S, int I) { |
| if (I == PoisonMaskElem) |
| return S; |
| return std::min(S, I); |
| }), |
| EltsPerVector); |
| int OffsetReg1 = OffsetReg0; |
| DenseSet<int> RegIndices; |
| // Check that if trying to permute same single/2 input vectors. |
| TTI::ShuffleKind ShuffleKind = TTI::SK_PermuteSingleSrc; |
| int FirstRegId = -1; |
| Indices.assign(1, OffsetReg0); |
| for (auto [Pos, I] : enumerate(Mask)) { |
| if (I == PoisonMaskElem) |
| continue; |
| int Idx = I - OffsetReg0; |
| int RegId = |
| (Idx / NumElts) * NumParts + (Idx % NumElts) / EltsPerVector; |
| if (FirstRegId < 0) |
| FirstRegId = RegId; |
| RegIndices.insert(RegId); |
| if (RegIndices.size() > 2) |
| return std::nullopt; |
| if (RegIndices.size() == 2) { |
| ShuffleKind = TTI::SK_PermuteTwoSrc; |
| if (Indices.size() == 1) { |
| OffsetReg1 = alignDown( |
| std::accumulate( |
| std::next(Mask.begin(), Pos), Mask.end(), INT_MAX, |
| [&](int S, int I) { |
| if (I == PoisonMaskElem) |
| return S; |
| int RegId = ((I - OffsetReg0) / NumElts) * NumParts + |
| ((I - OffsetReg0) % NumElts) / EltsPerVector; |
| if (RegId == FirstRegId) |
| return S; |
| return std::min(S, I); |
| }), |
| EltsPerVector); |
| Indices.push_back(OffsetReg1 % NumElts); |
| } |
| Idx = I - OffsetReg1; |
| } |
| I = (Idx % NumElts) % EltsPerVector + |
| (RegId == FirstRegId ? 0 : EltsPerVector); |
| } |
| return ShuffleKind; |
| }; |
| InstructionCost Cost = 0; |
| |
| // Process extracts in blocks of EltsPerVector to check if the source vector |
| // operand can be re-used directly. If not, add the cost of creating a |
| // shuffle to extract the values into a vector register. |
| for (unsigned Part : seq<unsigned>(NumParts)) { |
| if (!ShuffleKinds[Part]) |
| continue; |
| ArrayRef<int> MaskSlice = Mask.slice( |
| Part * EltsPerVector, getNumElems(Mask.size(), EltsPerVector, Part)); |
| SmallVector<int> SubMask(EltsPerVector, PoisonMaskElem); |
| copy(MaskSlice, SubMask.begin()); |
| SmallVector<unsigned, 2> Indices; |
| std::optional<TTI::ShuffleKind> RegShuffleKind = |
| CheckPerRegistersShuffle(SubMask, Indices); |
| if (!RegShuffleKind) { |
| if (*ShuffleKinds[Part] != TTI::SK_PermuteSingleSrc || |
| !ShuffleVectorInst::isIdentityMask( |
| MaskSlice, std::max<unsigned>(NumElts, MaskSlice.size()))) |
| Cost += |
| ::getShuffleCost(TTI, *ShuffleKinds[Part], |
| getWidenedType(ScalarTy, NumElts), MaskSlice); |
| continue; |
| } |
| if (*RegShuffleKind != TTI::SK_PermuteSingleSrc || |
| !ShuffleVectorInst::isIdentityMask(SubMask, EltsPerVector)) { |
| Cost += |
| ::getShuffleCost(TTI, *RegShuffleKind, |
| getWidenedType(ScalarTy, EltsPerVector), SubMask); |
| } |
| for (unsigned Idx : Indices) { |
| assert((Idx + EltsPerVector) <= alignTo(NumElts, EltsPerVector) && |
| "SK_ExtractSubvector index out of range"); |
| Cost += ::getShuffleCost( |
| TTI, TTI::SK_ExtractSubvector, |
| getWidenedType(ScalarTy, alignTo(NumElts, EltsPerVector)), {}, |
| CostKind, Idx, getWidenedType(ScalarTy, EltsPerVector)); |
| } |
| // Second attempt to check, if just a permute is better estimated than |
| // subvector extract. |
| SubMask.assign(NumElts, PoisonMaskElem); |
| copy(MaskSlice, SubMask.begin()); |
| InstructionCost OriginalCost = ::getShuffleCost( |
| TTI, *ShuffleKinds[Part], getWidenedType(ScalarTy, NumElts), SubMask); |
| if (OriginalCost < Cost) |
| Cost = OriginalCost; |
| } |
| return Cost; |
| } |
| /// Transforms mask \p CommonMask per given \p Mask to make proper set after |
| /// shuffle emission. |
| static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask, |
| ArrayRef<int> Mask) { |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| } |
| /// Adds the cost of reshuffling \p E1 and \p E2 (if present), using given |
| /// mask \p Mask, register number \p Part, that includes \p SliceSize |
| /// elements. |
| void estimateNodesPermuteCost(const TreeEntry &E1, const TreeEntry *E2, |
| ArrayRef<int> Mask, unsigned Part, |
| unsigned SliceSize) { |
| if (SameNodesEstimated) { |
| // Delay the cost estimation if the same nodes are reshuffling. |
| // If we already requested the cost of reshuffling of E1 and E2 before, no |
| // need to estimate another cost with the sub-Mask, instead include this |
| // sub-Mask into the CommonMask to estimate it later and avoid double cost |
| // estimation. |
| if ((InVectors.size() == 2 && |
| InVectors.front().get<const TreeEntry *>() == &E1 && |
| InVectors.back().get<const TreeEntry *>() == E2) || |
| (!E2 && InVectors.front().get<const TreeEntry *>() == &E1)) { |
| unsigned Limit = getNumElems(Mask.size(), SliceSize, Part); |
| assert(all_of(ArrayRef(CommonMask).slice(Part * SliceSize, Limit), |
| [](int Idx) { return Idx == PoisonMaskElem; }) && |
| "Expected all poisoned elements."); |
| ArrayRef<int> SubMask = ArrayRef(Mask).slice(Part * SliceSize, Limit); |
| copy(SubMask, std::next(CommonMask.begin(), SliceSize * Part)); |
| return; |
| } |
| // Found non-matching nodes - need to estimate the cost for the matched |
| // and transform mask. |
| Cost += createShuffle(InVectors.front(), |
| InVectors.size() == 1 ? nullptr : InVectors.back(), |
| CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } |
| SameNodesEstimated = false; |
| if (!E2 && InVectors.size() == 1) { |
| unsigned VF = E1.getVectorFactor(); |
| if (Value *V1 = InVectors.front().dyn_cast<Value *>()) { |
| VF = std::max(VF, |
| cast<FixedVectorType>(V1->getType())->getNumElements()); |
| } else { |
| const auto *E = InVectors.front().get<const TreeEntry *>(); |
| VF = std::max(VF, E->getVectorFactor()); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) |
| CommonMask[Idx] = Mask[Idx] + VF; |
| Cost += createShuffle(InVectors.front(), &E1, CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } else { |
| Cost += createShuffle(&E1, E2, Mask); |
| transformMaskAfterShuffle(CommonMask, Mask); |
| } |
| } |
| |
| class ShuffleCostBuilder { |
| const TargetTransformInfo &TTI; |
| |
| static bool isEmptyOrIdentity(ArrayRef<int> Mask, unsigned VF) { |
| int Index = -1; |
| return Mask.empty() || |
| (VF == Mask.size() && |
| ShuffleVectorInst::isIdentityMask(Mask, VF)) || |
| (ShuffleVectorInst::isExtractSubvectorMask(Mask, VF, Index) && |
| Index == 0); |
| } |
| |
| public: |
| ShuffleCostBuilder(const TargetTransformInfo &TTI) : TTI(TTI) {} |
| ~ShuffleCostBuilder() = default; |
| InstructionCost createShuffleVector(Value *V1, Value *, |
| ArrayRef<int> Mask) const { |
| // Empty mask or identity mask are free. |
| unsigned VF = |
| cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); |
| if (isEmptyOrIdentity(Mask, VF)) |
| return TTI::TCC_Free; |
| return ::getShuffleCost(TTI, TTI::SK_PermuteTwoSrc, |
| cast<VectorType>(V1->getType()), Mask); |
| } |
| InstructionCost createShuffleVector(Value *V1, ArrayRef<int> Mask) const { |
| // Empty mask or identity mask are free. |
| unsigned VF = |
| cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); |
| if (isEmptyOrIdentity(Mask, VF)) |
| return TTI::TCC_Free; |
| return ::getShuffleCost(TTI, TTI::SK_PermuteSingleSrc, |
| cast<VectorType>(V1->getType()), Mask); |
| } |
| InstructionCost createIdentity(Value *) const { return TTI::TCC_Free; } |
| InstructionCost createPoison(Type *Ty, unsigned VF) const { |
| return TTI::TCC_Free; |
| } |
| void resizeToMatch(Value *&, Value *&) const {} |
| }; |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| InstructionCost |
| createShuffle(const PointerUnion<Value *, const TreeEntry *> &P1, |
| const PointerUnion<Value *, const TreeEntry *> &P2, |
| ArrayRef<int> Mask) { |
| ShuffleCostBuilder Builder(TTI); |
| SmallVector<int> CommonMask(Mask); |
| Value *V1 = P1.dyn_cast<Value *>(), *V2 = P2.dyn_cast<Value *>(); |
| unsigned CommonVF = Mask.size(); |
| InstructionCost ExtraCost = 0; |
| auto GetNodeMinBWAffectedCost = [&](const TreeEntry &E, |
| unsigned VF) -> InstructionCost { |
| if (E.isGather() && allConstant(E.Scalars)) |
| return TTI::TCC_Free; |
| Type *EScalarTy = E.Scalars.front()->getType(); |
| bool IsSigned = true; |
| if (auto It = R.MinBWs.find(&E); It != R.MinBWs.end()) { |
| EScalarTy = IntegerType::get(EScalarTy->getContext(), It->second.first); |
| IsSigned = It->second.second; |
| } |
| if (EScalarTy != ScalarTy) { |
| unsigned CastOpcode = Instruction::Trunc; |
| unsigned DstSz = R.DL->getTypeSizeInBits(ScalarTy); |
| unsigned SrcSz = R.DL->getTypeSizeInBits(EScalarTy); |
| if (DstSz > SrcSz) |
| CastOpcode = IsSigned ? Instruction::SExt : Instruction::ZExt; |
| return TTI.getCastInstrCost(CastOpcode, getWidenedType(ScalarTy, VF), |
| getWidenedType(EScalarTy, VF), |
| TTI::CastContextHint::None, CostKind); |
| } |
| return TTI::TCC_Free; |
| }; |
| auto GetValueMinBWAffectedCost = [&](const Value *V) -> InstructionCost { |
| if (isa<Constant>(V)) |
| return TTI::TCC_Free; |
| auto *VecTy = cast<VectorType>(V->getType()); |
| Type *EScalarTy = VecTy->getElementType(); |
| if (EScalarTy != ScalarTy) { |
| bool IsSigned = !isKnownNonNegative(V, SimplifyQuery(*R.DL)); |
| unsigned CastOpcode = Instruction::Trunc; |
| unsigned DstSz = R.DL->getTypeSizeInBits(ScalarTy); |
| unsigned SrcSz = R.DL->getTypeSizeInBits(EScalarTy); |
| if (DstSz > SrcSz) |
| CastOpcode = IsSigned ? Instruction::SExt : Instruction::ZExt; |
| return TTI.getCastInstrCost( |
| CastOpcode, VectorType::get(ScalarTy, VecTy->getElementCount()), |
| VecTy, TTI::CastContextHint::None, CostKind); |
| } |
| return TTI::TCC_Free; |
| }; |
| if (!V1 && !V2 && !P2.isNull()) { |
| // Shuffle 2 entry nodes. |
| const TreeEntry *E = P1.get<const TreeEntry *>(); |
| unsigned VF = E->getVectorFactor(); |
| const TreeEntry *E2 = P2.get<const TreeEntry *>(); |
| CommonVF = std::max(VF, E2->getVectorFactor()); |
| assert(all_of(Mask, |
| [=](int Idx) { |
| return Idx < 2 * static_cast<int>(CommonVF); |
| }) && |
| "All elements in mask must be less than 2 * CommonVF."); |
| if (E->Scalars.size() == E2->Scalars.size()) { |
| SmallVector<int> EMask = E->getCommonMask(); |
| SmallVector<int> E2Mask = E2->getCommonMask(); |
| if (!EMask.empty() || !E2Mask.empty()) { |
| for (int &Idx : CommonMask) { |
| if (Idx == PoisonMaskElem) |
| continue; |
| if (Idx < static_cast<int>(CommonVF) && !EMask.empty()) |
| Idx = EMask[Idx]; |
| else if (Idx >= static_cast<int>(CommonVF)) |
| Idx = (E2Mask.empty() ? Idx - CommonVF : E2Mask[Idx - CommonVF]) + |
| E->Scalars.size(); |
| } |
| } |
| CommonVF = E->Scalars.size(); |
| ExtraCost += GetNodeMinBWAffectedCost(*E, CommonVF) + |
| GetNodeMinBWAffectedCost(*E2, CommonVF); |
| } else { |
| ExtraCost += GetNodeMinBWAffectedCost(*E, E->getVectorFactor()) + |
| GetNodeMinBWAffectedCost(*E2, E2->getVectorFactor()); |
| } |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| V2 = getAllOnesValue(*R.DL, getWidenedType(ScalarTy, CommonVF)); |
| } else if (!V1 && P2.isNull()) { |
| // Shuffle single entry node. |
| const TreeEntry *E = P1.get<const TreeEntry *>(); |
| unsigned VF = E->getVectorFactor(); |
| CommonVF = VF; |
| assert( |
| all_of(Mask, |
| [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) && |
| "All elements in mask must be less than CommonVF."); |
| if (E->Scalars.size() == Mask.size() && VF != Mask.size()) { |
| SmallVector<int> EMask = E->getCommonMask(); |
| assert(!EMask.empty() && "Expected non-empty common mask."); |
| for (int &Idx : CommonMask) { |
| if (Idx != PoisonMaskElem) |
| Idx = EMask[Idx]; |
| } |
| CommonVF = E->Scalars.size(); |
| } |
| ExtraCost += GetNodeMinBWAffectedCost(*E, CommonVF); |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| // Not identity/broadcast? Try to see if the original vector is better. |
| if (!E->ReorderIndices.empty() && CommonVF == E->ReorderIndices.size() && |
| CommonVF == CommonMask.size() && |
| any_of(enumerate(CommonMask), |
| [](const auto &&P) { |
| return P.value() != PoisonMaskElem && |
| static_cast<unsigned>(P.value()) != P.index(); |
| }) && |
| any_of(CommonMask, |
| [](int Idx) { return Idx != PoisonMaskElem && Idx != 0; })) { |
| SmallVector<int> ReorderMask; |
| inversePermutation(E->ReorderIndices, ReorderMask); |
| ::addMask(CommonMask, ReorderMask); |
| } |
| } else if (V1 && P2.isNull()) { |
| // Shuffle single vector. |
| ExtraCost += GetValueMinBWAffectedCost(V1); |
| CommonVF = getVF(V1); |
| assert( |
| all_of(Mask, |
| [=](int Idx) { return Idx < static_cast<int>(CommonVF); }) && |
| "All elements in mask must be less than CommonVF."); |
| } else if (V1 && !V2) { |
| // Shuffle vector and tree node. |
| unsigned VF = getVF(V1); |
| const TreeEntry *E2 = P2.get<const TreeEntry *>(); |
| CommonVF = std::max(VF, E2->getVectorFactor()); |
| assert(all_of(Mask, |
| [=](int Idx) { |
| return Idx < 2 * static_cast<int>(CommonVF); |
| }) && |
| "All elements in mask must be less than 2 * CommonVF."); |
| if (E2->Scalars.size() == VF && VF != CommonVF) { |
| SmallVector<int> E2Mask = E2->getCommonMask(); |
| assert(!E2Mask.empty() && "Expected non-empty common mask."); |
| for (int &Idx : CommonMask) { |
| if (Idx == PoisonMaskElem) |
| continue; |
| if (Idx >= static_cast<int>(CommonVF)) |
| Idx = E2Mask[Idx - CommonVF] + VF; |
| } |
| CommonVF = VF; |
| } |
| ExtraCost += GetValueMinBWAffectedCost(V1); |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| ExtraCost += GetNodeMinBWAffectedCost( |
| *E2, std::min(CommonVF, E2->getVectorFactor())); |
| V2 = getAllOnesValue(*R.DL, getWidenedType(ScalarTy, CommonVF)); |
| } else if (!V1 && V2) { |
| // Shuffle vector and tree node. |
| unsigned VF = getVF(V2); |
| const TreeEntry *E1 = P1.get<const TreeEntry *>(); |
| CommonVF = std::max(VF, E1->getVectorFactor()); |
| assert(all_of(Mask, |
| [=](int Idx) { |
| return Idx < 2 * static_cast<int>(CommonVF); |
| }) && |
| "All elements in mask must be less than 2 * CommonVF."); |
| if (E1->Scalars.size() == VF && VF != CommonVF) { |
| SmallVector<int> E1Mask = E1->getCommonMask(); |
| assert(!E1Mask.empty() && "Expected non-empty common mask."); |
| for (int &Idx : CommonMask) { |
| if (Idx == PoisonMaskElem) |
| continue; |
| if (Idx >= static_cast<int>(CommonVF)) |
| Idx = E1Mask[Idx - CommonVF] + VF; |
| else |
| Idx = E1Mask[Idx]; |
| } |
| CommonVF = VF; |
| } |
| ExtraCost += GetNodeMinBWAffectedCost( |
| *E1, std::min(CommonVF, E1->getVectorFactor())); |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| ExtraCost += GetValueMinBWAffectedCost(V2); |
| V2 = getAllOnesValue(*R.DL, getWidenedType(ScalarTy, CommonVF)); |
| } else { |
| assert(V1 && V2 && "Expected both vectors."); |
| unsigned VF = getVF(V1); |
| CommonVF = std::max(VF, getVF(V2)); |
| assert(all_of(Mask, |
| [=](int Idx) { |
| return Idx < 2 * static_cast<int>(CommonVF); |
| }) && |
| "All elements in mask must be less than 2 * CommonVF."); |
| ExtraCost += |
| GetValueMinBWAffectedCost(V1) + GetValueMinBWAffectedCost(V2); |
| if (V1->getType() != V2->getType()) { |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| V2 = getAllOnesValue(*R.DL, getWidenedType(ScalarTy, CommonVF)); |
| } else { |
| if (cast<VectorType>(V1->getType())->getElementType() != ScalarTy) |
| V1 = Constant::getNullValue(getWidenedType(ScalarTy, CommonVF)); |
| if (cast<VectorType>(V2->getType())->getElementType() != ScalarTy) |
| V2 = getAllOnesValue(*R.DL, getWidenedType(ScalarTy, CommonVF)); |
| } |
| } |
| if (auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| transformScalarShuffleIndiciesToVector(VecTy->getNumElements(), |
| CommonMask); |
| } |
| InVectors.front() = |
| Constant::getNullValue(getWidenedType(ScalarTy, CommonMask.size())); |
| if (InVectors.size() == 2) |
| InVectors.pop_back(); |
| return ExtraCost + BaseShuffleAnalysis::createShuffle<InstructionCost>( |
| V1, V2, CommonMask, Builder); |
| } |
| |
| public: |
| ShuffleCostEstimator(Type *ScalarTy, TargetTransformInfo &TTI, |
| ArrayRef<Value *> VectorizedVals, BoUpSLP &R, |
| SmallPtrSetImpl<Value *> &CheckedExtracts) |
| : BaseShuffleAnalysis(ScalarTy), TTI(TTI), |
| VectorizedVals(VectorizedVals.begin(), VectorizedVals.end()), R(R), |
| CheckedExtracts(CheckedExtracts) {} |
| Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask, |
| ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds, |
| unsigned NumParts, bool &UseVecBaseAsInput) { |
| UseVecBaseAsInput = false; |
| if (Mask.empty()) |
| return nullptr; |
| Value *VecBase = nullptr; |
| ArrayRef<Value *> VL = E->Scalars; |
| // Check if it can be considered reused if same extractelements were |
| // vectorized already. |
| bool PrevNodeFound = any_of( |
| ArrayRef(R.VectorizableTree).take_front(E->Idx), |
| [&](const std::unique_ptr<TreeEntry> &TE) { |
| return ((!TE->isAltShuffle() && |
| TE->getOpcode() == Instruction::ExtractElement) || |
| TE->isGather()) && |
| all_of(enumerate(TE->Scalars), [&](auto &&Data) { |
| return VL.size() > Data.index() && |
| (Mask[Data.index()] == PoisonMaskElem || |
| isa<UndefValue>(VL[Data.index()]) || |
| Data.value() == VL[Data.index()]); |
| }); |
| }); |
| SmallPtrSet<Value *, 4> UniqueBases; |
| unsigned SliceSize = getPartNumElems(VL.size(), NumParts); |
| for (unsigned Part : seq<unsigned>(NumParts)) { |
| unsigned Limit = getNumElems(VL.size(), SliceSize, Part); |
| ArrayRef<int> SubMask = Mask.slice(Part * SliceSize, Limit); |
| for (auto [I, V] : enumerate(VL.slice(Part * SliceSize, Limit))) { |
| // Ignore non-extractelement scalars. |
| if (isa<UndefValue>(V) || |
| (!SubMask.empty() && SubMask[I] == PoisonMaskElem)) |
| continue; |
| // If all users of instruction are going to be vectorized and this |
| // instruction itself is not going to be vectorized, consider this |
| // instruction as dead and remove its cost from the final cost of the |
| // vectorized tree. |
| // Also, avoid adjusting the cost for extractelements with multiple uses |
| // in different graph entries. |
| auto *EE = cast<ExtractElementInst>(V); |
| VecBase = EE->getVectorOperand(); |
| UniqueBases.insert(VecBase); |
| const TreeEntry *VE = R.getTreeEntry(V); |
| if (!CheckedExtracts.insert(V).second || |
| !R.areAllUsersVectorized(cast<Instruction>(V), &VectorizedVals) || |
| any_of(EE->users(), |
| [&](User *U) { |
| return isa<GetElementPtrInst>(U) && |
| !R.areAllUsersVectorized(cast<Instruction>(U), |
| &VectorizedVals); |
| }) || |
| (VE && VE != E)) |
| continue; |
| std::optional<unsigned> EEIdx = getExtractIndex(EE); |
| if (!EEIdx) |
| continue; |
| unsigned Idx = *EEIdx; |
| // Take credit for instruction that will become dead. |
| if (EE->hasOneUse() || !PrevNodeFound) { |
| Instruction *Ext = EE->user_back(); |
| if (isa<SExtInst, ZExtInst>(Ext) && |
| all_of(Ext->users(), IsaPred<GetElementPtrInst>)) { |
| // Use getExtractWithExtendCost() to calculate the cost of |
| // extractelement/ext pair. |
| Cost -= |
| TTI.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), |
| EE->getVectorOperandType(), Idx); |
| // Add back the cost of s|zext which is subtracted separately. |
| Cost += TTI.getCastInstrCost( |
| Ext->getOpcode(), Ext->getType(), EE->getType(), |
| TTI::getCastContextHint(Ext), CostKind, Ext); |
| continue; |
| } |
| } |
| Cost -= TTI.getVectorInstrCost(*EE, EE->getVectorOperandType(), |
| CostKind, Idx); |
| } |
| } |
| // Check that gather of extractelements can be represented as just a |
| // shuffle of a single/two vectors the scalars are extracted from. |
| // Found the bunch of extractelement instructions that must be gathered |
| // into a vector and can be represented as a permutation elements in a |
| // single input vector or of 2 input vectors. |
| // Done for reused if same extractelements were vectorized already. |
| if (!PrevNodeFound) |
| Cost += computeExtractCost(VL, Mask, ShuffleKinds, NumParts); |
| InVectors.assign(1, E); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| SameNodesEstimated = false; |
| if (NumParts != 1 && UniqueBases.size() != 1) { |
| UseVecBaseAsInput = true; |
| VecBase = |
| Constant::getNullValue(getWidenedType(ScalarTy, CommonMask.size())); |
| } |
| return VecBase; |
| } |
| /// Checks if the specified entry \p E needs to be delayed because of its |
| /// dependency nodes. |
| std::optional<InstructionCost> |
| needToDelay(const TreeEntry *, |
| ArrayRef<SmallVector<const TreeEntry *>>) const { |
| // No need to delay the cost estimation during analysis. |
| return std::nullopt; |
| } |
| void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) { |
| if (&E1 == &E2) { |
| assert(all_of(Mask, |
| [&](int Idx) { |
| return Idx < static_cast<int>(E1.getVectorFactor()); |
| }) && |
| "Expected single vector shuffle mask."); |
| add(E1, Mask); |
| return; |
| } |
| if (InVectors.empty()) { |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign({&E1, &E2}); |
| return; |
| } |
| assert(!CommonMask.empty() && "Expected non-empty common mask."); |
| auto *MaskVecTy = getWidenedType(ScalarTy, Mask.size()); |
| unsigned NumParts = TTI.getNumberOfParts(MaskVecTy); |
| if (NumParts == 0 || NumParts >= Mask.size() || |
| MaskVecTy->getNumElements() % NumParts != 0 || |
| !hasFullVectorsOrPowerOf2(TTI, MaskVecTy->getElementType(), |
| MaskVecTy->getNumElements() / NumParts)) |
| NumParts = 1; |
| unsigned SliceSize = getPartNumElems(Mask.size(), NumParts); |
| const auto *It = |
| find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; }); |
| unsigned Part = std::distance(Mask.begin(), It) / SliceSize; |
| estimateNodesPermuteCost(E1, &E2, Mask, Part, SliceSize); |
| } |
| void add(const TreeEntry &E1, ArrayRef<int> Mask) { |
| if (InVectors.empty()) { |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign(1, &E1); |
| return; |
| } |
| assert(!CommonMask.empty() && "Expected non-empty common mask."); |
| auto *MaskVecTy = getWidenedType(ScalarTy, Mask.size()); |
| unsigned NumParts = TTI.getNumberOfParts(MaskVecTy); |
| if (NumParts == 0 || NumParts >= Mask.size() || |
| MaskVecTy->getNumElements() % NumParts != 0 || |
| !hasFullVectorsOrPowerOf2(TTI, MaskVecTy->getElementType(), |
| MaskVecTy->getNumElements() / NumParts)) |
| NumParts = 1; |
| unsigned SliceSize = getPartNumElems(Mask.size(), NumParts); |
| const auto *It = |
| find_if(Mask, [](int Idx) { return Idx != PoisonMaskElem; }); |
| unsigned Part = std::distance(Mask.begin(), It) / SliceSize; |
| estimateNodesPermuteCost(E1, nullptr, Mask, Part, SliceSize); |
| if (!SameNodesEstimated && InVectors.size() == 1) |
| InVectors.emplace_back(&E1); |
| } |
| /// Adds 2 input vectors and the mask for their shuffling. |
| void add(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| // May come only for shuffling of 2 vectors with extractelements, already |
| // handled in adjustExtracts. |
| assert(InVectors.size() == 1 && |
| all_of(enumerate(CommonMask), |
| [&](auto P) { |
| if (P.value() == PoisonMaskElem) |
| return Mask[P.index()] == PoisonMaskElem; |
| auto *EI = |
| cast<ExtractElementInst>(InVectors.front() |
| .get<const TreeEntry *>() |
| ->Scalars[P.index()]); |
| return EI->getVectorOperand() == V1 || |
| EI->getVectorOperand() == V2; |
| }) && |
| "Expected extractelement vectors."); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void add(Value *V1, ArrayRef<int> Mask, bool ForExtracts = false) { |
| if (InVectors.empty()) { |
| assert(CommonMask.empty() && !ForExtracts && |
| "Expected empty input mask/vectors."); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign(1, V1); |
| return; |
| } |
| if (ForExtracts) { |
| // No need to add vectors here, already handled them in adjustExtracts. |
| assert(InVectors.size() == 1 && |
| InVectors.front().is<const TreeEntry *>() && !CommonMask.empty() && |
| all_of(enumerate(CommonMask), |
| [&](auto P) { |
| Value *Scalar = InVectors.front() |
| .get<const TreeEntry *>() |
| ->Scalars[P.index()]; |
| if (P.value() == PoisonMaskElem) |
| return P.value() == Mask[P.index()] || |
| isa<UndefValue>(Scalar); |
| if (isa<Constant>(V1)) |
| return true; |
| auto *EI = cast<ExtractElementInst>(Scalar); |
| return EI->getVectorOperand() == V1; |
| }) && |
| "Expected only tree entry for extractelement vectors."); |
| return; |
| } |
| assert(!InVectors.empty() && !CommonMask.empty() && |
| "Expected only tree entries from extracts/reused buildvectors."); |
| unsigned VF = getVF(V1); |
| if (InVectors.size() == 2) { |
| Cost += createShuffle(InVectors.front(), InVectors.back(), CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| VF = std::max<unsigned>(VF, CommonMask.size()); |
| } else if (const auto *InTE = |
| InVectors.front().dyn_cast<const TreeEntry *>()) { |
| VF = std::max(VF, InTE->getVectorFactor()); |
| } else { |
| VF = std::max( |
| VF, cast<FixedVectorType>(InVectors.front().get<Value *>()->getType()) |
| ->getNumElements()); |
| } |
| InVectors.push_back(V1); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) |
| CommonMask[Idx] = Mask[Idx] + VF; |
| } |
| Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0, |
| Value *Root = nullptr) { |
| Cost += getBuildVectorCost(VL, Root); |
| if (!Root) { |
| // FIXME: Need to find a way to avoid use of getNullValue here. |
| SmallVector<Constant *> Vals; |
| unsigned VF = VL.size(); |
| if (MaskVF != 0) |
| VF = std::min(VF, MaskVF); |
| for (Value *V : VL.take_front(VF)) { |
| if (isa<UndefValue>(V)) { |
| Vals.push_back(cast<Constant>(V)); |
| continue; |
| } |
| Vals.push_back(Constant::getNullValue(V->getType())); |
| } |
| if (auto *VecTy = dyn_cast<FixedVectorType>(Vals.front()->getType())) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| // When REVEC is enabled, we need to expand vector types into scalar |
| // types. |
| unsigned VecTyNumElements = VecTy->getNumElements(); |
| SmallVector<Constant *> NewVals(VF * VecTyNumElements, nullptr); |
| for (auto [I, V] : enumerate(Vals)) { |
| Type *ScalarTy = V->getType()->getScalarType(); |
| Constant *NewVal; |
| if (isa<PoisonValue>(V)) |
| NewVal = PoisonValue::get(ScalarTy); |
| else if (isa<UndefValue>(V)) |
| NewVal = UndefValue::get(ScalarTy); |
| else |
| NewVal = Constant::getNullValue(ScalarTy); |
| std::fill_n(NewVals.begin() + I * VecTyNumElements, VecTyNumElements, |
| NewVal); |
| } |
| Vals.swap(NewVals); |
| } |
| return ConstantVector::get(Vals); |
| } |
| return ConstantVector::getSplat( |
| ElementCount::getFixed( |
| cast<FixedVectorType>(Root->getType())->getNumElements()), |
| getAllOnesValue(*R.DL, ScalarTy->getScalarType())); |
| } |
| InstructionCost createFreeze(InstructionCost Cost) { return Cost; } |
| /// Finalize emission of the shuffles. |
| InstructionCost |
| finalize(ArrayRef<int> ExtMask, |
| ArrayRef<std::pair<const TreeEntry *, unsigned>> SubVectors, |
| unsigned VF = 0, |
| function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) { |
| IsFinalized = true; |
| if (Action) { |
| const PointerUnion<Value *, const TreeEntry *> &Vec = InVectors.front(); |
| if (InVectors.size() == 2) |
| Cost += createShuffle(Vec, InVectors.back(), CommonMask); |
| else |
| Cost += createShuffle(Vec, nullptr, CommonMask); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| assert(VF > 0 && |
| "Expected vector length for the final value before action."); |
| Value *V = Vec.get<Value *>(); |
| Action(V, CommonMask); |
| InVectors.front() = V; |
| } |
| if (!SubVectors.empty()) { |
| const PointerUnion<Value *, const TreeEntry *> &Vec = InVectors.front(); |
| if (InVectors.size() == 2) |
| Cost += createShuffle(Vec, InVectors.back(), CommonMask); |
| else |
| Cost += createShuffle(Vec, nullptr, CommonMask); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| for (auto [E, Idx] : SubVectors) { |
| Type *EScalarTy = E->Scalars.front()->getType(); |
| bool IsSigned = true; |
| if (auto It = R.MinBWs.find(E); It != R.MinBWs.end()) { |
| EScalarTy = |
| IntegerType::get(EScalarTy->getContext(), It->second.first); |
| IsSigned = It->second.second; |
| } |
| if (ScalarTy != EScalarTy) { |
| unsigned CastOpcode = Instruction::Trunc; |
| unsigned DstSz = R.DL->getTypeSizeInBits(ScalarTy); |
| unsigned SrcSz = R.DL->getTypeSizeInBits(EScalarTy); |
| if (DstSz > SrcSz) |
| CastOpcode = IsSigned ? Instruction::SExt : Instruction::ZExt; |
| Cost += TTI.getCastInstrCost( |
| CastOpcode, getWidenedType(ScalarTy, E->getVectorFactor()), |
| getWidenedType(EScalarTy, E->getVectorFactor()), |
| TTI::CastContextHint::Normal, CostKind); |
| } |
| Cost += ::getShuffleCost( |
| TTI, TTI::SK_InsertSubvector, |
| getWidenedType(ScalarTy, CommonMask.size()), {}, CostKind, Idx, |
| getWidenedType(ScalarTy, E->getVectorFactor())); |
| if (!CommonMask.empty()) { |
| std::iota(std::next(CommonMask.begin(), Idx), |
| std::next(CommonMask.begin(), Idx + E->getVectorFactor()), |
| Idx); |
| } |
| } |
| } |
| |
| ::addMask(CommonMask, ExtMask, /*ExtendingManyInputs=*/true); |
| if (CommonMask.empty()) { |
| assert(InVectors.size() == 1 && "Expected only one vector with no mask"); |
| return Cost; |
| } |
| return Cost + |
| createShuffle(InVectors.front(), |
| InVectors.size() == 2 ? InVectors.back() : nullptr, |
| CommonMask); |
| } |
| |
| ~ShuffleCostEstimator() { |
| assert((IsFinalized || CommonMask.empty()) && |
| "Shuffle construction must be finalized."); |
| } |
| }; |
| |
| const BoUpSLP::TreeEntry *BoUpSLP::getOperandEntry(const TreeEntry *E, |
| unsigned Idx) const { |
| if (const TreeEntry *VE = getMatchedVectorizedOperand(E, Idx)) |
| return VE; |
| const auto *It = |
| find_if(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isGather() && |
| find_if(TE->UserTreeIndices, [&](const EdgeInfo &EI) { |
| return EI.EdgeIdx == Idx && EI.UserTE == E; |
| }) != TE->UserTreeIndices.end(); |
| }); |
| assert(It != VectorizableTree.end() && "Expected vectorizable entry."); |
| return It->get(); |
| } |
| |
| TTI::CastContextHint BoUpSLP::getCastContextHint(const TreeEntry &TE) const { |
| if (TE.State == TreeEntry::ScatterVectorize || |
| TE.State == TreeEntry::StridedVectorize) |
| return TTI::CastContextHint::GatherScatter; |
| if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::Load && |
| !TE.isAltShuffle()) { |
| if (TE.ReorderIndices.empty()) |
| return TTI::CastContextHint::Normal; |
| SmallVector<int> Mask; |
| inversePermutation(TE.ReorderIndices, Mask); |
| if (ShuffleVectorInst::isReverseMask(Mask, Mask.size())) |
| return TTI::CastContextHint::Reversed; |
| } |
| return TTI::CastContextHint::None; |
| } |
| |
| /// Builds the arguments types vector for the given call instruction with the |
| /// given \p ID for the specified vector factor. |
| static SmallVector<Type *> buildIntrinsicArgTypes(const CallInst *CI, |
| const Intrinsic::ID ID, |
| const unsigned VF, |
| unsigned MinBW) { |
| SmallVector<Type *> ArgTys; |
| for (auto [Idx, Arg] : enumerate(CI->args())) { |
| if (ID != Intrinsic::not_intrinsic) { |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, Idx)) { |
| ArgTys.push_back(Arg->getType()); |
| continue; |
| } |
| if (MinBW > 0) { |
| ArgTys.push_back( |
| getWidenedType(IntegerType::get(CI->getContext(), MinBW), VF)); |
| continue; |
| } |
| } |
| ArgTys.push_back(getWidenedType(Arg->getType(), VF)); |
| } |
| return ArgTys; |
| } |
| |
| InstructionCost |
| BoUpSLP::getEntryCost(const TreeEntry *E, ArrayRef<Value *> VectorizedVals, |
| SmallPtrSetImpl<Value *> &CheckedExtracts) { |
| ArrayRef<Value *> VL = E->Scalars; |
| |
| Type *ScalarTy = getValueType(VL[0]); |
| if (!isValidElementType(ScalarTy)) |
| return InstructionCost::getInvalid(); |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| // If we have computed a smaller type for the expression, update VecTy so |
| // that the costs will be accurate. |
| auto It = MinBWs.find(E); |
| Type *OrigScalarTy = ScalarTy; |
| if (It != MinBWs.end()) { |
| auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy); |
| ScalarTy = IntegerType::get(F->getContext(), It->second.first); |
| if (VecTy) |
| ScalarTy = getWidenedType(ScalarTy, VecTy->getNumElements()); |
| } |
| auto *VecTy = getWidenedType(ScalarTy, VL.size()); |
| unsigned EntryVF = E->getVectorFactor(); |
| auto *FinalVecTy = getWidenedType(ScalarTy, EntryVF); |
| |
| bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); |
| if (E->isGather()) { |
| if (allConstant(VL)) |
| return 0; |
| if (isa<InsertElementInst>(VL[0])) |
| return InstructionCost::getInvalid(); |
| if (isa<CmpInst>(VL.front())) |
| ScalarTy = VL.front()->getType(); |
| return processBuildVector<ShuffleCostEstimator, InstructionCost>( |
| E, ScalarTy, *TTI, VectorizedVals, *this, CheckedExtracts); |
| } |
| InstructionCost CommonCost = 0; |
| SmallVector<int> Mask; |
| bool IsReverseOrder = isReverseOrder(E->ReorderIndices); |
| if (!E->ReorderIndices.empty() && |
| (E->State != TreeEntry::StridedVectorize || !IsReverseOrder)) { |
| SmallVector<int> NewMask; |
| if (E->getOpcode() == Instruction::Store) { |
| // For stores the order is actually a mask. |
| NewMask.resize(E->ReorderIndices.size()); |
| copy(E->ReorderIndices, NewMask.begin()); |
| } else { |
| inversePermutation(E->ReorderIndices, NewMask); |
| } |
| ::addMask(Mask, NewMask); |
| } |
| if (NeedToShuffleReuses) |
| ::addMask(Mask, E->ReuseShuffleIndices); |
| if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask, Mask.size())) |
| CommonCost = |
| ::getShuffleCost(*TTI, TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); |
| assert((E->State == TreeEntry::Vectorize || |
| E->State == TreeEntry::ScatterVectorize || |
| E->State == TreeEntry::StridedVectorize) && |
| "Unhandled state"); |
| assert(E->getOpcode() && |
| ((allSameType(VL) && allSameBlock(VL)) || |
| (E->getOpcode() == Instruction::GetElementPtr && |
| E->getMainOp()->getType()->isPointerTy())) && |
| "Invalid VL"); |
| Instruction *VL0 = E->getMainOp(); |
| unsigned ShuffleOrOp = |
| E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); |
| if (E->CombinedOp != TreeEntry::NotCombinedOp) |
| ShuffleOrOp = E->CombinedOp; |
| SmallSetVector<Value *, 16> UniqueValues(VL.begin(), VL.end()); |
| const unsigned Sz = UniqueValues.size(); |
| SmallBitVector UsedScalars(Sz, false); |
| for (unsigned I = 0; I < Sz; ++I) { |
| if (getTreeEntry(UniqueValues[I]) == E) |
| continue; |
| UsedScalars.set(I); |
| } |
| auto GetCastContextHint = [&](Value *V) { |
| if (const TreeEntry *OpTE = getTreeEntry(V)) |
| return getCastContextHint(*OpTE); |
| InstructionsState SrcState = getSameOpcode(E->getOperand(0), *TLI); |
| if (SrcState.getOpcode() == Instruction::Load && !SrcState.isAltShuffle()) |
| return TTI::CastContextHint::GatherScatter; |
| return TTI::CastContextHint::None; |
| }; |
| auto GetCostDiff = |
| [=](function_ref<InstructionCost(unsigned)> ScalarEltCost, |
| function_ref<InstructionCost(InstructionCost)> VectorCost) { |
| // Calculate the cost of this instruction. |
| InstructionCost ScalarCost = 0; |
| if (isa<CastInst, CallInst>(VL0)) { |
| // For some of the instructions no need to calculate cost for each |
| // particular instruction, we can use the cost of the single |
| // instruction x total number of scalar instructions. |
| ScalarCost = (Sz - UsedScalars.count()) * ScalarEltCost(0); |
| } else { |
| for (unsigned I = 0; I < Sz; ++I) { |
| if (UsedScalars.test(I)) |
| continue; |
| ScalarCost += ScalarEltCost(I); |
| } |
| } |
| |
| InstructionCost VecCost = VectorCost(CommonCost); |
| // Check if the current node must be resized, if the parent node is not |
| // resized. |
| if (It != MinBWs.end() && !UnaryInstruction::isCast(E->getOpcode()) && |
| E->Idx != 0 && |
| (E->getOpcode() != Instruction::Load || |
| !E->UserTreeIndices.empty())) { |
| const EdgeInfo &EI = |
| *find_if(E->UserTreeIndices, [](const EdgeInfo &EI) { |
| return !EI.UserTE->isGather() || EI.EdgeIdx != UINT_MAX; |
| }); |
| if (EI.UserTE->getOpcode() != Instruction::Select || |
| EI.EdgeIdx != 0) { |
| auto UserBWIt = MinBWs.find(EI.UserTE); |
| Type *UserScalarTy = |
| EI.UserTE->getOperand(EI.EdgeIdx).front()->getType(); |
| if (UserBWIt != MinBWs.end()) |
| UserScalarTy = IntegerType::get(ScalarTy->getContext(), |
| UserBWIt->second.first); |
| if (ScalarTy != UserScalarTy) { |
| unsigned BWSz = DL->getTypeSizeInBits(ScalarTy); |
| unsigned SrcBWSz = DL->getTypeSizeInBits(UserScalarTy); |
| unsigned VecOpcode; |
| auto *UserVecTy = getWidenedType(UserScalarTy, E->Scalars.size()); |
| if (BWSz > SrcBWSz) |
| VecOpcode = Instruction::Trunc; |
| else |
| VecOpcode = |
| It->second.second ? Instruction::SExt : Instruction::ZExt; |
| TTI::CastContextHint CCH = GetCastContextHint(VL0); |
| VecCost += TTI->getCastInstrCost(VecOpcode, UserVecTy, VecTy, CCH, |
| CostKind); |
| } |
| } |
| } |
| LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost - CommonCost, |
| ScalarCost, "Calculated costs for Tree")); |
| return VecCost - ScalarCost; |
| }; |
| // Calculate cost difference from vectorizing set of GEPs. |
| // Negative value means vectorizing is profitable. |
| auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) { |
| assert((E->State == TreeEntry::Vectorize || |
| E->State == TreeEntry::StridedVectorize) && |
| "Entry state expected to be Vectorize or StridedVectorize here."); |
| InstructionCost ScalarCost = 0; |
| InstructionCost VecCost = 0; |
| std::tie(ScalarCost, VecCost) = getGEPCosts( |
| *TTI, Ptrs, BasePtr, E->getOpcode(), CostKind, OrigScalarTy, VecTy); |
| LLVM_DEBUG(dumpTreeCosts(E, 0, VecCost, ScalarCost, |
| "Calculated GEPs cost for Tree")); |
| |
| return VecCost - ScalarCost; |
| }; |
| |
| auto GetMinMaxCost = [&](Type *Ty, Instruction *VI = nullptr) { |
| auto [MinMaxID, SelectOnly] = canConvertToMinOrMaxIntrinsic(VI ? VI : VL); |
| if (MinMaxID == Intrinsic::not_intrinsic) |
| return InstructionCost::getInvalid(); |
| Type *CanonicalType = Ty; |
| if (CanonicalType->isPtrOrPtrVectorTy()) |
| CanonicalType = CanonicalType->getWithNewType(IntegerType::get( |
| CanonicalType->getContext(), |
| DL->getTypeSizeInBits(CanonicalType->getScalarType()))); |
| |
| IntrinsicCostAttributes CostAttrs(MinMaxID, CanonicalType, |
| {CanonicalType, CanonicalType}); |
| InstructionCost IntrinsicCost = |
| TTI->getIntrinsicInstrCost(CostAttrs, CostKind); |
| // If the selects are the only uses of the compares, they will be |
| // dead and we can adjust the cost by removing their cost. |
| if (VI && SelectOnly) { |
| assert(!Ty->isVectorTy() && "Expected only for scalar type."); |
| auto *CI = cast<CmpInst>(VI->getOperand(0)); |
| IntrinsicCost -= TTI->getCmpSelInstrCost( |
| CI->getOpcode(), Ty, Builder.getInt1Ty(), CI->getPredicate(), |
| CostKind, {TTI::OK_AnyValue, TTI::OP_None}, |
| {TTI::OK_AnyValue, TTI::OP_None}, CI); |
| } |
| return IntrinsicCost; |
| }; |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| // Count reused scalars. |
| InstructionCost ScalarCost = 0; |
| SmallPtrSet<const TreeEntry *, 4> CountedOps; |
| for (Value *V : UniqueValues) { |
| auto *PHI = dyn_cast<PHINode>(V); |
| if (!PHI) |
| continue; |
| |
| ValueList Operands(PHI->getNumIncomingValues(), nullptr); |
| for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) { |
| Value *Op = PHI->getIncomingValue(I); |
| Operands[I] = Op; |
| } |
| if (const TreeEntry *OpTE = getTreeEntry(Operands.front())) |
| if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second) |
| if (!OpTE->ReuseShuffleIndices.empty()) |
| ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() - |
| OpTE->Scalars.size()); |
| } |
| |
| return CommonCost - ScalarCost; |
| } |
| case Instruction::ExtractValue: |
| case Instruction::ExtractElement: { |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *I = cast<Instruction>(UniqueValues[Idx]); |
| VectorType *SrcVecTy; |
| if (ShuffleOrOp == Instruction::ExtractElement) { |
| auto *EE = cast<ExtractElementInst>(I); |
| SrcVecTy = EE->getVectorOperandType(); |
| } else { |
| auto *EV = cast<ExtractValueInst>(I); |
| Type *AggregateTy = EV->getAggregateOperand()->getType(); |
| unsigned NumElts; |
| if (auto *ATy = dyn_cast<ArrayType>(AggregateTy)) |
| NumElts = ATy->getNumElements(); |
| else |
| NumElts = AggregateTy->getStructNumElements(); |
| SrcVecTy = getWidenedType(OrigScalarTy, NumElts); |
| } |
| if (I->hasOneUse()) { |
| Instruction *Ext = I->user_back(); |
| if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && |
| all_of(Ext->users(), IsaPred<GetElementPtrInst>)) { |
| // Use getExtractWithExtendCost() to calculate the cost of |
| // extractelement/ext pair. |
| InstructionCost Cost = TTI->getExtractWithExtendCost( |
| Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I)); |
| // Subtract the cost of s|zext which is subtracted separately. |
| Cost -= TTI->getCastInstrCost( |
| Ext->getOpcode(), Ext->getType(), I->getType(), |
| TTI::getCastContextHint(Ext), CostKind, Ext); |
| return Cost; |
| } |
| } |
| return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy, |
| CostKind, *getExtractIndex(I)); |
| }; |
| auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::InsertElement: { |
| assert(E->ReuseShuffleIndices.empty() && |
| "Unique insertelements only are expected."); |
| auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); |
| unsigned const NumElts = SrcVecTy->getNumElements(); |
| unsigned const NumScalars = VL.size(); |
| |
| unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); |
| |
| SmallVector<int> InsertMask(NumElts, PoisonMaskElem); |
| unsigned OffsetBeg = *getElementIndex(VL.front()); |
| unsigned OffsetEnd = OffsetBeg; |
| InsertMask[OffsetBeg] = 0; |
| for (auto [I, V] : enumerate(VL.drop_front())) { |
| unsigned Idx = *getElementIndex(V); |
| if (OffsetBeg > Idx) |
| OffsetBeg = Idx; |
| else if (OffsetEnd < Idx) |
| OffsetEnd = Idx; |
| InsertMask[Idx] = I + 1; |
| } |
| unsigned VecScalarsSz = PowerOf2Ceil(NumElts); |
| if (NumOfParts > 0 && NumOfParts < NumElts) |
| VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); |
| unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * |
| VecScalarsSz; |
| unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); |
| unsigned InsertVecSz = std::min<unsigned>( |
| PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), |
| ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz); |
| bool IsWholeSubvector = |
| OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); |
| // Check if we can safely insert a subvector. If it is not possible, just |
| // generate a whole-sized vector and shuffle the source vector and the new |
| // subvector. |
| if (OffsetBeg + InsertVecSz > VecSz) { |
| // Align OffsetBeg to generate correct mask. |
| OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); |
| InsertVecSz = VecSz; |
| } |
| |
| APInt DemandedElts = APInt::getZero(NumElts); |
| // TODO: Add support for Instruction::InsertValue. |
| SmallVector<int> Mask; |
| if (!E->ReorderIndices.empty()) { |
| inversePermutation(E->ReorderIndices, Mask); |
| Mask.append(InsertVecSz - Mask.size(), PoisonMaskElem); |
| } else { |
| Mask.assign(VecSz, PoisonMaskElem); |
| std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); |
| } |
| bool IsIdentity = true; |
| SmallVector<int> PrevMask(InsertVecSz, PoisonMaskElem); |
| Mask.swap(PrevMask); |
| for (unsigned I = 0; I < NumScalars; ++I) { |
| unsigned InsertIdx = *getElementIndex(VL[PrevMask[I]]); |
| DemandedElts.setBit(InsertIdx); |
| IsIdentity &= InsertIdx - OffsetBeg == I; |
| Mask[InsertIdx - OffsetBeg] = I; |
| } |
| assert(Offset < NumElts && "Failed to find vector index offset"); |
| |
| InstructionCost Cost = 0; |
| Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, |
| /*Insert*/ true, /*Extract*/ false, |
| CostKind); |
| |
| // First cost - resize to actual vector size if not identity shuffle or |
| // need to shift the vector. |
| // Do not calculate the cost if the actual size is the register size and |
| // we can merge this shuffle with the following SK_Select. |
| auto *InsertVecTy = getWidenedType(ScalarTy, InsertVecSz); |
| if (!IsIdentity) |
| Cost += ::getShuffleCost(*TTI, TargetTransformInfo::SK_PermuteSingleSrc, |
| InsertVecTy, Mask); |
| auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { |
| return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); |
| })); |
| // Second cost - permutation with subvector, if some elements are from the |
| // initial vector or inserting a subvector. |
| // TODO: Implement the analysis of the FirstInsert->getOperand(0) |
| // subvector of ActualVecTy. |
| SmallBitVector InMask = |
| isUndefVector(FirstInsert->getOperand(0), |
| buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask)); |
| if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) { |
| if (InsertVecSz != VecSz) { |
| auto *ActualVecTy = getWidenedType(ScalarTy, VecSz); |
| Cost += ::getShuffleCost(*TTI, TTI::SK_InsertSubvector, ActualVecTy, {}, |
| CostKind, OffsetBeg - Offset, InsertVecTy); |
| } else { |
| for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) |
| Mask[I] = InMask.test(I) ? PoisonMaskElem : I; |
| for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; |
| I <= End; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Mask[I] = I + VecSz; |
| for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) |
| Mask[I] = |
| ((I >= InMask.size()) || InMask.test(I)) ? PoisonMaskElem : I; |
| Cost += |
| ::getShuffleCost(*TTI, TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); |
| } |
| } |
| return Cost; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| auto SrcIt = MinBWs.find(getOperandEntry(E, 0)); |
| Type *SrcScalarTy = VL0->getOperand(0)->getType(); |
| auto *SrcVecTy = getWidenedType(SrcScalarTy, VL.size()); |
| unsigned Opcode = ShuffleOrOp; |
| unsigned VecOpcode = Opcode; |
| if (!ScalarTy->isFPOrFPVectorTy() && !SrcScalarTy->isFPOrFPVectorTy() && |
| (SrcIt != MinBWs.end() || It != MinBWs.end())) { |
| // Check if the values are candidates to demote. |
| unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy->getScalarType()); |
| if (SrcIt != MinBWs.end()) { |
| SrcBWSz = SrcIt->second.first; |
| unsigned SrcScalarTyNumElements = getNumElements(SrcScalarTy); |
| SrcScalarTy = IntegerType::get(F->getContext(), SrcBWSz); |
| SrcVecTy = |
| getWidenedType(SrcScalarTy, VL.size() * SrcScalarTyNumElements); |
| } |
| unsigned BWSz = DL->getTypeSizeInBits(ScalarTy->getScalarType()); |
| if (BWSz == SrcBWSz) { |
| VecOpcode = Instruction::BitCast; |
| } else if (BWSz < SrcBWSz) { |
| VecOpcode = Instruction::Trunc; |
| } else if (It != MinBWs.end()) { |
| assert(BWSz > SrcBWSz && "Invalid cast!"); |
| VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt; |
| } else if (SrcIt != MinBWs.end()) { |
| assert(BWSz > SrcBWSz && "Invalid cast!"); |
| VecOpcode = |
| SrcIt->second.second ? Instruction::SExt : Instruction::ZExt; |
| } |
| } else if (VecOpcode == Instruction::SIToFP && SrcIt != MinBWs.end() && |
| !SrcIt->second.second) { |
| VecOpcode = Instruction::UIToFP; |
| } |
| auto GetScalarCost = [&](unsigned Idx) -> InstructionCost { |
| auto *VI = cast<Instruction>(UniqueValues[Idx]); |
| return TTI->getCastInstrCost(Opcode, VL0->getType(), |
| VL0->getOperand(0)->getType(), |
| TTI::getCastContextHint(VI), CostKind, VI); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| // Do not count cost here if minimum bitwidth is in effect and it is just |
| // a bitcast (here it is just a noop). |
| if (VecOpcode != Opcode && VecOpcode == Instruction::BitCast) |
| return CommonCost; |
| auto *VI = VL0->getOpcode() == Opcode ? VL0 : nullptr; |
| TTI::CastContextHint CCH = GetCastContextHint(VL0->getOperand(0)); |
| return CommonCost + |
| TTI->getCastInstrCost(VecOpcode, VecTy, SrcVecTy, CCH, CostKind, |
| VecOpcode == Opcode ? VI : nullptr); |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| case Instruction::Select: { |
| CmpInst::Predicate VecPred, SwappedVecPred; |
| auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value()); |
| if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) || |
| match(VL0, MatchCmp)) |
| SwappedVecPred = CmpInst::getSwappedPredicate(VecPred); |
| else |
| SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *VI = cast<Instruction>(UniqueValues[Idx]); |
| CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); |
| if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) && |
| !match(VI, MatchCmp)) || |
| (CurrentPred != VecPred && CurrentPred != SwappedVecPred)) |
| VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| |
| InstructionCost ScalarCost = TTI->getCmpSelInstrCost( |
| E->getOpcode(), OrigScalarTy, Builder.getInt1Ty(), CurrentPred, |
| CostKind, getOperandInfo(VI->getOperand(0)), |
| getOperandInfo(VI->getOperand(1)), VI); |
| InstructionCost IntrinsicCost = GetMinMaxCost(OrigScalarTy, VI); |
| if (IntrinsicCost.isValid()) |
| ScalarCost = IntrinsicCost; |
| |
| return ScalarCost; |
| }; |
| auto GetVectorCost = [&](InstructionCost CommonCost) { |
| auto *MaskTy = getWidenedType(Builder.getInt1Ty(), VL.size()); |
| |
| InstructionCost VecCost = |
| TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VecPred, |
| CostKind, getOperandInfo(E->getOperand(0)), |
| getOperandInfo(E->getOperand(1)), VL0); |
| if (auto *SI = dyn_cast<SelectInst>(VL0)) { |
| auto *CondType = |
| getWidenedType(SI->getCondition()->getType(), VL.size()); |
| unsigned CondNumElements = CondType->getNumElements(); |
| unsigned VecTyNumElements = getNumElements(VecTy); |
| assert(VecTyNumElements >= CondNumElements && |
| VecTyNumElements % CondNumElements == 0 && |
| "Cannot vectorize Instruction::Select"); |
| if (CondNumElements != VecTyNumElements) { |
| // When the return type is i1 but the source is fixed vector type, we |
| // need to duplicate the condition value. |
| VecCost += ::getShuffleCost( |
| *TTI, TTI::SK_PermuteSingleSrc, CondType, |
| createReplicatedMask(VecTyNumElements / CondNumElements, |
| CondNumElements)); |
| } |
| } |
| return VecCost + CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case TreeEntry::MinMax: { |
| auto GetScalarCost = [&](unsigned Idx) { |
| return GetMinMaxCost(OrigScalarTy); |
| }; |
| auto GetVectorCost = [&](InstructionCost CommonCost) { |
| InstructionCost VecCost = GetMinMaxCost(VecTy); |
| return VecCost + CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *VI = cast<Instruction>(UniqueValues[Idx]); |
| unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1; |
| TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0)); |
| TTI::OperandValueInfo Op2Info = |
| TTI::getOperandInfo(VI->getOperand(OpIdx)); |
| SmallVector<const Value *> Operands(VI->operand_values()); |
| return TTI->getArithmeticInstrCost(ShuffleOrOp, OrigScalarTy, CostKind, |
| Op1Info, Op2Info, Operands, VI); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| if (ShuffleOrOp == Instruction::And && It != MinBWs.end()) { |
| for (unsigned I : seq<unsigned>(0, E->getNumOperands())) { |
| ArrayRef<Value *> Ops = E->getOperand(I); |
| if (all_of(Ops, [&](Value *Op) { |
| auto *CI = dyn_cast<ConstantInt>(Op); |
| return CI && CI->getValue().countr_one() >= It->second.first; |
| })) |
| return CommonCost; |
| } |
| } |
| unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1; |
| TTI::OperandValueInfo Op1Info = getOperandInfo(E->getOperand(0)); |
| TTI::OperandValueInfo Op2Info = getOperandInfo(E->getOperand(OpIdx)); |
| return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info, |
| Op2Info, {}, nullptr, TLI) + |
| CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::GetElementPtr: { |
| return CommonCost + GetGEPCostDiff(VL, VL0); |
| } |
| case Instruction::Load: { |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *VI = cast<LoadInst>(UniqueValues[Idx]); |
| return TTI->getMemoryOpCost(Instruction::Load, OrigScalarTy, |
| VI->getAlign(), VI->getPointerAddressSpace(), |
| CostKind, TTI::OperandValueInfo(), VI); |
| }; |
| auto *LI0 = cast<LoadInst>(VL0); |
| auto GetVectorCost = [&](InstructionCost CommonCost) { |
| InstructionCost VecLdCost; |
| if (E->State == TreeEntry::Vectorize) { |
| VecLdCost = TTI->getMemoryOpCost( |
| Instruction::Load, VecTy, LI0->getAlign(), |
| LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo()); |
| } else if (E->State == TreeEntry::StridedVectorize) { |
| Align CommonAlignment = |
| computeCommonAlignment<LoadInst>(UniqueValues.getArrayRef()); |
| VecLdCost = TTI->getStridedMemoryOpCost( |
| Instruction::Load, VecTy, LI0->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind); |
| } else { |
| assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); |
| Align CommonAlignment = |
| computeCommonAlignment<LoadInst>(UniqueValues.getArrayRef()); |
| VecLdCost = TTI->getGatherScatterOpCost( |
| Instruction::Load, VecTy, LI0->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind); |
| } |
| return VecLdCost + CommonCost; |
| }; |
| |
| InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost); |
| // If this node generates masked gather load then it is not a terminal node. |
| // Hence address operand cost is estimated separately. |
| if (E->State == TreeEntry::ScatterVectorize) |
| return Cost; |
| |
| // Estimate cost of GEPs since this tree node is a terminator. |
| SmallVector<Value *> PointerOps(VL.size()); |
| for (auto [I, V] : enumerate(VL)) |
| PointerOps[I] = cast<LoadInst>(V)->getPointerOperand(); |
| return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand()); |
| } |
| case Instruction::Store: { |
| bool IsReorder = !E->ReorderIndices.empty(); |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<StoreInst>(VL[Idx]); |
| TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(VI->getValueOperand()); |
| return TTI->getMemoryOpCost(Instruction::Store, OrigScalarTy, |
| VI->getAlign(), VI->getPointerAddressSpace(), |
| CostKind, OpInfo, VI); |
| }; |
| auto *BaseSI = |
| cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| // We know that we can merge the stores. Calculate the cost. |
| InstructionCost VecStCost; |
| if (E->State == TreeEntry::StridedVectorize) { |
| Align CommonAlignment = |
| computeCommonAlignment<StoreInst>(UniqueValues.getArrayRef()); |
| VecStCost = TTI->getStridedMemoryOpCost( |
| Instruction::Store, VecTy, BaseSI->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind); |
| } else { |
| assert(E->State == TreeEntry::Vectorize && |
| "Expected either strided or consecutive stores."); |
| TTI::OperandValueInfo OpInfo = getOperandInfo(E->getOperand(0)); |
| VecStCost = TTI->getMemoryOpCost( |
| Instruction::Store, VecTy, BaseSI->getAlign(), |
| BaseSI->getPointerAddressSpace(), CostKind, OpInfo); |
| } |
| return VecStCost + CommonCost; |
| }; |
| SmallVector<Value *> PointerOps(VL.size()); |
| for (auto [I, V] : enumerate(VL)) { |
| unsigned Idx = IsReorder ? E->ReorderIndices[I] : I; |
| PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand(); |
| } |
| |
| return GetCostDiff(GetScalarCost, GetVectorCost) + |
| GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand()); |
| } |
| case Instruction::Call: { |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *CI = cast<CallInst>(UniqueValues[Idx]); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| if (ID != Intrinsic::not_intrinsic) { |
| IntrinsicCostAttributes CostAttrs(ID, *CI, 1); |
| return TTI->getIntrinsicInstrCost(CostAttrs, CostKind); |
| } |
| return TTI->getCallInstrCost(CI->getCalledFunction(), |
| CI->getFunctionType()->getReturnType(), |
| CI->getFunctionType()->params(), CostKind); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| auto *CI = cast<CallInst>(VL0); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| SmallVector<Type *> ArgTys = |
| buildIntrinsicArgTypes(CI, ID, VecTy->getNumElements(), |
| It != MinBWs.end() ? It->second.first : 0); |
| auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI, ArgTys); |
| return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::ShuffleVector: { |
| if (!SLPReVec || E->isAltShuffle()) |
| assert(E->isAltShuffle() && |
| ((Instruction::isBinaryOp(E->getOpcode()) && |
| Instruction::isBinaryOp(E->getAltOpcode())) || |
| (Instruction::isCast(E->getOpcode()) && |
| Instruction::isCast(E->getAltOpcode())) || |
| (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && |
| "Invalid Shuffle Vector Operand"); |
| // Try to find the previous shuffle node with the same operands and same |
| // main/alternate ops. |
| auto TryFindNodeWithEqualOperands = [=]() { |
| for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| if (TE.get() == E) |
| break; |
| if (TE->isAltShuffle() && |
| ((TE->getOpcode() == E->getOpcode() && |
| TE->getAltOpcode() == E->getAltOpcode()) || |
| (TE->getOpcode() == E->getAltOpcode() && |
| TE->getAltOpcode() == E->getOpcode())) && |
| TE->hasEqualOperands(*E)) |
| return true; |
| } |
| return false; |
| }; |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *VI = cast<Instruction>(UniqueValues[Idx]); |
| assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode"); |
| (void)E; |
| return TTI->getInstructionCost(VI, CostKind); |
| }; |
| // Need to clear CommonCost since the final shuffle cost is included into |
| // vector cost. |
| auto GetVectorCost = [&, &TTIRef = *TTI](InstructionCost) { |
| // VecCost is equal to sum of the cost of creating 2 vectors |
| // and the cost of creating shuffle. |
| InstructionCost VecCost = 0; |
| if (TryFindNodeWithEqualOperands()) { |
| LLVM_DEBUG({ |
| dbgs() << "SLP: diamond match for alternate node found.\n"; |
| E->dump(); |
| }); |
| // No need to add new vector costs here since we're going to reuse |
| // same main/alternate vector ops, just do different shuffling. |
| } else if (Instruction::isBinaryOp(E->getOpcode())) { |
| VecCost = |
| TTIRef.getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); |
| VecCost += |
| TTIRef.getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind); |
| } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { |
| auto *MaskTy = getWidenedType(Builder.getInt1Ty(), VL.size()); |
| VecCost = TTIRef.getCmpSelInstrCost( |
| E->getOpcode(), VecTy, MaskTy, CI0->getPredicate(), CostKind, |
| {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, |
| VL0); |
| VecCost += TTIRef.getCmpSelInstrCost( |
| E->getOpcode(), VecTy, MaskTy, |
| cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, |
| {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, |
| E->getAltOp()); |
| } else { |
| Type *SrcSclTy = E->getMainOp()->getOperand(0)->getType(); |
| auto *SrcTy = getWidenedType(SrcSclTy, VL.size()); |
| if (SrcSclTy->isIntegerTy() && ScalarTy->isIntegerTy()) { |
| auto SrcIt = MinBWs.find(getOperandEntry(E, 0)); |
| unsigned BWSz = DL->getTypeSizeInBits(ScalarTy); |
| unsigned SrcBWSz = |
| DL->getTypeSizeInBits(E->getMainOp()->getOperand(0)->getType()); |
| if (SrcIt != MinBWs.end()) { |
| SrcBWSz = SrcIt->second.first; |
| SrcSclTy = IntegerType::get(SrcSclTy->getContext(), SrcBWSz); |
| SrcTy = getWidenedType(SrcSclTy, VL.size()); |
| } |
| if (BWSz <= SrcBWSz) { |
| if (BWSz < SrcBWSz) |
| VecCost = |
| TTIRef.getCastInstrCost(Instruction::Trunc, VecTy, SrcTy, |
| TTI::CastContextHint::None, CostKind); |
| LLVM_DEBUG({ |
| dbgs() |
| << "SLP: alternate extension, which should be truncated.\n"; |
| E->dump(); |
| }); |
| return VecCost; |
| } |
| } |
| VecCost = TTIRef.getCastInstrCost(E->getOpcode(), VecTy, SrcTy, |
| TTI::CastContextHint::None, CostKind); |
| VecCost += |
| TTIRef.getCastInstrCost(E->getAltOpcode(), VecTy, SrcTy, |
| TTI::CastContextHint::None, CostKind); |
| } |
| SmallVector<int> Mask; |
| E->buildAltOpShuffleMask( |
| [&](Instruction *I) { |
| assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); |
| return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(), |
| *TLI); |
| }, |
| Mask); |
| VecCost += ::getShuffleCost(TTIRef, TargetTransformInfo::SK_PermuteTwoSrc, |
| FinalVecTy, Mask, CostKind); |
| // Patterns like [fadd,fsub] can be combined into a single instruction |
| // in x86. Reordering them into [fsub,fadd] blocks this pattern. So we |
| // need to take into account their order when looking for the most used |
| // order. |
| unsigned Opcode0 = E->getOpcode(); |
| unsigned Opcode1 = E->getAltOpcode(); |
| SmallBitVector OpcodeMask(getAltInstrMask(E->Scalars, Opcode0, Opcode1)); |
| // If this pattern is supported by the target then we consider the |
| // order. |
| if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { |
| InstructionCost AltVecCost = TTIRef.getAltInstrCost( |
| VecTy, Opcode0, Opcode1, OpcodeMask, CostKind); |
| return AltVecCost < VecCost ? AltVecCost : VecCost; |
| } |
| // TODO: Check the reverse order too. |
| return VecCost; |
| }; |
| if (SLPReVec && !E->isAltShuffle()) |
| return GetCostDiff( |
| GetScalarCost, [&](InstructionCost) -> InstructionCost { |
| // If a group uses mask in order, the shufflevector can be |
| // eliminated by instcombine. Then the cost is 0. |
| assert(isa<ShuffleVectorInst>(VL.front()) && |
| "Not supported shufflevector usage."); |
| auto *SV = cast<ShuffleVectorInst>(VL.front()); |
| unsigned SVNumElements = |
| cast<FixedVectorType>(SV->getOperand(0)->getType()) |
| ->getNumElements(); |
| unsigned GroupSize = SVNumElements / SV->getShuffleMask().size(); |
| for (size_t I = 0, End = VL.size(); I != End; I += GroupSize) { |
| ArrayRef<Value *> Group = VL.slice(I, GroupSize); |
| int NextIndex = 0; |
| if (!all_of(Group, [&](Value *V) { |
| assert(isa<ShuffleVectorInst>(V) && |
| "Not supported shufflevector usage."); |
| auto *SV = cast<ShuffleVectorInst>(V); |
| int Index; |
| [[maybe_unused]] bool IsExtractSubvectorMask = |
| SV->isExtractSubvectorMask(Index); |
| assert(IsExtractSubvectorMask && |
| "Not supported shufflevector usage."); |
| if (NextIndex != Index) |
| return false; |
| NextIndex += SV->getShuffleMask().size(); |
| return true; |
| })) |
| return ::getShuffleCost( |
| *TTI, TargetTransformInfo::SK_PermuteSingleSrc, VecTy, |
| calculateShufflevectorMask(E->Scalars)); |
| } |
| return TTI::TCC_Free; |
| }); |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::Freeze: |
| return CommonCost; |
| default: |
| llvm_unreachable("Unknown instruction"); |
| } |
| } |
| |
| bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { |
| LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " |
| << VectorizableTree.size() << " is fully vectorizable .\n"); |
| |
| auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { |
| SmallVector<int> Mask; |
| return TE->isGather() && |
| !any_of(TE->Scalars, |
| [this](Value *V) { return EphValues.contains(V); }) && |
| (allConstant(TE->Scalars) || isSplat(TE->Scalars) || |
| TE->Scalars.size() < Limit || |
| ((TE->getOpcode() == Instruction::ExtractElement || |
| all_of(TE->Scalars, IsaPred<ExtractElementInst, UndefValue>)) && |
| isFixedVectorShuffle(TE->Scalars, Mask)) || |
| (TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()) || |
| any_of(TE->Scalars, IsaPred<LoadInst>)); |
| }; |
| |
| // We only handle trees of heights 1 and 2. |
| if (VectorizableTree.size() == 1 && |
| (VectorizableTree[0]->State == TreeEntry::Vectorize || |
| VectorizableTree[0]->State == TreeEntry::StridedVectorize || |
| (ForReduction && |
| AreVectorizableGathers(VectorizableTree[0].get(), |
| VectorizableTree[0]->Scalars.size()) && |
| VectorizableTree[0]->getVectorFactor() > 2))) |
| return true; |
| |
| if (VectorizableTree.size() != 2) |
| return false; |
| |
| // Handle splat and all-constants stores. Also try to vectorize tiny trees |
| // with the second gather nodes if they have less scalar operands rather than |
| // the initial tree element (may be profitable to shuffle the second gather) |
| // or they are extractelements, which form shuffle. |
| SmallVector<int> Mask; |
| if (VectorizableTree[0]->State == TreeEntry::Vectorize && |
| AreVectorizableGathers(VectorizableTree[1].get(), |
| VectorizableTree[0]->Scalars.size())) |
| return true; |
| |
| // Gathering cost would be too much for tiny trees. |
| if (VectorizableTree[0]->isGather() || |
| (VectorizableTree[1]->isGather() && |
| VectorizableTree[0]->State != TreeEntry::ScatterVectorize && |
| VectorizableTree[0]->State != TreeEntry::StridedVectorize)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, |
| TargetTransformInfo *TTI, |
| bool MustMatchOrInst) { |
| // Look past the root to find a source value. Arbitrarily follow the |
| // path through operand 0 of any 'or'. Also, peek through optional |
| // shift-left-by-multiple-of-8-bits. |
| Value *ZextLoad = Root; |
| const APInt *ShAmtC; |
| bool FoundOr = false; |
| while (!isa<ConstantExpr>(ZextLoad) && |
| (match(ZextLoad, m_Or(m_Value(), m_Value())) || |
| (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && |
| ShAmtC->urem(8) == 0))) { |
| auto *BinOp = cast<BinaryOperator>(ZextLoad); |
| ZextLoad = BinOp->getOperand(0); |
| if (BinOp->getOpcode() == Instruction::Or) |
| FoundOr = true; |
| } |
| // Check if the input is an extended load of the required or/shift expression. |
| Value *Load; |
| if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || |
| !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) |
| return false; |
| |
| // Require that the total load bit width is a legal integer type. |
| // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. |
| // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. |
| Type *SrcTy = Load->getType(); |
| unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; |
| if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) |
| return false; |
| |
| // Everything matched - assume that we can fold the whole sequence using |
| // load combining. |
| LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " |
| << *(cast<Instruction>(Root)) << "\n"); |
| |
| return true; |
| } |
| |
| bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { |
| if (RdxKind != RecurKind::Or) |
| return false; |
| |
| unsigned NumElts = VectorizableTree[0]->Scalars.size(); |
| Value *FirstReduced = VectorizableTree[0]->Scalars[0]; |
| return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, |
| /* MatchOr */ false); |
| } |
| |
| bool BoUpSLP::isLoadCombineCandidate(ArrayRef<Value *> Stores) const { |
| // Peek through a final sequence of stores and check if all operations are |
| // likely to be load-combined. |
| unsigned NumElts = Stores.size(); |
| for (Value *Scalar : Stores) { |
| Value *X; |
| if (!match(Scalar, m_Store(m_Value(X), m_Value())) || |
| !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { |
| if (!DebugCounter::shouldExecute(VectorizedGraphs)) |
| return true; |
| |
| // No need to vectorize inserts of gathered values. |
| if (VectorizableTree.size() == 2 && |
| isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && |
| VectorizableTree[1]->isGather() && |
| (VectorizableTree[1]->getVectorFactor() <= 2 || |
| !(isSplat(VectorizableTree[1]->Scalars) || |
| allConstant(VectorizableTree[1]->Scalars)))) |
| return true; |
| |
| // If the graph includes only PHI nodes and gathers, it is defnitely not |
| // profitable for the vectorization, we can skip it, if the cost threshold is |
| // default. The cost of vectorized PHI nodes is almost always 0 + the cost of |
| // gathers/buildvectors. |
| constexpr int Limit = 4; |
| if (!ForReduction && !SLPCostThreshold.getNumOccurrences() && |
| !VectorizableTree.empty() && |
| all_of(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) { |
| return (TE->isGather() && |
| TE->getOpcode() != Instruction::ExtractElement && |
| count_if(TE->Scalars, IsaPred<ExtractElementInst>) <= Limit) || |
| TE->getOpcode() == Instruction::PHI; |
| })) |
| return true; |
| |
| // We can vectorize the tree if its size is greater than or equal to the |
| // minimum size specified by the MinTreeSize command line option. |
| if (VectorizableTree.size() >= MinTreeSize) |
| return false; |
| |
| // If we have a tiny tree (a tree whose size is less than MinTreeSize), we |
| // can vectorize it if we can prove it fully vectorizable. |
| if (isFullyVectorizableTinyTree(ForReduction)) |
| return false; |
| |
| // Check if any of the gather node forms an insertelement buildvector |
| // somewhere. |
| bool IsAllowedSingleBVNode = |
| VectorizableTree.size() > 1 || |
| (VectorizableTree.size() == 1 && VectorizableTree.front()->getOpcode() && |
| !VectorizableTree.front()->isAltShuffle() && |
| VectorizableTree.front()->getOpcode() != Instruction::PHI && |
| VectorizableTree.front()->getOpcode() != Instruction::GetElementPtr && |
| allSameBlock(VectorizableTree.front()->Scalars)); |
| if (any_of(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isGather() && all_of(TE->Scalars, [&](Value *V) { |
| return isa<ExtractElementInst, UndefValue>(V) || |
| (IsAllowedSingleBVNode && |
| !V->hasNUsesOrMore(UsesLimit) && |
| any_of(V->users(), IsaPred<InsertElementInst>)); |
| }); |
| })) |
| return false; |
| |
| assert(VectorizableTree.empty() |
| ? ExternalUses.empty() |
| : true && "We shouldn't have any external users"); |
| |
| // Otherwise, we can't vectorize the tree. It is both tiny and not fully |
| // vectorizable. |
| return true; |
| } |
| |
| InstructionCost BoUpSLP::getSpillCost() const { |
| // Walk from the bottom of the tree to the top, tracking which values are |
| // live. When we see a call instruction that is not part of our tree, |
| // query TTI to see if there is a cost to keeping values live over it |
| // (for example, if spills and fills are required). |
| unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); |
| InstructionCost Cost = 0; |
| |
| SmallPtrSet<Instruction *, 4> LiveValues; |
| Instruction *PrevInst = nullptr; |
| |
| // The entries in VectorizableTree are not necessarily ordered by their |
| // position in basic blocks. Collect them and order them by dominance so later |
| // instructions are guaranteed to be visited first. For instructions in |
| // different basic blocks, we only scan to the beginning of the block, so |
| // their order does not matter, as long as all instructions in a basic block |
| // are grouped together. Using dominance ensures a deterministic order. |
| SmallVector<Instruction *, 16> OrderedScalars; |
| for (const auto &TEPtr : VectorizableTree) { |
| if (TEPtr->State != TreeEntry::Vectorize) |
| continue; |
| Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); |
| if (!Inst) |
| continue; |
| OrderedScalars.push_back(Inst); |
| } |
| llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { |
| auto *NodeA = DT->getNode(A->getParent()); |
| auto *NodeB = DT->getNode(B->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA != NodeB) |
| return NodeA->getDFSNumIn() > NodeB->getDFSNumIn(); |
| return B->comesBefore(A); |
| }); |
| |
| for (Instruction *Inst : OrderedScalars) { |
| if (!PrevInst) { |
| PrevInst = Inst; |
| continue; |
| } |
| |
| // Update LiveValues. |
| LiveValues.erase(PrevInst); |
| for (auto &J : PrevInst->operands()) { |
| if (isa<Instruction>(&*J) && getTreeEntry(&*J)) |
| LiveValues.insert(cast<Instruction>(&*J)); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "SLP: #LV: " << LiveValues.size(); |
| for (auto *X : LiveValues) |
| dbgs() << " " << X->getName(); |
| dbgs() << ", Looking at "; |
| Inst->dump(); |
| }); |
| |
| // Now find the sequence of instructions between PrevInst and Inst. |
| unsigned NumCalls = 0; |
| BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), |
| PrevInstIt = |
| PrevInst->getIterator().getReverse(); |
| while (InstIt != PrevInstIt) { |
| if (PrevInstIt == PrevInst->getParent()->rend()) { |
| PrevInstIt = Inst->getParent()->rbegin(); |
| continue; |
| } |
| |
| auto NoCallIntrinsic = [this](Instruction *I) { |
| if (auto *II = dyn_cast<IntrinsicInst>(I)) { |
| if (II->isAssumeLikeIntrinsic()) |
| return true; |
| FastMathFlags FMF; |
| SmallVector<Type *, 4> Tys; |
| for (auto &ArgOp : II->args()) |
| Tys.push_back(ArgOp->getType()); |
| if (auto *FPMO = dyn_cast<FPMathOperator>(II)) |
| FMF = FPMO->getFastMathFlags(); |
| IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys, |
| FMF); |
| InstructionCost IntrCost = |
| TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput); |
| InstructionCost CallCost = TTI->getCallInstrCost( |
| nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput); |
| if (IntrCost < CallCost) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Debug information does not impact spill cost. |
| if (isa<CallBase>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) && |
| &*PrevInstIt != PrevInst) |
| NumCalls++; |
| |
| ++PrevInstIt; |
| } |
| |
| if (NumCalls) { |
| SmallVector<Type *, 4> V; |
| for (auto *II : LiveValues) { |
| auto *ScalarTy = II->getType(); |
| if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) |
| ScalarTy = VectorTy->getElementType(); |
| V.push_back(getWidenedType(ScalarTy, BundleWidth)); |
| } |
| Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); |
| } |
| |
| PrevInst = Inst; |
| } |
| |
| return Cost; |
| } |
| |
| /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the |
| /// buildvector sequence. |
| static bool isFirstInsertElement(const InsertElementInst *IE1, |
| const InsertElementInst *IE2) { |
| if (IE1 == IE2) |
| return false; |
| const auto *I1 = IE1; |
| const auto *I2 = IE2; |
| const InsertElementInst *PrevI1; |
| const InsertElementInst *PrevI2; |
| unsigned Idx1 = *getElementIndex(IE1); |
| unsigned Idx2 = *getElementIndex(IE2); |
| do { |
| if (I2 == IE1) |
| return true; |
| if (I1 == IE2) |
| return false; |
| PrevI1 = I1; |
| PrevI2 = I2; |
| if (I1 && (I1 == IE1 || I1->hasOneUse()) && |
| getElementIndex(I1).value_or(Idx2) != Idx2) |
| I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); |
| if (I2 && ((I2 == IE2 || I2->hasOneUse())) && |
| getElementIndex(I2).value_or(Idx1) != Idx1) |
| I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); |
| } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); |
| llvm_unreachable("Two different buildvectors not expected."); |
| } |
| |
| namespace { |
| /// Returns incoming Value *, if the requested type is Value * too, or a default |
| /// value, otherwise. |
| struct ValueSelect { |
| template <typename U> |
| static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) { |
| return V; |
| } |
| template <typename U> |
| static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) { |
| return U(); |
| } |
| }; |
| } // namespace |
| |
| /// Does the analysis of the provided shuffle masks and performs the requested |
| /// actions on the vectors with the given shuffle masks. It tries to do it in |
| /// several steps. |
| /// 1. If the Base vector is not undef vector, resizing the very first mask to |
| /// have common VF and perform action for 2 input vectors (including non-undef |
| /// Base). Other shuffle masks are combined with the resulting after the 1 stage |
| /// and processed as a shuffle of 2 elements. |
| /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the |
| /// action only for 1 vector with the given mask, if it is not the identity |
| /// mask. |
| /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 |
| /// vectors, combing the masks properly between the steps. |
| template <typename T> |
| static T *performExtractsShuffleAction( |
| MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, |
| function_ref<unsigned(T *)> GetVF, |
| function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction, |
| function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { |
| assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); |
| SmallVector<int> Mask(ShuffleMask.begin()->second); |
| auto VMIt = std::next(ShuffleMask.begin()); |
| T *Prev = nullptr; |
| SmallBitVector UseMask = |
| buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask); |
| SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask); |
| if (!IsBaseUndef.all()) { |
| // Base is not undef, need to combine it with the next subvectors. |
| std::pair<T *, bool> Res = |
| ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false); |
| SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask); |
| for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { |
| if (Mask[Idx] == PoisonMaskElem) |
| Mask[Idx] = IsBasePoison.test(Idx) ? PoisonMaskElem : Idx; |
| else |
| Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; |
| } |
| auto *V = ValueSelect::get<T *>(Base); |
| (void)V; |
| assert((!V || GetVF(V) == Mask.size()) && |
| "Expected base vector of VF number of elements."); |
| Prev = Action(Mask, {nullptr, Res.first}); |
| } else if (ShuffleMask.size() == 1) { |
| // Base is undef and only 1 vector is shuffled - perform the action only for |
| // single vector, if the mask is not the identity mask. |
| std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask, |
| /*ForSingleMask=*/true); |
| if (Res.second) |
| // Identity mask is found. |
| Prev = Res.first; |
| else |
| Prev = Action(Mask, {ShuffleMask.begin()->first}); |
| } else { |
| // Base is undef and at least 2 input vectors shuffled - perform 2 vectors |
| // shuffles step by step, combining shuffle between the steps. |
| unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); |
| unsigned Vec2VF = GetVF(VMIt->first); |
| if (Vec1VF == Vec2VF) { |
| // No need to resize the input vectors since they are of the same size, we |
| // can shuffle them directly. |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (SecMask[I] != PoisonMaskElem) { |
| assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| Mask[I] = SecMask[I] + Vec1VF; |
| } |
| } |
| Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); |
| } else { |
| // Vectors of different sizes - resize and reshuffle. |
| std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask, |
| /*ForSingleMask=*/false); |
| std::pair<T *, bool> Res2 = |
| ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (Mask[I] != PoisonMaskElem) { |
| assert(SecMask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| if (Res1.second) |
| Mask[I] = I; |
| } else if (SecMask[I] != PoisonMaskElem) { |
| assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| Mask[I] = (Res2.second ? I : SecMask[I]) + VF; |
| } |
| } |
| Prev = Action(Mask, {Res1.first, Res2.first}); |
| } |
| VMIt = std::next(VMIt); |
| } |
| bool IsBaseNotUndef = !IsBaseUndef.all(); |
| (void)IsBaseNotUndef; |
| // Perform requested actions for the remaining masks/vectors. |
| for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { |
| // Shuffle other input vectors, if any. |
| std::pair<T *, bool> Res = |
| ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (SecMask[I] != PoisonMaskElem) { |
| assert((Mask[I] == PoisonMaskElem || IsBaseNotUndef) && |
| "Multiple uses of scalars."); |
| Mask[I] = (Res.second ? I : SecMask[I]) + VF; |
| } else if (Mask[I] != PoisonMaskElem) { |
| Mask[I] = I; |
| } |
| } |
| Prev = Action(Mask, {Prev, Res.first}); |
| } |
| return Prev; |
| } |
| |
| namespace { |
| /// Data type for handling buildvector sequences with the reused scalars from |
| /// other tree entries. |
| template <typename T> struct ShuffledInsertData { |
| /// List of insertelements to be replaced by shuffles. |
| SmallVector<InsertElementInst *> InsertElements; |
| /// The parent vectors and shuffle mask for the given list of inserts. |
| MapVector<T, SmallVector<int>> ValueMasks; |
| }; |
| } // namespace |
| |
| InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { |
| InstructionCost Cost = 0; |
| LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " |
| << VectorizableTree.size() << ".\n"); |
| |
| unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); |
| |
| SmallPtrSet<Value *, 4> CheckedExtracts; |
| for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { |
| TreeEntry &TE = *VectorizableTree[I]; |
| // No need to count the cost for combined entries, they are combined and |
| // just skip their cost. |
| if (TE.State == TreeEntry::CombinedVectorize) { |
| LLVM_DEBUG( |
| dbgs() << "SLP: Skipping cost for combined node that starts with " |
| << *TE.Scalars[0] << ".\n"; |
| TE.dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| continue; |
| } |
| if (TE.isGather()) { |
| if (const TreeEntry *E = getTreeEntry(TE.getMainOp()); |
| E && E->getVectorFactor() == TE.getVectorFactor() && |
| E->isSame(TE.Scalars)) { |
| // Some gather nodes might be absolutely the same as some vectorizable |
| // nodes after reordering, need to handle it. |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle " |
| << shortBundleName(TE.Scalars, TE.Idx) << ".\n" |
| << "SLP: Current total cost = " << Cost << "\n"); |
| continue; |
| } |
| } |
| |
| // Exclude cost of gather loads nodes which are not used. These nodes were |
| // built as part of the final attempt to vectorize gathered loads. |
| assert((!TE.isGather() || TE.Idx == 0 || !TE.UserTreeIndices.empty()) && |
| "Expected gather nodes with users only."); |
| |
| InstructionCost C = getEntryCost(&TE, VectorizedVals, CheckedExtracts); |
| Cost += C; |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle " |
| << shortBundleName(TE.Scalars, TE.Idx) << ".\n" |
| << "SLP: Current total cost = " << Cost << "\n"); |
| } |
| |
| SmallPtrSet<Value *, 16> ExtractCostCalculated; |
| InstructionCost ExtractCost = 0; |
| SmallVector<ShuffledInsertData<const TreeEntry *>> ShuffledInserts; |
| SmallVector<APInt> DemandedElts; |
| SmallDenseSet<Value *, 4> UsedInserts; |
| DenseSet<std::pair<const TreeEntry *, Type *>> VectorCasts; |
| std::optional<DenseMap<Value *, unsigned>> ValueToExtUses; |
| DenseMap<const TreeEntry *, DenseSet<Value *>> ExtractsCount; |
| SmallPtrSet<Value *, 4> ScalarOpsFromCasts; |
| for (ExternalUser &EU : ExternalUses) { |
| // Uses by ephemeral values are free (because the ephemeral value will be |
| // removed prior to code generation, and so the extraction will be |
| // removed as well) as well as uses in unreachable blocks or in landing pads |
| // (rarely executed). |
| if (EphValues.count(EU.User) || |
| (EU.User && |
| (!DT->isReachableFromEntry(cast<Instruction>(EU.User)->getParent()) || |
| cast<Instruction>(EU.User)->getParent()->isLandingPad()))) |
| continue; |
| |
| // We only add extract cost once for the same scalar. |
| if (!isa_and_nonnull<InsertElementInst>(EU.User) && |
| !ExtractCostCalculated.insert(EU.Scalar).second) |
| continue; |
| |
| // No extract cost for vector "scalar" |
| if (isa<FixedVectorType>(EU.Scalar->getType())) |
| continue; |
| |
| // If found user is an insertelement, do not calculate extract cost but try |
| // to detect it as a final shuffled/identity match. |
| if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User); |
| VU && VU->getOperand(1) == EU.Scalar) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { |
| if (!UsedInserts.insert(VU).second) |
| continue; |
| std::optional<unsigned> InsertIdx = getElementIndex(VU); |
| if (InsertIdx) { |
| const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); |
| auto *It = find_if( |
| ShuffledInserts, |
| [this, VU](const ShuffledInsertData<const TreeEntry *> &Data) { |
| // Checks if 2 insertelements are from the same buildvector. |
| InsertElementInst *VecInsert = Data.InsertElements.front(); |
| return areTwoInsertFromSameBuildVector( |
| VU, VecInsert, [this](InsertElementInst *II) -> Value * { |
| Value *Op0 = II->getOperand(0); |
| if (getTreeEntry(II) && !getTreeEntry(Op0)) |
| return nullptr; |
| return Op0; |
| }); |
| }); |
| int VecId = -1; |
| if (It == ShuffledInserts.end()) { |
| auto &Data = ShuffledInserts.emplace_back(); |
| Data.InsertElements.emplace_back(VU); |
| DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); |
| VecId = ShuffledInserts.size() - 1; |
| auto It = MinBWs.find(ScalarTE); |
| if (It != MinBWs.end() && |
| VectorCasts |
| .insert(std::make_pair(ScalarTE, FTy->getElementType())) |
| .second) { |
| unsigned BWSz = It->second.first; |
| unsigned DstBWSz = DL->getTypeSizeInBits(FTy->getElementType()); |
| unsigned VecOpcode; |
| if (DstBWSz < BWSz) |
| VecOpcode = Instruction::Trunc; |
| else |
| VecOpcode = |
| It->second.second ? Instruction::SExt : Instruction::ZExt; |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| InstructionCost C = TTI->getCastInstrCost( |
| VecOpcode, FTy, |
| getWidenedType(IntegerType::get(FTy->getContext(), BWSz), |
| FTy->getNumElements()), |
| TTI::CastContextHint::None, CostKind); |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for extending externally used vector with " |
| "non-equal minimum bitwidth.\n"); |
| Cost += C; |
| } |
| } else { |
| if (isFirstInsertElement(VU, It->InsertElements.front())) |
| It->InsertElements.front() = VU; |
| VecId = std::distance(ShuffledInserts.begin(), It); |
| } |
| int InIdx = *InsertIdx; |
| SmallVectorImpl<int> &Mask = |
| ShuffledInserts[VecId].ValueMasks[ScalarTE]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| Mask[InIdx] = EU.Lane; |
| DemandedElts[VecId].setBit(InIdx); |
| continue; |
| } |
| } |
| } |
| |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| // If we plan to rewrite the tree in a smaller type, we will need to sign |
| // extend the extracted value back to the original type. Here, we account |
| // for the extract and the added cost of the sign extend if needed. |
| InstructionCost ExtraCost = TTI::TCC_Free; |
| auto *VecTy = getWidenedType(EU.Scalar->getType(), BundleWidth); |
| const TreeEntry *Entry = getTreeEntry(EU.Scalar); |
| auto It = MinBWs.find(Entry); |
| if (It != MinBWs.end()) { |
| auto *MinTy = IntegerType::get(F->getContext(), It->second.first); |
| unsigned Extend = |
| It->second.second ? Instruction::SExt : Instruction::ZExt; |
| VecTy = getWidenedType(MinTy, BundleWidth); |
| ExtraCost = TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), |
| VecTy, EU.Lane); |
| } else { |
| ExtraCost = TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, |
| CostKind, EU.Lane); |
| } |
| // Leave the scalar instructions as is if they are cheaper than extracts. |
| if (Entry->Idx != 0 || Entry->getOpcode() == Instruction::GetElementPtr || |
| Entry->getOpcode() == Instruction::Load) { |
| // Checks if the user of the external scalar is phi in loop body. |
| auto IsPhiInLoop = [&](const ExternalUser &U) { |
| if (auto *Phi = dyn_cast_if_present<PHINode>(U.User)) { |
| auto *I = cast<Instruction>(U.Scalar); |
| const Loop *L = LI->getLoopFor(Phi->getParent()); |
| return L && (Phi->getParent() == I->getParent() || |
| L == LI->getLoopFor(I->getParent())); |
| } |
| return false; |
| }; |
| if (!ValueToExtUses) { |
| ValueToExtUses.emplace(); |
| for_each(enumerate(ExternalUses), [&](const auto &P) { |
| // Ignore phis in loops. |
| if (IsPhiInLoop(P.value())) |
| return; |
| |
| ValueToExtUses->try_emplace(P.value().Scalar, P.index()); |
| }); |
| } |
| // Can use original instruction, if no operands vectorized or they are |
| // marked as externally used already. |
| auto *Inst = cast<Instruction>(EU.Scalar); |
| InstructionCost ScalarCost = TTI->getInstructionCost(Inst, CostKind); |
| auto OperandIsScalar = [&](Value *V) { |
| if (!getTreeEntry(V)) { |
| // Some extractelements might be not vectorized, but |
| // transformed into shuffle and removed from the function, |
| // consider it here. |
| if (auto *EE = dyn_cast<ExtractElementInst>(V)) |
| return !EE->hasOneUse() || !MustGather.contains(EE); |
| return true; |
| } |
| return ValueToExtUses->contains(V); |
| }; |
| bool CanBeUsedAsScalar = all_of(Inst->operands(), OperandIsScalar); |
| bool CanBeUsedAsScalarCast = false; |
| if (auto *CI = dyn_cast<CastInst>(Inst); CI && !CanBeUsedAsScalar) { |
| if (auto *Op = dyn_cast<Instruction>(CI->getOperand(0)); |
| Op && all_of(Op->operands(), OperandIsScalar)) { |
| InstructionCost OpCost = |
| (getTreeEntry(Op) && !ValueToExtUses->contains(Op)) |
| ? TTI->getInstructionCost(Op, CostKind) |
| : 0; |
| if (ScalarCost + OpCost <= ExtraCost) { |
| CanBeUsedAsScalar = CanBeUsedAsScalarCast = true; |
| ScalarCost += OpCost; |
| } |
| } |
| } |
| if (CanBeUsedAsScalar) { |
| bool KeepScalar = ScalarCost <= ExtraCost; |
| // Try to keep original scalar if the user is the phi node from the same |
| // block as the root phis, currently vectorized. It allows to keep |
| // better ordering info of PHIs, being vectorized currently. |
| bool IsProfitablePHIUser = |
| (KeepScalar || (ScalarCost - ExtraCost <= TTI::TCC_Basic && |
| VectorizableTree.front()->Scalars.size() > 2)) && |
| VectorizableTree.front()->getOpcode() == Instruction::PHI && |
| !Inst->hasNUsesOrMore(UsesLimit) && |
| none_of(Inst->users(), |
| [&](User *U) { |
| auto *PHIUser = dyn_cast<PHINode>(U); |
| return (!PHIUser || |
| PHIUser->getParent() != |
| cast<Instruction>( |
| VectorizableTree.front()->getMainOp()) |
| ->getParent()) && |
| !getTreeEntry(U); |
| }) && |
| count_if(Entry->Scalars, [&](Value *V) { |
| return ValueToExtUses->contains(V); |
| }) <= 2; |
| if (IsProfitablePHIUser) { |
| KeepScalar = true; |
| } else if (KeepScalar && ScalarCost != TTI::TCC_Free && |
| ExtraCost - ScalarCost <= TTI::TCC_Basic && |
| (!GatheredLoadsEntriesFirst.has_value() || |
| Entry->Idx < *GatheredLoadsEntriesFirst)) { |
| unsigned ScalarUsesCount = count_if(Entry->Scalars, [&](Value *V) { |
| return ValueToExtUses->contains(V); |
| }); |
| auto It = ExtractsCount.find(Entry); |
| if (It != ExtractsCount.end()) { |
| assert(ScalarUsesCount >= It->getSecond().size() && |
| "Expected total number of external uses not less than " |
| "number of scalar uses."); |
| ScalarUsesCount -= It->getSecond().size(); |
| } |
| // Keep original scalar if number of externally used instructions in |
| // the same entry is not power of 2. It may help to do some extra |
| // vectorization for now. |
| KeepScalar = ScalarUsesCount <= 1 || !has_single_bit(ScalarUsesCount); |
| } |
| if (KeepScalar) { |
| ExternalUsesAsOriginalScalar.insert(EU.Scalar); |
| for_each(Inst->operands(), [&](Value *V) { |
| auto It = ValueToExtUses->find(V); |
| if (It != ValueToExtUses->end()) { |
| // Replace all uses to avoid compiler crash. |
| ExternalUses[It->second].User = nullptr; |
| } |
| }); |
| ExtraCost = ScalarCost; |
| if (!IsPhiInLoop(EU)) |
| ExtractsCount[Entry].insert(Inst); |
| if (CanBeUsedAsScalarCast) { |
| ScalarOpsFromCasts.insert(Inst->getOperand(0)); |
| // Update the users of the operands of the cast operand to avoid |
| // compiler crash. |
| if (auto *IOp = dyn_cast<Instruction>(Inst->getOperand(0))) { |
| for_each(IOp->operands(), [&](Value *V) { |
| auto It = ValueToExtUses->find(V); |
| if (It != ValueToExtUses->end()) { |
| // Replace all uses to avoid compiler crash. |
| ExternalUses[It->second].User = nullptr; |
| } |
| }); |
| } |
| } |
| } |
| } |
| } |
| |
| ExtractCost += ExtraCost; |
| } |
| // Insert externals for extract of operands of casts to be emitted as scalars |
| // instead of extractelement. |
| for (Value *V : ScalarOpsFromCasts) { |
| ExternalUsesAsOriginalScalar.insert(V); |
| if (const TreeEntry *E = getTreeEntry(V)) { |
| ExternalUses.emplace_back(V, nullptr, E->findLaneForValue(V)); |
| } |
| } |
| // Add reduced value cost, if resized. |
| if (!VectorizedVals.empty()) { |
| const TreeEntry &Root = *VectorizableTree.front(); |
| auto BWIt = MinBWs.find(&Root); |
| if (BWIt != MinBWs.end()) { |
| Type *DstTy = Root.Scalars.front()->getType(); |
| unsigned OriginalSz = DL->getTypeSizeInBits(DstTy->getScalarType()); |
| unsigned SrcSz = |
| ReductionBitWidth == 0 ? BWIt->second.first : ReductionBitWidth; |
| if (OriginalSz != SrcSz) { |
| unsigned Opcode = Instruction::Trunc; |
| if (OriginalSz > SrcSz) |
| Opcode = BWIt->second.second ? Instruction::SExt : Instruction::ZExt; |
| Type *SrcTy = IntegerType::get(DstTy->getContext(), SrcSz); |
| if (auto *VecTy = dyn_cast<FixedVectorType>(DstTy)) { |
| assert(SLPReVec && "Only supported by REVEC."); |
| SrcTy = getWidenedType(SrcTy, VecTy->getNumElements()); |
| } |
| Cost += TTI->getCastInstrCost(Opcode, DstTy, SrcTy, |
| TTI::CastContextHint::None, |
| TTI::TCK_RecipThroughput); |
| } |
| } |
| } |
| |
| InstructionCost SpillCost = getSpillCost(); |
| Cost += SpillCost + ExtractCost; |
| auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask, |
| bool) { |
| InstructionCost C = 0; |
| unsigned VF = Mask.size(); |
| unsigned VecVF = TE->getVectorFactor(); |
| if (VF != VecVF && |
| (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || |
| !ShuffleVectorInst::isIdentityMask(Mask, VF))) { |
| SmallVector<int> OrigMask(VecVF, PoisonMaskElem); |
| std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), |
| OrigMask.begin()); |
| C = ::getShuffleCost(*TTI, TTI::SK_PermuteSingleSrc, |
| getWidenedType(TE->getMainOp()->getType(), VecVF), |
| OrigMask); |
| LLVM_DEBUG( |
| dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of insertelement external users.\n"; |
| TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| return std::make_pair(TE, true); |
| } |
| return std::make_pair(TE, false); |
| }; |
| // Calculate the cost of the reshuffled vectors, if any. |
| for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { |
| Value *Base = ShuffledInserts[I].InsertElements.front()->getOperand(0); |
| auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); |
| unsigned VF = 0; |
| auto EstimateShufflesCost = [&](ArrayRef<int> Mask, |
| ArrayRef<const TreeEntry *> TEs) { |
| assert((TEs.size() == 1 || TEs.size() == 2) && |
| "Expected exactly 1 or 2 tree entries."); |
| if (TEs.size() == 1) { |
| if (VF == 0) |
| VF = TEs.front()->getVectorFactor(); |
| auto *FTy = getWidenedType(TEs.back()->Scalars.front()->getType(), VF); |
| if (!ShuffleVectorInst::isIdentityMask(Mask, VF) && |
| !all_of(enumerate(Mask), [=](const auto &Data) { |
| return Data.value() == PoisonMaskElem || |
| (Data.index() < VF && |
| static_cast<int>(Data.index()) == Data.value()); |
| })) { |
| InstructionCost C = |
| ::getShuffleCost(*TTI, TTI::SK_PermuteSingleSrc, FTy, Mask); |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of insertelement " |
| "external users.\n"; |
| TEs.front()->dump(); |
| dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| } |
| } else { |
| if (VF == 0) { |
| if (TEs.front() && |
| TEs.front()->getVectorFactor() == TEs.back()->getVectorFactor()) |
| VF = TEs.front()->getVectorFactor(); |
| else |
| VF = Mask.size(); |
| } |
| auto *FTy = getWidenedType(TEs.back()->Scalars.front()->getType(), VF); |
| InstructionCost C = |
| ::getShuffleCost(*TTI, TTI::SK_PermuteTwoSrc, FTy, Mask); |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of vector node and external " |
| "insertelement users.\n"; |
| if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); |
| dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| } |
| VF = Mask.size(); |
| return TEs.back(); |
| }; |
| (void)performExtractsShuffleAction<const TreeEntry>( |
| MutableArrayRef(Vector.data(), Vector.size()), Base, |
| [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, |
| EstimateShufflesCost); |
| InstructionCost InsertCost = TTI->getScalarizationOverhead( |
| cast<FixedVectorType>( |
| ShuffledInserts[I].InsertElements.front()->getType()), |
| DemandedElts[I], |
| /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput); |
| Cost -= InsertCost; |
| } |
| |
| // Add the cost for reduced value resize (if required). |
| if (ReductionBitWidth != 0) { |
| assert(UserIgnoreList && "Expected reduction tree."); |
| const TreeEntry &E = *VectorizableTree.front(); |
| auto It = MinBWs.find(&E); |
| if (It != MinBWs.end() && It->second.first != ReductionBitWidth) { |
| unsigned SrcSize = It->second.first; |
| unsigned DstSize = ReductionBitWidth; |
| unsigned Opcode = Instruction::Trunc; |
| if (SrcSize < DstSize) |
| Opcode = It->second.second ? Instruction::SExt : Instruction::ZExt; |
| auto *SrcVecTy = |
| getWidenedType(Builder.getIntNTy(SrcSize), E.getVectorFactor()); |
| auto *DstVecTy = |
| getWidenedType(Builder.getIntNTy(DstSize), E.getVectorFactor()); |
| TTI::CastContextHint CCH = getCastContextHint(E); |
| InstructionCost CastCost; |
| switch (E.getOpcode()) { |
| case Instruction::SExt: |
| case Instruction::ZExt: |
| case Instruction::Trunc: { |
| const TreeEntry *OpTE = getOperandEntry(&E, 0); |
| CCH = getCastContextHint(*OpTE); |
| break; |
| } |
| default: |
| break; |
| } |
| CastCost += TTI->getCastInstrCost(Opcode, DstVecTy, SrcVecTy, CCH, |
| TTI::TCK_RecipThroughput); |
| Cost += CastCost; |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << CastCost |
| << " for final resize for reduction from " << SrcVecTy |
| << " to " << DstVecTy << "\n"; |
| dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| } |
| } |
| |
| #ifndef NDEBUG |
| SmallString<256> Str; |
| { |
| raw_svector_ostream OS(Str); |
| OS << "SLP: Spill Cost = " << SpillCost << ".\n" |
| << "SLP: Extract Cost = " << ExtractCost << ".\n" |
| << "SLP: Total Cost = " << Cost << ".\n"; |
| } |
| LLVM_DEBUG(dbgs() << Str); |
| if (ViewSLPTree) |
| ViewGraph(this, "SLP" + F->getName(), false, Str); |
| #endif |
| |
| return Cost; |
| } |
| |
| /// Tries to find extractelement instructions with constant indices from fixed |
| /// vector type and gather such instructions into a bunch, which highly likely |
| /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was |
| /// successful, the matched scalars are replaced by poison values in \p VL for |
| /// future analysis. |
| std::optional<TTI::ShuffleKind> |
| BoUpSLP::tryToGatherSingleRegisterExtractElements( |
| MutableArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) const { |
| // Scan list of gathered scalars for extractelements that can be represented |
| // as shuffles. |
| MapVector<Value *, SmallVector<int>> VectorOpToIdx; |
| SmallVector<int> UndefVectorExtracts; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| auto *EI = dyn_cast<ExtractElementInst>(VL[I]); |
| if (!EI) { |
| if (isa<UndefValue>(VL[I])) |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| auto *VecTy = dyn_cast<FixedVectorType>(EI->getVectorOperandType()); |
| if (!VecTy || !isa<ConstantInt, UndefValue>(EI->getIndexOperand())) |
| continue; |
| std::optional<unsigned> Idx = getExtractIndex(EI); |
| // Undefined index. |
| if (!Idx) { |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| if (Idx >= VecTy->getNumElements()) { |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| SmallBitVector ExtractMask(VecTy->getNumElements(), true); |
| ExtractMask.reset(*Idx); |
| if (isUndefVector(EI->getVectorOperand(), ExtractMask).all()) { |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| VectorOpToIdx[EI->getVectorOperand()].push_back(I); |
| } |
| // Sort the vector operands by the maximum number of uses in extractelements. |
| SmallVector<std::pair<Value *, SmallVector<int>>> Vectors = |
| VectorOpToIdx.takeVector(); |
| stable_sort(Vectors, [](const auto &P1, const auto &P2) { |
| return P1.second.size() > P2.second.size(); |
| }); |
| // Find the best pair of the vectors or a single vector. |
| const int UndefSz = UndefVectorExtracts.size(); |
| unsigned SingleMax = 0; |
| unsigned PairMax = 0; |
| if (!Vectors.empty()) { |
| SingleMax = Vectors.front().second.size() + UndefSz; |
| if (Vectors.size() > 1) { |
| auto *ItNext = std::next(Vectors.begin()); |
| PairMax = SingleMax + ItNext->second.size(); |
| } |
| } |
| if (SingleMax == 0 && PairMax == 0 && UndefSz == 0) |
| return std::nullopt; |
| // Check if better to perform a shuffle of 2 vectors or just of a single |
| // vector. |
| SmallVector<Value *> SavedVL(VL.begin(), VL.end()); |
| SmallVector<Value *> GatheredExtracts( |
| VL.size(), PoisonValue::get(VL.front()->getType())); |
| if (SingleMax >= PairMax && SingleMax) { |
| for (int Idx : Vectors.front().second) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| } else if (!Vectors.empty()) { |
| for (unsigned Idx : {0, 1}) |
| for (int Idx : Vectors[Idx].second) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| } |
| // Add extracts from undefs too. |
| for (int Idx : UndefVectorExtracts) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| // Check that gather of extractelements can be represented as just a |
| // shuffle of a single/two vectors the scalars are extracted from. |
| std::optional<TTI::ShuffleKind> Res = |
| isFixedVectorShuffle(GatheredExtracts, Mask); |
| if (!Res || all_of(Mask, [](int Idx) { return Idx == PoisonMaskElem; })) { |
| // TODO: try to check other subsets if possible. |
| // Restore the original VL if attempt was not successful. |
| copy(SavedVL, VL.begin()); |
| return std::nullopt; |
| } |
| // Restore unused scalars from mask, if some of the extractelements were not |
| // selected for shuffle. |
| for (int I = 0, E = GatheredExtracts.size(); I < E; ++I) { |
| if (Mask[I] == PoisonMaskElem && !isa<PoisonValue>(GatheredExtracts[I]) && |
| isa<UndefValue>(GatheredExtracts[I])) { |
| std::swap(VL[I], GatheredExtracts[I]); |
| continue; |
| } |
| auto *EI = dyn_cast<ExtractElementInst>(VL[I]); |
| if (!EI || !isa<FixedVectorType>(EI->getVectorOperandType()) || |
| !isa<ConstantInt, UndefValue>(EI->getIndexOperand()) || |
| is_contained(UndefVectorExtracts, I)) |
| continue; |
| } |
| return Res; |
| } |
| |
| /// Tries to find extractelement instructions with constant indices from fixed |
| /// vector type and gather such instructions into a bunch, which highly likely |
| /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was |
| /// successful, the matched scalars are replaced by poison values in \p VL for |
| /// future analysis. |
| SmallVector<std::optional<TTI::ShuffleKind>> |
| BoUpSLP::tryToGatherExtractElements(SmallVectorImpl<Value *> &VL, |
| SmallVectorImpl<int> &Mask, |
| unsigned NumParts) const { |
| assert(NumParts > 0 && "NumParts expected be greater than or equal to 1."); |
| SmallVector<std::optional<TTI::ShuffleKind>> ShufflesRes(NumParts); |
| Mask.assign(VL.size(), PoisonMaskElem); |
| unsigned SliceSize = getPartNumElems(VL.size(), NumParts); |
| for (unsigned Part : seq<unsigned>(NumParts)) { |
| // Scan list of gathered scalars for extractelements that can be represented |
| // as shuffles. |
| MutableArrayRef<Value *> SubVL = MutableArrayRef(VL).slice( |
| Part * SliceSize, getNumElems(VL.size(), SliceSize, Part)); |
| SmallVector<int> SubMask; |
| std::optional<TTI::ShuffleKind> Res = |
| tryToGatherSingleRegisterExtractElements(SubVL, SubMask); |
| ShufflesRes[Part] = Res; |
| copy(SubMask, std::next(Mask.begin(), Part * SliceSize)); |
| } |
| if (none_of(ShufflesRes, [](const std::optional<TTI::ShuffleKind> &Res) { |
| return Res.has_value(); |
| })) |
| ShufflesRes.clear(); |
| return ShufflesRes; |
| } |
| |
| std::optional<TargetTransformInfo::ShuffleKind> |
| BoUpSLP::isGatherShuffledSingleRegisterEntry( |
| const TreeEntry *TE, ArrayRef<Value *> VL, MutableArrayRef<int> Mask, |
| SmallVectorImpl<const TreeEntry *> &Entries, unsigned Part, bool ForOrder) { |
| Entries.clear(); |
| // TODO: currently checking only for Scalars in the tree entry, need to count |
| // reused elements too for better cost estimation. |
| const EdgeInfo &TEUseEI = TE == VectorizableTree.front().get() |
| ? EdgeInfo(const_cast<TreeEntry *>(TE), 0) |
| : TE->UserTreeIndices.front(); |
| const Instruction *TEInsertPt = &getLastInstructionInBundle(TEUseEI.UserTE); |
| const BasicBlock *TEInsertBlock = nullptr; |
| // Main node of PHI entries keeps the correct order of operands/incoming |
| // blocks. |
| if (auto *PHI = dyn_cast<PHINode>(TEUseEI.UserTE->getMainOp())) { |
| TEInsertBlock = PHI->getIncomingBlock(TEUseEI.EdgeIdx); |
| TEInsertPt = TEInsertBlock->getTerminator(); |
| } else { |
| TEInsertBlock = TEInsertPt->getParent(); |
| } |
| if (!DT->isReachableFromEntry(TEInsertBlock)) |
| return std::nullopt; |
| auto *NodeUI = DT->getNode(TEInsertBlock); |
| assert(NodeUI && "Should only process reachable instructions"); |
| SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end()); |
| auto CheckOrdering = [&](const Instruction *InsertPt) { |
| // Argument InsertPt is an instruction where vector code for some other |
| // tree entry (one that shares one or more scalars with TE) is going to be |
| // generated. This lambda returns true if insertion point of vector code |
| // for the TE dominates that point (otherwise dependency is the other way |
| // around). The other node is not limited to be of a gather kind. Gather |
| // nodes are not scheduled and their vector code is inserted before their |
| // first user. If user is PHI, that is supposed to be at the end of a |
| // predecessor block. Otherwise it is the last instruction among scalars of |
| // the user node. So, instead of checking dependency between instructions |
| // themselves, we check dependency between their insertion points for vector |
| // code (since each scalar instruction ends up as a lane of a vector |
| // instruction). |
| const BasicBlock *InsertBlock = InsertPt->getParent(); |
| auto *NodeEUI = DT->getNode(InsertBlock); |
| if (!NodeEUI) |
| return false; |
| assert((NodeUI == NodeEUI) == |
| (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| // Check the order of the gather nodes users. |
| if (TEInsertPt->getParent() != InsertBlock && |
| (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI))) |
| return false; |
| if (TEInsertPt->getParent() == InsertBlock && |
| TEInsertPt->comesBefore(InsertPt)) |
| return false; |
| return true; |
| }; |
| // Find all tree entries used by the gathered values. If no common entries |
| // found - not a shuffle. |
| // Here we build a set of tree nodes for each gathered value and trying to |
| // find the intersection between these sets. If we have at least one common |
| // tree node for each gathered value - we have just a permutation of the |
| // single vector. If we have 2 different sets, we're in situation where we |
| // have a permutation of 2 input vectors. |
| SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; |
| DenseMap<Value *, int> UsedValuesEntry; |
| for (Value *V : VL) { |
| if (isConstant(V)) |
| continue; |
| // Build a list of tree entries where V is used. |
| SmallPtrSet<const TreeEntry *, 4> VToTEs; |
| for (const TreeEntry *TEPtr : ValueToGatherNodes.find(V)->second) { |
| if (TEPtr == TE) |
| continue; |
| assert(any_of(TEPtr->Scalars, |
| [&](Value *V) { return GatheredScalars.contains(V); }) && |
| "Must contain at least single gathered value."); |
| assert(TEPtr->UserTreeIndices.size() == 1 && |
| "Expected only single user of a gather node."); |
| const EdgeInfo &UseEI = TEPtr->UserTreeIndices.front(); |
| |
| PHINode *UserPHI = dyn_cast<PHINode>(UseEI.UserTE->getMainOp()); |
| const Instruction *InsertPt = |
| UserPHI ? UserPHI->getIncomingBlock(UseEI.EdgeIdx)->getTerminator() |
| : &getLastInstructionInBundle(UseEI.UserTE); |
| if (TEInsertPt == InsertPt) { |
| // If 2 gathers are operands of the same entry (regardless of whether |
| // user is PHI or else), compare operands indices, use the earlier one |
| // as the base. |
| if (TEUseEI.UserTE == UseEI.UserTE && TEUseEI.EdgeIdx < UseEI.EdgeIdx) |
| continue; |
| // If the user instruction is used for some reason in different |
| // vectorized nodes - make it depend on index. |
| if (TEUseEI.UserTE != UseEI.UserTE && |
| TEUseEI.UserTE->Idx < UseEI.UserTE->Idx) |
| continue; |
| } |
| |
| // Check if the user node of the TE comes after user node of TEPtr, |
| // otherwise TEPtr depends on TE. |
| if ((TEInsertBlock != InsertPt->getParent() || |
| TEUseEI.EdgeIdx < UseEI.EdgeIdx || TEUseEI.UserTE != UseEI.UserTE) && |
| !CheckOrdering(InsertPt)) |
| continue; |
| VToTEs.insert(TEPtr); |
| } |
| if (const TreeEntry *VTE = getTreeEntry(V)) { |
| if (ForOrder && VTE->Idx < GatheredLoadsEntriesFirst.value_or(0)) { |
| if (VTE->State != TreeEntry::Vectorize) { |
| auto It = MultiNodeScalars.find(V); |
| if (It == MultiNodeScalars.end()) |
| continue; |
| VTE = *It->getSecond().begin(); |
| // Iterate through all vectorized nodes. |
| auto *MIt = find_if(It->getSecond(), [](const TreeEntry *MTE) { |
| return MTE->State == TreeEntry::Vectorize; |
| }); |
| if (MIt == It->getSecond().end()) |
| continue; |
| VTE = *MIt; |
| } |
| } |
| Instruction &LastBundleInst = getLastInstructionInBundle(VTE); |
| if (&LastBundleInst == TEInsertPt || !CheckOrdering(&LastBundleInst)) |
| continue; |
| VToTEs.insert(VTE); |
| } |
| if (VToTEs.empty()) |
| continue; |
| if (UsedTEs.empty()) { |
| // The first iteration, just insert the list of nodes to vector. |
| UsedTEs.push_back(VToTEs); |
| UsedValuesEntry.try_emplace(V, 0); |
| } else { |
| // Need to check if there are any previously used tree nodes which use V. |
| // If there are no such nodes, consider that we have another one input |
| // vector. |
| SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); |
| unsigned Idx = 0; |
| for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { |
| // Do we have a non-empty intersection of previously listed tree entries |
| // and tree entries using current V? |
| set_intersect(VToTEs, Set); |
| if (!VToTEs.empty()) { |
| // Yes, write the new subset and continue analysis for the next |
| // scalar. |
| Set.swap(VToTEs); |
| break; |
| } |
| VToTEs = SavedVToTEs; |
| ++Idx; |
| } |
| // No non-empty intersection found - need to add a second set of possible |
| // source vectors. |
| if (Idx == UsedTEs.size()) { |
| // If the number of input vectors is greater than 2 - not a permutation, |
| // fallback to the regular gather. |
| // TODO: support multiple reshuffled nodes. |
| if (UsedTEs.size() == 2) |
| continue; |
| UsedTEs.push_back(SavedVToTEs); |
| Idx = UsedTEs.size() - 1; |
| } |
| UsedValuesEntry.try_emplace(V, Idx); |
| } |
| } |
| |
| if (UsedTEs.empty()) { |
| Entries.clear(); |
| return std::nullopt; |
| } |
| |
| unsigned VF = 0; |
| if (UsedTEs.size() == 1) { |
| // Keep the order to avoid non-determinism. |
| SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(), |
| UsedTEs.front().end()); |
| sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| }); |
| // Try to find the perfect match in another gather node at first. |
| auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) { |
| return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars); |
| }); |
| if (It != FirstEntries.end() && |
| ((*It)->getVectorFactor() == VL.size() || |
| ((*It)->getVectorFactor() == TE->Scalars.size() && |
| TE->ReuseShuffleIndices.size() == VL.size() && |
| (*It)->isSame(TE->Scalars)))) { |
| Entries.push_back(*It); |
| if ((*It)->getVectorFactor() == VL.size()) { |
| std::iota(std::next(Mask.begin(), Part * VL.size()), |
| std::next(Mask.begin(), (Part + 1) * VL.size()), 0); |
| } else { |
| SmallVector<int> CommonMask = TE->getCommonMask(); |
| copy(CommonMask, Mask.begin()); |
| } |
| // Clear undef scalars. |
| for (int I = 0, Sz = VL.size(); I < Sz; ++I) |
| if (isa<PoisonValue>(VL[I])) |
| Mask[I] = PoisonMaskElem; |
| return TargetTransformInfo::SK_PermuteSingleSrc; |
| } |
| // No perfect match, just shuffle, so choose the first tree node from the |
| // tree. |
| Entries.push_back(FirstEntries.front()); |
| } else { |
| // Try to find nodes with the same vector factor. |
| assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); |
| // Keep the order of tree nodes to avoid non-determinism. |
| DenseMap<int, const TreeEntry *> VFToTE; |
| for (const TreeEntry *TE : UsedTEs.front()) { |
| unsigned VF = TE->getVectorFactor(); |
| auto It = VFToTE.find(VF); |
| if (It != VFToTE.end()) { |
| if (It->second->Idx > TE->Idx) |
| It->getSecond() = TE; |
| continue; |
| } |
| VFToTE.try_emplace(VF, TE); |
| } |
| // Same, keep the order to avoid non-determinism. |
| SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(), |
| UsedTEs.back().end()); |
| sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| }); |
| for (const TreeEntry *TE : SecondEntries) { |
| auto It = VFToTE.find(TE->getVectorFactor()); |
| if (It != VFToTE.end()) { |
| VF = It->first; |
| Entries.push_back(It->second); |
| Entries.push_back(TE); |
| break; |
| } |
| } |
| // No 2 source vectors with the same vector factor - just choose 2 with max |
| // index. |
| if (Entries.empty()) { |
| Entries.push_back(*llvm::max_element( |
| UsedTEs.front(), [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| })); |
| Entries.push_back(SecondEntries.front()); |
| VF = std::max(Entries.front()->getVectorFactor(), |
| Entries.back()->getVectorFactor()); |
| } |
| } |
| |
| bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, IsaPred<UndefValue>); |
| // Checks if the 2 PHIs are compatible in terms of high possibility to be |
| // vectorized. |
| auto AreCompatiblePHIs = [&](Value *V, Value *V1) { |
| auto *PHI = cast<PHINode>(V); |
| auto *PHI1 = cast<PHINode>(V1); |
| // Check that all incoming values are compatible/from same parent (if they |
| // are instructions). |
| // The incoming values are compatible if they all are constants, or |
| // instruction with the same/alternate opcodes from the same basic block. |
| for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { |
| Value *In = PHI->getIncomingValue(I); |
| Value *In1 = PHI1->getIncomingValue(I); |
| if (isConstant(In) && isConstant(In1)) |
| continue; |
| if (!getSameOpcode({In, In1}, *TLI).getOpcode()) |
| return false; |
| if (cast<Instruction>(In)->getParent() != |
| cast<Instruction>(In1)->getParent()) |
| return false; |
| } |
| return true; |
| }; |
| // Check if the value can be ignored during analysis for shuffled gathers. |
| // We suppose it is better to ignore instruction, which do not form splats, |
| // are not vectorized/not extractelements (these instructions will be handled |
| // by extractelements processing) or may form vector node in future. |
| auto MightBeIgnored = [=](Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) && |
| !isVectorLikeInstWithConstOps(I) && |
| !areAllUsersVectorized(I, UserIgnoreList) && isSimple(I); |
| }; |
| // Check that the neighbor instruction may form a full vector node with the |
| // current instruction V. It is possible, if they have same/alternate opcode |
| // and same parent basic block. |
| auto NeighborMightBeIgnored = [&](Value *V, int Idx) { |
| Value *V1 = VL[Idx]; |
| bool UsedInSameVTE = false; |
| auto It = UsedValuesEntry.find(V1); |
| if (It != UsedValuesEntry.end()) |
| UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second; |
| return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE && |
| getSameOpcode({V, V1}, *TLI).getOpcode() && |
| cast<Instruction>(V)->getParent() == |
| cast<Instruction>(V1)->getParent() && |
| (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1)); |
| }; |
| // Build a shuffle mask for better cost estimation and vector emission. |
| SmallBitVector UsedIdxs(Entries.size()); |
| SmallVector<std::pair<unsigned, int>> EntryLanes; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| Value *V = VL[I]; |
| auto It = UsedValuesEntry.find(V); |
| if (It == UsedValuesEntry.end()) |
| continue; |
| // Do not try to shuffle scalars, if they are constants, or instructions |
| // that can be vectorized as a result of the following vector build |
| // vectorization. |
| if (isConstant(V) || (MightBeIgnored(V) && |
| ((I > 0 && NeighborMightBeIgnored(V, I - 1)) || |
| (I != E - 1 && NeighborMightBeIgnored(V, I + 1))))) |
| continue; |
| unsigned Idx = It->second; |
| EntryLanes.emplace_back(Idx, I); |
| UsedIdxs.set(Idx); |
| } |
| // Iterate through all shuffled scalars and select entries, which can be used |
| // for final shuffle. |
| SmallVector<const TreeEntry *> TempEntries; |
| for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) { |
| if (!UsedIdxs.test(I)) |
| continue; |
| // Fix the entry number for the given scalar. If it is the first entry, set |
| // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes). |
| // These indices are used when calculating final shuffle mask as the vector |
| // offset. |
| for (std::pair<unsigned, int> &Pair : EntryLanes) |
| if (Pair.first == I) |
| Pair.first = TempEntries.size(); |
| TempEntries.push_back(Entries[I]); |
| } |
| Entries.swap(TempEntries); |
| if (EntryLanes.size() == Entries.size() && |
| !VL.equals(ArrayRef(TE->Scalars) |
| .slice(Part * VL.size(), |
| std::min<int>(VL.size(), TE->Scalars.size())))) { |
| // We may have here 1 or 2 entries only. If the number of scalars is equal |
| // to the number of entries, no need to do the analysis, it is not very |
| // profitable. Since VL is not the same as TE->Scalars, it means we already |
| // have some shuffles before. Cut off not profitable case. |
| Entries.clear(); |
| return std::nullopt; |
| } |
| // Build the final mask, check for the identity shuffle, if possible. |
| bool IsIdentity = Entries.size() == 1; |
| // Pair.first is the offset to the vector, while Pair.second is the index of |
| // scalar in the list. |
| for (const std::pair<unsigned, int> &Pair : EntryLanes) { |
| unsigned Idx = Part * VL.size() + Pair.second; |
| Mask[Idx] = |
| Pair.first * VF + |
| (ForOrder ? std::distance( |
| Entries[Pair.first]->Scalars.begin(), |
| find(Entries[Pair.first]->Scalars, VL[Pair.second])) |
| : Entries[Pair.first]->findLaneForValue(VL[Pair.second])); |
| IsIdentity &= Mask[Idx] == Pair.second; |
| } |
| switch (Entries.size()) { |
| case 1: |
| if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2) |
| return TargetTransformInfo::SK_PermuteSingleSrc; |
| break; |
| case 2: |
| if (EntryLanes.size() > 2 || VL.size() <= 2) |
| return TargetTransformInfo::SK_PermuteTwoSrc; |
| break; |
| default: |
| break; |
| } |
| Entries.clear(); |
| // Clear the corresponding mask elements. |
| std::fill(std::next(Mask.begin(), Part * VL.size()), |
| std::next(Mask.begin(), (Part + 1) * VL.size()), PoisonMaskElem); |
| return std::nullopt; |
| } |
| |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> |
| BoUpSLP::isGatherShuffledEntry( |
| const TreeEntry *TE, ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<SmallVector<const TreeEntry *>> &Entries, unsigned NumParts, |
| bool ForOrder) { |
| assert(NumParts > 0 && NumParts < VL.size() && |
| "Expected positive number of registers."); |
| Entries.clear(); |
| // No need to check for the topmost gather node. |
| if (TE == VectorizableTree.front().get() && |
| (!GatheredLoadsEntriesFirst.has_value() || |
| none_of(ArrayRef(VectorizableTree).drop_front(), |
| [](const std::unique_ptr<TreeEntry> &TE) { |
| return !TE->isGather(); |
| }))) |
| return {}; |
| // FIXME: Gathering for non-power-of-2 nodes not implemented yet. |
| if (TE->isNonPowOf2Vec()) |
| return {}; |
| Mask.assign(VL.size(), PoisonMaskElem); |
| assert((TE->UserTreeIndices.size() == 1 || |
| TE == VectorizableTree.front().get()) && |
| "Expected only single user of the gather node."); |
| assert(VL.size() % NumParts == 0 && |
| "Number of scalars must be divisible by NumParts."); |
| if (!TE->UserTreeIndices.empty() && |
| TE->UserTreeIndices.front().UserTE->isGather() && |
| TE->UserTreeIndices.front().EdgeIdx == UINT_MAX) { |
| assert((TE->Idx == 0 || TE->getOpcode() == Instruction::ExtractElement || |
| isSplat(TE->Scalars)) && |
| "Expected splat or extractelements only node."); |
| return {}; |
| } |
| unsigned SliceSize = getPartNumElems(VL.size(), NumParts); |
| SmallVector<std::optional<TTI::ShuffleKind>> Res; |
| for (unsigned Part : seq<unsigned>(NumParts)) { |
| ArrayRef<Value *> SubVL = |
| VL.slice(Part * SliceSize, getNumElems(VL.size(), SliceSize, Part)); |
| SmallVectorImpl<const TreeEntry *> &SubEntries = Entries.emplace_back(); |
| std::optional<TTI::ShuffleKind> SubRes = |
| isGatherShuffledSingleRegisterEntry(TE, SubVL, Mask, SubEntries, Part, |
| ForOrder); |
| if (!SubRes) |
| SubEntries.clear(); |
| Res.push_back(SubRes); |
| if (SubEntries.size() == 1 && *SubRes == TTI::SK_PermuteSingleSrc && |
| SubEntries.front()->getVectorFactor() == VL.size() && |
| (SubEntries.front()->isSame(TE->Scalars) || |
| SubEntries.front()->isSame(VL))) { |
| SmallVector<const TreeEntry *> LocalSubEntries; |
| LocalSubEntries.swap(SubEntries); |
| Entries.clear(); |
| Res.clear(); |
| std::iota(Mask.begin(), Mask.end(), 0); |
| // Clear undef scalars. |
| for (int I = 0, Sz = VL.size(); I < Sz; ++I) |
| if (isa<PoisonValue>(VL[I])) |
| Mask[I] = PoisonMaskElem; |
| Entries.emplace_back(1, LocalSubEntries.front()); |
| Res.push_back(TargetTransformInfo::SK_PermuteSingleSrc); |
| return Res; |
| } |
| } |
| if (all_of(Res, |
| [](const std::optional<TTI::ShuffleKind> &SK) { return !SK; })) { |
| Entries.clear(); |
| return {}; |
| } |
| return Res; |
| } |
| |
| InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL, bool ForPoisonSrc, |
| Type *ScalarTy) const { |
| auto *VecTy = getWidenedType(ScalarTy, VL.size()); |
| bool DuplicateNonConst = false; |
| // Find the cost of inserting/extracting values from the vector. |
| // Check if the same elements are inserted several times and count them as |
| // shuffle candidates. |
| APInt ShuffledElements = APInt::getZero(VL.size()); |
| DenseMap<Value *, unsigned> UniqueElements; |
| constexpr TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| InstructionCost Cost; |
| auto EstimateInsertCost = [&](unsigned I, Value *V) { |
| if (V->getType() != ScalarTy) { |
| Cost += TTI->getCastInstrCost(Instruction::Trunc, ScalarTy, V->getType(), |
| TTI::CastContextHint::None, CostKind); |
| V = nullptr; |
| } |
| if (!ForPoisonSrc) |
| Cost += |
| TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, |
| I, Constant::getNullValue(VecTy), V); |
| }; |
| SmallVector<int> ShuffleMask(VL.size(), PoisonMaskElem); |
| for (unsigned I = 0, E = VL.size(); I < E; ++I) { |
| Value *V = VL[I]; |
| // No need to shuffle duplicates for constants. |
| if ((ForPoisonSrc && isConstant(V)) || isa<UndefValue>(V)) { |
| ShuffledElements.setBit(I); |
| ShuffleMask[I] = isa<PoisonValue>(V) ? PoisonMaskElem : I; |
| continue; |
| } |
| |
| auto Res = UniqueElements.try_emplace(V, I); |
| if (Res.second) { |
| EstimateInsertCost(I, V); |
| ShuffleMask[I] = I; |
| continue; |
| } |
| |
| DuplicateNonConst = true; |
| ShuffledElements.setBit(I); |
| ShuffleMask[I] = Res.first->second; |
| } |
| if (ForPoisonSrc) { |
| if (isa<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "Only supported by REVEC."); |
| // We don't need to insert elements one by one. Instead, we can insert the |
| // entire vector into the destination. |
| Cost = 0; |
| unsigned ScalarTyNumElements = getNumElements(ScalarTy); |
| for (unsigned I : seq<unsigned>(VL.size())) |
| if (!ShuffledElements[I]) |
| Cost += TTI->getShuffleCost( |
| TTI::SK_InsertSubvector, VecTy, std::nullopt, CostKind, |
| I * ScalarTyNumElements, cast<FixedVectorType>(ScalarTy)); |
| } else { |
| Cost = TTI->getScalarizationOverhead(VecTy, ~ShuffledElements, |
| /*Insert*/ true, |
| /*Extract*/ false, CostKind); |
| } |
| } |
| if (DuplicateNonConst) |
| Cost += ::getShuffleCost(*TTI, TargetTransformInfo::SK_PermuteSingleSrc, |
| VecTy, ShuffleMask); |
| return Cost; |
| } |
| |
| // Perform operand reordering on the instructions in VL and return the reordered |
| // operands in Left and Right. |
| void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, |
| SmallVectorImpl<Value *> &Left, |
| SmallVectorImpl<Value *> &Right, |
| const BoUpSLP &R) { |
| if (VL.empty()) |
| return; |
| VLOperands Ops(VL, R); |
| // Reorder the operands in place. |
| Ops.reorder(); |
| Left = Ops.getVL(0); |
| Right = Ops.getVL(1); |
| } |
| |
| Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) { |
| auto &Res = EntryToLastInstruction.try_emplace(E).first->second; |
| if (Res) |
| return *Res; |
| // Get the basic block this bundle is in. All instructions in the bundle |
| // should be in this block (except for extractelement-like instructions with |
| // constant indices or gathered loads). |
| auto *Front = E->getMainOp(); |
| auto *BB = Front->getParent(); |
| assert(((GatheredLoadsEntriesFirst.has_value() && |
| E->getOpcode() == Instruction::Load && E->isGather() && |
| E->Idx < *GatheredLoadsEntriesFirst) || |
| all_of(E->Scalars, |
| [=](Value *V) -> bool { |
| if (E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(V)) |
| return true; |
| auto *I = cast<Instruction>(V); |
| return !E->isOpcodeOrAlt(I) || I->getParent() == BB || |
| isVectorLikeInstWithConstOps(I); |
| })) && |
| "Expected gathered loads or GEPs or instructions from same basic " |
| "block."); |
| |
| auto FindLastInst = [&]() { |
| Instruction *LastInst = Front; |
| for (Value *V : E->Scalars) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| continue; |
| if (LastInst->getParent() == I->getParent()) { |
| if (LastInst->comesBefore(I)) |
| LastInst = I; |
| continue; |
| } |
| assert(((E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(I)) || |
| (isVectorLikeInstWithConstOps(LastInst) && |
| isVectorLikeInstWithConstOps(I)) || |
| (GatheredLoadsEntriesFirst.has_value() && |
| E->getOpcode() == Instruction::Load && E->isGather() && |
| E->Idx < *GatheredLoadsEntriesFirst)) && |
| "Expected vector-like or non-GEP in GEP node insts only."); |
| if (!DT->isReachableFromEntry(LastInst->getParent())) { |
| LastInst = I; |
| continue; |
| } |
| if (!DT->isReachableFromEntry(I->getParent())) |
| continue; |
| auto *NodeA = DT->getNode(LastInst->getParent()); |
| auto *NodeB = DT->getNode(I->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == |
| (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) |
| LastInst = I; |
| } |
| BB = LastInst->getParent(); |
| return LastInst; |
| }; |
| |
| auto FindFirstInst = [&]() { |
| Instruction *FirstInst = Front; |
| for (Value *V : E->Scalars) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| continue; |
| if (FirstInst->getParent() == I->getParent()) { |
| if (I->comesBefore(FirstInst)) |
| FirstInst = I; |
| continue; |
| } |
| assert(((E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(I)) || |
| (isVectorLikeInstWithConstOps(FirstInst) && |
| isVectorLikeInstWithConstOps(I))) && |
| "Expected vector-like or non-GEP in GEP node insts only."); |
| if (!DT->isReachableFromEntry(FirstInst->getParent())) { |
| FirstInst = I; |
| continue; |
| } |
| if (!DT->isReachableFromEntry(I->getParent())) |
| continue; |
| auto *NodeA = DT->getNode(FirstInst->getParent()); |
| auto *NodeB = DT->getNode(I->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == |
| (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn()) |
| FirstInst = I; |
| } |
| return FirstInst; |
| }; |
| |
| // Set insertpoint for gathered loads to the very first load. |
| if (GatheredLoadsEntriesFirst.has_value() && |
| E->Idx >= *GatheredLoadsEntriesFirst && !E->isGather() && |
| E->getOpcode() == Instruction::Load) { |
| Res = FindFirstInst(); |
| return *Res; |
| } |
| |
| // Set the insert point to the beginning of the basic block if the entry |
| // should not be scheduled. |
| if (doesNotNeedToSchedule(E->Scalars) || |
| (!E->isGather() && all_of(E->Scalars, isVectorLikeInstWithConstOps))) { |
| if ((E->getOpcode() == Instruction::GetElementPtr && |
| any_of(E->Scalars, |
| [](Value *V) { |
| return !isa<GetElementPtrInst>(V) && isa<Instruction>(V); |
| })) || |
| all_of(E->Scalars, |
| [](Value *V) { |
| return !isVectorLikeInstWithConstOps(V) && |
| isUsedOutsideBlock(V); |
| }) || |
| (E->isGather() && E->Idx == 0 && all_of(E->Scalars, [](Value *V) { |
| return isa<ExtractElementInst, UndefValue>(V) || |
| areAllOperandsNonInsts(V); |
| }))) |
| Res = FindLastInst(); |
| else |
| Res = FindFirstInst(); |
| return *Res; |
| } |
| |
| // Find the last instruction. The common case should be that BB has been |
| // scheduled, and the last instruction is VL.back(). So we start with |
| // VL.back() and iterate over schedule data until we reach the end of the |
| // bundle. The end of the bundle is marked by null ScheduleData. |
| if (BlocksSchedules.count(BB)) { |
| Value *V = E->isOneOf(E->Scalars.back()); |
| if (doesNotNeedToBeScheduled(V)) |
| V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); |
| auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); |
| if (Bundle && Bundle->isPartOfBundle()) |
| for (; Bundle; Bundle = Bundle->NextInBundle) |
| Res = Bundle->Inst; |
| } |
| |
| // LastInst can still be null at this point if there's either not an entry |
| // for BB in BlocksSchedules or there's no ScheduleData available for |
| // VL.back(). This can be the case if buildTree_rec aborts for various |
| // reasons (e.g., the maximum recursion depth is reached, the maximum region |
| // size is reached, etc.). ScheduleData is initialized in the scheduling |
| // "dry-run". |
| // |
| // If this happens, we can still find the last instruction by brute force. We |
| // iterate forwards from Front (inclusive) until we either see all |
| // instructions in the bundle or reach the end of the block. If Front is the |
| // last instruction in program order, LastInst will be set to Front, and we |
| // will visit all the remaining instructions in the block. |
| // |
| // One of the reasons we exit early from buildTree_rec is to place an upper |
| // bound on compile-time. Thus, taking an additional compile-time hit here is |
| // not ideal. However, this should be exceedingly rare since it requires that |
| // we both exit early from buildTree_rec and that the bundle be out-of-order |
| // (causing us to iterate all the way to the end of the block). |
| if (!Res) |
| Res = FindLastInst(); |
| assert(Res && "Failed to find last instruction in bundle"); |
| return *Res; |
| } |
| |
| void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { |
| auto *Front = E->getMainOp(); |
| Instruction *LastInst = &getLastInstructionInBundle(E); |
| assert(LastInst && "Failed to find last instruction in bundle"); |
| BasicBlock::iterator LastInstIt = LastInst->getIterator(); |
| // If the instruction is PHI, set the insert point after all the PHIs. |
| bool IsPHI = isa<PHINode>(LastInst); |
| if (IsPHI) |
| LastInstIt = LastInst->getParent()->getFirstNonPHIIt(); |
| if (IsPHI || (!E->isGather() && doesNotNeedToSchedule(E->Scalars))) { |
| Builder.SetInsertPoint(LastInst->getParent(), LastInstIt); |
| } else { |
| // Set the insertion point after the last instruction in the bundle. Set the |
| // debug location to Front. |
| Builder.SetInsertPoint( |
| LastInst->getParent(), |
| LastInst->getNextNonDebugInstruction()->getIterator()); |
| } |
| Builder.SetCurrentDebugLocation(Front->getDebugLoc()); |
| } |
| |
| Value *BoUpSLP::gather(ArrayRef<Value *> VL, Value *Root, Type *ScalarTy) { |
| // List of instructions/lanes from current block and/or the blocks which are |
| // part of the current loop. These instructions will be inserted at the end to |
| // make it possible to optimize loops and hoist invariant instructions out of |
| // the loops body with better chances for success. |
| SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; |
| SmallSet<int, 4> PostponedIndices; |
| Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); |
| auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { |
| SmallPtrSet<BasicBlock *, 4> Visited; |
| while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) |
| InsertBB = InsertBB->getSinglePredecessor(); |
| return InsertBB && InsertBB == InstBB; |
| }; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| if (auto *Inst = dyn_cast<Instruction>(VL[I])) |
| if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || |
| getTreeEntry(Inst) || |
| (L && (!Root || L->isLoopInvariant(Root)) && L->contains(Inst))) && |
| PostponedIndices.insert(I).second) |
| PostponedInsts.emplace_back(Inst, I); |
| } |
| |
| auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos, |
| Type *Ty) { |
| Value *Scalar = V; |
| if (Scalar->getType() != Ty) { |
| assert(Scalar->getType()->isIntOrIntVectorTy() && |
| Ty->isIntOrIntVectorTy() && "Expected integer types only."); |
| Value *V = Scalar; |
| if (auto *CI = dyn_cast<CastInst>(Scalar); |
| isa_and_nonnull<SExtInst, ZExtInst>(CI)) { |
| Value *Op = CI->getOperand(0); |
| if (auto *IOp = dyn_cast<Instruction>(Op); |
| !IOp || !(isDeleted(IOp) || getTreeEntry(IOp))) |
| V = Op; |
| } |
| Scalar = Builder.CreateIntCast( |
| V, Ty, !isKnownNonNegative(Scalar, SimplifyQuery(*DL))); |
| } |
| |
| Instruction *InsElt; |
| if (auto *VecTy = dyn_cast<FixedVectorType>(Scalar->getType())) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| Vec = InsElt = Builder.CreateInsertVector( |
| Vec->getType(), Vec, Scalar, |
| Builder.getInt64(Pos * VecTy->getNumElements())); |
| auto *II = dyn_cast<IntrinsicInst>(InsElt); |
| if (!II || II->getIntrinsicID() != Intrinsic::vector_insert) |
| return Vec; |
| } else { |
| Vec = Builder.CreateInsertElement(Vec, Scalar, Builder.getInt32(Pos)); |
| InsElt = dyn_cast<InsertElementInst>(Vec); |
| if (!InsElt) |
| return Vec; |
| } |
| GatherShuffleExtractSeq.insert(InsElt); |
| CSEBlocks.insert(InsElt->getParent()); |
| // Add to our 'need-to-extract' list. |
| if (isa<Instruction>(V)) { |
| if (TreeEntry *Entry = getTreeEntry(V)) { |
| // Find which lane we need to extract. |
| User *UserOp = nullptr; |
| if (Scalar != V) { |
| if (auto *SI = dyn_cast<Instruction>(Scalar)) |
| UserOp = SI; |
| } else { |
| UserOp = InsElt; |
| } |
| if (UserOp) { |
| unsigned FoundLane = Entry->findLaneForValue(V); |
| ExternalUses.emplace_back(V, UserOp, FoundLane); |
| } |
| } |
| } |
| return Vec; |
| }; |
| auto *VecTy = getWidenedType(ScalarTy, VL.size()); |
| Value *Vec = Root ? Root : PoisonValue::get(VecTy); |
| SmallVector<int> NonConsts; |
| // Insert constant values at first. |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| if (PostponedIndices.contains(I)) |
| continue; |
| if (!isConstant(VL[I])) { |
| NonConsts.push_back(I); |
| continue; |
| } |
| if (Root) { |
| if (!isa<UndefValue>(VL[I])) { |
| NonConsts.push_back(I); |
| continue; |
| } |
| if (isa<PoisonValue>(VL[I])) |
| continue; |
| if (auto *SV = dyn_cast<ShuffleVectorInst>(Root)) { |
| if (SV->getMaskValue(I) == PoisonMaskElem) |
| continue; |
| } |
| } |
| Vec = CreateInsertElement(Vec, VL[I], I, ScalarTy); |
| } |
| // Insert non-constant values. |
| for (int I : NonConsts) |
| Vec = CreateInsertElement(Vec, VL[I], I, ScalarTy); |
| // Append instructions, which are/may be part of the loop, in the end to make |
| // it possible to hoist non-loop-based instructions. |
| for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) |
| Vec = CreateInsertElement(Vec, Pair.first, Pair.second, ScalarTy); |
| |
| return Vec; |
| } |
| |
| /// Merges shuffle masks and emits final shuffle instruction, if required. It |
| /// supports shuffling of 2 input vectors. It implements lazy shuffles emission, |
| /// when the actual shuffle instruction is generated only if this is actually |
| /// required. Otherwise, the shuffle instruction emission is delayed till the |
| /// end of the process, to reduce the number of emitted instructions and further |
| /// analysis/transformations. |
| /// The class also will look through the previously emitted shuffle instructions |
| /// and properly mark indices in mask as undef. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will |
| /// look through %s1 and %s2 and emit |
| /// \code |
| /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> |
| /// \endcode |
| /// instead. |
| /// If 2 operands are of different size, the smallest one will be resized and |
| /// the mask recalculated properly. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will |
| /// look through %s1 and %s2 and emit |
| /// \code |
| /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> |
| /// \endcode |
| /// instead. |
| class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis { |
| bool IsFinalized = false; |
| /// Combined mask for all applied operands and masks. It is built during |
| /// analysis and actual emission of shuffle vector instructions. |
| SmallVector<int> CommonMask; |
| /// List of operands for the shuffle vector instruction. It hold at max 2 |
| /// operands, if the 3rd is going to be added, the first 2 are combined into |
| /// shuffle with \p CommonMask mask, the first operand sets to be the |
| /// resulting shuffle and the second operand sets to be the newly added |
| /// operand. The \p CommonMask is transformed in the proper way after that. |
| SmallVector<Value *, 2> InVectors; |
| IRBuilderBase &Builder; |
| BoUpSLP &R; |
| |
| class ShuffleIRBuilder { |
| IRBuilderBase &Builder; |
| /// Holds all of the instructions that we gathered. |
| SetVector<Instruction *> &GatherShuffleExtractSeq; |
| /// A list of blocks that we are going to CSE. |
| DenseSet<BasicBlock *> &CSEBlocks; |
| /// Data layout. |
| const DataLayout &DL; |
| |
| public: |
| ShuffleIRBuilder(IRBuilderBase &Builder, |
| SetVector<Instruction *> &GatherShuffleExtractSeq, |
| DenseSet<BasicBlock *> &CSEBlocks, const DataLayout &DL) |
| : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq), |
| CSEBlocks(CSEBlocks), DL(DL) {} |
| ~ShuffleIRBuilder() = default; |
| /// Creates shufflevector for the 2 operands with the given mask. |
| Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| if (V1->getType() != V2->getType()) { |
| assert(V1->getType()->isIntOrIntVectorTy() && |
| V1->getType()->isIntOrIntVectorTy() && |
| "Expected integer vector types only."); |
| if (V1->getType() != V2->getType()) { |
| if (cast<VectorType>(V2->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth() < cast<VectorType>(V1->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth()) |
| V2 = Builder.CreateIntCast( |
| V2, V1->getType(), !isKnownNonNegative(V2, SimplifyQuery(DL))); |
| else |
| V1 = Builder.CreateIntCast( |
| V1, V2->getType(), !isKnownNonNegative(V1, SimplifyQuery(DL))); |
| } |
| } |
| Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask); |
| if (auto *I = dyn_cast<Instruction>(Vec)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| return Vec; |
| } |
| /// Creates permutation of the single vector operand with the given mask, if |
| /// it is not identity mask. |
| Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) { |
| if (Mask.empty()) |
| return V1; |
| unsigned VF = Mask.size(); |
| unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask, VF)) |
| return V1; |
| Value *Vec = Builder.CreateShuffleVector(V1, Mask); |
| if (auto *I = dyn_cast<Instruction>(Vec)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| return Vec; |
| } |
| Value *createIdentity(Value *V) { return V; } |
| Value *createPoison(Type *Ty, unsigned VF) { |
| return PoisonValue::get(getWidenedType(Ty, VF)); |
| } |
| /// Resizes 2 input vector to match the sizes, if the they are not equal |
| /// yet. The smallest vector is resized to the size of the larger vector. |
| void resizeToMatch(Value *&V1, Value *&V2) { |
| if (V1->getType() == V2->getType()) |
| return; |
| int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements(); |
| int VF = std::max(V1VF, V2VF); |
| int MinVF = std::min(V1VF, V2VF); |
| SmallVector<int> IdentityMask(VF, PoisonMaskElem); |
| std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF), |
| 0); |
| Value *&Op = MinVF == V1VF ? V1 : V2; |
| Op = Builder.CreateShuffleVector(Op, IdentityMask); |
| if (auto *I = dyn_cast<Instruction>(Op)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| if (MinVF == V1VF) |
| V1 = Op; |
| else |
| V2 = Op; |
| } |
| }; |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| assert(V1 && "Expected at least one vector value."); |
| ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq, |
| R.CSEBlocks, *R.DL); |
| return BaseShuffleAnalysis::createShuffle<Value *>(V1, V2, Mask, |
| ShuffleBuilder); |
| } |
| |
| /// Transforms mask \p CommonMask per given \p Mask to make proper set after |
| /// shuffle emission. |
| static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask, |
| ArrayRef<int> Mask) { |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| } |
| |
| /// Cast value \p V to the vector type with the same number of elements, but |
| /// the base type \p ScalarTy. |
| Value *castToScalarTyElem(Value *V, |
| std::optional<bool> IsSigned = std::nullopt) { |
| auto *VecTy = cast<VectorType>(V->getType()); |
| assert(getNumElements(VecTy) % getNumElements(ScalarTy) == 0); |
| if (VecTy->getElementType() == ScalarTy->getScalarType()) |
| return V; |
| return Builder.CreateIntCast( |
| V, VectorType::get(ScalarTy->getScalarType(), VecTy->getElementCount()), |
| IsSigned.value_or(!isKnownNonNegative(V, SimplifyQuery(*R.DL)))); |
| } |
| |
| public: |
| ShuffleInstructionBuilder(Type *ScalarTy, IRBuilderBase &Builder, BoUpSLP &R) |
| : BaseShuffleAnalysis(ScalarTy), Builder(Builder), R(R) {} |
| |
| /// Adjusts extractelements after reusing them. |
| Value *adjustExtracts(const TreeEntry *E, MutableArrayRef<int> Mask, |
| ArrayRef<std::optional<TTI::ShuffleKind>> ShuffleKinds, |
| unsigned NumParts, bool &UseVecBaseAsInput) { |
| UseVecBaseAsInput = false; |
| SmallPtrSet<Value *, 4> UniqueBases; |
| Value *VecBase = nullptr; |
| for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { |
| int Idx = Mask[I]; |
| if (Idx == PoisonMaskElem) |
| continue; |
| auto *EI = cast<ExtractElementInst>(E->Scalars[I]); |
| VecBase = EI->getVectorOperand(); |
| if (const TreeEntry *TE = R.getTreeEntry(VecBase)) |
| VecBase = TE->VectorizedValue; |
| assert(VecBase && "Expected vectorized value."); |
| UniqueBases.insert(VecBase); |
| // If the only one use is vectorized - can delete the extractelement |
| // itself. |
| if (!EI->hasOneUse() || R.ExternalUsesAsOriginalScalar.contains(EI) || |
| (NumParts != 1 && count(E->Scalars, EI) > 1) || |
| any_of(EI->users(), [&](User *U) { |
| const TreeEntry *UTE = R.getTreeEntry(U); |
| return !UTE || R.MultiNodeScalars.contains(U) || |
| (isa<GetElementPtrInst>(U) && |
| !R.areAllUsersVectorized(cast<Instruction>(U))) || |
| count_if(R.VectorizableTree, |
| [&](const std::unique_ptr<TreeEntry> &TE) { |
| return any_of(TE->UserTreeIndices, |
| [&](const EdgeInfo &Edge) { |
| return Edge.UserTE == UTE; |
| }) && |
| is_contained(TE->Scalars, EI); |
| }) != 1; |
| })) |
| continue; |
| R.eraseInstruction(EI); |
| } |
| if (NumParts == 1 || UniqueBases.size() == 1) { |
| assert(VecBase && "Expected vectorized value."); |
| return castToScalarTyElem(VecBase); |
| } |
| UseVecBaseAsInput = true; |
| auto TransformToIdentity = [](MutableArrayRef<int> Mask) { |
| for (auto [I, Idx] : enumerate(Mask)) |
| if (Idx != PoisonMaskElem) |
| Idx = I; |
| }; |
| // Perform multi-register vector shuffle, joining them into a single virtual |
| // long vector. |
| // Need to shuffle each part independently and then insert all this parts |
| // into a long virtual vector register, forming the original vector. |
| Value *Vec = nullptr; |
| SmallVector<int> VecMask(Mask.size(), PoisonMaskElem); |
| unsigned SliceSize = getPartNumElems(E->Scalars.size(), NumParts); |
| for (unsigned Part : seq<unsigned>(NumParts)) { |
| unsigned Limit = getNumElems(E->Scalars.size(), SliceSize, Part); |
| ArrayRef<Value *> VL = |
| ArrayRef(E->Scalars).slice(Part * SliceSize, Limit); |
| MutableArrayRef<int> SubMask = Mask.slice(Part * SliceSize, Limit); |
| constexpr int MaxBases = 2; |
| SmallVector<Value *, MaxBases> Bases(MaxBases); |
| auto VLMask = zip(VL, SubMask); |
| const unsigned VF = std::accumulate( |
| VLMask.begin(), VLMask.end(), 0U, [&](unsigned S, const auto &D) { |
| if (std::get<1>(D) == PoisonMaskElem) |
| return S; |
| Value *VecOp = |
| cast<ExtractElementInst>(std::get<0>(D))->getVectorOperand(); |
| if (const TreeEntry *TE = R.getTreeEntry(VecOp)) |
| VecOp = TE->VectorizedValue; |
| assert(VecOp && "Expected vectorized value."); |
| const unsigned Size = |
| cast<FixedVectorType>(VecOp->getType())->getNumElements(); |
| return std::max(S, Size); |
| }); |
| for (const auto [V, I] : VLMask) { |
| if (I == PoisonMaskElem) |
| continue; |
| Value *VecOp = cast<ExtractElementInst>(V)->getVectorOperand(); |
| if (const TreeEntry *TE = R.getTreeEntry(VecOp)) |
| VecOp = TE->VectorizedValue; |
| assert(VecOp && "Expected vectorized value."); |
| VecOp = castToScalarTyElem(VecOp); |
| Bases[I / VF] = VecOp; |
| } |
| if (!Bases.front()) |
| continue; |
| Value *SubVec; |
| if (Bases.back()) { |
| SubVec = createShuffle(Bases.front(), Bases.back(), SubMask); |
| TransformToIdentity(SubMask); |
| } else { |
| SubVec = Bases.front(); |
| } |
| if (!Vec) { |
| Vec = SubVec; |
| assert((Part == 0 || all_of(seq<unsigned>(0, Part), |
| [&](unsigned P) { |
| ArrayRef<int> SubMask = |
| Mask.slice(P * SliceSize, |
| getNumElems(Mask.size(), |
| SliceSize, P)); |
| return all_of(SubMask, [](int Idx) { |
| return Idx == PoisonMaskElem; |
| }); |
| })) && |
| "Expected first part or all previous parts masked."); |
| copy(SubMask, std::next(VecMask.begin(), Part * SliceSize)); |
| } else { |
| unsigned NewVF = |
| cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| if (Vec->getType() != SubVec->getType()) { |
| unsigned SubVecVF = |
| cast<FixedVectorType>(SubVec->getType())->getNumElements(); |
| NewVF = std::max(NewVF, SubVecVF); |
| } |
| // Adjust SubMask. |
| for (int &Idx : SubMask) |
| if (Idx != PoisonMaskElem) |
| Idx += NewVF; |
| copy(SubMask, std::next(VecMask.begin(), Part * SliceSize)); |
| Vec = createShuffle(Vec, SubVec, VecMask); |
| TransformToIdentity(VecMask); |
| } |
| } |
| copy(VecMask, Mask.begin()); |
| return Vec; |
| } |
| /// Checks if the specified entry \p E needs to be delayed because of its |
| /// dependency nodes. |
| std::optional<Value *> |
| needToDelay(const TreeEntry *E, |
| ArrayRef<SmallVector<const TreeEntry *>> Deps) const { |
| // No need to delay emission if all deps are ready. |
| if (all_of(Deps, [](ArrayRef<const TreeEntry *> TEs) { |
| return all_of( |
| TEs, [](const TreeEntry *TE) { return TE->VectorizedValue; }); |
| })) |
| return std::nullopt; |
| // Postpone gather emission, will be emitted after the end of the |
| // process to keep correct order. |
| auto *ResVecTy = getWidenedType(ScalarTy, E->getVectorFactor()); |
| return Builder.CreateAlignedLoad( |
| ResVecTy, |
| PoisonValue::get(PointerType::getUnqual(ScalarTy->getContext())), |
| MaybeAlign()); |
| } |
| /// Adds 2 input vectors (in form of tree entries) and the mask for their |
| /// shuffling. |
| void add(const TreeEntry &E1, const TreeEntry &E2, ArrayRef<int> Mask) { |
| Value *V1 = E1.VectorizedValue; |
| if (V1->getType()->isIntOrIntVectorTy()) |
| V1 = castToScalarTyElem(V1, any_of(E1.Scalars, [&](Value *V) { |
| return !isKnownNonNegative( |
| V, SimplifyQuery(*R.DL)); |
| })); |
| Value *V2 = E2.VectorizedValue; |
| if (V2->getType()->isIntOrIntVectorTy()) |
| V2 = castToScalarTyElem(V2, any_of(E2.Scalars, [&](Value *V) { |
| return !isKnownNonNegative( |
| V, SimplifyQuery(*R.DL)); |
| })); |
| add(V1, V2, Mask); |
| } |
| /// Adds single input vector (in form of tree entry) and the mask for its |
| /// shuffling. |
| void add(const TreeEntry &E1, ArrayRef<int> Mask) { |
| Value *V1 = E1.VectorizedValue; |
| if (V1->getType()->isIntOrIntVectorTy()) |
| V1 = castToScalarTyElem(V1, any_of(E1.Scalars, [&](Value *V) { |
| return !isKnownNonNegative( |
| V, SimplifyQuery(*R.DL)); |
| })); |
| add(V1, Mask); |
| } |
| /// Adds 2 input vectors and the mask for their shuffling. |
| void add(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors."); |
| assert(isa<FixedVectorType>(V1->getType()) && |
| isa<FixedVectorType>(V2->getType()) && |
| "castToScalarTyElem expects V1 and V2 to be FixedVectorType"); |
| V1 = castToScalarTyElem(V1); |
| V2 = castToScalarTyElem(V2); |
| if (InVectors.empty()) { |
| InVectors.push_back(V1); |
| InVectors.push_back(V2); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| return; |
| } |
| Value *Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Vec = createShuffle(Vec, InVectors.back(), CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() != |
| Mask.size()) { |
| Vec = createShuffle(Vec, nullptr, CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } |
| V1 = createShuffle(V1, V2, Mask); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx + Sz; |
| InVectors.front() = Vec; |
| if (InVectors.size() == 2) |
| InVectors.back() = V1; |
| else |
| InVectors.push_back(V1); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void add(Value *V1, ArrayRef<int> Mask, bool = false) { |
| assert(isa<FixedVectorType>(V1->getType()) && |
| "castToScalarTyElem expects V1 to be FixedVectorType"); |
| V1 = castToScalarTyElem(V1); |
| if (InVectors.empty()) { |
| InVectors.push_back(V1); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| return; |
| } |
| const auto *It = find(InVectors, V1); |
| if (It == InVectors.end()) { |
| if (InVectors.size() == 2 || |
| InVectors.front()->getType() != V1->getType()) { |
| Value *V = InVectors.front(); |
| if (InVectors.size() == 2) { |
| V = createShuffle(InVectors.front(), InVectors.back(), CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } else if (cast<FixedVectorType>(V->getType())->getNumElements() != |
| CommonMask.size()) { |
| V = createShuffle(InVectors.front(), nullptr, CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } |
| unsigned VF = std::max(CommonMask.size(), Mask.size()); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] == PoisonMaskElem && Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = |
| V->getType() != V1->getType() |
| ? Idx + VF |
| : Mask[Idx] + cast<FixedVectorType>(V1->getType()) |
| ->getNumElements(); |
| if (V->getType() != V1->getType()) |
| V1 = createShuffle(V1, nullptr, Mask); |
| InVectors.front() = V; |
| if (InVectors.size() == 2) |
| InVectors.back() = V1; |
| else |
| InVectors.push_back(V1); |
| return; |
| } |
| // Check if second vector is required if the used elements are already |
| // used from the first one. |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) { |
| InVectors.push_back(V1); |
| break; |
| } |
| } |
| int VF = getVF(V1); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) |
| CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void addOrdered(Value *V1, ArrayRef<unsigned> Order) { |
| SmallVector<int> NewMask; |
| inversePermutation(Order, NewMask); |
| add(V1, NewMask); |
| } |
| Value *gather(ArrayRef<Value *> VL, unsigned MaskVF = 0, |
| Value *Root = nullptr) { |
| return R.gather(VL, Root, ScalarTy); |
| } |
| Value *createFreeze(Value *V) { return Builder.CreateFreeze(V); } |
| /// Finalize emission of the shuffles. |
| /// \param Action the action (if any) to be performed before final applying of |
| /// the \p ExtMask mask. |
| Value * |
| finalize(ArrayRef<int> ExtMask, |
| ArrayRef<std::pair<const TreeEntry *, unsigned>> SubVectors, |
| unsigned VF = 0, |
| function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) { |
| IsFinalized = true; |
| SmallVector<int> NewExtMask(ExtMask); |
| if (auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| transformScalarShuffleIndiciesToVector(VecTy->getNumElements(), |
| CommonMask); |
| transformScalarShuffleIndiciesToVector(VecTy->getNumElements(), |
| NewExtMask); |
| ExtMask = NewExtMask; |
| } |
| if (Action) { |
| Value *Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Vec = createShuffle(Vec, InVectors.back(), CommonMask); |
| InVectors.pop_back(); |
| } else { |
| Vec = createShuffle(Vec, nullptr, CommonMask); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| assert(VF > 0 && |
| "Expected vector length for the final value before action."); |
| unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| if (VecVF < VF) { |
| SmallVector<int> ResizeMask(VF, PoisonMaskElem); |
| std::iota(ResizeMask.begin(), std::next(ResizeMask.begin(), VecVF), 0); |
| Vec = createShuffle(Vec, nullptr, ResizeMask); |
| } |
| Action(Vec, CommonMask); |
| InVectors.front() = Vec; |
| } |
| if (!SubVectors.empty()) { |
| Value *Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Vec = createShuffle(Vec, InVectors.back(), CommonMask); |
| InVectors.pop_back(); |
| } else { |
| Vec = createShuffle(Vec, nullptr, CommonMask); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| for (auto [E, Idx] : SubVectors) { |
| Value *V = E->VectorizedValue; |
| if (V->getType()->isIntOrIntVectorTy()) |
| V = castToScalarTyElem(V, any_of(E->Scalars, [&](Value *V) { |
| return !isKnownNonNegative( |
| V, SimplifyQuery(*R.DL)); |
| })); |
| Vec = Builder.CreateInsertVector(Vec->getType(), Vec, V, |
| Builder.getInt64(Idx)); |
| if (!CommonMask.empty()) { |
| std::iota(std::next(CommonMask.begin(), Idx), |
| std::next(CommonMask.begin(), Idx + E->getVectorFactor()), |
| Idx); |
| } |
| } |
| InVectors.front() = Vec; |
| } |
| |
| if (!ExtMask.empty()) { |
| if (CommonMask.empty()) { |
| CommonMask.assign(ExtMask.begin(), ExtMask.end()); |
| } else { |
| SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem); |
| for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { |
| if (ExtMask[I] == PoisonMaskElem) |
| continue; |
| NewMask[I] = CommonMask[ExtMask[I]]; |
| } |
| CommonMask.swap(NewMask); |
| } |
| } |
| if (CommonMask.empty()) { |
| assert(InVectors.size() == 1 && "Expected only one vector with no mask"); |
| return InVectors.front(); |
| } |
| if (InVectors.size() == 2) |
| return createShuffle(InVectors.front(), InVectors.back(), CommonMask); |
| return createShuffle(InVectors.front(), nullptr, CommonMask); |
| } |
| |
| ~ShuffleInstructionBuilder() { |
| assert((IsFinalized || CommonMask.empty()) && |
| "Shuffle construction must be finalized."); |
| } |
| }; |
| |
| BoUpSLP::TreeEntry *BoUpSLP::getMatchedVectorizedOperand(const TreeEntry *E, |
| unsigned NodeIdx) { |
| ArrayRef<Value *> VL = E->getOperand(NodeIdx); |
| InstructionsState S = getSameOpcode(VL, *TLI); |
| // Special processing for GEPs bundle, which may include non-gep values. |
| if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { |
| const auto *It = find_if(VL, IsaPred<GetElementPtrInst>); |
| if (It != VL.end()) |
| S = getSameOpcode(*It, *TLI); |
| } |
| if (!S.getOpcode()) |
| return nullptr; |
| auto CheckSameVE = [&](const TreeEntry *VE) { |
| return VE->isSame(VL) && |
| (any_of(VE->UserTreeIndices, |
| [E, NodeIdx](const EdgeInfo &EI) { |
| return EI.UserTE == E && EI.EdgeIdx == NodeIdx; |
| }) || |
| any_of(VectorizableTree, |
| [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isOperandGatherNode( |
| {const_cast<TreeEntry *>(E), NodeIdx}) && |
| VE->isSame(TE->Scalars); |
| })); |
| }; |
| TreeEntry *VE = getTreeEntry(S.OpValue); |
| if (VE && CheckSameVE(VE)) |
| return VE; |
| auto It = MultiNodeScalars.find(S.OpValue); |
| if (It != MultiNodeScalars.end()) { |
| auto *I = find_if(It->getSecond(), [&](const TreeEntry *TE) { |
| return TE != VE && CheckSameVE(TE); |
| }); |
| if (I != It->getSecond().end()) |
| return *I; |
| } |
| return nullptr; |
| } |
| |
| Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx, |
| bool PostponedPHIs) { |
| ValueList &VL = E->getOperand(NodeIdx); |
| const unsigned VF = VL.size(); |
| if (TreeEntry *VE = getMatchedVectorizedOperand(E, NodeIdx)) { |
| auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) { |
| // V may be affected by MinBWs. |
| // We want ShuffleInstructionBuilder to correctly support REVEC. The key |
| // factor is the number of elements, not their type. |
| Type *ScalarTy = cast<VectorType>(V->getType())->getElementType(); |
| unsigned NumElements = getNumElements(VL.front()->getType()); |
| ShuffleInstructionBuilder ShuffleBuilder( |
| NumElements != 1 ? FixedVectorType::get(ScalarTy, NumElements) |
| : ScalarTy, |
| Builder, *this); |
| ShuffleBuilder.add(V, Mask); |
| SmallVector<std::pair<const TreeEntry *, unsigned>> SubVectors( |
| E->CombinedEntriesWithIndices.size()); |
| transform(E->CombinedEntriesWithIndices, SubVectors.begin(), |
| [&](const auto &P) { |
| return std::make_pair(VectorizableTree[P.first].get(), |
| P.second); |
| }); |
| return ShuffleBuilder.finalize({}, SubVectors); |
| }; |
| Value *V = vectorizeTree(VE, PostponedPHIs); |
| if (VF * getNumElements(VL[0]->getType()) != |
| cast<FixedVectorType>(V->getType())->getNumElements()) { |
| if (!VE->ReuseShuffleIndices.empty()) { |
| // Reshuffle to get only unique values. |
| // If some of the scalars are duplicated in the vectorization |
| // tree entry, we do not vectorize them but instead generate a |
| // mask for the reuses. But if there are several users of the |
| // same entry, they may have different vectorization factors. |
| // This is especially important for PHI nodes. In this case, we |
| // need to adapt the resulting instruction for the user |
| // vectorization factor and have to reshuffle it again to take |
| // only unique elements of the vector. Without this code the |
| // function incorrectly returns reduced vector instruction with |
| // the same elements, not with the unique ones. |
| |
| // block: |
| // %phi = phi <2 x > { .., %entry} {%shuffle, %block} |
| // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> |
| // ... (use %2) |
| // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} |
| // br %block |
| SmallVector<int> Mask(VF, PoisonMaskElem); |
| for (auto [I, V] : enumerate(VL)) { |
| if (isa<PoisonValue>(V)) |
| continue; |
| Mask[I] = VE->findLaneForValue(V); |
| } |
| V = FinalShuffle(V, Mask); |
| } else { |
| assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && |
| "Expected vectorization factor less " |
| "than original vector size."); |
| SmallVector<int> UniformMask(VF, 0); |
| std::iota(UniformMask.begin(), UniformMask.end(), 0); |
| V = FinalShuffle(V, UniformMask); |
| } |
| } |
| // Need to update the operand gather node, if actually the operand is not a |
| // vectorized node, but the buildvector/gather node, which matches one of |
| // the vectorized nodes. |
| if (find_if(VE->UserTreeIndices, [&](const EdgeInfo &EI) { |
| return EI.UserTE == E && EI.EdgeIdx == NodeIdx; |
| }) == VE->UserTreeIndices.end()) { |
| auto *It = |
| find_if(VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isGather() && TE->UserTreeIndices.front().UserTE == E && |
| TE->UserTreeIndices.front().EdgeIdx == NodeIdx; |
| }); |
| assert(It != VectorizableTree.end() && "Expected gather node operand."); |
| (*It)->VectorizedValue = V; |
| } |
| return V; |
| } |
| |
| // Find the corresponding gather entry and vectorize it. |
| // Allows to be more accurate with tree/graph transformations, checks for the |
| // correctness of the transformations in many cases. |
| auto *I = find_if(VectorizableTree, |
| [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isOperandGatherNode({E, NodeIdx}); |
| }); |
| assert(I != VectorizableTree.end() && "Gather node is not in the graph."); |
| assert(I->get()->UserTreeIndices.size() == 1 && |
| "Expected only single user for the gather node."); |
| assert(I->get()->isSame(VL) && "Expected same list of scalars."); |
| return vectorizeTree(I->get(), PostponedPHIs); |
| } |
| |
| template <typename BVTy, typename ResTy, typename... Args> |
| ResTy BoUpSLP::processBuildVector(const TreeEntry *E, Type *ScalarTy, |
| Args &...Params) { |
| assert(E->isGather() && "Expected gather node."); |
| unsigned VF = E->getVectorFactor(); |
| |
| bool NeedFreeze = false; |
| SmallVector<int> ReuseShuffleIndices(E->ReuseShuffleIndices.begin(), |
| E->ReuseShuffleIndices.end()); |
| SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); |
| // Clear values, to be replaced by insertvector instructions. |
| for (auto [EIdx, Idx] : E->CombinedEntriesWithIndices) |
| for_each(MutableArrayRef(GatheredScalars) |
| .slice(Idx, VectorizableTree[EIdx]->getVectorFactor()), |
| [&](Value *&V) { V = PoisonValue::get(V->getType()); }); |
| SmallVector<std::pair<const TreeEntry *, unsigned>> SubVectors( |
| E->CombinedEntriesWithIndices.size()); |
| transform(E->CombinedEntriesWithIndices, SubVectors.begin(), |
| [&](const auto &P) { |
| return std::make_pair(VectorizableTree[P.first].get(), P.second); |
| }); |
| // Build a mask out of the reorder indices and reorder scalars per this |
| // mask. |
| SmallVector<int> ReorderMask; |
| inversePermutation(E->ReorderIndices, ReorderMask); |
| if (!ReorderMask.empty()) |
| reorderScalars(GatheredScalars, ReorderMask); |
| auto FindReusedSplat = [&](MutableArrayRef<int> Mask, unsigned InputVF, |
| unsigned I, unsigned SliceSize) { |
| if (!isSplat(E->Scalars) || none_of(E->Scalars, [](Value *V) { |
| return isa<UndefValue>(V) && !isa<PoisonValue>(V); |
| })) |
| return false; |
| TreeEntry *UserTE = E->UserTreeIndices.back().UserTE; |
| unsigned EdgeIdx = E->UserTreeIndices.back().EdgeIdx; |
| if (UserTE->getNumOperands() != 2) |
| return false; |
| auto *It = |
| find_if(VectorizableTree, [=](const std::unique_ptr<TreeEntry> &TE) { |
| return find_if(TE->UserTreeIndices, [=](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE && EI.EdgeIdx != EdgeIdx; |
| }) != TE->UserTreeIndices.end(); |
| }); |
| if (It == VectorizableTree.end()) |
| return false; |
| int Idx; |
| if ((Mask.size() < InputVF && |
| ShuffleVectorInst::isExtractSubvectorMask(Mask, InputVF, Idx) && |
| Idx == 0) || |
| (Mask.size() == InputVF && |
| ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))) { |
| std::iota( |
| std::next(Mask.begin(), I * SliceSize), |
| std::next(Mask.begin(), |
| I * SliceSize + getNumElems(Mask.size(), SliceSize, I)), |
| 0); |
| } else { |
| unsigned IVal = |
| *find_if_not(Mask, [](int Idx) { return Idx == PoisonMaskElem; }); |
| std::fill( |
| std::next(Mask.begin(), I * SliceSize), |
| std::next(Mask.begin(), |
| I * SliceSize + getNumElems(Mask.size(), SliceSize, I)), |
| IVal); |
| } |
| return true; |
| }; |
| BVTy ShuffleBuilder(ScalarTy, Params...); |
| ResTy Res = ResTy(); |
| SmallVector<int> Mask; |
| SmallVector<int> ExtractMask(GatheredScalars.size(), PoisonMaskElem); |
| SmallVector<std::optional<TTI::ShuffleKind>> ExtractShuffles; |
| Value *ExtractVecBase = nullptr; |
| bool UseVecBaseAsInput = false; |
| SmallVector<std::optional<TargetTransformInfo::ShuffleKind>> GatherShuffles; |
| SmallVector<SmallVector<const TreeEntry *>> Entries; |
| Type *OrigScalarTy = GatheredScalars.front()->getType(); |
| auto *VecTy = getWidenedType(ScalarTy, GatheredScalars.size()); |
| unsigned NumParts = TTI->getNumberOfParts(VecTy); |
| if (NumParts == 0 || NumParts >= GatheredScalars.size() || |
| VecTy->getNumElements() % NumParts != 0 || |
| !hasFullVectorsOrPowerOf2(*TTI, VecTy->getElementType(), |
| VecTy->getNumElements() / NumParts)) |
| NumParts = 1; |
| if (!all_of(GatheredScalars, IsaPred<UndefValue>)) { |
| // Check for gathered extracts. |
| bool Resized = false; |
| ExtractShuffles = |
| tryToGatherExtractElements(GatheredScalars, ExtractMask, NumParts); |
| if (!ExtractShuffles.empty()) { |
| SmallVector<const TreeEntry *> ExtractEntries; |
| for (auto [Idx, I] : enumerate(ExtractMask)) { |
| if (I == PoisonMaskElem) |
| continue; |
| if (const auto *TE = getTreeEntry( |
| cast<ExtractElementInst>(E->Scalars[Idx])->getVectorOperand())) |
| ExtractEntries.push_back(TE); |
| } |
| if (std::optional<ResTy> Delayed = |
| ShuffleBuilder.needToDelay(E, ExtractEntries)) { |
| // Delay emission of gathers which are not ready yet. |
| PostponedGathers.insert(E); |
| // Postpone gather emission, will be emitted after the end of the |
| // process to keep correct order. |
| return *Delayed; |
| } |
| if (Value *VecBase = ShuffleBuilder.adjustExtracts( |
| E, ExtractMask, ExtractShuffles, NumParts, UseVecBaseAsInput)) { |
| ExtractVecBase = VecBase; |
| if (auto *VecBaseTy = dyn_cast<FixedVectorType>(VecBase->getType())) |
| if (VF == VecBaseTy->getNumElements() && |
| GatheredScalars.size() != VF) { |
| Resized = true; |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(OrigScalarTy)); |
| } |
| } |
| } |
| // Gather extracts after we check for full matched gathers only. |
| if (!ExtractShuffles.empty() || E->getOpcode() != Instruction::Load || |
| ((E->getOpcode() == Instruction::Load || |
| any_of(E->Scalars, IsaPred<LoadInst>)) && |
| any_of(E->Scalars, |
| [this](Value *V) { |
| return isa<LoadInst>(V) && getTreeEntry(V); |
| })) || |
| E->isAltShuffle() || |
| all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) || |
| isSplat(E->Scalars) || |
| (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) { |
| GatherShuffles = |
| isGatherShuffledEntry(E, GatheredScalars, Mask, Entries, NumParts); |
| } |
| if (!GatherShuffles.empty()) { |
| if (std::optional<ResTy> Delayed = |
| ShuffleBuilder.needToDelay(E, Entries)) { |
| // Delay emission of gathers which are not ready yet. |
| PostponedGathers.insert(E); |
| // Postpone gather emission, will be emitted after the end of the |
| // process to keep correct order. |
| return *Delayed; |
| } |
| if (GatherShuffles.size() == 1 && |
| *GatherShuffles.front() == TTI::SK_PermuteSingleSrc && |
| Entries.front().front()->isSame(E->Scalars)) { |
| // Perfect match in the graph, will reuse the previously vectorized |
| // node. Cost is 0. |
| LLVM_DEBUG(dbgs() << "SLP: perfect diamond match for gather bundle " |
| << shortBundleName(E->Scalars, E->Idx) << ".\n"); |
| // Restore the mask for previous partially matched values. |
| Mask.resize(E->Scalars.size()); |
| const TreeEntry *FrontTE = Entries.front().front(); |
| if (FrontTE->ReorderIndices.empty() && |
| ((FrontTE->ReuseShuffleIndices.empty() && |
| E->Scalars.size() == FrontTE->Scalars.size()) || |
| (E->Scalars.size() == FrontTE->ReuseShuffleIndices.size()))) { |
| std::iota(Mask.begin(), Mask.end(), 0); |
| } else { |
| for (auto [I, V] : enumerate(E->Scalars)) { |
| if (isa<PoisonValue>(V)) { |
| Mask[I] = PoisonMaskElem; |
| continue; |
| } |
| Mask[I] = FrontTE->findLaneForValue(V); |
| } |
| } |
| ShuffleBuilder.add(*FrontTE, Mask); |
| Res = ShuffleBuilder.finalize(E->getCommonMask(), SubVectors); |
| return Res; |
| } |
| if (!Resized) { |
| if (GatheredScalars.size() != VF && |
| any_of(Entries, [&](ArrayRef<const TreeEntry *> TEs) { |
| return any_of(TEs, [&](const TreeEntry *TE) { |
| return TE->getVectorFactor() == VF; |
| }); |
| })) |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(OrigScalarTy)); |
| } |
| // Remove shuffled elements from list of gathers. |
| for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { |
| if (Mask[I] != PoisonMaskElem) |
| GatheredScalars[I] = PoisonValue::get(OrigScalarTy); |
| } |
| } |
| } |
| auto TryPackScalars = [&](SmallVectorImpl<Value *> &Scalars, |
| SmallVectorImpl<int> &ReuseMask, |
| bool IsRootPoison) { |
| // For splats with can emit broadcasts instead of gathers, so try to find |
| // such sequences. |
| bool IsSplat = IsRootPoison && isSplat(Scalars) && |
| (Scalars.size() > 2 || Scalars.front() == Scalars.back()); |
| Scalars.append(VF - Scalars.size(), PoisonValue::get(OrigScalarTy)); |
| SmallVector<int> UndefPos; |
| DenseMap<Value *, unsigned> UniquePositions; |
| // Gather unique non-const values and all constant values. |
| // For repeated values, just shuffle them. |
| int NumNonConsts = 0; |
| int SinglePos = 0; |
| for (auto [I, V] : enumerate(Scalars)) { |
| if (isa<UndefValue>(V)) { |
| if (!isa<PoisonValue>(V)) { |
| ReuseMask[I] = I; |
| UndefPos.push_back(I); |
| } |
| continue; |
| } |
| if (isConstant(V)) { |
| ReuseMask[I] = I; |
| continue; |
| } |
| ++NumNonConsts; |
| SinglePos = I; |
| Value *OrigV = V; |
| Scalars[I] = PoisonValue::get(OrigScalarTy); |
| if (IsSplat) { |
| Scalars.front() = OrigV; |
| ReuseMask[I] = 0; |
| } else { |
| const auto Res = UniquePositions.try_emplace(OrigV, I); |
| Scalars[Res.first->second] = OrigV; |
| ReuseMask[I] = Res.first->second; |
| } |
| } |
| if (NumNonConsts == 1) { |
| // Restore single insert element. |
| if (IsSplat) { |
| ReuseMask.assign(VF, PoisonMaskElem); |
| std::swap(Scalars.front(), Scalars[SinglePos]); |
| if (!UndefPos.empty() && UndefPos.front() == 0) |
| Scalars.front() = UndefValue::get(OrigScalarTy); |
| } |
| ReuseMask[SinglePos] = SinglePos; |
| } else if (!UndefPos.empty() && IsSplat) { |
| // For undef values, try to replace them with the simple broadcast. |
| // We can do it if the broadcasted value is guaranteed to be |
| // non-poisonous, or by freezing the incoming scalar value first. |
| auto *It = find_if(Scalars, [this, E](Value *V) { |
| return !isa<UndefValue>(V) && |
| (getTreeEntry(V) || isGuaranteedNotToBePoison(V) || |
| (E->UserTreeIndices.size() == 1 && |
| any_of(V->uses(), [E](const Use &U) { |
| // Check if the value already used in the same operation in |
| // one of the nodes already. |
| return E->UserTreeIndices.front().EdgeIdx != |
| U.getOperandNo() && |
| is_contained( |
| E->UserTreeIndices.front().UserTE->Scalars, |
| U.getUser()); |
| }))); |
| }); |
| if (It != Scalars.end()) { |
| // Replace undefs by the non-poisoned scalars and emit broadcast. |
| int Pos = std::distance(Scalars.begin(), It); |
| for (int I : UndefPos) { |
| // Set the undef position to the non-poisoned scalar. |
| ReuseMask[I] = Pos; |
| // Replace the undef by the poison, in the mask it is replaced by |
| // non-poisoned scalar already. |
| if (I != Pos) |
| Scalars[I] = PoisonValue::get(OrigScalarTy); |
| } |
| } else { |
| // Replace undefs by the poisons, emit broadcast and then emit |
| // freeze. |
| for (int I : UndefPos) { |
| ReuseMask[I] = PoisonMaskElem; |
| if (isa<UndefValue>(Scalars[I])) |
| Scalars[I] = PoisonValue::get(OrigScalarTy); |
| } |
| NeedFreeze = true; |
| } |
| } |
| }; |
| if (!ExtractShuffles.empty() || !GatherShuffles.empty()) { |
| bool IsNonPoisoned = true; |
| bool IsUsedInExpr = true; |
| Value *Vec1 = nullptr; |
| if (!ExtractShuffles.empty()) { |
| // Gather of extractelements can be represented as just a shuffle of |
| // a single/two vectors the scalars are extracted from. |
| // Find input vectors. |
| Value *Vec2 = nullptr; |
| for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) { |
| if (!Mask.empty() && Mask[I] != PoisonMaskElem) |
| ExtractMask[I] = PoisonMaskElem; |
| } |
| if (UseVecBaseAsInput) { |
| Vec1 = ExtractVecBase; |
| } else { |
| for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) { |
| if (ExtractMask[I] == PoisonMaskElem) |
| continue; |
| if (isa<UndefValue>(E->Scalars[I])) |
| continue; |
| auto *EI = cast<ExtractElementInst>(E->Scalars[I]); |
| Value *VecOp = EI->getVectorOperand(); |
| if (const auto *TE = getTreeEntry(VecOp)) |
| if (TE->VectorizedValue) |
| VecOp = TE->VectorizedValue; |
| if (!Vec1) { |
| Vec1 = VecOp; |
| } else if (Vec1 != VecOp) { |
| assert((!Vec2 || Vec2 == VecOp) && |
| "Expected only 1 or 2 vectors shuffle."); |
| Vec2 = VecOp; |
| } |
| } |
| } |
| if (Vec2) { |
| IsUsedInExpr = false; |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(Vec1) && isGuaranteedNotToBePoison(Vec2); |
| ShuffleBuilder.add(Vec1, Vec2, ExtractMask); |
| } else if (Vec1) { |
| IsUsedInExpr &= FindReusedSplat( |
| ExtractMask, |
| cast<FixedVectorType>(Vec1->getType())->getNumElements(), 0, |
| ExtractMask.size()); |
| ShuffleBuilder.add(Vec1, ExtractMask, /*ForExtracts=*/true); |
| IsNonPoisoned &= isGuaranteedNotToBePoison(Vec1); |
| } else { |
| IsUsedInExpr = false; |
| ShuffleBuilder.add(PoisonValue::get(VecTy), ExtractMask, |
| /*ForExtracts=*/true); |
| } |
| } |
| if (!GatherShuffles.empty()) { |
| unsigned SliceSize = getPartNumElems(E->Scalars.size(), NumParts); |
| SmallVector<int> VecMask(Mask.size(), PoisonMaskElem); |
| for (const auto [I, TEs] : enumerate(Entries)) { |
| if (TEs.empty()) { |
| assert(!GatherShuffles[I] && |
| "No shuffles with empty entries list expected."); |
| continue; |
| } |
| assert((TEs.size() == 1 || TEs.size() == 2) && |
| "Expected shuffle of 1 or 2 entries."); |
| unsigned Limit = getNumElems(Mask.size(), SliceSize, I); |
| auto SubMask = ArrayRef(Mask).slice(I * SliceSize, Limit); |
| VecMask.assign(VecMask.size(), PoisonMaskElem); |
| copy(SubMask, std::next(VecMask.begin(), I * SliceSize)); |
| if (TEs.size() == 1) { |
| IsUsedInExpr &= FindReusedSplat( |
| VecMask, TEs.front()->getVectorFactor(), I, SliceSize); |
| ShuffleBuilder.add(*TEs.front(), VecMask); |
| if (TEs.front()->VectorizedValue) |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(TEs.front()->VectorizedValue); |
| } else { |
| IsUsedInExpr = false; |
| ShuffleBuilder.add(*TEs.front(), *TEs.back(), VecMask); |
| if (TEs.front()->VectorizedValue && TEs.back()->VectorizedValue) |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(TEs.front()->VectorizedValue) && |
| isGuaranteedNotToBePoison(TEs.back()->VectorizedValue); |
| } |
| } |
| } |
| // Try to figure out best way to combine values: build a shuffle and insert |
| // elements or just build several shuffles. |
| // Insert non-constant scalars. |
| SmallVector<Value *> NonConstants(GatheredScalars); |
| int EMSz = ExtractMask.size(); |
| int MSz = Mask.size(); |
| // Try to build constant vector and shuffle with it only if currently we |
| // have a single permutation and more than 1 scalar constants. |
| bool IsSingleShuffle = ExtractShuffles.empty() || GatherShuffles.empty(); |
| bool IsIdentityShuffle = |
| ((UseVecBaseAsInput || |
| all_of(ExtractShuffles, |
| [](const std::optional<TTI::ShuffleKind> &SK) { |
| return SK.value_or(TTI::SK_PermuteTwoSrc) == |
| TTI::SK_PermuteSingleSrc; |
| })) && |
| none_of(ExtractMask, [&](int I) { return I >= EMSz; }) && |
| ShuffleVectorInst::isIdentityMask(ExtractMask, EMSz)) || |
| (!GatherShuffles.empty() && |
| all_of(GatherShuffles, |
| [](const std::optional<TTI::ShuffleKind> &SK) { |
| return SK.value_or(TTI::SK_PermuteTwoSrc) == |
| TTI::SK_PermuteSingleSrc; |
| }) && |
| none_of(Mask, [&](int I) { return I >= MSz; }) && |
| ShuffleVectorInst::isIdentityMask(Mask, MSz)); |
| bool EnoughConstsForShuffle = |
| IsSingleShuffle && |
| (none_of(GatheredScalars, |
| [](Value *V) { |
| return isa<UndefValue>(V) && !isa<PoisonValue>(V); |
| }) || |
| any_of(GatheredScalars, |
| [](Value *V) { |
| return isa<Constant>(V) && !isa<UndefValue>(V); |
| })) && |
| (!IsIdentityShuffle || |
| (GatheredScalars.size() == 2 && |
| any_of(GatheredScalars, |
| [](Value *V) { return !isa<UndefValue>(V); })) || |
| count_if(GatheredScalars, [](Value *V) { |
| return isa<Constant>(V) && !isa<PoisonValue>(V); |
| }) > 1); |
| // NonConstants array contains just non-constant values, GatheredScalars |
| // contains only constant to build final vector and then shuffle. |
| for (int I = 0, Sz = GatheredScalars.size(); I < Sz; ++I) { |
| if (EnoughConstsForShuffle && isa<Constant>(GatheredScalars[I])) |
| NonConstants[I] = PoisonValue::get(OrigScalarTy); |
| else |
| GatheredScalars[I] = PoisonValue::get(OrigScalarTy); |
| } |
| // Generate constants for final shuffle and build a mask for them. |
| if (!all_of(GatheredScalars, IsaPred<PoisonValue>)) { |
| SmallVector<int> BVMask(GatheredScalars.size(), PoisonMaskElem); |
| TryPackScalars(GatheredScalars, BVMask, /*IsRootPoison=*/true); |
| Value *BV = ShuffleBuilder.gather(GatheredScalars, BVMask.size()); |
| ShuffleBuilder.add(BV, BVMask); |
| } |
| if (all_of(NonConstants, [=](Value *V) { |
| return isa<PoisonValue>(V) || |
| (IsSingleShuffle && ((IsIdentityShuffle && |
| IsNonPoisoned) || IsUsedInExpr) && isa<UndefValue>(V)); |
| })) |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices, SubVectors); |
| else |
| Res = ShuffleBuilder.finalize( |
| E->ReuseShuffleIndices, SubVectors, E->Scalars.size(), |
| [&](Value *&Vec, SmallVectorImpl<int> &Mask) { |
| TryPackScalars(NonConstants, Mask, /*IsRootPoison=*/false); |
| Vec = ShuffleBuilder.gather(NonConstants, Mask.size(), Vec); |
| }); |
| } else if (!allConstant(GatheredScalars)) { |
| // Gather unique scalars and all constants. |
| SmallVector<int> ReuseMask(GatheredScalars.size(), PoisonMaskElem); |
| TryPackScalars(GatheredScalars, ReuseMask, /*IsRootPoison=*/true); |
| Value *BV = ShuffleBuilder.gather(GatheredScalars, ReuseMask.size()); |
| ShuffleBuilder.add(BV, ReuseMask); |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices, SubVectors); |
| } else { |
| // Gather all constants. |
| SmallVector<int> Mask(GatheredScalars.size(), PoisonMaskElem); |
| for (auto [I, V] : enumerate(GatheredScalars)) { |
| if (!isa<PoisonValue>(V)) |
| Mask[I] = I; |
| } |
| Value *BV = ShuffleBuilder.gather(GatheredScalars); |
| ShuffleBuilder.add(BV, Mask); |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices, SubVectors); |
| } |
| |
| if (NeedFreeze) |
| Res = ShuffleBuilder.createFreeze(Res); |
| return Res; |
| } |
| |
| Value *BoUpSLP::createBuildVector(const TreeEntry *E, Type *ScalarTy, |
| bool PostponedPHIs) { |
| for (auto [EIdx, _] : E->CombinedEntriesWithIndices) |
| (void)vectorizeTree(VectorizableTree[EIdx].get(), PostponedPHIs); |
| return processBuildVector<ShuffleInstructionBuilder, Value *>(E, ScalarTy, |
| Builder, *this); |
| } |
| |
| Value *BoUpSLP::vectorizeTree(TreeEntry *E, bool PostponedPHIs) { |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| |
| if (E->VectorizedValue && |
| (E->State != TreeEntry::Vectorize || E->getOpcode() != Instruction::PHI || |
| E->isAltShuffle())) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = E->Scalars.front(); |
| Type *ScalarTy = V->getType(); |
| if (!isa<CmpInst>(V)) |
| ScalarTy = getValueType(V); |
| auto It = MinBWs.find(E); |
| if (It != MinBWs.end()) { |
| auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy); |
| ScalarTy = IntegerType::get(F->getContext(), It->second.first); |
| if (VecTy) |
| ScalarTy = getWidenedType(ScalarTy, VecTy->getNumElements()); |
| } |
| auto *VecTy = getWidenedType(ScalarTy, E->Scalars.size()); |
| if (E->isGather()) { |
| // Set insert point for non-reduction initial nodes. |
| if (E->getMainOp() && E->Idx == 0 && !UserIgnoreList) |
| setInsertPointAfterBundle(E); |
| Value *Vec = createBuildVector(E, ScalarTy, PostponedPHIs); |
| E->VectorizedValue = Vec; |
| return Vec; |
| } |
| |
| bool IsReverseOrder = isReverseOrder(E->ReorderIndices); |
| auto FinalShuffle = [&](Value *V, const TreeEntry *E) { |
| ShuffleInstructionBuilder ShuffleBuilder(ScalarTy, Builder, *this); |
| if (E->getOpcode() == Instruction::Store && |
| E->State == TreeEntry::Vectorize) { |
| ArrayRef<int> Mask = |
| ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()), |
| E->ReorderIndices.size()); |
| ShuffleBuilder.add(V, Mask); |
| } else if (E->State == TreeEntry::StridedVectorize && IsReverseOrder) { |
| ShuffleBuilder.addOrdered(V, {}); |
| } else { |
| ShuffleBuilder.addOrdered(V, E->ReorderIndices); |
| } |
| SmallVector<std::pair<const TreeEntry *, unsigned>> SubVectors( |
| E->CombinedEntriesWithIndices.size()); |
| transform( |
| E->CombinedEntriesWithIndices, SubVectors.begin(), [&](const auto &P) { |
| return std::make_pair(VectorizableTree[P.first].get(), P.second); |
| }); |
| return ShuffleBuilder.finalize(E->ReuseShuffleIndices, SubVectors); |
| }; |
| |
| assert(!E->isGather() && "Unhandled state"); |
| unsigned ShuffleOrOp = |
| E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); |
| Instruction *VL0 = E->getMainOp(); |
| auto GetOperandSignedness = [&](unsigned Idx) { |
| const TreeEntry *OpE = getOperandEntry(E, Idx); |
| bool IsSigned = false; |
| auto It = MinBWs.find(OpE); |
| if (It != MinBWs.end()) |
| IsSigned = It->second.second; |
| else |
| IsSigned = any_of(OpE->Scalars, [&](Value *R) { |
| return !isKnownNonNegative(R, SimplifyQuery(*DL)); |
| }); |
| return IsSigned; |
| }; |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| assert((E->ReorderIndices.empty() || !E->ReuseShuffleIndices.empty() || |
| E != VectorizableTree.front().get() || |
| !E->UserTreeIndices.empty()) && |
| "PHI reordering is free."); |
| if (PostponedPHIs && E->VectorizedValue) |
| return E->VectorizedValue; |
| auto *PH = cast<PHINode>(VL0); |
| Builder.SetInsertPoint(PH->getParent(), |
| PH->getParent()->getFirstNonPHIIt()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| if (PostponedPHIs || !E->VectorizedValue) { |
| PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); |
| E->PHI = NewPhi; |
| Value *V = NewPhi; |
| |
| // Adjust insertion point once all PHI's have been generated. |
| Builder.SetInsertPoint(PH->getParent(), |
| PH->getParent()->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| if (PostponedPHIs) |
| return V; |
| } |
| PHINode *NewPhi = cast<PHINode>(E->PHI); |
| // If phi node is fully emitted - exit. |
| if (NewPhi->getNumIncomingValues() != 0) |
| return NewPhi; |
| |
| // PHINodes may have multiple entries from the same block. We want to |
| // visit every block once. |
| SmallPtrSet<BasicBlock *, 4> VisitedBBs; |
| |
| for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) { |
| ValueList Operands; |
| BasicBlock *IBB = PH->getIncomingBlock(I); |
| |
| // Stop emission if all incoming values are generated. |
| if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return NewPhi; |
| } |
| |
| if (!VisitedBBs.insert(IBB).second) { |
| NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); |
| continue; |
| } |
| |
| Builder.SetInsertPoint(IBB->getTerminator()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| Value *Vec = vectorizeOperand(E, I, /*PostponedPHIs=*/true); |
| if (VecTy != Vec->getType()) { |
| assert((It != MinBWs.end() || getOperandEntry(E, I)->isGather() || |
| MinBWs.contains(getOperandEntry(E, I))) && |
| "Expected item in MinBWs."); |
| Vec = Builder.CreateIntCast(Vec, VecTy, GetOperandSignedness(I)); |
| } |
| NewPhi->addIncoming(Vec, IBB); |
| } |
| |
| assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && |
| "Invalid number of incoming values"); |
| assert(E->VectorizedValue && "Expected vectorized value."); |
| return E->VectorizedValue; |
| } |
| |
| case Instruction::ExtractElement: { |
| Value *V = E->getSingleOperand(0); |
| if (const TreeEntry *TE = getTreeEntry(V)) |
| V = TE->VectorizedValue; |
| setInsertPointAfterBundle(E); |
| V = FinalShuffle(V, E); |
| E->VectorizedValue = V; |
| return V; |
| } |
| case Instruction::ExtractValue: { |
| auto *LI = cast<LoadInst>(E->getSingleOperand(0)); |
| Builder.SetInsertPoint(LI); |
| Value *Ptr = LI->getPointerOperand(); |
| LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); |
| Value *NewV = propagateMetadata(V, E->Scalars); |
| NewV = FinalShuffle(NewV, E); |
| E->VectorizedValue = NewV; |
| return NewV; |
| } |
| case Instruction::InsertElement: { |
| assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); |
| Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); |
| Value *V = vectorizeOperand(E, 1, PostponedPHIs); |
| ArrayRef<Value *> Op = E->getOperand(1); |
| Type *ScalarTy = Op.front()->getType(); |
| if (cast<VectorType>(V->getType())->getElementType() != ScalarTy) { |
| assert(ScalarTy->isIntegerTy() && "Expected item in MinBWs."); |
| std::pair<unsigned, bool> Res = MinBWs.lookup(getOperandEntry(E, 1)); |
| assert(Res.first > 0 && "Expected item in MinBWs."); |
| V = Builder.CreateIntCast( |
| V, |
| getWidenedType( |
| ScalarTy, |
| cast<FixedVectorType>(V->getType())->getNumElements()), |
| Res.second); |
| } |
| |
| // Create InsertVector shuffle if necessary |
| auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { |
| return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); |
| })); |
| const unsigned NumElts = |
| cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); |
| const unsigned NumScalars = E->Scalars.size(); |
| |
| unsigned Offset = *getElementIndex(VL0); |
| assert(Offset < NumElts && "Failed to find vector index offset"); |
| |
| // Create shuffle to resize vector |
| SmallVector<int> Mask; |
| if (!E->ReorderIndices.empty()) { |
| inversePermutation(E->ReorderIndices, Mask); |
| Mask.append(NumElts - NumScalars, PoisonMaskElem); |
| } else { |
| Mask.assign(NumElts, PoisonMaskElem); |
| std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); |
| } |
| // Create InsertVector shuffle if necessary |
| bool IsIdentity = true; |
| SmallVector<int> PrevMask(NumElts, PoisonMaskElem); |
| Mask.swap(PrevMask); |
| for (unsigned I = 0; I < NumScalars; ++I) { |
| Value *Scalar = E->Scalars[PrevMask[I]]; |
| unsigned InsertIdx = *getElementIndex(Scalar); |
| IsIdentity &= InsertIdx - Offset == I; |
| Mask[InsertIdx - Offset] = I; |
| } |
| if (!IsIdentity || NumElts != NumScalars) { |
| Value *V2 = nullptr; |
| bool IsVNonPoisonous = isGuaranteedNotToBePoison(V) && !isConstant(V); |
| SmallVector<int> InsertMask(Mask); |
| if (NumElts != NumScalars && Offset == 0) { |
| // Follow all insert element instructions from the current buildvector |
| // sequence. |
| InsertElementInst *Ins = cast<InsertElementInst>(VL0); |
| do { |
| std::optional<unsigned> InsertIdx = getElementIndex(Ins); |
| if (!InsertIdx) |
| break; |
| if (InsertMask[*InsertIdx] == PoisonMaskElem) |
| InsertMask[*InsertIdx] = *InsertIdx; |
| if (!Ins->hasOneUse()) |
| break; |
| Ins = dyn_cast_or_null<InsertElementInst>( |
| Ins->getUniqueUndroppableUser()); |
| } while (Ins); |
| SmallBitVector UseMask = |
| buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask); |
| SmallBitVector IsFirstPoison = |
| isUndefVector<true>(FirstInsert->getOperand(0), UseMask); |
| SmallBitVector IsFirstUndef = |
| isUndefVector(FirstInsert->getOperand(0), UseMask); |
| if (!IsFirstPoison.all()) { |
| unsigned Idx = 0; |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I) && |
| IsFirstUndef.test(I)) { |
| if (IsVNonPoisonous) { |
| InsertMask[I] = I < NumScalars ? I : 0; |
| continue; |
| } |
| if (!V2) |
| V2 = UndefValue::get(V->getType()); |
| if (Idx >= NumScalars) |
| Idx = NumScalars - 1; |
| InsertMask[I] = NumScalars + Idx; |
| ++Idx; |
| } else if (InsertMask[I] != PoisonMaskElem && |
| Mask[I] == PoisonMaskElem) { |
| InsertMask[I] = PoisonMaskElem; |
| } |
| } |
| } else { |
| InsertMask = Mask; |
| } |
| } |
| if (!V2) |
| V2 = PoisonValue::get(V->getType()); |
| V = Builder.CreateShuffleVector(V, V2, InsertMask); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| |
| SmallVector<int> InsertMask(NumElts, PoisonMaskElem); |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (Mask[I] != PoisonMaskElem) |
| InsertMask[Offset + I] = I; |
| } |
| SmallBitVector UseMask = |
| buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask); |
| SmallBitVector IsFirstUndef = |
| isUndefVector(FirstInsert->getOperand(0), UseMask); |
| if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) && |
| NumElts != NumScalars) { |
| if (IsFirstUndef.all()) { |
| if (!ShuffleVectorInst::isIdentityMask(InsertMask, NumElts)) { |
| SmallBitVector IsFirstPoison = |
| isUndefVector<true>(FirstInsert->getOperand(0), UseMask); |
| if (!IsFirstPoison.all()) { |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I)) |
| InsertMask[I] = I + NumElts; |
| } |
| } |
| V = Builder.CreateShuffleVector( |
| V, |
| IsFirstPoison.all() ? PoisonValue::get(V->getType()) |
| : FirstInsert->getOperand(0), |
| InsertMask, cast<Instruction>(E->Scalars.back())->getName()); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| } else { |
| SmallBitVector IsFirstPoison = |
| isUndefVector<true>(FirstInsert->getOperand(0), UseMask); |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (InsertMask[I] == PoisonMaskElem) |
| InsertMask[I] = IsFirstPoison.test(I) ? PoisonMaskElem : I; |
| else |
| InsertMask[I] += NumElts; |
| } |
| V = Builder.CreateShuffleVector( |
| FirstInsert->getOperand(0), V, InsertMask, |
| cast<Instruction>(E->Scalars.back())->getName()); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| } |
| |
| ++NumVectorInstructions; |
| E->VectorizedValue = V; |
| return V; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| setInsertPointAfterBundle(E); |
| |
| Value *InVec = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| auto *CI = cast<CastInst>(VL0); |
| Instruction::CastOps VecOpcode = CI->getOpcode(); |
| Type *SrcScalarTy = cast<VectorType>(InVec->getType())->getElementType(); |
| auto SrcIt = MinBWs.find(getOperandEntry(E, 0)); |
| if (!ScalarTy->isFPOrFPVectorTy() && !SrcScalarTy->isFPOrFPVectorTy() && |
| (SrcIt != MinBWs.end() || It != MinBWs.end() || |
| SrcScalarTy != CI->getOperand(0)->getType()->getScalarType())) { |
| // Check if the values are candidates to demote. |
| unsigned SrcBWSz = DL->getTypeSizeInBits(SrcScalarTy); |
| if (SrcIt != MinBWs.end()) |
| SrcBWSz = SrcIt->second.first; |
| unsigned BWSz = DL->getTypeSizeInBits(ScalarTy->getScalarType()); |
| if (BWSz == SrcBWSz) { |
| VecOpcode = Instruction::BitCast; |
| } else if (BWSz < SrcBWSz) { |
| VecOpcode = Instruction::Trunc; |
| } else if (It != MinBWs.end()) { |
| assert(BWSz > SrcBWSz && "Invalid cast!"); |
| VecOpcode = It->second.second ? Instruction::SExt : Instruction::ZExt; |
| } else if (SrcIt != MinBWs.end()) { |
| assert(BWSz > SrcBWSz && "Invalid cast!"); |
| VecOpcode = |
| SrcIt->second.second ? Instruction::SExt : Instruction::ZExt; |
| } |
| } else if (VecOpcode == Instruction::SIToFP && SrcIt != MinBWs.end() && |
| !SrcIt->second.second) { |
| VecOpcode = Instruction::UIToFP; |
| } |
| Value *V = (VecOpcode != ShuffleOrOp && VecOpcode == Instruction::BitCast) |
| ? InVec |
| : Builder.CreateCast(VecOpcode, InVec, VecTy); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::FCmp: |
| case Instruction::ICmp: { |
| setInsertPointAfterBundle(E); |
| |
| Value *L = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *R = vectorizeOperand(E, 1, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| if (L->getType() != R->getType()) { |
| assert((getOperandEntry(E, 0)->isGather() || |
| getOperandEntry(E, 1)->isGather() || |
| MinBWs.contains(getOperandEntry(E, 0)) || |
| MinBWs.contains(getOperandEntry(E, 1))) && |
| "Expected item in MinBWs."); |
| if (cast<VectorType>(L->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth() < cast<VectorType>(R->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth()) { |
| Type *CastTy = R->getType(); |
| L = Builder.CreateIntCast(L, CastTy, GetOperandSignedness(0)); |
| } else { |
| Type *CastTy = L->getType(); |
| R = Builder.CreateIntCast(R, CastTy, GetOperandSignedness(1)); |
| } |
| } |
| |
| CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); |
| Value *V = Builder.CreateCmp(P0, L, R); |
| propagateIRFlags(V, E->Scalars, VL0); |
| // Do not cast for cmps. |
| VecTy = cast<FixedVectorType>(V->getType()); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::Select: { |
| setInsertPointAfterBundle(E); |
| |
| Value *Cond = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *True = vectorizeOperand(E, 1, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *False = vectorizeOperand(E, 2, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| if (True->getType() != VecTy || False->getType() != VecTy) { |
| assert((It != MinBWs.end() || getOperandEntry(E, 1)->isGather() || |
| getOperandEntry(E, 2)->isGather() || |
| MinBWs.contains(getOperandEntry(E, 1)) || |
| MinBWs.contains(getOperandEntry(E, 2))) && |
| "Expected item in MinBWs."); |
| if (True->getType() != VecTy) |
| True = Builder.CreateIntCast(True, VecTy, GetOperandSignedness(1)); |
| if (False->getType() != VecTy) |
| False = Builder.CreateIntCast(False, VecTy, GetOperandSignedness(2)); |
| } |
| |
| unsigned CondNumElements = getNumElements(Cond->getType()); |
| unsigned TrueNumElements = getNumElements(True->getType()); |
| assert(TrueNumElements >= CondNumElements && |
| TrueNumElements % CondNumElements == 0 && |
| "Cannot vectorize Instruction::Select"); |
| assert(TrueNumElements == getNumElements(False->getType()) && |
| "Cannot vectorize Instruction::Select"); |
| if (CondNumElements != TrueNumElements) { |
| // When the return type is i1 but the source is fixed vector type, we |
| // need to duplicate the condition value. |
| Cond = Builder.CreateShuffleVector( |
| Cond, createReplicatedMask(TrueNumElements / CondNumElements, |
| CondNumElements)); |
| } |
| assert(getNumElements(Cond->getType()) == TrueNumElements && |
| "Cannot vectorize Instruction::Select"); |
| Value *V = Builder.CreateSelect(Cond, True, False); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::FNeg: { |
| setInsertPointAfterBundle(E); |
| |
| Value *Op = vectorizeOperand(E, 0, PostponedPHIs); |
| |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = Builder.CreateUnOp( |
| static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); |
| propagateIRFlags(V, E->Scalars, VL0); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| V = propagateMetadata(I, E->Scalars); |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Freeze: { |
| setInsertPointAfterBundle(E); |
| |
| Value *Op = vectorizeOperand(E, 0, PostponedPHIs); |
| |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = Builder.CreateFreeze(Op); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| setInsertPointAfterBundle(E); |
| |
| Value *LHS = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *RHS = vectorizeOperand(E, 1, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| if (ShuffleOrOp == Instruction::And && It != MinBWs.end()) { |
| for (unsigned I : seq<unsigned>(0, E->getNumOperands())) { |
| ArrayRef<Value *> Ops = E->getOperand(I); |
| if (all_of(Ops, [&](Value *Op) { |
| auto *CI = dyn_cast<ConstantInt>(Op); |
| return CI && CI->getValue().countr_one() >= It->second.first; |
| })) { |
| V = FinalShuffle(I == 0 ? RHS : LHS, E); |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| } |
| } |
| if (LHS->getType() != VecTy || RHS->getType() != VecTy) { |
| assert((It != MinBWs.end() || getOperandEntry(E, 0)->isGather() || |
| getOperandEntry(E, 1)->isGather() || |
| MinBWs.contains(getOperandEntry(E, 0)) || |
| MinBWs.contains(getOperandEntry(E, 1))) && |
| "Expected item in MinBWs."); |
| if (LHS->getType() != VecTy) |
| LHS = Builder.CreateIntCast(LHS, VecTy, GetOperandSignedness(0)); |
| if (RHS->getType() != VecTy) |
| RHS = Builder.CreateIntCast(RHS, VecTy, GetOperandSignedness(1)); |
| } |
| |
| Value *V = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, |
| RHS); |
| propagateIRFlags(V, E->Scalars, VL0, It == MinBWs.end()); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| V = propagateMetadata(I, E->Scalars); |
| // Drop nuw flags for abs(sub(commutative), true). |
| if (!MinBWs.contains(E) && ShuffleOrOp == Instruction::Sub && |
| any_of(E->Scalars, [](Value *V) { |
| return isCommutative(cast<Instruction>(V)); |
| })) |
| I->setHasNoUnsignedWrap(/*b=*/false); |
| } |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Load: { |
| // Loads are inserted at the head of the tree because we don't want to |
| // sink them all the way down past store instructions. |
| setInsertPointAfterBundle(E); |
| |
| LoadInst *LI = cast<LoadInst>(VL0); |
| Instruction *NewLI; |
| Value *PO = LI->getPointerOperand(); |
| if (E->State == TreeEntry::Vectorize) { |
| NewLI = Builder.CreateAlignedLoad(VecTy, PO, LI->getAlign()); |
| } else if (E->State == TreeEntry::StridedVectorize) { |
| Value *Ptr0 = cast<LoadInst>(E->Scalars.front())->getPointerOperand(); |
| Value *PtrN = cast<LoadInst>(E->Scalars.back())->getPointerOperand(); |
| PO = IsReverseOrder ? PtrN : Ptr0; |
| std::optional<int> Diff = getPointersDiff( |
| VL0->getType(), Ptr0, VL0->getType(), PtrN, *DL, *SE); |
| Type *StrideTy = DL->getIndexType(PO->getType()); |
| Value *StrideVal; |
| if (Diff) { |
| int Stride = *Diff / (static_cast<int>(E->Scalars.size()) - 1); |
| StrideVal = |
| ConstantInt::get(StrideTy, (IsReverseOrder ? -1 : 1) * Stride * |
| DL->getTypeAllocSize(ScalarTy)); |
| } else { |
| SmallVector<Value *> PointerOps(E->Scalars.size(), nullptr); |
| transform(E->Scalars, PointerOps.begin(), [](Value *V) { |
| return cast<LoadInst>(V)->getPointerOperand(); |
| }); |
| OrdersType Order; |
| std::optional<Value *> Stride = |
| calculateRtStride(PointerOps, ScalarTy, *DL, *SE, Order, |
| &*Builder.GetInsertPoint()); |
| Value *NewStride = |
| Builder.CreateIntCast(*Stride, StrideTy, /*isSigned=*/true); |
| StrideVal = Builder.CreateMul( |
| NewStride, |
| ConstantInt::get( |
| StrideTy, |
| (IsReverseOrder ? -1 : 1) * |
| static_cast<int>(DL->getTypeAllocSize(ScalarTy)))); |
| } |
| Align CommonAlignment = computeCommonAlignment<LoadInst>(E->Scalars); |
| auto *Inst = Builder.CreateIntrinsic( |
| Intrinsic::experimental_vp_strided_load, |
| {VecTy, PO->getType(), StrideTy}, |
| {PO, StrideVal, Builder.getAllOnesMask(VecTy->getElementCount()), |
| Builder.getInt32(E->Scalars.size())}); |
| Inst->addParamAttr( |
| /*ArgNo=*/0, |
| Attribute::getWithAlignment(Inst->getContext(), CommonAlignment)); |
| NewLI = Inst; |
| } else { |
| assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); |
| Value *VecPtr = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| if (isa<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| // CreateMaskedGather expects VecTy and VecPtr have same size. We need |
| // to expand VecPtr if ScalarTy is a vector type. |
| unsigned ScalarTyNumElements = |
| cast<FixedVectorType>(ScalarTy)->getNumElements(); |
| unsigned VecTyNumElements = |
| cast<FixedVectorType>(VecTy)->getNumElements(); |
| assert(VecTyNumElements % ScalarTyNumElements == 0 && |
| "Cannot expand getelementptr."); |
| unsigned VF = VecTyNumElements / ScalarTyNumElements; |
| SmallVector<Constant *> Indices(VecTyNumElements); |
| transform(seq(VecTyNumElements), Indices.begin(), [=](unsigned I) { |
| return Builder.getInt64(I % ScalarTyNumElements); |
| }); |
| VecPtr = Builder.CreateGEP( |
| VecTy->getElementType(), |
| Builder.CreateShuffleVector( |
| VecPtr, createReplicatedMask(ScalarTyNumElements, VF)), |
| ConstantVector::get(Indices)); |
| } |
| // Use the minimum alignment of the gathered loads. |
| Align CommonAlignment = computeCommonAlignment<LoadInst>(E->Scalars); |
| NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); |
| } |
| Value *V = propagateMetadata(NewLI, E->Scalars); |
| |
| V = FinalShuffle(V, E); |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::Store: { |
| auto *SI = cast<StoreInst>(VL0); |
| |
| setInsertPointAfterBundle(E); |
| |
| Value *VecValue = vectorizeOperand(E, 0, PostponedPHIs); |
| if (VecValue->getType() != VecTy) |
| VecValue = |
| Builder.CreateIntCast(VecValue, VecTy, GetOperandSignedness(0)); |
| VecValue = FinalShuffle(VecValue, E); |
| |
| Value *Ptr = SI->getPointerOperand(); |
| Instruction *ST; |
| if (E->State == TreeEntry::Vectorize) { |
| ST = Builder.CreateAlignedStore(VecValue, Ptr, SI->getAlign()); |
| } else { |
| assert(E->State == TreeEntry::StridedVectorize && |
| "Expected either strided or consecutive stores."); |
| if (!E->ReorderIndices.empty()) { |
| SI = cast<StoreInst>(E->Scalars[E->ReorderIndices.front()]); |
| Ptr = SI->getPointerOperand(); |
| } |
| Align CommonAlignment = computeCommonAlignment<StoreInst>(E->Scalars); |
| Type *StrideTy = DL->getIndexType(SI->getPointerOperandType()); |
| auto *Inst = Builder.CreateIntrinsic( |
| Intrinsic::experimental_vp_strided_store, |
| {VecTy, Ptr->getType(), StrideTy}, |
| {VecValue, Ptr, |
| ConstantInt::get( |
| StrideTy, -static_cast<int>(DL->getTypeAllocSize(ScalarTy))), |
| Builder.getAllOnesMask(VecTy->getElementCount()), |
| Builder.getInt32(E->Scalars.size())}); |
| Inst->addParamAttr( |
| /*ArgNo=*/1, |
| Attribute::getWithAlignment(Inst->getContext(), CommonAlignment)); |
| ST = Inst; |
| } |
| |
| Value *V = propagateMetadata(ST, E->Scalars); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::GetElementPtr: { |
| auto *GEP0 = cast<GetElementPtrInst>(VL0); |
| setInsertPointAfterBundle(E); |
| |
| Value *Op0 = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| SmallVector<Value *> OpVecs; |
| for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { |
| Value *OpVec = vectorizeOperand(E, J, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| OpVecs.push_back(OpVec); |
| } |
| |
| Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); |
| if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { |
| SmallVector<Value *> GEPs; |
| for (Value *V : E->Scalars) { |
| if (isa<GetElementPtrInst>(V)) |
| GEPs.push_back(V); |
| } |
| V = propagateMetadata(I, GEPs); |
| } |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Call: { |
| CallInst *CI = cast<CallInst>(VL0); |
| setInsertPointAfterBundle(E); |
| |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| SmallVector<Type *> ArgTys = |
| buildIntrinsicArgTypes(CI, ID, VecTy->getNumElements(), |
| It != MinBWs.end() ? It->second.first : 0); |
| auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI, ArgTys); |
| bool UseIntrinsic = ID != Intrinsic::not_intrinsic && |
| VecCallCosts.first <= VecCallCosts.second; |
| |
| Value *ScalarArg = nullptr; |
| SmallVector<Value *> OpVecs; |
| SmallVector<Type *, 2> TysForDecl; |
| // Add return type if intrinsic is overloaded on it. |
| if (UseIntrinsic && isVectorIntrinsicWithOverloadTypeAtArg(ID, -1)) |
| TysForDecl.push_back(VecTy); |
| auto *CEI = cast<CallInst>(VL0); |
| for (unsigned I : seq<unsigned>(0, CI->arg_size())) { |
| ValueList OpVL; |
| // Some intrinsics have scalar arguments. This argument should not be |
| // vectorized. |
| if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(ID, I)) { |
| ScalarArg = CEI->getArgOperand(I); |
| // if decided to reduce bitwidth of abs intrinsic, it second argument |
| // must be set false (do not return poison, if value issigned min). |
| if (ID == Intrinsic::abs && It != MinBWs.end() && |
| It->second.first < DL->getTypeSizeInBits(CEI->getType())) |
| ScalarArg = Builder.getFalse(); |
| OpVecs.push_back(ScalarArg); |
| if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) |
| TysForDecl.push_back(ScalarArg->getType()); |
| continue; |
| } |
| |
| Value *OpVec = vectorizeOperand(E, I, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| ScalarArg = CEI->getArgOperand(I); |
| if (cast<VectorType>(OpVec->getType())->getElementType() != |
| ScalarArg->getType()->getScalarType() && |
| It == MinBWs.end()) { |
| auto *CastTy = |
| getWidenedType(ScalarArg->getType(), VecTy->getNumElements()); |
| OpVec = Builder.CreateIntCast(OpVec, CastTy, GetOperandSignedness(I)); |
| } else if (It != MinBWs.end()) { |
| OpVec = Builder.CreateIntCast(OpVec, VecTy, GetOperandSignedness(I)); |
| } |
| LLVM_DEBUG(dbgs() << "SLP: OpVec[" << I << "]: " << *OpVec << "\n"); |
| OpVecs.push_back(OpVec); |
| if (UseIntrinsic && isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) |
| TysForDecl.push_back(OpVec->getType()); |
| } |
| |
| Function *CF; |
| if (!UseIntrinsic) { |
| VFShape Shape = |
| VFShape::get(CI->getFunctionType(), |
| ElementCount::getFixed( |
| static_cast<unsigned>(VecTy->getNumElements())), |
| false /*HasGlobalPred*/); |
| CF = VFDatabase(*CI).getVectorizedFunction(Shape); |
| } else { |
| CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); |
| } |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| CI->getOperandBundlesAsDefs(OpBundles); |
| Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); |
| |
| propagateIRFlags(V, E->Scalars, VL0); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::ShuffleVector: { |
| Value *V; |
| if (SLPReVec && !E->isAltShuffle()) { |
| assert(E->ReuseShuffleIndices.empty() && |
| "Not support ReuseShuffleIndices yet."); |
| assert(E->ReorderIndices.empty() && "Not support ReorderIndices yet."); |
| setInsertPointAfterBundle(E); |
| Value *Src = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| assert(isa<ShuffleVectorInst>(Src) && |
| "Not supported shufflevector usage."); |
| auto *SVSrc = cast<ShuffleVectorInst>(Src); |
| assert(isa<PoisonValue>(SVSrc->getOperand(1)) && |
| "Not supported shufflevector usage."); |
| SmallVector<int> ThisMask(calculateShufflevectorMask(E->Scalars)); |
| SmallVector<int> NewMask(ThisMask.size()); |
| transform(ThisMask, NewMask.begin(), |
| [&SVSrc](int Mask) { return SVSrc->getShuffleMask()[Mask]; }); |
| V = Builder.CreateShuffleVector(SVSrc->getOperand(0), NewMask); |
| propagateIRFlags(V, E->Scalars, VL0); |
| } else { |
| assert(E->isAltShuffle() && |
| ((Instruction::isBinaryOp(E->getOpcode()) && |
| Instruction::isBinaryOp(E->getAltOpcode())) || |
| (Instruction::isCast(E->getOpcode()) && |
| Instruction::isCast(E->getAltOpcode())) || |
| (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && |
| "Invalid Shuffle Vector Operand"); |
| |
| Value *LHS = nullptr, *RHS = nullptr; |
| if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { |
| setInsertPointAfterBundle(E); |
| LHS = vectorizeOperand(E, 0, PostponedPHIs); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| RHS = vectorizeOperand(E, 1, PostponedPHIs); |
| } else { |
| setInsertPointAfterBundle(E); |
| LHS = vectorizeOperand(E, 0, PostponedPHIs); |
| } |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| if (LHS && RHS && |
| ((Instruction::isBinaryOp(E->getOpcode()) && |
| (LHS->getType() != VecTy || RHS->getType() != VecTy)) || |
| (isa<CmpInst>(VL0) && LHS->getType() != RHS->getType()))) { |
| assert((It != MinBWs.end() || |
| getOperandEntry(E, 0)->State == TreeEntry::NeedToGather || |
| getOperandEntry(E, 1)->State == TreeEntry::NeedToGather || |
| MinBWs.contains(getOperandEntry(E, 0)) || |
| MinBWs.contains(getOperandEntry(E, 1))) && |
| "Expected item in MinBWs."); |
| Type *CastTy = VecTy; |
| if (isa<CmpInst>(VL0) && LHS->getType() != RHS->getType()) { |
| if (cast<VectorType>(LHS->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth() < cast<VectorType>(RHS->getType()) |
| ->getElementType() |
| ->getIntegerBitWidth()) |
| CastTy = RHS->getType(); |
| else |
| CastTy = LHS->getType(); |
| } |
| if (LHS->getType() != CastTy) |
| LHS = Builder.CreateIntCast(LHS, CastTy, GetOperandSignedness(0)); |
| if (RHS->getType() != CastTy) |
| RHS = Builder.CreateIntCast(RHS, CastTy, GetOperandSignedness(1)); |
| } |
| |
| Value *V0, *V1; |
| if (Instruction::isBinaryOp(E->getOpcode())) { |
| V0 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); |
| V1 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); |
| } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { |
| V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); |
| auto *AltCI = cast<CmpInst>(E->getAltOp()); |
| CmpInst::Predicate AltPred = AltCI->getPredicate(); |
| V1 = Builder.CreateCmp(AltPred, LHS, RHS); |
| } else { |
| if (LHS->getType()->isIntOrIntVectorTy() && ScalarTy->isIntegerTy()) { |
| unsigned SrcBWSz = DL->getTypeSizeInBits( |
| cast<VectorType>(LHS->getType())->getElementType()); |
| unsigned BWSz = DL->getTypeSizeInBits(ScalarTy); |
| if (BWSz <= SrcBWSz) { |
| if (BWSz < SrcBWSz) |
| LHS = Builder.CreateIntCast(LHS, VecTy, It->second.first); |
| assert(LHS->getType() == VecTy && |
| "Expected same type as operand."); |
| if (auto *I = dyn_cast<Instruction>(LHS)) |
| LHS = propagateMetadata(I, E->Scalars); |
| LHS = FinalShuffle(LHS, E); |
| E->VectorizedValue = LHS; |
| ++NumVectorInstructions; |
| return LHS; |
| } |
| } |
| V0 = Builder.CreateCast( |
| static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); |
| V1 = Builder.CreateCast( |
| static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); |
| } |
| // Add V0 and V1 to later analysis to try to find and remove matching |
| // instruction, if any. |
| for (Value *V : {V0, V1}) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| |
| // Create shuffle to take alternate operations from the vector. |
| // Also, gather up main and alt scalar ops to propagate IR flags to |
| // each vector operation. |
| ValueList OpScalars, AltScalars; |
| SmallVector<int> Mask; |
| E->buildAltOpShuffleMask( |
| [E, this](Instruction *I) { |
| assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); |
| return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(), |
| *TLI); |
| }, |
| Mask, &OpScalars, &AltScalars); |
| |
| propagateIRFlags(V0, OpScalars, E->getMainOp(), It == MinBWs.end()); |
| propagateIRFlags(V1, AltScalars, E->getAltOp(), It == MinBWs.end()); |
| auto DropNuwFlag = [&](Value *Vec, unsigned Opcode) { |
| // Drop nuw flags for abs(sub(commutative), true). |
| if (auto *I = dyn_cast<Instruction>(Vec); |
| I && Opcode == Instruction::Sub && !MinBWs.contains(E) && |
| any_of(E->Scalars, [](Value *V) { |
| auto *IV = cast<Instruction>(V); |
| return IV->getOpcode() == Instruction::Sub && |
| isCommutative(cast<Instruction>(IV)); |
| })) |
| I->setHasNoUnsignedWrap(/*b=*/false); |
| }; |
| DropNuwFlag(V0, E->getOpcode()); |
| DropNuwFlag(V1, E->getAltOpcode()); |
| |
| if (auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| transformScalarShuffleIndiciesToVector(VecTy->getNumElements(), Mask); |
| } |
| V = Builder.CreateShuffleVector(V0, V1, Mask); |
| } |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| V = propagateMetadata(I, E->Scalars); |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| default: |
| llvm_unreachable("unknown inst"); |
| } |
| return nullptr; |
| } |
| |
| Value *BoUpSLP::vectorizeTree() { |
| ExtraValueToDebugLocsMap ExternallyUsedValues; |
| return vectorizeTree(ExternallyUsedValues); |
| } |
| |
| Value * |
| BoUpSLP::vectorizeTree(const ExtraValueToDebugLocsMap &ExternallyUsedValues, |
| Instruction *ReductionRoot) { |
| // All blocks must be scheduled before any instructions are inserted. |
| for (auto &BSIter : BlocksSchedules) { |
| scheduleBlock(BSIter.second.get()); |
| } |
| // Clean Entry-to-LastInstruction table. It can be affected after scheduling, |
| // need to rebuild it. |
| EntryToLastInstruction.clear(); |
| |
| if (ReductionRoot) |
| Builder.SetInsertPoint(ReductionRoot->getParent(), |
| ReductionRoot->getIterator()); |
| else |
| Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin()); |
| |
| // Emit gathered loads first to emit better code for the users of those |
| // gathered loads. |
| for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| if (GatheredLoadsEntriesFirst.has_value() && |
| TE->Idx >= *GatheredLoadsEntriesFirst && |
| (!TE->isGather() || !TE->UserTreeIndices.empty())) { |
| assert((!TE->UserTreeIndices.empty() || |
| (TE->getOpcode() == Instruction::Load && !TE->isGather())) && |
| "Expected gathered load node."); |
| (void)vectorizeTree(TE.get(), /*PostponedPHIs=*/false); |
| } |
| } |
| // Postpone emission of PHIs operands to avoid cyclic dependencies issues. |
| (void)vectorizeTree(VectorizableTree[0].get(), /*PostponedPHIs=*/true); |
| for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) |
| if (TE->State == TreeEntry::Vectorize && |
| TE->getOpcode() == Instruction::PHI && !TE->isAltShuffle() && |
| TE->VectorizedValue) |
| (void)vectorizeTree(TE.get(), /*PostponedPHIs=*/false); |
| // Run through the list of postponed gathers and emit them, replacing the temp |
| // emitted allocas with actual vector instructions. |
| ArrayRef<const TreeEntry *> PostponedNodes = PostponedGathers.getArrayRef(); |
| DenseMap<Value *, SmallVector<TreeEntry *>> PostponedValues; |
| for (const TreeEntry *E : PostponedNodes) { |
| auto *TE = const_cast<TreeEntry *>(E); |
| if (auto *VecTE = getTreeEntry(TE->Scalars.front())) |
| if (VecTE->isSame(TE->UserTreeIndices.front().UserTE->getOperand( |
| TE->UserTreeIndices.front().EdgeIdx)) && |
| VecTE->isSame(TE->Scalars)) |
| // Found gather node which is absolutely the same as one of the |
| // vectorized nodes. It may happen after reordering. |
| continue; |
| auto *PrevVec = cast<Instruction>(TE->VectorizedValue); |
| TE->VectorizedValue = nullptr; |
| auto *UserI = |
| cast<Instruction>(TE->UserTreeIndices.front().UserTE->VectorizedValue); |
| // If user is a PHI node, its vector code have to be inserted right before |
| // block terminator. Since the node was delayed, there were some unresolved |
| // dependencies at the moment when stab instruction was emitted. In a case |
| // when any of these dependencies turn out an operand of another PHI, coming |
| // from this same block, position of a stab instruction will become invalid. |
| // The is because source vector that supposed to feed this gather node was |
| // inserted at the end of the block [after stab instruction]. So we need |
| // to adjust insertion point again to the end of block. |
| if (isa<PHINode>(UserI)) { |
| // Insert before all users. |
| Instruction *InsertPt = PrevVec->getParent()->getTerminator(); |
| for (User *U : PrevVec->users()) { |
| if (U == UserI) |
| continue; |
| auto *UI = dyn_cast<Instruction>(U); |
| if (!UI || isa<PHINode>(UI) || UI->getParent() != InsertPt->getParent()) |
| continue; |
| if (UI->comesBefore(InsertPt)) |
| InsertPt = UI; |
| } |
| Builder.SetInsertPoint(InsertPt); |
| } else { |
| Builder.SetInsertPoint(PrevVec); |
| } |
| Builder.SetCurrentDebugLocation(UserI->getDebugLoc()); |
| Value *Vec = vectorizeTree(TE, /*PostponedPHIs=*/false); |
| if (Vec->getType() != PrevVec->getType()) { |
| assert(Vec->getType()->isIntOrIntVectorTy() && |
| PrevVec->getType()->isIntOrIntVectorTy() && |
| "Expected integer vector types only."); |
| std::optional<bool> IsSigned; |
| for (Value *V : TE->Scalars) { |
| if (const TreeEntry *BaseTE = getTreeEntry(V)) { |
| auto It = MinBWs.find(BaseTE); |
| if (It != MinBWs.end()) { |
| IsSigned = IsSigned.value_or(false) || It->second.second; |
| if (*IsSigned) |
| break; |
| } |
| for (const TreeEntry *MNTE : MultiNodeScalars.lookup(V)) { |
| auto It = MinBWs.find(MNTE); |
| if (It != MinBWs.end()) { |
| IsSigned = IsSigned.value_or(false) || It->second.second; |
| if (*IsSigned) |
| break; |
| } |
| } |
| if (IsSigned.value_or(false)) |
| break; |
| // Scan through gather nodes. |
| for (const TreeEntry *BVE : ValueToGatherNodes.lookup(V)) { |
| auto It = MinBWs.find(BVE); |
| if (It != MinBWs.end()) { |
| IsSigned = IsSigned.value_or(false) || It->second.second; |
| if (*IsSigned) |
| break; |
| } |
| } |
| if (IsSigned.value_or(false)) |
| break; |
| if (auto *EE = dyn_cast<ExtractElementInst>(V)) { |
| IsSigned = |
| IsSigned.value_or(false) || |
| !isKnownNonNegative(EE->getVectorOperand(), SimplifyQuery(*DL)); |
| continue; |
| } |
| if (IsSigned.value_or(false)) |
| break; |
| } |
| } |
| if (IsSigned.value_or(false)) { |
| // Final attempt - check user node. |
| auto It = MinBWs.find(TE->UserTreeIndices.front().UserTE); |
| if (It != MinBWs.end()) |
| IsSigned = It->second.second; |
| } |
| assert(IsSigned && |
| "Expected user node or perfect diamond match in MinBWs."); |
| Vec = Builder.CreateIntCast(Vec, PrevVec->getType(), *IsSigned); |
| } |
| PrevVec->replaceAllUsesWith(Vec); |
| PostponedValues.try_emplace(Vec).first->second.push_back(TE); |
| // Replace the stub vector node, if it was used before for one of the |
| // buildvector nodes already. |
| auto It = PostponedValues.find(PrevVec); |
| if (It != PostponedValues.end()) { |
| for (TreeEntry *VTE : It->getSecond()) |
| VTE->VectorizedValue = Vec; |
| } |
| eraseInstruction(PrevVec); |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() |
| << " values .\n"); |
| |
| SmallVector<ShuffledInsertData<Value *>> ShuffledInserts; |
| // Maps vector instruction to original insertelement instruction |
| DenseMap<Value *, InsertElementInst *> VectorToInsertElement; |
| // Maps extract Scalar to the corresponding extractelement instruction in the |
| // basic block. Only one extractelement per block should be emitted. |
| DenseMap<Value *, DenseMap<BasicBlock *, std::pair<Value *, Value *>>> |
| ScalarToEEs; |
| SmallDenseSet<Value *, 4> UsedInserts; |
| DenseMap<std::pair<Value *, Type *>, Value *> VectorCasts; |
| SmallDenseSet<Value *, 4> ScalarsWithNullptrUser; |
| SmallDenseSet<ExtractElementInst *, 4> IgnoredExtracts; |
| // Extract all of the elements with the external uses. |
| for (const auto &ExternalUse : ExternalUses) { |
| Value *Scalar = ExternalUse.Scalar; |
| llvm::User *User = ExternalUse.User; |
| |
| // Skip users that we already RAUW. This happens when one instruction |
| // has multiple uses of the same value. |
| if (User && !is_contained(Scalar->users(), User)) |
| continue; |
| TreeEntry *E = getTreeEntry(Scalar); |
| assert(E && "Invalid scalar"); |
| assert(!E->isGather() && "Extracting from a gather list"); |
| // Non-instruction pointers are not deleted, just skip them. |
| if (E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(Scalar)) |
| continue; |
| |
| Value *Vec = E->VectorizedValue; |
| assert(Vec && "Can't find vectorizable value"); |
| |
| Value *Lane = Builder.getInt32(ExternalUse.Lane); |
| auto ExtractAndExtendIfNeeded = [&](Value *Vec) { |
| if (Scalar->getType() != Vec->getType()) { |
| Value *Ex = nullptr; |
| Value *ExV = nullptr; |
| auto *Inst = dyn_cast<Instruction>(Scalar); |
| bool ReplaceInst = Inst && ExternalUsesAsOriginalScalar.contains(Inst); |
| auto It = ScalarToEEs.find(Scalar); |
| if (It != ScalarToEEs.end()) { |
| // No need to emit many extracts, just move the only one in the |
| // current block. |
| auto EEIt = It->second.find(ReplaceInst ? Inst->getParent() |
| : Builder.GetInsertBlock()); |
| if (EEIt != It->second.end()) { |
| Value *PrevV = EEIt->second.first; |
| if (auto *I = dyn_cast<Instruction>(PrevV); |
| I && !ReplaceInst && |
| Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() && |
| Builder.GetInsertPoint()->comesBefore(I)) { |
| I->moveBefore(*Builder.GetInsertPoint()->getParent(), |
| Builder.GetInsertPoint()); |
| if (auto *CI = dyn_cast<Instruction>(EEIt->second.second)) |
| CI->moveAfter(I); |
| } |
| Ex = PrevV; |
| ExV = EEIt->second.second ? EEIt->second.second : Ex; |
| } |
| } |
| if (!Ex) { |
| // "Reuse" the existing extract to improve final codegen. |
| if (ReplaceInst) { |
| // Leave the instruction as is, if it cheaper extracts and all |
| // operands are scalar. |
| if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) { |
| IgnoredExtracts.insert(EE); |
| Ex = EE; |
| } else { |
| auto *CloneInst = Inst->clone(); |
| CloneInst->insertBefore(Inst); |
| if (Inst->hasName()) |
| CloneInst->takeName(Inst); |
| Ex = CloneInst; |
| } |
| } else if (auto *ES = dyn_cast<ExtractElementInst>(Scalar); |
| ES && isa<Instruction>(Vec)) { |
| Value *V = ES->getVectorOperand(); |
| auto *IVec = cast<Instruction>(Vec); |
| if (const TreeEntry *ETE = getTreeEntry(V)) |
| V = ETE->VectorizedValue; |
| if (auto *IV = dyn_cast<Instruction>(V); |
| !IV || IV == Vec || IV->getParent() != IVec->getParent() || |
| IV->comesBefore(IVec)) |
| Ex = Builder.CreateExtractElement(V, ES->getIndexOperand()); |
| else |
| Ex = Builder.CreateExtractElement(Vec, Lane); |
| } else if (auto *VecTy = |
| dyn_cast<FixedVectorType>(Scalar->getType())) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| unsigned VecTyNumElements = VecTy->getNumElements(); |
| // When REVEC is enabled, we need to extract a vector. |
| // Note: The element size of Scalar may be different from the |
| // element size of Vec. |
| Ex = Builder.CreateExtractVector( |
| FixedVectorType::get(Vec->getType()->getScalarType(), |
| VecTyNumElements), |
| Vec, Builder.getInt64(ExternalUse.Lane * VecTyNumElements)); |
| } else { |
| Ex = Builder.CreateExtractElement(Vec, Lane); |
| } |
| // If necessary, sign-extend or zero-extend ScalarRoot |
| // to the larger type. |
| ExV = Ex; |
| if (Scalar->getType() != Ex->getType()) |
| ExV = Builder.CreateIntCast(Ex, Scalar->getType(), |
| MinBWs.find(E)->second.second); |
| auto *I = dyn_cast<Instruction>(Ex); |
| ScalarToEEs[Scalar].try_emplace(I ? I->getParent() |
| : &F->getEntryBlock(), |
| std::make_pair(Ex, ExV)); |
| } |
| // The then branch of the previous if may produce constants, since 0 |
| // operand might be a constant. |
| if (auto *ExI = dyn_cast<Instruction>(Ex); |
| ExI && !isa<PHINode>(ExI) && !mayHaveNonDefUseDependency(*ExI)) { |
| GatherShuffleExtractSeq.insert(ExI); |
| CSEBlocks.insert(ExI->getParent()); |
| } |
| return ExV; |
| } |
| assert(isa<FixedVectorType>(Scalar->getType()) && |
| isa<InsertElementInst>(Scalar) && |
| "In-tree scalar of vector type is not insertelement?"); |
| auto *IE = cast<InsertElementInst>(Scalar); |
| VectorToInsertElement.try_emplace(Vec, IE); |
| return Vec; |
| }; |
| // If User == nullptr, the Scalar remains as scalar in vectorized |
| // instructions or is used as extra arg. Generate ExtractElement instruction |
| // and update the record for this scalar in ExternallyUsedValues. |
| if (!User) { |
| if (!ScalarsWithNullptrUser.insert(Scalar).second) |
| continue; |
| assert((ExternallyUsedValues.count(Scalar) || |
| Scalar->hasNUsesOrMore(UsesLimit) || |
| ExternalUsesAsOriginalScalar.contains(Scalar) || |
| any_of(Scalar->users(), |
| [&](llvm::User *U) { |
| if (ExternalUsesAsOriginalScalar.contains(U)) |
| return true; |
| TreeEntry *UseEntry = getTreeEntry(U); |
| return UseEntry && |
| (UseEntry->State == TreeEntry::Vectorize || |
| UseEntry->State == |
| TreeEntry::StridedVectorize) && |
| (E->State == TreeEntry::Vectorize || |
| E->State == TreeEntry::StridedVectorize) && |
| doesInTreeUserNeedToExtract( |
| Scalar, getRootEntryInstruction(*UseEntry), |
| TLI); |
| })) && |
| "Scalar with nullptr User must be registered in " |
| "ExternallyUsedValues map or remain as scalar in vectorized " |
| "instructions"); |
| if (auto *VecI = dyn_cast<Instruction>(Vec)) { |
| if (auto *PHI = dyn_cast<PHINode>(VecI)) { |
| if (PHI->getParent()->isLandingPad()) |
| Builder.SetInsertPoint( |
| PHI->getParent(), |
| std::next( |
| PHI->getParent()->getLandingPadInst()->getIterator())); |
| else |
| Builder.SetInsertPoint(PHI->getParent(), |
| PHI->getParent()->getFirstNonPHIIt()); |
| } else { |
| Builder.SetInsertPoint(VecI->getParent(), |
| std::next(VecI->getIterator())); |
| } |
| } else { |
| Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin()); |
| } |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| // Required to update internally referenced instructions. |
| if (Scalar != NewInst) { |
| assert((!isa<ExtractElementInst>(Scalar) || |
| !IgnoredExtracts.contains(cast<ExtractElementInst>(Scalar))) && |
| "Extractelements should not be replaced."); |
| Scalar->replaceAllUsesWith(NewInst); |
| } |
| continue; |
| } |
| |
| if (auto *VU = dyn_cast<InsertElementInst>(User); |
| VU && VU->getOperand(1) == Scalar) { |
| // Skip if the scalar is another vector op or Vec is not an instruction. |
| if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { |
| if (!UsedInserts.insert(VU).second) |
| continue; |
| // Need to use original vector, if the root is truncated. |
| auto BWIt = MinBWs.find(E); |
| if (BWIt != MinBWs.end() && Vec->getType() != VU->getType()) { |
| auto *ScalarTy = FTy->getElementType(); |
| auto Key = std::make_pair(Vec, ScalarTy); |
| auto VecIt = VectorCasts.find(Key); |
| if (VecIt == VectorCasts.end()) { |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| if (auto *IVec = dyn_cast<PHINode>(Vec)) { |
| if (IVec->getParent()->isLandingPad()) |
| Builder.SetInsertPoint(IVec->getParent(), |
| std::next(IVec->getParent() |
| ->getLandingPadInst() |
| ->getIterator())); |
| else |
| Builder.SetInsertPoint( |
| IVec->getParent()->getFirstNonPHIOrDbgOrLifetime()); |
| } else if (auto *IVec = dyn_cast<Instruction>(Vec)) { |
| Builder.SetInsertPoint(IVec->getNextNonDebugInstruction()); |
| } |
| Vec = Builder.CreateIntCast( |
| Vec, |
| getWidenedType( |
| ScalarTy, |
| cast<FixedVectorType>(Vec->getType())->getNumElements()), |
| BWIt->second.second); |
| VectorCasts.try_emplace(Key, Vec); |
| } else { |
| Vec = VecIt->second; |
| } |
| } |
| |
| std::optional<unsigned> InsertIdx = getElementIndex(VU); |
| if (InsertIdx) { |
| auto *It = find_if( |
| ShuffledInserts, [VU](const ShuffledInsertData<Value *> &Data) { |
| // Checks if 2 insertelements are from the same buildvector. |
| InsertElementInst *VecInsert = Data.InsertElements.front(); |
| return areTwoInsertFromSameBuildVector( |
| VU, VecInsert, |
| [](InsertElementInst *II) { return II->getOperand(0); }); |
| }); |
| unsigned Idx = *InsertIdx; |
| if (It == ShuffledInserts.end()) { |
| (void)ShuffledInserts.emplace_back(); |
| It = std::next(ShuffledInserts.begin(), |
| ShuffledInserts.size() - 1); |
| } |
| SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| Mask[Idx] = ExternalUse.Lane; |
| It->InsertElements.push_back(cast<InsertElementInst>(User)); |
| continue; |
| } |
| } |
| } |
| } |
| |
| // Generate extracts for out-of-tree users. |
| // Find the insertion point for the extractelement lane. |
| if (auto *VecI = dyn_cast<Instruction>(Vec)) { |
| if (PHINode *PH = dyn_cast<PHINode>(User)) { |
| for (unsigned I : seq<unsigned>(0, PH->getNumIncomingValues())) { |
| if (PH->getIncomingValue(I) == Scalar) { |
| Instruction *IncomingTerminator = |
| PH->getIncomingBlock(I)->getTerminator(); |
| if (isa<CatchSwitchInst>(IncomingTerminator)) { |
| Builder.SetInsertPoint(VecI->getParent(), |
| std::next(VecI->getIterator())); |
| } else { |
| Builder.SetInsertPoint(PH->getIncomingBlock(I)->getTerminator()); |
| } |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| PH->setOperand(I, NewInst); |
| } |
| } |
| } else { |
| Builder.SetInsertPoint(cast<Instruction>(User)); |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| User->replaceUsesOfWith(Scalar, NewInst); |
| } |
| } else { |
| Builder.SetInsertPoint(&F->getEntryBlock(), F->getEntryBlock().begin()); |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| User->replaceUsesOfWith(Scalar, NewInst); |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); |
| } |
| |
| auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) { |
| SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem); |
| SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem); |
| int VF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (Mask[I] < VF) |
| CombinedMask1[I] = Mask[I]; |
| else |
| CombinedMask2[I] = Mask[I] - VF; |
| } |
| ShuffleInstructionBuilder ShuffleBuilder( |
| cast<VectorType>(V1->getType())->getElementType(), Builder, *this); |
| ShuffleBuilder.add(V1, CombinedMask1); |
| if (V2) |
| ShuffleBuilder.add(V2, CombinedMask2); |
| return ShuffleBuilder.finalize({}, {}); |
| }; |
| |
| auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask, |
| bool ForSingleMask) { |
| unsigned VF = Mask.size(); |
| unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| if (VF != VecVF) { |
| if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { |
| Vec = CreateShuffle(Vec, nullptr, Mask); |
| return std::make_pair(Vec, true); |
| } |
| if (!ForSingleMask) { |
| SmallVector<int> ResizeMask(VF, PoisonMaskElem); |
| for (unsigned I = 0; I < VF; ++I) { |
| if (Mask[I] != PoisonMaskElem) |
| ResizeMask[Mask[I]] = Mask[I]; |
| } |
| Vec = CreateShuffle(Vec, nullptr, ResizeMask); |
| } |
| } |
| |
| return std::make_pair(Vec, false); |
| }; |
| // Perform shuffling of the vectorize tree entries for better handling of |
| // external extracts. |
| for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { |
| // Find the first and the last instruction in the list of insertelements. |
| sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); |
| InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); |
| InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); |
| Builder.SetInsertPoint(LastInsert); |
| auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); |
| Value *NewInst = performExtractsShuffleAction<Value>( |
| MutableArrayRef(Vector.data(), Vector.size()), |
| FirstInsert->getOperand(0), |
| [](Value *Vec) { |
| return cast<VectorType>(Vec->getType()) |
| ->getElementCount() |
| .getKnownMinValue(); |
| }, |
| ResizeToVF, |
| [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, |
| ArrayRef<Value *> Vals) { |
| assert((Vals.size() == 1 || Vals.size() == 2) && |
| "Expected exactly 1 or 2 input values."); |
| if (Vals.size() == 1) { |
| // Do not create shuffle if the mask is a simple identity |
| // non-resizing mask. |
| if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) |
| ->getNumElements() || |
| !ShuffleVectorInst::isIdentityMask(Mask, Mask.size())) |
| return CreateShuffle(Vals.front(), nullptr, Mask); |
| return Vals.front(); |
| } |
| return CreateShuffle(Vals.front() ? Vals.front() |
| : FirstInsert->getOperand(0), |
| Vals.back(), Mask); |
| }); |
| auto It = ShuffledInserts[I].InsertElements.rbegin(); |
| // Rebuild buildvector chain. |
| InsertElementInst *II = nullptr; |
| if (It != ShuffledInserts[I].InsertElements.rend()) |
| II = *It; |
| SmallVector<Instruction *> Inserts; |
| while (It != ShuffledInserts[I].InsertElements.rend()) { |
| assert(II && "Must be an insertelement instruction."); |
| if (*It == II) |
| ++It; |
| else |
| Inserts.push_back(cast<Instruction>(II)); |
| II = dyn_cast<InsertElementInst>(II->getOperand(0)); |
| } |
| for (Instruction *II : reverse(Inserts)) { |
| II->replaceUsesOfWith(II->getOperand(0), NewInst); |
| if (auto *NewI = dyn_cast<Instruction>(NewInst)) |
| if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) |
| II->moveAfter(NewI); |
| NewInst = II; |
| } |
| LastInsert->replaceAllUsesWith(NewInst); |
| for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { |
| IE->replaceUsesOfWith(IE->getOperand(0), |
| PoisonValue::get(IE->getOperand(0)->getType())); |
| IE->replaceUsesOfWith(IE->getOperand(1), |
| PoisonValue::get(IE->getOperand(1)->getType())); |
| eraseInstruction(IE); |
| } |
| CSEBlocks.insert(LastInsert->getParent()); |
| } |
| |
| SmallVector<Instruction *> RemovedInsts; |
| // For each vectorized value: |
| for (auto &TEPtr : VectorizableTree) { |
| TreeEntry *Entry = TEPtr.get(); |
| |
| // No need to handle users of gathered values. |
| if (Entry->isGather()) |
| continue; |
| |
| assert(Entry->VectorizedValue && "Can't find vectorizable value"); |
| |
| // For each lane: |
| for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { |
| Value *Scalar = Entry->Scalars[Lane]; |
| |
| if (Entry->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(Scalar)) |
| continue; |
| if (auto *EE = dyn_cast<ExtractElementInst>(Scalar); |
| EE && IgnoredExtracts.contains(EE)) |
| continue; |
| #ifndef NDEBUG |
| Type *Ty = Scalar->getType(); |
| if (!Ty->isVoidTy()) { |
| for (User *U : Scalar->users()) { |
| LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); |
| |
| // It is legal to delete users in the ignorelist. |
| assert((getTreeEntry(U) || |
| (UserIgnoreList && UserIgnoreList->contains(U)) || |
| (isa_and_nonnull<Instruction>(U) && |
| isDeleted(cast<Instruction>(U)))) && |
| "Deleting out-of-tree value"); |
| } |
| } |
| #endif |
| LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); |
| auto *I = cast<Instruction>(Scalar); |
| RemovedInsts.push_back(I); |
| } |
| } |
| |
| // Merge the DIAssignIDs from the about-to-be-deleted instructions into the |
| // new vector instruction. |
| if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue)) |
| V->mergeDIAssignID(RemovedInsts); |
| |
| // Clear up reduction references, if any. |
| if (UserIgnoreList) { |
| for (Instruction *I : RemovedInsts) { |
| const TreeEntry *IE = getTreeEntry(I); |
| if (IE->Idx != 0 && |
| !(VectorizableTree.front()->isGather() && isa<LoadInst>(I) && |
| !IE->UserTreeIndices.empty() && |
| any_of(IE->UserTreeIndices, |
| [&](const EdgeInfo &EI) { |
| return EI.UserTE == VectorizableTree.front().get() && |
| EI.EdgeIdx == UINT_MAX; |
| })) && |
| !(GatheredLoadsEntriesFirst.has_value() && |
| IE->Idx >= *GatheredLoadsEntriesFirst && |
| VectorizableTree.front()->isGather() && |
| is_contained(VectorizableTree.front()->Scalars, I))) |
| continue; |
| SmallVector<SelectInst *> LogicalOpSelects; |
| I->replaceUsesWithIf(PoisonValue::get(I->getType()), [&](Use &U) { |
| // Do not replace condition of the logical op in form select <cond>. |
| bool IsPoisoningLogicalOp = isa<SelectInst>(U.getUser()) && |
| (match(U.getUser(), m_LogicalAnd()) || |
| match(U.getUser(), m_LogicalOr())) && |
| U.getOperandNo() == 0; |
| if (IsPoisoningLogicalOp) { |
| LogicalOpSelects.push_back(cast<SelectInst>(U.getUser())); |
| return false; |
| } |
| return UserIgnoreList->contains(U.getUser()); |
| }); |
| // Replace conditions of the poisoning logical ops with the non-poison |
| // constant value. |
| for (SelectInst *SI : LogicalOpSelects) |
| SI->setCondition(Constant::getNullValue(SI->getCondition()->getType())); |
| } |
| } |
| // Retain to-be-deleted instructions for some debug-info bookkeeping and alias |
| // cache correctness. |
| // NOTE: removeInstructionAndOperands only marks the instruction for deletion |
| // - instructions are not deleted until later. |
| removeInstructionsAndOperands(ArrayRef(RemovedInsts)); |
| |
| Builder.ClearInsertionPoint(); |
| InstrElementSize.clear(); |
| |
| const TreeEntry &RootTE = *VectorizableTree.front(); |
| Value *Vec = RootTE.VectorizedValue; |
| if (auto It = MinBWs.find(&RootTE); ReductionBitWidth != 0 && |
| It != MinBWs.end() && |
| ReductionBitWidth != It->second.first) { |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(ReductionRoot->getParent(), |
| ReductionRoot->getIterator()); |
| Vec = Builder.CreateIntCast( |
| Vec, |
| VectorType::get(Builder.getIntNTy(ReductionBitWidth), |
| cast<VectorType>(Vec->getType())->getElementCount()), |
| It->second.second); |
| } |
| return Vec; |
| } |
| |
| void BoUpSLP::optimizeGatherSequence() { |
| LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size() |
| << " gather sequences instructions.\n"); |
| // LICM InsertElementInst sequences. |
| for (Instruction *I : GatherShuffleExtractSeq) { |
| if (isDeleted(I)) |
| continue; |
| |
| // Check if this block is inside a loop. |
| Loop *L = LI->getLoopFor(I->getParent()); |
| if (!L) |
| continue; |
| |
| // Check if it has a preheader. |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| if (!PreHeader) |
| continue; |
| |
| // If the vector or the element that we insert into it are |
| // instructions that are defined in this basic block then we can't |
| // hoist this instruction. |
| if (any_of(I->operands(), [L](Value *V) { |
| auto *OpI = dyn_cast<Instruction>(V); |
| return OpI && L->contains(OpI); |
| })) |
| continue; |
| |
| // We can hoist this instruction. Move it to the pre-header. |
| I->moveBefore(PreHeader->getTerminator()); |
| CSEBlocks.insert(PreHeader); |
| } |
| |
| // Make a list of all reachable blocks in our CSE queue. |
| SmallVector<const DomTreeNode *, 8> CSEWorkList; |
| CSEWorkList.reserve(CSEBlocks.size()); |
| for (BasicBlock *BB : CSEBlocks) |
| if (DomTreeNode *N = DT->getNode(BB)) { |
| assert(DT->isReachableFromEntry(N)); |
| CSEWorkList.push_back(N); |
| } |
| |
| // Sort blocks by domination. This ensures we visit a block after all blocks |
| // dominating it are visited. |
| llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { |
| assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| return A->getDFSNumIn() < B->getDFSNumIn(); |
| }); |
| |
| // Less defined shuffles can be replaced by the more defined copies. |
| // Between two shuffles one is less defined if it has the same vector operands |
| // and its mask indeces are the same as in the first one or undefs. E.g. |
| // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, |
| // poison, <0, 0, 0, 0>. |
| auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, |
| SmallVectorImpl<int> &NewMask) { |
| if (I1->getType() != I2->getType()) |
| return false; |
| auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); |
| auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); |
| if (!SI1 || !SI2) |
| return I1->isIdenticalTo(I2); |
| if (SI1->isIdenticalTo(SI2)) |
| return true; |
| for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) |
| if (SI1->getOperand(I) != SI2->getOperand(I)) |
| return false; |
| // Check if the second instruction is more defined than the first one. |
| NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); |
| ArrayRef<int> SM1 = SI1->getShuffleMask(); |
| // Count trailing undefs in the mask to check the final number of used |
| // registers. |
| unsigned LastUndefsCnt = 0; |
| for (int I = 0, E = NewMask.size(); I < E; ++I) { |
| if (SM1[I] == PoisonMaskElem) |
| ++LastUndefsCnt; |
| else |
| LastUndefsCnt = 0; |
| if (NewMask[I] != PoisonMaskElem && SM1[I] != PoisonMaskElem && |
| NewMask[I] != SM1[I]) |
| return false; |
| if (NewMask[I] == PoisonMaskElem) |
| NewMask[I] = SM1[I]; |
| } |
| // Check if the last undefs actually change the final number of used vector |
| // registers. |
| return SM1.size() - LastUndefsCnt > 1 && |
| TTI->getNumberOfParts(SI1->getType()) == |
| TTI->getNumberOfParts( |
| getWidenedType(SI1->getType()->getElementType(), |
| SM1.size() - LastUndefsCnt)); |
| }; |
| // Perform O(N^2) search over the gather/shuffle sequences and merge identical |
| // instructions. TODO: We can further optimize this scan if we split the |
| // instructions into different buckets based on the insert lane. |
| SmallVector<Instruction *, 16> Visited; |
| for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { |
| assert(*I && |
| (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && |
| "Worklist not sorted properly!"); |
| BasicBlock *BB = (*I)->getBlock(); |
| // For all instructions in blocks containing gather sequences: |
| for (Instruction &In : llvm::make_early_inc_range(*BB)) { |
| if (isDeleted(&In)) |
| continue; |
| if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) && |
| !GatherShuffleExtractSeq.contains(&In)) |
| continue; |
| |
| // Check if we can replace this instruction with any of the |
| // visited instructions. |
| bool Replaced = false; |
| for (Instruction *&V : Visited) { |
| SmallVector<int> NewMask; |
| if (IsIdenticalOrLessDefined(&In, V, NewMask) && |
| DT->dominates(V->getParent(), In.getParent())) { |
| In.replaceAllUsesWith(V); |
| eraseInstruction(&In); |
| if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) |
| if (!NewMask.empty()) |
| SI->setShuffleMask(NewMask); |
| Replaced = true; |
| break; |
| } |
| if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && |
| GatherShuffleExtractSeq.contains(V) && |
| IsIdenticalOrLessDefined(V, &In, NewMask) && |
| DT->dominates(In.getParent(), V->getParent())) { |
| In.moveAfter(V); |
| V->replaceAllUsesWith(&In); |
| eraseInstruction(V); |
| if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) |
| if (!NewMask.empty()) |
| SI->setShuffleMask(NewMask); |
| V = &In; |
| Replaced = true; |
| break; |
| } |
| } |
| if (!Replaced) { |
| assert(!is_contained(Visited, &In)); |
| Visited.push_back(&In); |
| } |
| } |
| } |
| CSEBlocks.clear(); |
| GatherShuffleExtractSeq.clear(); |
| } |
| |
| BoUpSLP::ScheduleData * |
| BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { |
| ScheduleData *Bundle = nullptr; |
| ScheduleData *PrevInBundle = nullptr; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| ScheduleData *BundleMember = getScheduleData(V); |
| assert(BundleMember && |
| "no ScheduleData for bundle member " |
| "(maybe not in same basic block)"); |
| assert(BundleMember->isSchedulingEntity() && |
| "bundle member already part of other bundle"); |
| if (PrevInBundle) { |
| PrevInBundle->NextInBundle = BundleMember; |
| } else { |
| Bundle = BundleMember; |
| } |
| |
| // Group the instructions to a bundle. |
| BundleMember->FirstInBundle = Bundle; |
| PrevInBundle = BundleMember; |
| } |
| assert(Bundle && "Failed to find schedule bundle"); |
| return Bundle; |
| } |
| |
| // Groups the instructions to a bundle (which is then a single scheduling entity) |
| // and schedules instructions until the bundle gets ready. |
| std::optional<BoUpSLP::ScheduleData *> |
| BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, |
| const InstructionsState &S) { |
| // No need to schedule PHIs, insertelement, extractelement and extractvalue |
| // instructions. |
| if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || |
| doesNotNeedToSchedule(VL)) |
| return nullptr; |
| |
| // Initialize the instruction bundle. |
| Instruction *OldScheduleEnd = ScheduleEnd; |
| LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); |
| |
| auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, |
| ScheduleData *Bundle) { |
| // The scheduling region got new instructions at the lower end (or it is a |
| // new region for the first bundle). This makes it necessary to |
| // recalculate all dependencies. |
| // It is seldom that this needs to be done a second time after adding the |
| // initial bundle to the region. |
| if (ScheduleEnd != OldScheduleEnd) { |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) |
| if (ScheduleData *SD = getScheduleData(I)) |
| SD->clearDependencies(); |
| ReSchedule = true; |
| } |
| if (Bundle) { |
| LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle |
| << " in block " << BB->getName() << "\n"); |
| calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); |
| } |
| |
| if (ReSchedule) { |
| resetSchedule(); |
| initialFillReadyList(ReadyInsts); |
| } |
| |
| // Now try to schedule the new bundle or (if no bundle) just calculate |
| // dependencies. As soon as the bundle is "ready" it means that there are no |
| // cyclic dependencies and we can schedule it. Note that's important that we |
| // don't "schedule" the bundle yet (see cancelScheduling). |
| while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && |
| !ReadyInsts.empty()) { |
| ScheduleData *Picked = ReadyInsts.pop_back_val(); |
| assert(Picked->isSchedulingEntity() && Picked->isReady() && |
| "must be ready to schedule"); |
| schedule(Picked, ReadyInsts); |
| } |
| }; |
| |
| // Make sure that the scheduling region contains all |
| // instructions of the bundle. |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| if (!extendSchedulingRegion(V, S)) { |
| // If the scheduling region got new instructions at the lower end (or it |
| // is a new region for the first bundle). This makes it necessary to |
| // recalculate all dependencies. |
| // Otherwise the compiler may crash trying to incorrectly calculate |
| // dependencies and emit instruction in the wrong order at the actual |
| // scheduling. |
| TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); |
| return std::nullopt; |
| } |
| } |
| |
| bool ReSchedule = false; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| ScheduleData *BundleMember = getScheduleData(V); |
| assert(BundleMember && |
| "no ScheduleData for bundle member (maybe not in same basic block)"); |
| |
| // Make sure we don't leave the pieces of the bundle in the ready list when |
| // whole bundle might not be ready. |
| ReadyInsts.remove(BundleMember); |
| |
| if (!BundleMember->IsScheduled) |
| continue; |
| // A bundle member was scheduled as single instruction before and now |
| // needs to be scheduled as part of the bundle. We just get rid of the |
| // existing schedule. |
| LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember |
| << " was already scheduled\n"); |
| ReSchedule = true; |
| } |
| |
| auto *Bundle = buildBundle(VL); |
| TryScheduleBundleImpl(ReSchedule, Bundle); |
| if (!Bundle->isReady()) { |
| cancelScheduling(VL, S.OpValue); |
| return std::nullopt; |
| } |
| return Bundle; |
| } |
| |
| void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, |
| Value *OpValue) { |
| if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || |
| doesNotNeedToSchedule(VL)) |
| return; |
| |
| if (doesNotNeedToBeScheduled(OpValue)) |
| OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); |
| ScheduleData *Bundle = getScheduleData(OpValue); |
| LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); |
| assert(!Bundle->IsScheduled && |
| "Can't cancel bundle which is already scheduled"); |
| assert(Bundle->isSchedulingEntity() && |
| (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && |
| "tried to unbundle something which is not a bundle"); |
| |
| // Remove the bundle from the ready list. |
| if (Bundle->isReady()) |
| ReadyInsts.remove(Bundle); |
| |
| // Un-bundle: make single instructions out of the bundle. |
| ScheduleData *BundleMember = Bundle; |
| while (BundleMember) { |
| assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); |
| BundleMember->FirstInBundle = BundleMember; |
| ScheduleData *Next = BundleMember->NextInBundle; |
| BundleMember->NextInBundle = nullptr; |
| BundleMember->TE = nullptr; |
| if (BundleMember->unscheduledDepsInBundle() == 0) { |
| ReadyInsts.insert(BundleMember); |
| } |
| BundleMember = Next; |
| } |
| } |
| |
| BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { |
| // Allocate a new ScheduleData for the instruction. |
| if (ChunkPos >= ChunkSize) { |
| ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); |
| ChunkPos = 0; |
| } |
| return &(ScheduleDataChunks.back()[ChunkPos++]); |
| } |
| |
| bool BoUpSLP::BlockScheduling::extendSchedulingRegion( |
| Value *V, const InstructionsState &S) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| assert(I && "bundle member must be an instruction"); |
| assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && |
| !doesNotNeedToBeScheduled(I) && |
| "phi nodes/insertelements/extractelements/extractvalues don't need to " |
| "be scheduled"); |
| if (getScheduleData(I)) |
| return true; |
| if (!ScheduleStart) { |
| // It's the first instruction in the new region. |
| initScheduleData(I, I->getNextNode(), nullptr, nullptr); |
| ScheduleStart = I; |
| ScheduleEnd = I->getNextNode(); |
| assert(ScheduleEnd && "tried to vectorize a terminator?"); |
| LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); |
| return true; |
| } |
| // Search up and down at the same time, because we don't know if the new |
| // instruction is above or below the existing scheduling region. |
| // Ignore debug info (and other "AssumeLike" intrinsics) so that's not counted |
| // against the budget. Otherwise debug info could affect codegen. |
| BasicBlock::reverse_iterator UpIter = |
| ++ScheduleStart->getIterator().getReverse(); |
| BasicBlock::reverse_iterator UpperEnd = BB->rend(); |
| BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); |
| BasicBlock::iterator LowerEnd = BB->end(); |
| auto IsAssumeLikeIntr = [](const Instruction &I) { |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| return II->isAssumeLikeIntrinsic(); |
| return false; |
| }; |
| UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr); |
| DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr); |
| while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && |
| &*DownIter != I) { |
| if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { |
| LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); |
| return false; |
| } |
| |
| ++UpIter; |
| ++DownIter; |
| |
| UpIter = std::find_if_not(UpIter, UpperEnd, IsAssumeLikeIntr); |
| DownIter = std::find_if_not(DownIter, LowerEnd, IsAssumeLikeIntr); |
| } |
| if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { |
| assert(I->getParent() == ScheduleStart->getParent() && |
| "Instruction is in wrong basic block."); |
| initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); |
| ScheduleStart = I; |
| LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I |
| << "\n"); |
| return true; |
| } |
| assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && |
| "Expected to reach top of the basic block or instruction down the " |
| "lower end."); |
| assert(I->getParent() == ScheduleEnd->getParent() && |
| "Instruction is in wrong basic block."); |
| initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, |
| nullptr); |
| ScheduleEnd = I->getNextNode(); |
| assert(ScheduleEnd && "tried to vectorize a terminator?"); |
| LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); |
| return true; |
| } |
| |
| void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, |
| Instruction *ToI, |
| ScheduleData *PrevLoadStore, |
| ScheduleData *NextLoadStore) { |
| ScheduleData *CurrentLoadStore = PrevLoadStore; |
| for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { |
| // No need to allocate data for non-schedulable instructions. |
| if (doesNotNeedToBeScheduled(I)) |
| continue; |
| ScheduleData *SD = ScheduleDataMap.lookup(I); |
| if (!SD) { |
| SD = allocateScheduleDataChunks(); |
| ScheduleDataMap[I] = SD; |
| } |
| assert(!isInSchedulingRegion(SD) && |
| "new ScheduleData already in scheduling region"); |
| SD->init(SchedulingRegionID, I); |
| |
| if (I->mayReadOrWriteMemory() && |
| (!isa<IntrinsicInst>(I) || |
| (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && |
| cast<IntrinsicInst>(I)->getIntrinsicID() != |
| Intrinsic::pseudoprobe))) { |
| // Update the linked list of memory accessing instructions. |
| if (CurrentLoadStore) { |
| CurrentLoadStore->NextLoadStore = SD; |
| } else { |
| FirstLoadStoreInRegion = SD; |
| } |
| CurrentLoadStore = SD; |
| } |
| |
| if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| RegionHasStackSave = true; |
| } |
| if (NextLoadStore) { |
| if (CurrentLoadStore) |
| CurrentLoadStore->NextLoadStore = NextLoadStore; |
| } else { |
| LastLoadStoreInRegion = CurrentLoadStore; |
| } |
| } |
| |
| void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, |
| bool InsertInReadyList, |
| BoUpSLP *SLP) { |
| assert(SD->isSchedulingEntity()); |
| |
| SmallVector<ScheduleData *, 10> WorkList; |
| WorkList.push_back(SD); |
| |
| while (!WorkList.empty()) { |
| ScheduleData *SD = WorkList.pop_back_val(); |
| for (ScheduleData *BundleMember = SD; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| assert(isInSchedulingRegion(BundleMember)); |
| if (BundleMember->hasValidDependencies()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember |
| << "\n"); |
| BundleMember->Dependencies = 0; |
| BundleMember->resetUnscheduledDeps(); |
| |
| // Handle def-use chain dependencies. |
| for (User *U : BundleMember->Inst->users()) { |
| if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = UseSD->FirstInBundle; |
| if (!DestBundle->IsScheduled) |
| BundleMember->incrementUnscheduledDeps(1); |
| if (!DestBundle->hasValidDependencies()) |
| WorkList.push_back(DestBundle); |
| } |
| } |
| |
| auto MakeControlDependent = [&](Instruction *I) { |
| auto *DepDest = getScheduleData(I); |
| assert(DepDest && "must be in schedule window"); |
| DepDest->ControlDependencies.push_back(BundleMember); |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = DepDest->FirstInBundle; |
| if (!DestBundle->IsScheduled) |
| BundleMember->incrementUnscheduledDeps(1); |
| if (!DestBundle->hasValidDependencies()) |
| WorkList.push_back(DestBundle); |
| }; |
| |
| // Any instruction which isn't safe to speculate at the beginning of the |
| // block is control dependend on any early exit or non-willreturn call |
| // which proceeds it. |
| if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC)) |
| continue; |
| |
| // Add the dependency |
| MakeControlDependent(I); |
| |
| if (!isGuaranteedToTransferExecutionToSuccessor(I)) |
| // Everything past here must be control dependent on I. |
| break; |
| } |
| } |
| |
| if (RegionHasStackSave) { |
| // If we have an inalloc alloca instruction, it needs to be scheduled |
| // after any preceeding stacksave. We also need to prevent any alloca |
| // from reordering above a preceeding stackrestore. |
| if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| // Any allocas past here must be control dependent on I, and I |
| // must be memory dependend on BundleMember->Inst. |
| break; |
| |
| if (!isa<AllocaInst>(I)) |
| continue; |
| |
| // Add the dependency |
| MakeControlDependent(I); |
| } |
| } |
| |
| // In addition to the cases handle just above, we need to prevent |
| // allocas and loads/stores from moving below a stacksave or a |
| // stackrestore. Avoiding moving allocas below stackrestore is currently |
| // thought to be conservatism. Moving loads/stores below a stackrestore |
| // can lead to incorrect code. |
| if (isa<AllocaInst>(BundleMember->Inst) || |
| BundleMember->Inst->mayReadOrWriteMemory()) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && |
| !match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| continue; |
| |
| // Add the dependency |
| MakeControlDependent(I); |
| break; |
| } |
| } |
| } |
| |
| // Handle the memory dependencies (if any). |
| ScheduleData *DepDest = BundleMember->NextLoadStore; |
| if (!DepDest) |
| continue; |
| Instruction *SrcInst = BundleMember->Inst; |
| assert(SrcInst->mayReadOrWriteMemory() && |
| "NextLoadStore list for non memory effecting bundle?"); |
| MemoryLocation SrcLoc = getLocation(SrcInst); |
| bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); |
| unsigned NumAliased = 0; |
| unsigned DistToSrc = 1; |
| |
| for (; DepDest; DepDest = DepDest->NextLoadStore) { |
| assert(isInSchedulingRegion(DepDest)); |
| |
| // We have two limits to reduce the complexity: |
| // 1) AliasedCheckLimit: It's a small limit to reduce calls to |
| // SLP->isAliased (which is the expensive part in this loop). |
| // 2) MaxMemDepDistance: It's for very large blocks and it aborts |
| // the whole loop (even if the loop is fast, it's quadratic). |
| // It's important for the loop break condition (see below) to |
| // check this limit even between two read-only instructions. |
| if (DistToSrc >= MaxMemDepDistance || |
| ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && |
| (NumAliased >= AliasedCheckLimit || |
| SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { |
| |
| // We increment the counter only if the locations are aliased |
| // (instead of counting all alias checks). This gives a better |
| // balance between reduced runtime and accurate dependencies. |
| NumAliased++; |
| |
| DepDest->MemoryDependencies.push_back(BundleMember); |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = DepDest->FirstInBundle; |
| if (!DestBundle->IsScheduled) { |
| BundleMember->incrementUnscheduledDeps(1); |
| } |
| if (!DestBundle->hasValidDependencies()) { |
| WorkList.push_back(DestBundle); |
| } |
| } |
| |
| // Example, explaining the loop break condition: Let's assume our |
| // starting instruction is i0 and MaxMemDepDistance = 3. |
| // |
| // +--------v--v--v |
| // i0,i1,i2,i3,i4,i5,i6,i7,i8 |
| // +--------^--^--^ |
| // |
| // MaxMemDepDistance let us stop alias-checking at i3 and we add |
| // dependencies from i0 to i3,i4,.. (even if they are not aliased). |
| // Previously we already added dependencies from i3 to i6,i7,i8 |
| // (because of MaxMemDepDistance). As we added a dependency from |
| // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 |
| // and we can abort this loop at i6. |
| if (DistToSrc >= 2 * MaxMemDepDistance) |
| break; |
| DistToSrc++; |
| } |
| } |
| if (InsertInReadyList && SD->isReady()) { |
| ReadyInsts.insert(SD); |
| LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst |
| << "\n"); |
| } |
| } |
| } |
| |
| void BoUpSLP::BlockScheduling::resetSchedule() { |
| assert(ScheduleStart && |
| "tried to reset schedule on block which has not been scheduled"); |
| for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| if (ScheduleData *SD = getScheduleData(I)) { |
| assert(isInSchedulingRegion(SD) && |
| "ScheduleData not in scheduling region"); |
| SD->IsScheduled = false; |
| SD->resetUnscheduledDeps(); |
| } |
| } |
| ReadyInsts.clear(); |
| } |
| |
| void BoUpSLP::scheduleBlock(BlockScheduling *BS) { |
| if (!BS->ScheduleStart) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); |
| |
| // A key point - if we got here, pre-scheduling was able to find a valid |
| // scheduling of the sub-graph of the scheduling window which consists |
| // of all vector bundles and their transitive users. As such, we do not |
| // need to reschedule anything *outside of* that subgraph. |
| |
| BS->resetSchedule(); |
| |
| // For the real scheduling we use a more sophisticated ready-list: it is |
| // sorted by the original instruction location. This lets the final schedule |
| // be as close as possible to the original instruction order. |
| // WARNING: If changing this order causes a correctness issue, that means |
| // there is some missing dependence edge in the schedule data graph. |
| struct ScheduleDataCompare { |
| bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { |
| return SD2->SchedulingPriority < SD1->SchedulingPriority; |
| } |
| }; |
| std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; |
| |
| // Ensure that all dependency data is updated (for nodes in the sub-graph) |
| // and fill the ready-list with initial instructions. |
| int Idx = 0; |
| for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; |
| I = I->getNextNode()) { |
| if (ScheduleData *SD = BS->getScheduleData(I)) { |
| TreeEntry *SDTE = getTreeEntry(SD->Inst); |
| (void)SDTE; |
| assert((isVectorLikeInstWithConstOps(SD->Inst) || |
| SD->isPartOfBundle() == |
| (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && |
| "scheduler and vectorizer bundle mismatch"); |
| SD->FirstInBundle->SchedulingPriority = Idx++; |
| |
| if (SD->isSchedulingEntity() && SD->isPartOfBundle()) |
| BS->calculateDependencies(SD, false, this); |
| } |
| } |
| BS->initialFillReadyList(ReadyInsts); |
| |
| Instruction *LastScheduledInst = BS->ScheduleEnd; |
| |
| // Do the "real" scheduling. |
| while (!ReadyInsts.empty()) { |
| ScheduleData *Picked = *ReadyInsts.begin(); |
| ReadyInsts.erase(ReadyInsts.begin()); |
| |
| // Move the scheduled instruction(s) to their dedicated places, if not |
| // there yet. |
| for (ScheduleData *BundleMember = Picked; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| Instruction *PickedInst = BundleMember->Inst; |
| if (PickedInst->getNextNonDebugInstruction() != LastScheduledInst) |
| PickedInst->moveAfter(LastScheduledInst->getPrevNode()); |
| LastScheduledInst = PickedInst; |
| } |
| |
| BS->schedule(Picked, ReadyInsts); |
| } |
| |
| // Check that we didn't break any of our invariants. |
| #ifdef EXPENSIVE_CHECKS |
| BS->verify(); |
| #endif |
| |
| #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
| // Check that all schedulable entities got scheduled |
| for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { |
| ScheduleData *SD = BS->getScheduleData(I); |
| if (SD && SD->isSchedulingEntity() && SD->hasValidDependencies()) |
| assert(SD->IsScheduled && "must be scheduled at this point"); |
| } |
| #endif |
| |
| // Avoid duplicate scheduling of the block. |
| BS->ScheduleStart = nullptr; |
| } |
| |
| unsigned BoUpSLP::getVectorElementSize(Value *V) { |
| // If V is a store, just return the width of the stored value (or value |
| // truncated just before storing) without traversing the expression tree. |
| // This is the common case. |
| if (auto *Store = dyn_cast<StoreInst>(V)) |
| return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); |
| |
| if (auto *IEI = dyn_cast<InsertElementInst>(V)) |
| return getVectorElementSize(IEI->getOperand(1)); |
| |
| auto E = InstrElementSize.find(V); |
| if (E != InstrElementSize.end()) |
| return E->second; |
| |
| // If V is not a store, we can traverse the expression tree to find loads |
| // that feed it. The type of the loaded value may indicate a more suitable |
| // width than V's type. We want to base the vector element size on the width |
| // of memory operations where possible. |
| SmallVector<std::tuple<Instruction *, BasicBlock *, unsigned>> Worklist; |
| SmallPtrSet<Instruction *, 16> Visited; |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| Worklist.emplace_back(I, I->getParent(), 0); |
| Visited.insert(I); |
| } |
| |
| // Traverse the expression tree in bottom-up order looking for loads. If we |
| // encounter an instruction we don't yet handle, we give up. |
| auto Width = 0u; |
| Value *FirstNonBool = nullptr; |
| while (!Worklist.empty()) { |
| auto [I, Parent, Level] = Worklist.pop_back_val(); |
| |
| // We should only be looking at scalar instructions here. If the current |
| // instruction has a vector type, skip. |
| auto *Ty = I->getType(); |
| if (isa<VectorType>(Ty)) |
| continue; |
| if (Ty != Builder.getInt1Ty() && !FirstNonBool) |
| FirstNonBool = I; |
| if (Level > RecursionMaxDepth) |
| continue; |
| |
| // If the current instruction is a load, update MaxWidth to reflect the |
| // width of the loaded value. |
| if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I)) |
| Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); |
| |
| // Otherwise, we need to visit the operands of the instruction. We only |
| // handle the interesting cases from buildTree here. If an operand is an |
| // instruction we haven't yet visited and from the same basic block as the |
| // user or the use is a PHI node, we add it to the worklist. |
| else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst, |
| BinaryOperator, UnaryOperator>(I)) { |
| for (Use &U : I->operands()) { |
| if (auto *J = dyn_cast<Instruction>(U.get())) |
| if (Visited.insert(J).second && |
| (isa<PHINode>(I) || J->getParent() == Parent)) { |
| Worklist.emplace_back(J, J->getParent(), Level + 1); |
| continue; |
| } |
| if (!FirstNonBool && U.get()->getType() != Builder.getInt1Ty()) |
| FirstNonBool = U.get(); |
| } |
| } else { |
| break; |
| } |
| } |
| |
| // If we didn't encounter a memory access in the expression tree, or if we |
| // gave up for some reason, just return the width of V. Otherwise, return the |
| // maximum width we found. |
| if (!Width) { |
| if (V->getType() == Builder.getInt1Ty() && FirstNonBool) |
| V = FirstNonBool; |
| Width = DL->getTypeSizeInBits(V->getType()); |
| } |
| |
| for (Instruction *I : Visited) |
| InstrElementSize[I] = Width; |
| |
| return Width; |
| } |
| |
| bool BoUpSLP::collectValuesToDemote( |
| const TreeEntry &E, bool IsProfitableToDemoteRoot, unsigned &BitWidth, |
| SmallVectorImpl<unsigned> &ToDemote, DenseSet<const TreeEntry *> &Visited, |
| unsigned &MaxDepthLevel, bool &IsProfitableToDemote, |
| bool IsTruncRoot) const { |
| // We can always demote constants. |
| if (all_of(E.Scalars, IsaPred<Constant>)) |
| return true; |
| |
| unsigned OrigBitWidth = |
| DL->getTypeSizeInBits(E.Scalars.front()->getType()->getScalarType()); |
| if (OrigBitWidth == BitWidth) { |
| MaxDepthLevel = 1; |
| return true; |
| } |
| |
| // If the value is not a vectorized instruction in the expression and not used |
| // by the insertelement instruction and not used in multiple vector nodes, it |
| // cannot be demoted. |
| bool IsSignedNode = any_of(E.Scalars, [&](Value *R) { |
| return !isKnownNonNegative(R, SimplifyQuery(*DL)); |
| }); |
| auto IsPotentiallyTruncated = [&](Value *V, unsigned &BitWidth) -> bool { |
| if (MultiNodeScalars.contains(V)) |
| return false; |
| // For lat shuffle of sext/zext with many uses need to check the extra bit |
| // for unsigned values, otherwise may have incorrect casting for reused |
| // scalars. |
| bool IsSignedVal = !isKnownNonNegative(V, SimplifyQuery(*DL)); |
| if ((!IsSignedNode || IsSignedVal) && OrigBitWidth > BitWidth) { |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| if (MaskedValueIsZero(V, Mask, SimplifyQuery(*DL))) |
| return true; |
| } |
| unsigned NumSignBits = ComputeNumSignBits(V, *DL, 0, AC, nullptr, DT); |
| unsigned BitWidth1 = OrigBitWidth - NumSignBits; |
| if (IsSignedNode) |
| ++BitWidth1; |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| APInt Mask = DB->getDemandedBits(I); |
| unsigned BitWidth2 = |
| std::max<unsigned>(1, Mask.getBitWidth() - Mask.countl_zero()); |
| while (!IsSignedNode && BitWidth2 < OrigBitWidth) { |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth2 - 1); |
| if (MaskedValueIsZero(V, Mask, SimplifyQuery(*DL))) |
| break; |
| BitWidth2 *= 2; |
| } |
| BitWidth1 = std::min(BitWidth1, BitWidth2); |
| } |
| BitWidth = std::max(BitWidth, BitWidth1); |
| return BitWidth > 0 && OrigBitWidth >= (BitWidth * 2); |
| }; |
| using namespace std::placeholders; |
| auto FinalAnalysis = [&]() { |
| if (!IsProfitableToDemote) |
| return false; |
| bool Res = all_of( |
| E.Scalars, std::bind(IsPotentiallyTruncated, _1, std::ref(BitWidth))); |
| // Demote gathers. |
| if (Res && E.isGather()) { |
| // Check possible extractelement instructions bases and final vector |
| // length. |
| SmallPtrSet<Value *, 4> UniqueBases; |
| for (Value *V : E.Scalars) { |
| auto *EE = dyn_cast<ExtractElementInst>(V); |
| if (!EE) |
| continue; |
| UniqueBases.insert(EE->getVectorOperand()); |
| } |
| const unsigned VF = E.Scalars.size(); |
| Type *OrigScalarTy = E.Scalars.front()->getType(); |
| if (UniqueBases.size() <= 2 || |
| TTI->getNumberOfParts(getWidenedType(OrigScalarTy, VF)) == |
| TTI->getNumberOfParts(getWidenedType( |
| IntegerType::get(OrigScalarTy->getContext(), BitWidth), VF))) |
| ToDemote.push_back(E.Idx); |
| } |
| return Res; |
| }; |
| if (E.isGather() || !Visited.insert(&E).second || |
| any_of(E.Scalars, [&](Value *V) { |
| return all_of(V->users(), [&](User *U) { |
| return isa<InsertElementInst>(U) && !getTreeEntry(U); |
| }); |
| })) |
| return FinalAnalysis(); |
| |
| if (any_of(E.Scalars, [&](Value *V) { |
| return !all_of(V->users(), [=](User *U) { |
| return getTreeEntry(U) || |
| (E.Idx == 0 && UserIgnoreList && |
| UserIgnoreList->contains(U)) || |
| (!isa<CmpInst>(U) && U->getType()->isSized() && |
| !U->getType()->isScalableTy() && |
| DL->getTypeSizeInBits(U->getType()) <= BitWidth); |
| }) && !IsPotentiallyTruncated(V, BitWidth); |
| })) |
| return false; |
| |
| auto ProcessOperands = [&](ArrayRef<const TreeEntry *> Operands, |
| bool &NeedToExit) { |
| NeedToExit = false; |
| unsigned InitLevel = MaxDepthLevel; |
| for (const TreeEntry *Op : Operands) { |
| unsigned Level = InitLevel; |
| if (!collectValuesToDemote(*Op, IsProfitableToDemoteRoot, BitWidth, |
| ToDemote, Visited, Level, IsProfitableToDemote, |
| IsTruncRoot)) { |
| if (!IsProfitableToDemote) |
| return false; |
| NeedToExit = true; |
| if (!FinalAnalysis()) |
| return false; |
| continue; |
| } |
| MaxDepthLevel = std::max(MaxDepthLevel, Level); |
| } |
| return true; |
| }; |
| auto AttemptCheckBitwidth = |
| [&](function_ref<bool(unsigned, unsigned)> Checker, bool &NeedToExit) { |
| // Try all bitwidth < OrigBitWidth. |
| NeedToExit = false; |
| unsigned BestFailBitwidth = 0; |
| for (; BitWidth < OrigBitWidth; BitWidth *= 2) { |
| if (Checker(BitWidth, OrigBitWidth)) |
| return true; |
| if (BestFailBitwidth == 0 && FinalAnalysis()) |
| BestFailBitwidth = BitWidth; |
| } |
| if (BitWidth >= OrigBitWidth) { |
| if (BestFailBitwidth == 0) { |
| BitWidth = OrigBitWidth; |
| return false; |
| } |
| MaxDepthLevel = 1; |
| BitWidth = BestFailBitwidth; |
| NeedToExit = true; |
| return true; |
| } |
| return false; |
| }; |
| auto TryProcessInstruction = |
| [&](unsigned &BitWidth, ArrayRef<const TreeEntry *> Operands = {}, |
| function_ref<bool(unsigned, unsigned)> Checker = {}) { |
| if (Operands.empty()) { |
| if (!IsTruncRoot) |
| MaxDepthLevel = 1; |
| (void)for_each(E.Scalars, std::bind(IsPotentiallyTruncated, _1, |
| std::ref(BitWidth))); |
| } else { |
| // Several vectorized uses? Check if we can truncate it, otherwise - |
| // exit. |
| if (E.UserTreeIndices.size() > 1 && |
| !all_of(E.Scalars, std::bind(IsPotentiallyTruncated, _1, |
| std::ref(BitWidth)))) |
| return false; |
| bool NeedToExit = false; |
| if (Checker && !AttemptCheckBitwidth(Checker, NeedToExit)) |
| return false; |
| if (NeedToExit) |
| return true; |
| if (!ProcessOperands(Operands, NeedToExit)) |
| return false; |
| if (NeedToExit) |
| return true; |
| } |
| |
| ++MaxDepthLevel; |
| // Record the entry that we can demote. |
| ToDemote.push_back(E.Idx); |
| return IsProfitableToDemote; |
| }; |
| switch (E.getOpcode()) { |
| |
| // We can always demote truncations and extensions. Since truncations can |
| // seed additional demotion, we save the truncated value. |
| case Instruction::Trunc: |
| if (IsProfitableToDemoteRoot) |
| IsProfitableToDemote = true; |
| return TryProcessInstruction(BitWidth); |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| IsProfitableToDemote = true; |
| return TryProcessInstruction(BitWidth); |
| |
| // We can demote certain binary operations if we can demote both of their |
| // operands. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 0), getOperandEntry(&E, 1)}); |
| } |
| case Instruction::Shl: { |
| // If we are truncating the result of this SHL, and if it's a shift of an |
| // inrange amount, we can always perform a SHL in a smaller type. |
| auto ShlChecker = [&](unsigned BitWidth, unsigned) { |
| return all_of(E.Scalars, [&](Value *V) { |
| auto *I = cast<Instruction>(V); |
| KnownBits AmtKnownBits = computeKnownBits(I->getOperand(1), *DL); |
| return AmtKnownBits.getMaxValue().ult(BitWidth); |
| }); |
| }; |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 0), getOperandEntry(&E, 1)}, ShlChecker); |
| } |
| case Instruction::LShr: { |
| // If this is a truncate of a logical shr, we can truncate it to a smaller |
| // lshr iff we know that the bits we would otherwise be shifting in are |
| // already zeros. |
| auto LShrChecker = [&](unsigned BitWidth, unsigned OrigBitWidth) { |
| return all_of(E.Scalars, [&](Value *V) { |
| auto *I = cast<Instruction>(V); |
| KnownBits AmtKnownBits = computeKnownBits(I->getOperand(1), *DL); |
| APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| return AmtKnownBits.getMaxValue().ult(BitWidth) && |
| MaskedValueIsZero(I->getOperand(0), ShiftedBits, |
| SimplifyQuery(*DL)); |
| }); |
| }; |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 0), getOperandEntry(&E, 1)}, |
| LShrChecker); |
| } |
| case Instruction::AShr: { |
| // If this is a truncate of an arithmetic shr, we can truncate it to a |
| // smaller ashr iff we know that all the bits from the sign bit of the |
| // original type and the sign bit of the truncate type are similar. |
| auto AShrChecker = [&](unsigned BitWidth, unsigned OrigBitWidth) { |
| return all_of(E.Scalars, [&](Value *V) { |
| auto *I = cast<Instruction>(V); |
| KnownBits AmtKnownBits = computeKnownBits(I->getOperand(1), *DL); |
| unsigned ShiftedBits = OrigBitWidth - BitWidth; |
| return AmtKnownBits.getMaxValue().ult(BitWidth) && |
| ShiftedBits < ComputeNumSignBits(I->getOperand(0), *DL, 0, AC, |
| nullptr, DT); |
| }); |
| }; |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 0), getOperandEntry(&E, 1)}, |
| AShrChecker); |
| } |
| case Instruction::UDiv: |
| case Instruction::URem: { |
| // UDiv and URem can be truncated if all the truncated bits are zero. |
| auto Checker = [&](unsigned BitWidth, unsigned OrigBitWidth) { |
| assert(BitWidth <= OrigBitWidth && "Unexpected bitwidths!"); |
| return all_of(E.Scalars, [&](Value *V) { |
| auto *I = cast<Instruction>(V); |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| return MaskedValueIsZero(I->getOperand(0), Mask, SimplifyQuery(*DL)) && |
| MaskedValueIsZero(I->getOperand(1), Mask, SimplifyQuery(*DL)); |
| }); |
| }; |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 0), getOperandEntry(&E, 1)}, Checker); |
| } |
| |
| // We can demote selects if we can demote their true and false values. |
| case Instruction::Select: { |
| return TryProcessInstruction( |
| BitWidth, {getOperandEntry(&E, 1), getOperandEntry(&E, 2)}); |
| } |
| |
| // We can demote phis if we can demote all their incoming operands. Note that |
| // we don't need to worry about cycles since we ensure single use above. |
| case Instruction::PHI: { |
| const unsigned NumOps = E.getNumOperands(); |
| SmallVector<const TreeEntry *> Ops(NumOps); |
| transform(seq<unsigned>(0, NumOps), Ops.begin(), |
| std::bind(&BoUpSLP::getOperandEntry, this, &E, _1)); |
| |
| return TryProcessInstruction(BitWidth, Ops); |
| } |
| |
| case Instruction::Call: { |
| auto *IC = dyn_cast<IntrinsicInst>(E.getMainOp()); |
| if (!IC) |
| break; |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(IC, TLI); |
| if (ID != Intrinsic::abs && ID != Intrinsic::smin && |
| ID != Intrinsic::smax && ID != Intrinsic::umin && ID != Intrinsic::umax) |
| break; |
| SmallVector<const TreeEntry *, 2> Operands(1, getOperandEntry(&E, 0)); |
| function_ref<bool(unsigned, unsigned)> CallChecker; |
| auto CompChecker = [&](unsigned BitWidth, unsigned OrigBitWidth) { |
| assert(BitWidth <= OrigBitWidth && "Unexpected bitwidths!"); |
| return all_of(E.Scalars, [&](Value *V) { |
| auto *I = cast<Instruction>(V); |
| if (ID == Intrinsic::umin || ID == Intrinsic::umax) { |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); |
| return MaskedValueIsZero(I->getOperand(0), Mask, |
| SimplifyQuery(*DL)) && |
| MaskedValueIsZero(I->getOperand(1), Mask, SimplifyQuery(*DL)); |
| } |
| assert((ID == Intrinsic::smin || ID == Intrinsic::smax) && |
| "Expected min/max intrinsics only."); |
| unsigned SignBits = OrigBitWidth - BitWidth; |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth - 1); |
| unsigned Op0SignBits = ComputeNumSignBits(I->getOperand(0), *DL, 0, AC, |
| nullptr, DT); |
| unsigned Op1SignBits = ComputeNumSignBits(I->getOperand(1), *DL, 0, AC, |
| nullptr, DT); |
| return SignBits <= Op0SignBits && |
| ((SignBits != Op0SignBits && |
| !isKnownNonNegative(I->getOperand(0), SimplifyQuery(*DL))) || |
| MaskedValueIsZero(I->getOperand(0), Mask, |
| SimplifyQuery(*DL))) && |
| SignBits <= Op1SignBits && |
| ((SignBits != Op1SignBits && |
| !isKnownNonNegative(I->getOperand(1), SimplifyQuery(*DL))) || |
| MaskedValueIsZero(I->getOperand(1), Mask, SimplifyQuery(*DL))); |
| }); |
| }; |
| if (ID != Intrinsic::abs) { |
| Operands.push_back(getOperandEntry(&E, 1)); |
| CallChecker = CompChecker; |
| } |
| InstructionCost BestCost = |
| std::numeric_limits<InstructionCost::CostType>::max(); |
| unsigned BestBitWidth = BitWidth; |
| unsigned VF = E.Scalars.size(); |
| // Choose the best bitwidth based on cost estimations. |
| auto Checker = [&](unsigned BitWidth, unsigned) { |
| unsigned MinBW = PowerOf2Ceil(BitWidth); |
| SmallVector<Type *> ArgTys = buildIntrinsicArgTypes(IC, ID, VF, MinBW); |
| auto VecCallCosts = getVectorCallCosts( |
| IC, getWidenedType(IntegerType::get(IC->getContext(), MinBW), VF), |
| TTI, TLI, ArgTys); |
| InstructionCost Cost = std::min(VecCallCosts.first, VecCallCosts.second); |
| if (Cost < BestCost) { |
| BestCost = Cost; |
| BestBitWidth = BitWidth; |
| } |
| return false; |
| }; |
| [[maybe_unused]] bool NeedToExit; |
| (void)AttemptCheckBitwidth(Checker, NeedToExit); |
| BitWidth = BestBitWidth; |
| return TryProcessInstruction(BitWidth, Operands, CallChecker); |
| } |
| |
| // Otherwise, conservatively give up. |
| default: |
| break; |
| } |
| MaxDepthLevel = 1; |
| return FinalAnalysis(); |
| } |
| |
| static RecurKind getRdxKind(Value *V); |
| |
| void BoUpSLP::computeMinimumValueSizes() { |
| // We only attempt to truncate integer expressions. |
| bool IsStoreOrInsertElt = |
| VectorizableTree.front()->getOpcode() == Instruction::Store || |
| VectorizableTree.front()->getOpcode() == Instruction::InsertElement; |
| if ((IsStoreOrInsertElt || UserIgnoreList) && |
| ExtraBitWidthNodes.size() <= 1 && |
| (!CastMaxMinBWSizes || CastMaxMinBWSizes->second == 0 || |
| CastMaxMinBWSizes->first / CastMaxMinBWSizes->second <= 2)) |
| return; |
| |
| unsigned NodeIdx = 0; |
| if (IsStoreOrInsertElt && !VectorizableTree.front()->isGather()) |
| NodeIdx = 1; |
| |
| // Ensure the roots of the vectorizable tree don't form a cycle. |
| if (VectorizableTree[NodeIdx]->isGather() || |
| (NodeIdx == 0 && !VectorizableTree[NodeIdx]->UserTreeIndices.empty()) || |
| (NodeIdx != 0 && any_of(VectorizableTree[NodeIdx]->UserTreeIndices, |
| [NodeIdx](const EdgeInfo &EI) { |
| return EI.UserTE->Idx > NodeIdx; |
| }))) |
| return; |
| |
| // The first value node for store/insertelement is sext/zext/trunc? Skip it, |
| // resize to the final type. |
| bool IsTruncRoot = false; |
| bool IsProfitableToDemoteRoot = !IsStoreOrInsertElt; |
| SmallVector<unsigned> RootDemotes; |
| if (NodeIdx != 0 && |
| VectorizableTree[NodeIdx]->State == TreeEntry::Vectorize && |
| VectorizableTree[NodeIdx]->getOpcode() == Instruction::Trunc) { |
| assert(IsStoreOrInsertElt && "Expected store/insertelement seeded graph."); |
| IsTruncRoot = true; |
| RootDemotes.push_back(NodeIdx); |
| IsProfitableToDemoteRoot = true; |
| ++NodeIdx; |
| } |
| |
| // Analyzed the reduction already and not profitable - exit. |
| if (AnalyzedMinBWVals.contains(VectorizableTree[NodeIdx]->Scalars.front())) |
| return; |
| |
| SmallVector<unsigned> ToDemote; |
| auto ComputeMaxBitWidth = [&](const TreeEntry &E, bool IsTopRoot, |
| bool IsProfitableToDemoteRoot, unsigned Opcode, |
| unsigned Limit, bool IsTruncRoot, |
| bool IsSignedCmp) -> unsigned { |
| ToDemote.clear(); |
| // Check if the root is trunc and the next node is gather/buildvector, then |
| // keep trunc in scalars, which is free in most cases. |
| if (E.isGather() && IsTruncRoot && E.UserTreeIndices.size() == 1 && |
| E.Idx > (IsStoreOrInsertElt ? 2 : 1) && |
| all_of(E.Scalars, [&](Value *V) { |
| return V->hasOneUse() || isa<Constant>(V) || |
| (!V->hasNUsesOrMore(UsesLimit) && |
| none_of(V->users(), [&](User *U) { |
| const TreeEntry *TE = getTreeEntry(U); |
| const TreeEntry *UserTE = E.UserTreeIndices.back().UserTE; |
| if (TE == UserTE || !TE) |
| return false; |
| if (!isa<CastInst, BinaryOperator, FreezeInst, PHINode, |
| SelectInst>(U) || |
| !isa<CastInst, BinaryOperator, FreezeInst, PHINode, |
| SelectInst>(UserTE->getMainOp())) |
| return true; |
| unsigned UserTESz = DL->getTypeSizeInBits( |
| UserTE->Scalars.front()->getType()); |
| auto It = MinBWs.find(TE); |
| if (It != MinBWs.end() && It->second.first > UserTESz) |
| return true; |
| return DL->getTypeSizeInBits(U->getType()) > UserTESz; |
| })); |
| })) { |
| ToDemote.push_back(E.Idx); |
| const TreeEntry *UserTE = E.UserTreeIndices.back().UserTE; |
| auto It = MinBWs.find(UserTE); |
| if (It != MinBWs.end()) |
| return It->second.first; |
| unsigned MaxBitWidth = |
| DL->getTypeSizeInBits(UserTE->Scalars.front()->getType()); |
| MaxBitWidth = bit_ceil(MaxBitWidth); |
| if (MaxBitWidth < 8 && MaxBitWidth > 1) |
| MaxBitWidth = 8; |
| return MaxBitWidth; |
| } |
| |
| unsigned VF = E.getVectorFactor(); |
| Type *ScalarTy = E.Scalars.front()->getType(); |
| unsigned ScalarTyNumElements = getNumElements(ScalarTy); |
| auto *TreeRootIT = dyn_cast<IntegerType>(ScalarTy->getScalarType()); |
| if (!TreeRootIT || !Opcode) |
| return 0u; |
| |
| if (any_of(E.Scalars, |
| [&](Value *V) { return AnalyzedMinBWVals.contains(V); })) |
| return 0u; |
| |
| unsigned NumParts = TTI->getNumberOfParts( |
| getWidenedType(TreeRootIT, VF * ScalarTyNumElements)); |
| |
| // The maximum bit width required to represent all the values that can be |
| // demoted without loss of precision. It would be safe to truncate the roots |
| // of the expression to this width. |
| unsigned MaxBitWidth = 1u; |
| |
| // True if the roots can be zero-extended back to their original type, |
| // rather than sign-extended. We know that if the leading bits are not |
| // demanded, we can safely zero-extend. So we initialize IsKnownPositive to |
| // True. |
| // Determine if the sign bit of all the roots is known to be zero. If not, |
| // IsKnownPositive is set to False. |
| bool IsKnownPositive = !IsSignedCmp && all_of(E.Scalars, [&](Value *R) { |
| KnownBits Known = computeKnownBits(R, *DL); |
| return Known.isNonNegative(); |
| }); |
| |
| // We first check if all the bits of the roots are demanded. If they're not, |
| // we can truncate the roots to this narrower type. |
| for (Value *Root : E.Scalars) { |
| unsigned NumSignBits = ComputeNumSignBits(Root, *DL, 0, AC, nullptr, DT); |
| TypeSize NumTypeBits = |
| DL->getTypeSizeInBits(Root->getType()->getScalarType()); |
| unsigned BitWidth1 = NumTypeBits - NumSignBits; |
| // If we can't prove that the sign bit is zero, we must add one to the |
| // maximum bit width to account for the unknown sign bit. This preserves |
| // the existing sign bit so we can safely sign-extend the root back to the |
| // original type. Otherwise, if we know the sign bit is zero, we will |
| // zero-extend the root instead. |
| // |
| // FIXME: This is somewhat suboptimal, as there will be cases where adding |
| // one to the maximum bit width will yield a larger-than-necessary |
| // type. In general, we need to add an extra bit only if we can't |
| // prove that the upper bit of the original type is equal to the |
| // upper bit of the proposed smaller type. If these two bits are |
| // the same (either zero or one) we know that sign-extending from |
| // the smaller type will result in the same value. Here, since we |
| // can't yet prove this, we are just making the proposed smaller |
| // type larger to ensure correctness. |
| if (!IsKnownPositive) |
| ++BitWidth1; |
| |
| APInt Mask = DB->getDemandedBits(cast<Instruction>(Root)); |
| unsigned BitWidth2 = Mask.getBitWidth() - Mask.countl_zero(); |
| MaxBitWidth = |
| std::max<unsigned>(std::min(BitWidth1, BitWidth2), MaxBitWidth); |
| } |
| |
| if (MaxBitWidth < 8 && MaxBitWidth > 1) |
| MaxBitWidth = 8; |
| |
| // If the original type is large, but reduced type does not improve the reg |
| // use - ignore it. |
| if (NumParts > 1 && |
| NumParts == |
| TTI->getNumberOfParts(getWidenedType( |
| IntegerType::get(F->getContext(), bit_ceil(MaxBitWidth)), VF))) |
| return 0u; |
| |
| bool IsProfitableToDemote = Opcode == Instruction::Trunc || |
| Opcode == Instruction::SExt || |
| Opcode == Instruction::ZExt || NumParts > 1; |
| // Conservatively determine if we can actually truncate the roots of the |
| // expression. Collect the values that can be demoted in ToDemote and |
| // additional roots that require investigating in Roots. |
| DenseSet<const TreeEntry *> Visited; |
| unsigned MaxDepthLevel = IsTruncRoot ? Limit : 1; |
| bool NeedToDemote = IsProfitableToDemote; |
| |
| if (!collectValuesToDemote(E, IsProfitableToDemoteRoot, MaxBitWidth, |
| ToDemote, Visited, MaxDepthLevel, NeedToDemote, |
| IsTruncRoot) || |
| (MaxDepthLevel <= Limit && |
| !(((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && |
| (!IsTopRoot || !(IsStoreOrInsertElt || UserIgnoreList) || |
| DL->getTypeSizeInBits(TreeRootIT) / |
| DL->getTypeSizeInBits(cast<Instruction>(E.Scalars.front()) |
| ->getOperand(0) |
| ->getType()) > |
| 2))))) |
| return 0u; |
| // Round MaxBitWidth up to the next power-of-two. |
| MaxBitWidth = bit_ceil(MaxBitWidth); |
| |
| return MaxBitWidth; |
| }; |
| |
| // If we can truncate the root, we must collect additional values that might |
| // be demoted as a result. That is, those seeded by truncations we will |
| // modify. |
| // Add reduction ops sizes, if any. |
| if (UserIgnoreList && |
| isa<IntegerType>(VectorizableTree.front()->Scalars.front()->getType())) { |
| for (Value *V : *UserIgnoreList) { |
| auto NumSignBits = ComputeNumSignBits(V, *DL, 0, AC, nullptr, DT); |
| auto NumTypeBits = DL->getTypeSizeInBits(V->getType()); |
| unsigned BitWidth1 = NumTypeBits - NumSignBits; |
| if (!isKnownNonNegative(V, SimplifyQuery(*DL))) |
| ++BitWidth1; |
| unsigned BitWidth2 = BitWidth1; |
| if (!RecurrenceDescriptor::isIntMinMaxRecurrenceKind(::getRdxKind(V))) { |
| auto Mask = DB->getDemandedBits(cast<Instruction>(V)); |
| BitWidth2 = Mask.getBitWidth() - Mask.countl_zero(); |
| } |
| ReductionBitWidth = |
| std::max(std::min(BitWidth1, BitWidth2), ReductionBitWidth); |
| } |
| if (ReductionBitWidth < 8 && ReductionBitWidth > 1) |
| ReductionBitWidth = 8; |
| |
| ReductionBitWidth = bit_ceil(ReductionBitWidth); |
| } |
| bool IsTopRoot = NodeIdx == 0; |
| while (NodeIdx < VectorizableTree.size() && |
| VectorizableTree[NodeIdx]->State == TreeEntry::Vectorize && |
| VectorizableTree[NodeIdx]->getOpcode() == Instruction::Trunc) { |
| RootDemotes.push_back(NodeIdx); |
| ++NodeIdx; |
| IsTruncRoot = true; |
| } |
| bool IsSignedCmp = false; |
| while (NodeIdx < VectorizableTree.size()) { |
| ArrayRef<Value *> TreeRoot = VectorizableTree[NodeIdx]->Scalars; |
| unsigned Limit = 2; |
| unsigned Opcode = VectorizableTree[NodeIdx]->getOpcode(); |
| if (IsTopRoot && |
| ReductionBitWidth == |
| DL->getTypeSizeInBits( |
| VectorizableTree.front()->Scalars.front()->getType())) |
| Limit = 3; |
| unsigned MaxBitWidth = ComputeMaxBitWidth( |
| *VectorizableTree[NodeIdx], IsTopRoot, IsProfitableToDemoteRoot, Opcode, |
| Limit, IsTruncRoot, IsSignedCmp); |
| if (ReductionBitWidth != 0 && (IsTopRoot || !RootDemotes.empty())) { |
| if (MaxBitWidth != 0 && ReductionBitWidth < MaxBitWidth) |
| ReductionBitWidth = bit_ceil(MaxBitWidth); |
| else if (MaxBitWidth == 0) |
| ReductionBitWidth = 0; |
| } |
| |
| for (unsigned Idx : RootDemotes) { |
| if (all_of(VectorizableTree[Idx]->Scalars, [&](Value *V) { |
| uint32_t OrigBitWidth = |
| DL->getTypeSizeInBits(V->getType()->getScalarType()); |
| if (OrigBitWidth > MaxBitWidth) { |
| APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, MaxBitWidth); |
| return MaskedValueIsZero(V, Mask, SimplifyQuery(*DL)); |
| } |
| return false; |
| })) |
| ToDemote.push_back(Idx); |
| } |
| RootDemotes.clear(); |
| IsTopRoot = false; |
| IsProfitableToDemoteRoot = true; |
| |
| if (ExtraBitWidthNodes.empty()) { |
| NodeIdx = VectorizableTree.size(); |
| } else { |
| unsigned NewIdx = 0; |
| do { |
| NewIdx = *ExtraBitWidthNodes.begin(); |
| ExtraBitWidthNodes.erase(ExtraBitWidthNodes.begin()); |
| } while (NewIdx <= NodeIdx && !ExtraBitWidthNodes.empty()); |
| NodeIdx = NewIdx; |
| IsTruncRoot = |
| NodeIdx < VectorizableTree.size() && |
| any_of(VectorizableTree[NodeIdx]->UserTreeIndices, |
| [](const EdgeInfo &EI) { |
| return EI.EdgeIdx == 0 && |
| EI.UserTE->getOpcode() == Instruction::Trunc && |
| !EI.UserTE->isAltShuffle(); |
| }); |
| IsSignedCmp = |
| NodeIdx < VectorizableTree.size() && |
| any_of(VectorizableTree[NodeIdx]->UserTreeIndices, |
| [&](const EdgeInfo &EI) { |
| return EI.UserTE->getOpcode() == Instruction::ICmp && |
| any_of(EI.UserTE->Scalars, [&](Value *V) { |
| auto *IC = dyn_cast<ICmpInst>(V); |
| return IC && |
| (IC->isSigned() || |
| !isKnownNonNegative(IC->getOperand(0), |
| SimplifyQuery(*DL)) || |
| !isKnownNonNegative(IC->getOperand(1), |
| SimplifyQuery(*DL))); |
| }); |
| }); |
| } |
| |
| // If the maximum bit width we compute is less than the with of the roots' |
| // type, we can proceed with the narrowing. Otherwise, do nothing. |
| if (MaxBitWidth == 0 || |
| MaxBitWidth >= |
| cast<IntegerType>(TreeRoot.front()->getType()->getScalarType()) |
| ->getBitWidth()) { |
| if (UserIgnoreList) |
| AnalyzedMinBWVals.insert(TreeRoot.begin(), TreeRoot.end()); |
| continue; |
| } |
| |
| // Finally, map the values we can demote to the maximum bit with we |
| // computed. |
| for (unsigned Idx : ToDemote) { |
| TreeEntry *TE = VectorizableTree[Idx].get(); |
| if (MinBWs.contains(TE)) |
| continue; |
| bool IsSigned = any_of(TE->Scalars, [&](Value *R) { |
| return !isKnownNonNegative(R, SimplifyQuery(*DL)); |
| }); |
| MinBWs.try_emplace(TE, MaxBitWidth, IsSigned); |
| } |
| } |
| } |
| |
| PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); |
| auto *TTI = &AM.getResult<TargetIRAnalysis>(F); |
| auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); |
| auto *AA = &AM.getResult<AAManager>(F); |
| auto *LI = &AM.getResult<LoopAnalysis>(F); |
| auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| auto *AC = &AM.getResult<AssumptionAnalysis>(F); |
| auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); |
| auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, |
| TargetTransformInfo *TTI_, |
| TargetLibraryInfo *TLI_, AAResults *AA_, |
| LoopInfo *LI_, DominatorTree *DT_, |
| AssumptionCache *AC_, DemandedBits *DB_, |
| OptimizationRemarkEmitter *ORE_) { |
| if (!RunSLPVectorization) |
| return false; |
| SE = SE_; |
| TTI = TTI_; |
| TLI = TLI_; |
| AA = AA_; |
| LI = LI_; |
| DT = DT_; |
| AC = AC_; |
| DB = DB_; |
| DL = &F.getDataLayout(); |
| |
| Stores.clear(); |
| GEPs.clear(); |
| bool Changed = false; |
| |
| // If the target claims to have no vector registers don't attempt |
| // vectorization. |
| if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { |
| LLVM_DEBUG( |
| dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); |
| return false; |
| } |
| |
| // Don't vectorize when the attribute NoImplicitFloat is used. |
| if (F.hasFnAttribute(Attribute::NoImplicitFloat)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); |
| |
| // Use the bottom up slp vectorizer to construct chains that start with |
| // store instructions. |
| BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); |
| |
| // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to |
| // delete instructions. |
| |
| // Update DFS numbers now so that we can use them for ordering. |
| DT->updateDFSNumbers(); |
| |
| // Scan the blocks in the function in post order. |
| for (auto *BB : post_order(&F.getEntryBlock())) { |
| // Start new block - clear the list of reduction roots. |
| R.clearReductionData(); |
| collectSeedInstructions(BB); |
| |
| // Vectorize trees that end at stores. |
| if (!Stores.empty()) { |
| LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() |
| << " underlying objects.\n"); |
| Changed |= vectorizeStoreChains(R); |
| } |
| |
| // Vectorize trees that end at reductions. |
| Changed |= vectorizeChainsInBlock(BB, R); |
| |
| // Vectorize the index computations of getelementptr instructions. This |
| // is primarily intended to catch gather-like idioms ending at |
| // non-consecutive loads. |
| if (!GEPs.empty()) { |
| LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() |
| << " underlying objects.\n"); |
| Changed |= vectorizeGEPIndices(BB, R); |
| } |
| } |
| |
| if (Changed) { |
| R.optimizeGatherSequence(); |
| LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); |
| } |
| return Changed; |
| } |
| |
| std::optional<bool> |
| SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, |
| unsigned Idx, unsigned MinVF, |
| unsigned &Size) { |
| Size = 0; |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() |
| << "\n"); |
| const unsigned Sz = R.getVectorElementSize(Chain[0]); |
| unsigned VF = Chain.size(); |
| |
| if (!has_single_bit(Sz) || !has_single_bit(VF) || VF < 2 || VF < MinVF) { |
| // Check if vectorizing with a non-power-of-2 VF should be considered. At |
| // the moment, only consider cases where VF + 1 is a power-of-2, i.e. almost |
| // all vector lanes are used. |
| if (!VectorizeNonPowerOf2 || (VF < MinVF && VF + 1 != MinVF)) |
| return false; |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx |
| << "\n"); |
| |
| SetVector<Value *> ValOps; |
| for (Value *V : Chain) |
| ValOps.insert(cast<StoreInst>(V)->getValueOperand()); |
| // Operands are not same/alt opcodes or non-power-of-2 uniques - exit. |
| InstructionsState S = getSameOpcode(ValOps.getArrayRef(), *TLI); |
| if (all_of(ValOps, IsaPred<Instruction>) && ValOps.size() > 1) { |
| DenseSet<Value *> Stores(Chain.begin(), Chain.end()); |
| bool IsPowerOf2 = |
| has_single_bit(ValOps.size()) || |
| (VectorizeNonPowerOf2 && has_single_bit(ValOps.size() + 1)); |
| if ((!IsPowerOf2 && S.getOpcode() && S.getOpcode() != Instruction::Load && |
| (!S.MainOp->isSafeToRemove() || |
| any_of(ValOps.getArrayRef(), |
| [&](Value *V) { |
| return !isa<ExtractElementInst>(V) && |
| (V->getNumUses() > Chain.size() || |
| any_of(V->users(), [&](User *U) { |
| return !Stores.contains(U); |
| })); |
| }))) || |
| (ValOps.size() > Chain.size() / 2 && !S.getOpcode())) { |
| Size = (!IsPowerOf2 && S.getOpcode()) ? 1 : 2; |
| return false; |
| } |
| } |
| if (R.isLoadCombineCandidate(Chain)) |
| return true; |
| R.buildTree(Chain); |
| // Check if tree tiny and store itself or its value is not vectorized. |
| if (R.isTreeTinyAndNotFullyVectorizable()) { |
| if (R.isGathered(Chain.front()) || |
| R.isNotScheduled(cast<StoreInst>(Chain.front())->getValueOperand())) |
| return std::nullopt; |
| Size = R.getCanonicalGraphSize(); |
| return false; |
| } |
| R.reorderTopToBottom(); |
| R.reorderBottomToTop(); |
| R.transformNodes(); |
| R.buildExternalUses(); |
| |
| R.computeMinimumValueSizes(); |
| |
| Size = R.getCanonicalGraphSize(); |
| if (S.getOpcode() == Instruction::Load) |
| Size = 2; // cut off masked gather small trees |
| InstructionCost Cost = R.getTreeCost(); |
| |
| LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n"); |
| if (Cost < -SLPCostThreshold) { |
| LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); |
| |
| using namespace ore; |
| |
| R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", |
| cast<StoreInst>(Chain[0])) |
| << "Stores SLP vectorized with cost " << NV("Cost", Cost) |
| << " and with tree size " |
| << NV("TreeSize", R.getTreeSize())); |
| |
| R.vectorizeTree(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Checks if the quadratic mean deviation is less than 90% of the mean size. |
| static bool checkTreeSizes(ArrayRef<std::pair<unsigned, unsigned>> Sizes, |
| bool First) { |
| unsigned Num = 0; |
| uint64_t Sum = std::accumulate( |
| Sizes.begin(), Sizes.end(), static_cast<uint64_t>(0), |
| [&](uint64_t V, const std::pair<unsigned, unsigned> &Val) { |
| unsigned Size = First ? Val.first : Val.second; |
| if (Size == 1) |
| return V; |
| ++Num; |
| return V + Size; |
| }); |
| if (Num == 0) |
| return true; |
| uint64_t Mean = Sum / Num; |
| if (Mean == 0) |
| return true; |
| uint64_t Dev = std::accumulate( |
| Sizes.begin(), Sizes.end(), static_cast<uint64_t>(0), |
| [&](uint64_t V, const std::pair<unsigned, unsigned> &Val) { |
| unsigned P = First ? Val.first : Val.second; |
| if (P == 1) |
| return V; |
| return V + (P - Mean) * (P - Mean); |
| }) / |
| Num; |
| return Dev * 81 / (Mean * Mean) == 0; |
| } |
| |
| bool SLPVectorizerPass::vectorizeStores( |
| ArrayRef<StoreInst *> Stores, BoUpSLP &R, |
| DenseSet<std::tuple<Value *, Value *, Value *, Value *, unsigned>> |
| &Visited) { |
| // We may run into multiple chains that merge into a single chain. We mark the |
| // stores that we vectorized so that we don't visit the same store twice. |
| BoUpSLP::ValueSet VectorizedStores; |
| bool Changed = false; |
| |
| struct StoreDistCompare { |
| bool operator()(const std::pair<unsigned, int> &Op1, |
| const std::pair<unsigned, int> &Op2) const { |
| return Op1.second < Op2.second; |
| } |
| }; |
| // A set of pairs (index of store in Stores array ref, Distance of the store |
| // address relative to base store address in units). |
| using StoreIndexToDistSet = |
| std::set<std::pair<unsigned, int>, StoreDistCompare>; |
| auto TryToVectorize = [&](const StoreIndexToDistSet &Set) { |
| int PrevDist = -1; |
| BoUpSLP::ValueList Operands; |
| // Collect the chain into a list. |
| for (auto [Idx, Data] : enumerate(Set)) { |
| if (Operands.empty() || Data.second - PrevDist == 1) { |
| Operands.push_back(Stores[Data.first]); |
| PrevDist = Data.second; |
| if (Idx != Set.size() - 1) |
| continue; |
| } |
| auto E = make_scope_exit([&, &DataVar = Data]() { |
| Operands.clear(); |
| Operands.push_back(Stores[DataVar.first]); |
| PrevDist = DataVar.second; |
| }); |
| |
| if (Operands.size() <= 1 || |
| !Visited |
| .insert({Operands.front(), |
| cast<StoreInst>(Operands.front())->getValueOperand(), |
| Operands.back(), |
| cast<StoreInst>(Operands.back())->getValueOperand(), |
| Operands.size()}) |
| .second) |
| continue; |
| |
| unsigned MaxVecRegSize = R.getMaxVecRegSize(); |
| unsigned EltSize = R.getVectorElementSize(Operands[0]); |
| unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize); |
| |
| unsigned MaxVF = |
| std::min(R.getMaximumVF(EltSize, Instruction::Store), MaxElts); |
| unsigned MaxRegVF = MaxVF; |
| auto *Store = cast<StoreInst>(Operands[0]); |
| Type *StoreTy = Store->getValueOperand()->getType(); |
| Type *ValueTy = StoreTy; |
| if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) |
| ValueTy = Trunc->getSrcTy(); |
| if (ValueTy == StoreTy && |
| R.getVectorElementSize(Store->getValueOperand()) <= EltSize) |
| MaxVF = std::min<unsigned>(MaxVF, bit_floor(Operands.size())); |
| unsigned MinVF = std::max<unsigned>( |
| 2, PowerOf2Ceil(TTI->getStoreMinimumVF( |
| R.getMinVF(DL->getTypeStoreSizeInBits(StoreTy)), StoreTy, |
| ValueTy))); |
| |
| if (MaxVF < MinVF) { |
| LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF |
| << ") < " |
| << "MinVF (" << MinVF << ")\n"); |
| continue; |
| } |
| |
| unsigned NonPowerOf2VF = 0; |
| if (VectorizeNonPowerOf2) { |
| // First try vectorizing with a non-power-of-2 VF. At the moment, only |
| // consider cases where VF + 1 is a power-of-2, i.e. almost all vector |
| // lanes are used. |
| unsigned CandVF = |
| std::clamp<unsigned>(Operands.size(), MaxVF, MaxRegVF); |
| if (has_single_bit(CandVF + 1)) |
| NonPowerOf2VF = CandVF; |
| } |
| |
| unsigned Sz = 1 + Log2_32(MaxVF) - Log2_32(MinVF); |
| SmallVector<unsigned> CandidateVFs(Sz + (NonPowerOf2VF > 0 ? 1 : 0)); |
| unsigned Size = MinVF; |
| for_each(reverse(CandidateVFs), [&](unsigned &VF) { |
| VF = Size > MaxVF ? NonPowerOf2VF : Size; |
| Size *= 2; |
| }); |
| unsigned End = Operands.size(); |
| unsigned Repeat = 0; |
| constexpr unsigned MaxAttempts = 4; |
| OwningArrayRef<std::pair<unsigned, unsigned>> RangeSizes(Operands.size()); |
| for_each(RangeSizes, [](std::pair<unsigned, unsigned> &P) { |
| P.first = P.second = 1; |
| }); |
| DenseMap<Value *, std::pair<unsigned, unsigned>> NonSchedulable; |
| auto IsNotVectorized = [](bool First, |
| const std::pair<unsigned, unsigned> &P) { |
| return First ? P.first > 0 : P.second > 0; |
| }; |
| auto IsVectorized = [](bool First, |
| const std::pair<unsigned, unsigned> &P) { |
| return First ? P.first == 0 : P.second == 0; |
| }; |
| auto VFIsProfitable = [](bool First, unsigned Size, |
| const std::pair<unsigned, unsigned> &P) { |
| return First ? Size >= P.first : Size >= P.second; |
| }; |
| auto FirstSizeSame = [](unsigned Size, |
| const std::pair<unsigned, unsigned> &P) { |
| return Size == P.first; |
| }; |
| while (true) { |
| ++Repeat; |
| bool RepeatChanged = false; |
| bool AnyProfitableGraph = false; |
| for (unsigned Size : CandidateVFs) { |
| AnyProfitableGraph = false; |
| unsigned StartIdx = std::distance( |
| RangeSizes.begin(), |
| find_if(RangeSizes, std::bind(IsNotVectorized, Size >= MaxRegVF, |
| std::placeholders::_1))); |
| while (StartIdx < End) { |
| unsigned EndIdx = |
| std::distance(RangeSizes.begin(), |
| find_if(RangeSizes.drop_front(StartIdx), |
| std::bind(IsVectorized, Size >= MaxRegVF, |
| std::placeholders::_1))); |
| unsigned Sz = EndIdx >= End ? End : EndIdx; |
| for (unsigned Cnt = StartIdx; Cnt + Size <= Sz;) { |
| if (!checkTreeSizes(RangeSizes.slice(Cnt, Size), |
| Size >= MaxRegVF)) { |
| ++Cnt; |
| continue; |
| } |
| ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size); |
| assert(all_of(Slice, |
| [&](Value *V) { |
| return cast<StoreInst>(V) |
| ->getValueOperand() |
| ->getType() == |
| cast<StoreInst>(Slice.front()) |
| ->getValueOperand() |
| ->getType(); |
| }) && |
| "Expected all operands of same type."); |
| if (!NonSchedulable.empty()) { |
| auto [NonSchedSizeMax, NonSchedSizeMin] = |
| NonSchedulable.lookup(Slice.front()); |
| if (NonSchedSizeMax > 0 && NonSchedSizeMin <= Size) { |
| Cnt += NonSchedSizeMax; |
| continue; |
| } |
| } |
| unsigned TreeSize; |
| std::optional<bool> Res = |
| vectorizeStoreChain(Slice, R, Cnt, MinVF, TreeSize); |
| if (!Res) { |
| NonSchedulable |
| .try_emplace(Slice.front(), std::make_pair(Size, Size)) |
| .first->getSecond() |
| .second = Size; |
| } else if (*Res) { |
| // Mark the vectorized stores so that we don't vectorize them |
| // again. |
| VectorizedStores.insert(Slice.begin(), Slice.end()); |
| // Mark the vectorized stores so that we don't vectorize them |
| // again. |
| AnyProfitableGraph = RepeatChanged = Changed = true; |
| // If we vectorized initial block, no need to try to vectorize |
| // it again. |
| for_each(RangeSizes.slice(Cnt, Size), |
| [](std::pair<unsigned, unsigned> &P) { |
| P.first = P.second = 0; |
| }); |
| if (Cnt < StartIdx + MinVF) { |
| for_each(RangeSizes.slice(StartIdx, Cnt - StartIdx), |
| [](std::pair<unsigned, unsigned> &P) { |
| P.first = P.second = 0; |
| }); |
| StartIdx = Cnt + Size; |
| } |
| if (Cnt > Sz - Size - MinVF) { |
| for_each(RangeSizes.slice(Cnt + Size, Sz - (Cnt + Size)), |
| [](std::pair<unsigned, unsigned> &P) { |
| P.first = P.second = 0; |
| }); |
| if (Sz == End) |
| End = Cnt; |
| Sz = Cnt; |
| } |
| Cnt += Size; |
| continue; |
| } |
| if (Size > 2 && Res && |
| !all_of(RangeSizes.slice(Cnt, Size), |
| std::bind(VFIsProfitable, Size >= MaxRegVF, TreeSize, |
| std::placeholders::_1))) { |
| Cnt += Size; |
| continue; |
| } |
| // Check for the very big VFs that we're not rebuilding same |
| // trees, just with larger number of elements. |
| if (Size > MaxRegVF && TreeSize > 1 && |
| all_of(RangeSizes.slice(Cnt, Size), |
| std::bind(FirstSizeSame, TreeSize, |
| std::placeholders::_1))) { |
| Cnt += Size; |
| while (Cnt != Sz && RangeSizes[Cnt].first == TreeSize) |
| ++Cnt; |
| continue; |
| } |
| if (TreeSize > 1) |
| for_each(RangeSizes.slice(Cnt, Size), |
| [&](std::pair<unsigned, unsigned> &P) { |
| if (Size >= MaxRegVF) |
| P.second = std::max(P.second, TreeSize); |
| else |
| P.first = std::max(P.first, TreeSize); |
| }); |
| ++Cnt; |
| AnyProfitableGraph = true; |
| } |
| if (StartIdx >= End) |
| break; |
| if (Sz - StartIdx < Size && Sz - StartIdx >= MinVF) |
| AnyProfitableGraph = true; |
| StartIdx = std::distance( |
| RangeSizes.begin(), |
| find_if(RangeSizes.drop_front(Sz), |
| std::bind(IsNotVectorized, Size >= MaxRegVF, |
| std::placeholders::_1))); |
| } |
| if (!AnyProfitableGraph && Size >= MaxRegVF) |
| break; |
| } |
| // All values vectorized - exit. |
| if (all_of(RangeSizes, [](const std::pair<unsigned, unsigned> &P) { |
| return P.first == 0 && P.second == 0; |
| })) |
| break; |
| // Check if tried all attempts or no need for the last attempts at all. |
| if (Repeat >= MaxAttempts || |
| (Repeat > 1 && (RepeatChanged || !AnyProfitableGraph))) |
| break; |
| constexpr unsigned StoresLimit = 64; |
| const unsigned MaxTotalNum = bit_floor(std::min<unsigned>( |
| Operands.size(), |
| static_cast<unsigned>( |
| End - |
| std::distance( |
| RangeSizes.begin(), |
| find_if(RangeSizes, std::bind(IsNotVectorized, true, |
| std::placeholders::_1))) + |
| 1))); |
| unsigned VF = PowerOf2Ceil(CandidateVFs.front()) * 2; |
| if (VF > MaxTotalNum || VF >= StoresLimit) |
| break; |
| for_each(RangeSizes, [&](std::pair<unsigned, unsigned> &P) { |
| if (P.first != 0) |
| P.first = std::max(P.second, P.first); |
| }); |
| // Last attempt to vectorize max number of elements, if all previous |
| // attempts were unsuccessful because of the cost issues. |
| CandidateVFs.clear(); |
| CandidateVFs.push_back(VF); |
| } |
| } |
| }; |
| |
| // Stores pair (first: index of the store into Stores array ref, address of |
| // which taken as base, second: sorted set of pairs {index, dist}, which are |
| // indices of stores in the set and their store location distances relative to |
| // the base address). |
| |
| // Need to store the index of the very first store separately, since the set |
| // may be reordered after the insertion and the first store may be moved. This |
| // container allows to reduce number of calls of getPointersDiff() function. |
| SmallVector<std::pair<unsigned, StoreIndexToDistSet>> SortedStores; |
| // Inserts the specified store SI with the given index Idx to the set of the |
| // stores. If the store with the same distance is found already - stop |
| // insertion, try to vectorize already found stores. If some stores from this |
| // sequence were not vectorized - try to vectorize them with the new store |
| // later. But this logic is applied only to the stores, that come before the |
| // previous store with the same distance. |
| // Example: |
| // 1. store x, %p |
| // 2. store y, %p+1 |
| // 3. store z, %p+2 |
| // 4. store a, %p |
| // 5. store b, %p+3 |
| // - Scan this from the last to first store. The very first bunch of stores is |
| // {5, {{4, -3}, {2, -2}, {3, -1}, {5, 0}}} (the element in SortedStores |
| // vector). |
| // - The next store in the list - #1 - has the same distance from store #5 as |
| // the store #4. |
| // - Try to vectorize sequence of stores 4,2,3,5. |
| // - If all these stores are vectorized - just drop them. |
| // - If some of them are not vectorized (say, #3 and #5), do extra analysis. |
| // - Start new stores sequence. |
| // The new bunch of stores is {1, {1, 0}}. |
| // - Add the stores from previous sequence, that were not vectorized. |
| // Here we consider the stores in the reversed order, rather they are used in |
| // the IR (Stores are reversed already, see vectorizeStoreChains() function). |
| // Store #3 can be added -> comes after store #4 with the same distance as |
| // store #1. |
| // Store #5 cannot be added - comes before store #4. |
| // This logic allows to improve the compile time, we assume that the stores |
| // after previous store with the same distance most likely have memory |
| // dependencies and no need to waste compile time to try to vectorize them. |
| // - Try to vectorize the sequence {1, {1, 0}, {3, 2}}. |
| auto FillStoresSet = [&](unsigned Idx, StoreInst *SI) { |
| for (std::pair<unsigned, StoreIndexToDistSet> &Set : SortedStores) { |
| std::optional<int> Diff = getPointersDiff( |
| Stores[Set.first]->getValueOperand()->getType(), |
| Stores[Set.first]->getPointerOperand(), |
| SI->getValueOperand()->getType(), SI->getPointerOperand(), *DL, *SE, |
| /*StrictCheck=*/true); |
| if (!Diff) |
| continue; |
| auto It = Set.second.find(std::make_pair(Idx, *Diff)); |
| if (It == Set.second.end()) { |
| Set.second.emplace(Idx, *Diff); |
| return; |
| } |
| // Try to vectorize the first found set to avoid duplicate analysis. |
| TryToVectorize(Set.second); |
| StoreIndexToDistSet PrevSet; |
| PrevSet.swap(Set.second); |
| Set.first = Idx; |
| Set.second.emplace(Idx, 0); |
| // Insert stores that followed previous match to try to vectorize them |
| // with this store. |
| unsigned StartIdx = It->first + 1; |
| SmallBitVector UsedStores(Idx - StartIdx); |
| // Distances to previously found dup store (or this store, since they |
| // store to the same addresses). |
| SmallVector<int> Dists(Idx - StartIdx, 0); |
| for (const std::pair<unsigned, int> &Pair : reverse(PrevSet)) { |
| // Do not try to vectorize sequences, we already tried. |
| if (Pair.first <= It->first || |
| VectorizedStores.contains(Stores[Pair.first])) |
| break; |
| unsigned BI = Pair.first - StartIdx; |
| UsedStores.set(BI); |
| Dists[BI] = Pair.second - It->second; |
| } |
| for (unsigned I = StartIdx; I < Idx; ++I) { |
| unsigned BI = I - StartIdx; |
| if (UsedStores.test(BI)) |
| Set.second.emplace(I, Dists[BI]); |
| } |
| return; |
| } |
| auto &Res = SortedStores.emplace_back(); |
| Res.first = Idx; |
| Res.second.emplace(Idx, 0); |
| }; |
| Type *PrevValTy = nullptr; |
| for (auto [I, SI] : enumerate(Stores)) { |
| if (R.isDeleted(SI)) |
| continue; |
| if (!PrevValTy) |
| PrevValTy = SI->getValueOperand()->getType(); |
| // Check that we do not try to vectorize stores of different types. |
| if (PrevValTy != SI->getValueOperand()->getType()) { |
| for (auto &Set : SortedStores) |
| TryToVectorize(Set.second); |
| SortedStores.clear(); |
| PrevValTy = SI->getValueOperand()->getType(); |
| } |
| FillStoresSet(I, SI); |
| } |
| |
| // Final vectorization attempt. |
| for (auto &Set : SortedStores) |
| TryToVectorize(Set.second); |
| |
| return Changed; |
| } |
| |
| void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { |
| // Initialize the collections. We will make a single pass over the block. |
| Stores.clear(); |
| GEPs.clear(); |
| |
| // Visit the store and getelementptr instructions in BB and organize them in |
| // Stores and GEPs according to the underlying objects of their pointer |
| // operands. |
| for (Instruction &I : *BB) { |
| // Ignore store instructions that are volatile or have a pointer operand |
| // that doesn't point to a scalar type. |
| if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| if (!SI->isSimple()) |
| continue; |
| if (!isValidElementType(SI->getValueOperand()->getType())) |
| continue; |
| Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); |
| } |
| |
| // Ignore getelementptr instructions that have more than one index, a |
| // constant index, or a pointer operand that doesn't point to a scalar |
| // type. |
| else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| if (GEP->getNumIndices() != 1) |
| continue; |
| Value *Idx = GEP->idx_begin()->get(); |
| if (isa<Constant>(Idx)) |
| continue; |
| if (!isValidElementType(Idx->getType())) |
| continue; |
| if (GEP->getType()->isVectorTy()) |
| continue; |
| GEPs[GEP->getPointerOperand()].push_back(GEP); |
| } |
| } |
| } |
| |
| bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, |
| bool MaxVFOnly) { |
| if (VL.size() < 2) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " |
| << VL.size() << ".\n"); |
| |
| // Check that all of the parts are instructions of the same type, |
| // we permit an alternate opcode via InstructionsState. |
| InstructionsState S = getSameOpcode(VL, *TLI); |
| if (!S.getOpcode()) |
| return false; |
| |
| Instruction *I0 = cast<Instruction>(S.OpValue); |
| // Make sure invalid types (including vector type) are rejected before |
| // determining vectorization factor for scalar instructions. |
| for (Value *V : VL) { |
| Type *Ty = V->getType(); |
| if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { |
| // NOTE: the following will give user internal llvm type name, which may |
| // not be useful. |
| R.getORE()->emit([&]() { |
| std::string TypeStr; |
| llvm::raw_string_ostream rso(TypeStr); |
| Ty->print(rso); |
| return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) |
| << "Cannot SLP vectorize list: type " |
| << TypeStr + " is unsupported by vectorizer"; |
| }); |
| return false; |
| } |
| } |
| |
| unsigned Sz = R.getVectorElementSize(I0); |
| unsigned MinVF = R.getMinVF(Sz); |
| unsigned MaxVF = std::max<unsigned>(llvm::bit_floor(VL.size()), MinVF); |
| MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); |
| if (MaxVF < 2) { |
| R.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) |
| << "Cannot SLP vectorize list: vectorization factor " |
| << "less than 2 is not supported"; |
| }); |
| return false; |
| } |
| |
| bool Changed = false; |
| bool CandidateFound = false; |
| InstructionCost MinCost = SLPCostThreshold.getValue(); |
| Type *ScalarTy = getValueType(VL[0]); |
| |
| unsigned NextInst = 0, MaxInst = VL.size(); |
| for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { |
| // No actual vectorization should happen, if number of parts is the same as |
| // provided vectorization factor (i.e. the scalar type is used for vector |
| // code during codegen). |
| auto *VecTy = getWidenedType(ScalarTy, VF); |
| if (TTI->getNumberOfParts(VecTy) == VF) |
| continue; |
| for (unsigned I = NextInst; I < MaxInst; ++I) { |
| unsigned ActualVF = std::min(MaxInst - I, VF); |
| |
| if (!hasFullVectorsOrPowerOf2(*TTI, ScalarTy, ActualVF)) |
| continue; |
| |
| if (MaxVFOnly && ActualVF < MaxVF) |
| break; |
| if ((VF > MinVF && ActualVF <= VF / 2) || (VF == MinVF && ActualVF < 2)) |
| break; |
| |
| ArrayRef<Value *> Ops = VL.slice(I, ActualVF); |
| // Check that a previous iteration of this loop did not delete the Value. |
| if (llvm::any_of(Ops, [&R](Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| return I && R.isDeleted(I); |
| })) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing " << ActualVF << " operations " |
| << "\n"); |
| |
| R.buildTree(Ops); |
| if (R.isTreeTinyAndNotFullyVectorizable()) |
| continue; |
| R.reorderTopToBottom(); |
| R.reorderBottomToTop( |
| /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) && |
| !R.doesRootHaveInTreeUses()); |
| R.transformNodes(); |
| R.buildExternalUses(); |
| |
| R.computeMinimumValueSizes(); |
| InstructionCost Cost = R.getTreeCost(); |
| CandidateFound = true; |
| MinCost = std::min(MinCost, Cost); |
| |
| LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost |
| << " for VF=" << ActualVF << "\n"); |
| if (Cost < -SLPCostThreshold) { |
| LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); |
| R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", |
| cast<Instruction>(Ops[0])) |
| << "SLP vectorized with cost " << ore::NV("Cost", Cost) |
| << " and with tree size " |
| << ore::NV("TreeSize", R.getTreeSize())); |
| |
| R.vectorizeTree(); |
| // Move to the next bundle. |
| I += VF - 1; |
| NextInst = I + 1; |
| Changed = true; |
| } |
| } |
| } |
| |
| if (!Changed && CandidateFound) { |
| R.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) |
| << "List vectorization was possible but not beneficial with cost " |
| << ore::NV("Cost", MinCost) << " >= " |
| << ore::NV("Treshold", -SLPCostThreshold); |
| }); |
| } else if (!Changed) { |
| R.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) |
| << "Cannot SLP vectorize list: vectorization was impossible" |
| << " with available vectorization factors"; |
| }); |
| } |
| return Changed; |
| } |
| |
| bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { |
| if (!I) |
| return false; |
| |
| if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType())) |
| return false; |
| |
| Value *P = I->getParent(); |
| |
| // Vectorize in current basic block only. |
| auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); |
| auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); |
| if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) |
| return false; |
| |
| // First collect all possible candidates |
| SmallVector<std::pair<Value *, Value *>, 4> Candidates; |
| Candidates.emplace_back(Op0, Op1); |
| |
| auto *A = dyn_cast<BinaryOperator>(Op0); |
| auto *B = dyn_cast<BinaryOperator>(Op1); |
| // Try to skip B. |
| if (A && B && B->hasOneUse()) { |
| auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); |
| auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); |
| if (B0 && B0->getParent() == P) |
| Candidates.emplace_back(A, B0); |
| if (B1 && B1->getParent() == P) |
| Candidates.emplace_back(A, B1); |
| } |
| // Try to skip A. |
| if (B && A && A->hasOneUse()) { |
| auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); |
| auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); |
| if (A0 && A0->getParent() == P) |
| Candidates.emplace_back(A0, B); |
| if (A1 && A1->getParent() == P) |
| Candidates.emplace_back(A1, B); |
| } |
| |
| if (Candidates.size() == 1) |
| return tryToVectorizeList({Op0, Op1}, R); |
| |
| // We have multiple options. Try to pick the single best. |
| std::optional<int> BestCandidate = R.findBestRootPair(Candidates); |
| if (!BestCandidate) |
| return false; |
| return tryToVectorizeList( |
| {Candidates[*BestCandidate].first, Candidates[*BestCandidate].second}, R); |
| } |
| |
| namespace { |
| |
| /// Model horizontal reductions. |
| /// |
| /// A horizontal reduction is a tree of reduction instructions that has values |
| /// that can be put into a vector as its leaves. For example: |
| /// |
| /// mul mul mul mul |
| /// \ / \ / |
| /// + + |
| /// \ / |
| /// + |
| /// This tree has "mul" as its leaf values and "+" as its reduction |
| /// instructions. A reduction can feed into a store or a binary operation |
| /// feeding a phi. |
| /// ... |
| /// \ / |
| /// + |
| /// | |
| /// phi += |
| /// |
| /// Or: |
| /// ... |
| /// \ / |
| /// + |
| /// | |
| /// *p = |
| /// |
| class HorizontalReduction { |
| using ReductionOpsType = SmallVector<Value *, 16>; |
| using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; |
| ReductionOpsListType ReductionOps; |
| /// List of possibly reduced values. |
| SmallVector<SmallVector<Value *>> ReducedVals; |
| /// Maps reduced value to the corresponding reduction operation. |
| SmallDenseMap<Value *, SmallVector<Instruction *>, 16> ReducedValsToOps; |
| WeakTrackingVH ReductionRoot; |
| /// The type of reduction operation. |
| RecurKind RdxKind; |
| /// Checks if the optimization of original scalar identity operations on |
| /// matched horizontal reductions is enabled and allowed. |
| bool IsSupportedHorRdxIdentityOp = false; |
| |
| static bool isCmpSelMinMax(Instruction *I) { |
| return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && |
| RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); |
| } |
| |
| // And/or are potentially poison-safe logical patterns like: |
| // select x, y, false |
| // select x, true, y |
| static bool isBoolLogicOp(Instruction *I) { |
| return isa<SelectInst>(I) && |
| (match(I, m_LogicalAnd()) || match(I, m_LogicalOr())); |
| } |
| |
| /// Checks if instruction is associative and can be vectorized. |
| static bool isVectorizable(RecurKind Kind, Instruction *I) { |
| if (Kind == RecurKind::None) |
| return false; |
| |
| // Integer ops that map to select instructions or intrinsics are fine. |
| if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || |
| isBoolLogicOp(I)) |
| return true; |
| |
| if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { |
| // FP min/max are associative except for NaN and -0.0. We do not |
| // have to rule out -0.0 here because the intrinsic semantics do not |
| // specify a fixed result for it. |
| return I->getFastMathFlags().noNaNs(); |
| } |
| |
| if (Kind == RecurKind::FMaximum || Kind == RecurKind::FMinimum) |
| return true; |
| |
| return I->isAssociative(); |
| } |
| |
| static Value *getRdxOperand(Instruction *I, unsigned Index) { |
| // Poison-safe 'or' takes the form: select X, true, Y |
| // To make that work with the normal operand processing, we skip the |
| // true value operand. |
| // TODO: Change the code and data structures to handle this without a hack. |
| if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) |
| return I->getOperand(2); |
| return I->getOperand(Index); |
| } |
| |
| /// Creates reduction operation with the current opcode. |
| static Value *createOp(IRBuilderBase &Builder, RecurKind Kind, Value *LHS, |
| Value *RHS, const Twine &Name, bool UseSelect) { |
| unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); |
| switch (Kind) { |
| case RecurKind::Or: |
| if (UseSelect && |
| LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) |
| return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); |
| return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, |
| Name); |
| case RecurKind::And: |
| if (UseSelect && |
| LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) |
| return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); |
| return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, |
| Name); |
| case RecurKind::Add: |
| case RecurKind::Mul: |
| case RecurKind::Xor: |
| case RecurKind::FAdd: |
| case RecurKind::FMul: |
| return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, |
| Name); |
| case RecurKind::FMax: |
| return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); |
| case RecurKind::FMin: |
| return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); |
| case RecurKind::FMaximum: |
| return Builder.CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS); |
| case RecurKind::FMinimum: |
| return Builder.CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS); |
| case RecurKind::SMax: |
| if (UseSelect) { |
| Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); |
| return Builder.CreateSelect(Cmp, LHS, RHS, Name); |
| } |
| return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); |
| case RecurKind::SMin: |
| if (UseSelect) { |
| Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); |
| return Builder.CreateSelect(Cmp, LHS, RHS, Name); |
| } |
| return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); |
| case RecurKind::UMax: |
| if (UseSelect) { |
| Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); |
| return Builder.CreateSelect(Cmp, LHS, RHS, Name); |
| } |
| return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); |
| case RecurKind::UMin: |
| if (UseSelect) { |
| Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); |
| return Builder.CreateSelect(Cmp, LHS, RHS, Name); |
| } |
| return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); |
| default: |
| llvm_unreachable("Unknown reduction operation."); |
| } |
| } |
| |
| /// Creates reduction operation with the current opcode with the IR flags |
| /// from \p ReductionOps, dropping nuw/nsw flags. |
| static Value *createOp(IRBuilderBase &Builder, RecurKind RdxKind, Value *LHS, |
| Value *RHS, const Twine &Name, |
| const ReductionOpsListType &ReductionOps) { |
| bool UseSelect = ReductionOps.size() == 2 || |
| // Logical or/and. |
| (ReductionOps.size() == 1 && |
| any_of(ReductionOps.front(), IsaPred<SelectInst>)); |
| assert((!UseSelect || ReductionOps.size() != 2 || |
| isa<SelectInst>(ReductionOps[1][0])) && |
| "Expected cmp + select pairs for reduction"); |
| Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); |
| if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { |
| if (auto *Sel = dyn_cast<SelectInst>(Op)) { |
| propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, |
| /*IncludeWrapFlags=*/false); |
| propagateIRFlags(Op, ReductionOps[1], nullptr, |
| /*IncludeWrapFlags=*/false); |
| return Op; |
| } |
| } |
| propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); |
| return Op; |
| } |
| |
| public: |
| static RecurKind getRdxKind(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return RecurKind::None; |
| if (match(I, m_Add(m_Value(), m_Value()))) |
| return RecurKind::Add; |
| if (match(I, m_Mul(m_Value(), m_Value()))) |
| return RecurKind::Mul; |
| if (match(I, m_And(m_Value(), m_Value())) || |
| match(I, m_LogicalAnd(m_Value(), m_Value()))) |
| return RecurKind::And; |
| if (match(I, m_Or(m_Value(), m_Value())) || |
| match(I, m_LogicalOr(m_Value(), m_Value()))) |
| return RecurKind::Or; |
| if (match(I, m_Xor(m_Value(), m_Value()))) |
| return RecurKind::Xor; |
| if (match(I, m_FAdd(m_Value(), m_Value()))) |
| return RecurKind::FAdd; |
| if (match(I, m_FMul(m_Value(), m_Value()))) |
| return RecurKind::FMul; |
| |
| if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) |
| return RecurKind::FMax; |
| if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) |
| return RecurKind::FMin; |
| |
| if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()))) |
| return RecurKind::FMaximum; |
| if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value()))) |
| return RecurKind::FMinimum; |
| // This matches either cmp+select or intrinsics. SLP is expected to handle |
| // either form. |
| // TODO: If we are canonicalizing to intrinsics, we can remove several |
| // special-case paths that deal with selects. |
| if (match(I, m_SMax(m_Value(), m_Value()))) |
| return RecurKind::SMax; |
| if (match(I, m_SMin(m_Value(), m_Value()))) |
| return RecurKind::SMin; |
| if (match(I, m_UMax(m_Value(), m_Value()))) |
| return RecurKind::UMax; |
| if (match(I, m_UMin(m_Value(), m_Value()))) |
| return RecurKind::UMin; |
| |
| if (auto *Select = dyn_cast<SelectInst>(I)) { |
| // Try harder: look for min/max pattern based on instructions producing |
| // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). |
| // During the intermediate stages of SLP, it's very common to have |
| // pattern like this (since optimizeGatherSequence is run only once |
| // at the end): |
| // %1 = extractelement <2 x i32> %a, i32 0 |
| // %2 = extractelement <2 x i32> %a, i32 1 |
| // %cond = icmp sgt i32 %1, %2 |
| // %3 = extractelement <2 x i32> %a, i32 0 |
| // %4 = extractelement <2 x i32> %a, i32 1 |
| // %select = select i1 %cond, i32 %3, i32 %4 |
| CmpInst::Predicate Pred; |
| Instruction *L1; |
| Instruction *L2; |
| |
| Value *LHS = Select->getTrueValue(); |
| Value *RHS = Select->getFalseValue(); |
| Value *Cond = Select->getCondition(); |
| |
| // TODO: Support inverse predicates. |
| if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { |
| if (!isa<ExtractElementInst>(RHS) || |
| !L2->isIdenticalTo(cast<Instruction>(RHS))) |
| return RecurKind::None; |
| } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { |
| if (!isa<ExtractElementInst>(LHS) || |
| !L1->isIdenticalTo(cast<Instruction>(LHS))) |
| return RecurKind::None; |
| } else { |
| if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) |
| return RecurKind::None; |
| if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || |
| !L1->isIdenticalTo(cast<Instruction>(LHS)) || |
| !L2->isIdenticalTo(cast<Instruction>(RHS))) |
| return RecurKind::None; |
| } |
| |
| switch (Pred) { |
| default: |
| return RecurKind::None; |
| case CmpInst::ICMP_SGT: |
| case CmpInst::ICMP_SGE: |
| return RecurKind::SMax; |
| case CmpInst::ICMP_SLT: |
| case CmpInst::ICMP_SLE: |
| return RecurKind::SMin; |
| case CmpInst::ICMP_UGT: |
| case CmpInst::ICMP_UGE: |
| return RecurKind::UMax; |
| case CmpInst::ICMP_ULT: |
| case CmpInst::ICMP_ULE: |
| return RecurKind::UMin; |
| } |
| } |
| return RecurKind::None; |
| } |
| |
| /// Get the index of the first operand. |
| static unsigned getFirstOperandIndex(Instruction *I) { |
| return isCmpSelMinMax(I) ? 1 : 0; |
| } |
| |
| private: |
| /// Total number of operands in the reduction operation. |
| static unsigned getNumberOfOperands(Instruction *I) { |
| return isCmpSelMinMax(I) ? 3 : 2; |
| } |
| |
| /// Checks if the instruction is in basic block \p BB. |
| /// For a cmp+sel min/max reduction check that both ops are in \p BB. |
| static bool hasSameParent(Instruction *I, BasicBlock *BB) { |
| if (isCmpSelMinMax(I) || isBoolLogicOp(I)) { |
| auto *Sel = cast<SelectInst>(I); |
| auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); |
| return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; |
| } |
| return I->getParent() == BB; |
| } |
| |
| /// Expected number of uses for reduction operations/reduced values. |
| static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { |
| if (IsCmpSelMinMax) { |
| // SelectInst must be used twice while the condition op must have single |
| // use only. |
| if (auto *Sel = dyn_cast<SelectInst>(I)) |
| return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); |
| return I->hasNUses(2); |
| } |
| |
| // Arithmetic reduction operation must be used once only. |
| return I->hasOneUse(); |
| } |
| |
| /// Initializes the list of reduction operations. |
| void initReductionOps(Instruction *I) { |
| if (isCmpSelMinMax(I)) |
| ReductionOps.assign(2, ReductionOpsType()); |
| else |
| ReductionOps.assign(1, ReductionOpsType()); |
| } |
| |
| /// Add all reduction operations for the reduction instruction \p I. |
| void addReductionOps(Instruction *I) { |
| if (isCmpSelMinMax(I)) { |
| ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); |
| ReductionOps[1].emplace_back(I); |
| } else { |
| ReductionOps[0].emplace_back(I); |
| } |
| } |
| |
| static bool isGoodForReduction(ArrayRef<Value *> Data) { |
| int Sz = Data.size(); |
| auto *I = dyn_cast<Instruction>(Data.front()); |
| return Sz > 1 || isConstant(Data.front()) || |
| (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode())); |
| } |
| |
| public: |
| HorizontalReduction() = default; |
| |
| /// Try to find a reduction tree. |
| bool matchAssociativeReduction(BoUpSLP &R, Instruction *Root, |
| ScalarEvolution &SE, const DataLayout &DL, |
| const TargetLibraryInfo &TLI) { |
| RdxKind = HorizontalReduction::getRdxKind(Root); |
| if (!isVectorizable(RdxKind, Root)) |
| return false; |
| |
| // Analyze "regular" integer/FP types for reductions - no target-specific |
| // types or pointers. |
| Type *Ty = Root->getType(); |
| if (!isValidElementType(Ty) || Ty->isPointerTy()) |
| return false; |
| |
| // Though the ultimate reduction may have multiple uses, its condition must |
| // have only single use. |
| if (auto *Sel = dyn_cast<SelectInst>(Root)) |
| if (!Sel->getCondition()->hasOneUse()) |
| return false; |
| |
| ReductionRoot = Root; |
| |
| // Iterate through all the operands of the possible reduction tree and |
| // gather all the reduced values, sorting them by their value id. |
| BasicBlock *BB = Root->getParent(); |
| bool IsCmpSelMinMax = isCmpSelMinMax(Root); |
| SmallVector<std::pair<Instruction *, unsigned>> Worklist( |
| 1, std::make_pair(Root, 0)); |
| // Checks if the operands of the \p TreeN instruction are also reduction |
| // operations or should be treated as reduced values or an extra argument, |
| // which is not part of the reduction. |
| auto CheckOperands = [&](Instruction *TreeN, |
| SmallVectorImpl<Value *> &PossibleReducedVals, |
| SmallVectorImpl<Instruction *> &ReductionOps, |
| unsigned Level) { |
| for (int I : reverse(seq<int>(getFirstOperandIndex(TreeN), |
| getNumberOfOperands(TreeN)))) { |
| Value *EdgeVal = getRdxOperand(TreeN, I); |
| ReducedValsToOps[EdgeVal].push_back(TreeN); |
| auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); |
| // If the edge is not an instruction, or it is different from the main |
| // reduction opcode or has too many uses - possible reduced value. |
| // Also, do not try to reduce const values, if the operation is not |
| // foldable. |
| if (!EdgeInst || Level > RecursionMaxDepth || |
| getRdxKind(EdgeInst) != RdxKind || |
| IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || |
| !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || |
| !isVectorizable(RdxKind, EdgeInst) || |
| (R.isAnalyzedReductionRoot(EdgeInst) && |
| all_of(EdgeInst->operands(), IsaPred<Constant>))) { |
| PossibleReducedVals.push_back(EdgeVal); |
| continue; |
| } |
| ReductionOps.push_back(EdgeInst); |
| } |
| }; |
| // Try to regroup reduced values so that it gets more profitable to try to |
| // reduce them. Values are grouped by their value ids, instructions - by |
| // instruction op id and/or alternate op id, plus do extra analysis for |
| // loads (grouping them by the distabce between pointers) and cmp |
| // instructions (grouping them by the predicate). |
| SmallMapVector< |
| size_t, SmallMapVector<size_t, SmallMapVector<Value *, unsigned, 2>, 2>, |
| 8> |
| PossibleReducedVals; |
| initReductionOps(Root); |
| DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap; |
| SmallSet<size_t, 2> LoadKeyUsed; |
| |
| auto GenerateLoadsSubkey = [&](size_t Key, LoadInst *LI) { |
| Key = hash_combine(hash_value(LI->getParent()), Key); |
| Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); |
| if (LoadKeyUsed.contains(Key)) { |
| auto LIt = LoadsMap.find(Ptr); |
| if (LIt != LoadsMap.end()) { |
| for (LoadInst *RLI : LIt->second) { |
| if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), |
| LI->getType(), LI->getPointerOperand(), DL, SE, |
| /*StrictCheck=*/true)) |
| return hash_value(RLI->getPointerOperand()); |
| } |
| for (LoadInst *RLI : LIt->second) { |
| if (arePointersCompatible(RLI->getPointerOperand(), |
| LI->getPointerOperand(), TLI)) { |
| hash_code SubKey = hash_value(RLI->getPointerOperand()); |
| return SubKey; |
| } |
| } |
| if (LIt->second.size() > 2) { |
| hash_code SubKey = |
| hash_value(LIt->second.back()->getPointerOperand()); |
| return SubKey; |
| } |
| } |
| } |
| LoadKeyUsed.insert(Key); |
| LoadsMap.try_emplace(Ptr).first->second.push_back(LI); |
| return hash_value(LI->getPointerOperand()); |
| }; |
| |
| while (!Worklist.empty()) { |
| auto [TreeN, Level] = Worklist.pop_back_val(); |
| SmallVector<Value *> PossibleRedVals; |
| SmallVector<Instruction *> PossibleReductionOps; |
| CheckOperands(TreeN, PossibleRedVals, PossibleReductionOps, Level); |
| addReductionOps(TreeN); |
| // Add reduction values. The values are sorted for better vectorization |
| // results. |
| for (Value *V : PossibleRedVals) { |
| size_t Key, Idx; |
| std::tie(Key, Idx) = generateKeySubkey(V, &TLI, GenerateLoadsSubkey, |
| /*AllowAlternate=*/false); |
| ++PossibleReducedVals[Key][Idx] |
| .insert(std::make_pair(V, 0)) |
| .first->second; |
| } |
| for (Instruction *I : reverse(PossibleReductionOps)) |
| Worklist.emplace_back(I, I->getParent() == BB ? 0 : Level + 1); |
| } |
| auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); |
| // Sort values by the total number of values kinds to start the reduction |
| // from the longest possible reduced values sequences. |
| for (auto &PossibleReducedVals : PossibleReducedValsVect) { |
| auto PossibleRedVals = PossibleReducedVals.second.takeVector(); |
| SmallVector<SmallVector<Value *>> PossibleRedValsVect; |
| for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); |
| It != E; ++It) { |
| PossibleRedValsVect.emplace_back(); |
| auto RedValsVect = It->second.takeVector(); |
| stable_sort(RedValsVect, llvm::less_second()); |
| for (const std::pair<Value *, unsigned> &Data : RedValsVect) |
| PossibleRedValsVect.back().append(Data.second, Data.first); |
| } |
| stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { |
| return P1.size() > P2.size(); |
| }); |
| int NewIdx = -1; |
| for (ArrayRef<Value *> Data : PossibleRedValsVect) { |
| if (NewIdx < 0 || |
| (!isGoodForReduction(Data) && |
| (!isa<LoadInst>(Data.front()) || |
| !isa<LoadInst>(ReducedVals[NewIdx].front()) || |
| getUnderlyingObject( |
| cast<LoadInst>(Data.front())->getPointerOperand()) != |
| getUnderlyingObject( |
| cast<LoadInst>(ReducedVals[NewIdx].front()) |
| ->getPointerOperand())))) { |
| NewIdx = ReducedVals.size(); |
| ReducedVals.emplace_back(); |
| } |
| ReducedVals[NewIdx].append(Data.rbegin(), Data.rend()); |
| } |
| } |
| // Sort the reduced values by number of same/alternate opcode and/or pointer |
| // operand. |
| stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { |
| return P1.size() > P2.size(); |
| }); |
| return true; |
| } |
| |
| /// Attempt to vectorize the tree found by matchAssociativeReduction. |
| Value *tryToReduce(BoUpSLP &V, const DataLayout &DL, TargetTransformInfo *TTI, |
| const TargetLibraryInfo &TLI) { |
| const unsigned ReductionLimit = VectorizeNonPowerOf2 ? 3 : 4; |
| constexpr unsigned RegMaxNumber = 4; |
| constexpr unsigned RedValsMaxNumber = 128; |
| // If there are a sufficient number of reduction values, reduce |
| // to a nearby power-of-2. We can safely generate oversized |
| // vectors and rely on the backend to split them to legal sizes. |
| if (unsigned NumReducedVals = std::accumulate( |
| ReducedVals.begin(), ReducedVals.end(), 0, |
| [](unsigned Num, ArrayRef<Value *> Vals) -> unsigned { |
| if (!isGoodForReduction(Vals)) |
| return Num; |
| return Num + Vals.size(); |
| }); |
| NumReducedVals < ReductionLimit && |
| all_of(ReducedVals, [](ArrayRef<Value *> RedV) { |
| return RedV.size() < 2 || !allConstant(RedV) || !isSplat(RedV); |
| })) { |
| for (ReductionOpsType &RdxOps : ReductionOps) |
| for (Value *RdxOp : RdxOps) |
| V.analyzedReductionRoot(cast<Instruction>(RdxOp)); |
| return nullptr; |
| } |
| |
| IRBuilder<TargetFolder> Builder(ReductionRoot->getContext(), |
| TargetFolder(DL)); |
| Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); |
| |
| // Track the reduced values in case if they are replaced by extractelement |
| // because of the vectorization. |
| DenseMap<Value *, WeakTrackingVH> TrackedVals(ReducedVals.size() * |
| ReducedVals.front().size()); |
| |
| // The compare instruction of a min/max is the insertion point for new |
| // instructions and may be replaced with a new compare instruction. |
| auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { |
| assert(isa<SelectInst>(RdxRootInst) && |
| "Expected min/max reduction to have select root instruction"); |
| Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); |
| assert(isa<Instruction>(ScalarCond) && |
| "Expected min/max reduction to have compare condition"); |
| return cast<Instruction>(ScalarCond); |
| }; |
| |
| // Return new VectorizedTree, based on previous value. |
| auto GetNewVectorizedTree = [&](Value *VectorizedTree, Value *Res) { |
| if (VectorizedTree) { |
| // Update the final value in the reduction. |
| Builder.SetCurrentDebugLocation( |
| cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); |
| if ((isa<PoisonValue>(VectorizedTree) && !isa<PoisonValue>(Res)) || |
| (isGuaranteedNotToBePoison(Res) && |
| !isGuaranteedNotToBePoison(VectorizedTree))) { |
| auto It = ReducedValsToOps.find(Res); |
| if (It != ReducedValsToOps.end() && |
| any_of(It->getSecond(), |
| [](Instruction *I) { return isBoolLogicOp(I); })) |
| std::swap(VectorizedTree, Res); |
| } |
| |
| return createOp(Builder, RdxKind, VectorizedTree, Res, "op.rdx", |
| ReductionOps); |
| } |
| // Initialize the final value in the reduction. |
| return Res; |
| }; |
| bool AnyBoolLogicOp = any_of(ReductionOps.back(), [](Value *V) { |
| return isBoolLogicOp(cast<Instruction>(V)); |
| }); |
| SmallDenseSet<Value *> IgnoreList(ReductionOps.size() * |
| ReductionOps.front().size()); |
| for (ReductionOpsType &RdxOps : ReductionOps) |
| for (Value *RdxOp : RdxOps) { |
| if (!RdxOp) |
| continue; |
| IgnoreList.insert(RdxOp); |
| } |
| // Intersect the fast-math-flags from all reduction operations. |
| FastMathFlags RdxFMF; |
| RdxFMF.set(); |
| for (Value *U : IgnoreList) |
| if (auto *FPMO = dyn_cast<FPMathOperator>(U)) |
| RdxFMF &= FPMO->getFastMathFlags(); |
| bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); |
| |
| // Need to track reduced vals, they may be changed during vectorization of |
| // subvectors. |
| for (ArrayRef<Value *> Candidates : ReducedVals) |
| for (Value *V : Candidates) |
| TrackedVals.try_emplace(V, V); |
| |
| auto At = [](SmallMapVector<Value *, unsigned, 16> &MV, |
| Value *V) -> unsigned & { |
| auto *It = MV.find(V); |
| assert(It != MV.end() && "Unable to find given key."); |
| return It->second; |
| }; |
| |
| DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size()); |
| // List of the values that were reduced in other trees as part of gather |
| // nodes and thus requiring extract if fully vectorized in other trees. |
| SmallPtrSet<Value *, 4> RequiredExtract; |
| Value *VectorizedTree = nullptr; |
| bool CheckForReusedReductionOps = false; |
| // Try to vectorize elements based on their type. |
| SmallVector<InstructionsState> States; |
| for (ArrayRef<Value *> RV : ReducedVals) |
| States.push_back(getSameOpcode(RV, TLI)); |
| for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { |
| ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; |
| InstructionsState S = States[I]; |
| SmallVector<Value *> Candidates; |
| Candidates.reserve(2 * OrigReducedVals.size()); |
| DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size()); |
| for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { |
| Value *RdxVal = TrackedVals.at(OrigReducedVals[Cnt]); |
| // Check if the reduction value was not overriden by the extractelement |
| // instruction because of the vectorization and exclude it, if it is not |
| // compatible with other values. |
| // Also check if the instruction was folded to constant/other value. |
| auto *Inst = dyn_cast<Instruction>(RdxVal); |
| if ((Inst && isVectorLikeInstWithConstOps(Inst) && |
| (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) || |
| (S.getOpcode() && !Inst)) |
| continue; |
| Candidates.push_back(RdxVal); |
| TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); |
| } |
| bool ShuffledExtracts = false; |
| // Try to handle shuffled extractelements. |
| if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && |
| I + 1 < E) { |
| SmallVector<Value *> CommonCandidates(Candidates); |
| for (Value *RV : ReducedVals[I + 1]) { |
| Value *RdxVal = TrackedVals.at(RV); |
| // Check if the reduction value was not overriden by the |
| // extractelement instruction because of the vectorization and |
| // exclude it, if it is not compatible with other values. |
| auto *Inst = dyn_cast<ExtractElementInst>(RdxVal); |
| if (!Inst) |
| continue; |
| CommonCandidates.push_back(RdxVal); |
| TrackedToOrig.try_emplace(RdxVal, RV); |
| } |
| SmallVector<int> Mask; |
| if (isFixedVectorShuffle(CommonCandidates, Mask)) { |
| ++I; |
| Candidates.swap(CommonCandidates); |
| ShuffledExtracts = true; |
| } |
| } |
| |
| // Emit code for constant values. |
| if (Candidates.size() > 1 && allConstant(Candidates)) { |
| Value *Res = Candidates.front(); |
| Value *OrigV = TrackedToOrig.at(Candidates.front()); |
| ++VectorizedVals.try_emplace(OrigV).first->getSecond(); |
| for (Value *VC : ArrayRef(Candidates).drop_front()) { |
| Res = createOp(Builder, RdxKind, Res, VC, "const.rdx", ReductionOps); |
| Value *OrigV = TrackedToOrig.at(VC); |
| ++VectorizedVals.try_emplace(OrigV).first->getSecond(); |
| if (auto *ResI = dyn_cast<Instruction>(Res)) |
| V.analyzedReductionRoot(ResI); |
| } |
| VectorizedTree = GetNewVectorizedTree(VectorizedTree, Res); |
| continue; |
| } |
| |
| unsigned NumReducedVals = Candidates.size(); |
| if (NumReducedVals < ReductionLimit && |
| (NumReducedVals < 2 || !isSplat(Candidates))) |
| continue; |
| |
| // Check if we support repeated scalar values processing (optimization of |
| // original scalar identity operations on matched horizontal reductions). |
| IsSupportedHorRdxIdentityOp = RdxKind != RecurKind::Mul && |
| RdxKind != RecurKind::FMul && |
| RdxKind != RecurKind::FMulAdd; |
| // Gather same values. |
| SmallMapVector<Value *, unsigned, 16> SameValuesCounter; |
| if (IsSupportedHorRdxIdentityOp) |
| for (Value *V : Candidates) { |
| Value *OrigV = TrackedToOrig.at(V); |
| ++SameValuesCounter.try_emplace(OrigV).first->second; |
| } |
| // Used to check if the reduced values used same number of times. In this |
| // case the compiler may produce better code. E.g. if reduced values are |
| // aabbccdd (8 x values), then the first node of the tree will have a node |
| // for 4 x abcd + shuffle <4 x abcd>, <0, 0, 1, 1, 2, 2, 3, 3>. |
| // Plus, the final reduction will be performed on <8 x aabbccdd>. |
| // Instead compiler may build <4 x abcd> tree immediately, + reduction (4 |
| // x abcd) * 2. |
| // Currently it only handles add/fadd/xor. and/or/min/max do not require |
| // this analysis, other operations may require an extra estimation of |
| // the profitability. |
| bool SameScaleFactor = false; |
| bool OptReusedScalars = IsSupportedHorRdxIdentityOp && |
| SameValuesCounter.size() != Candidates.size(); |
| if (OptReusedScalars) { |
| SameScaleFactor = |
| (RdxKind == RecurKind::Add || RdxKind == RecurKind::FAdd || |
| RdxKind == RecurKind::Xor) && |
| all_of(drop_begin(SameValuesCounter), |
| [&SameValuesCounter](const std::pair<Value *, unsigned> &P) { |
| return P.second == SameValuesCounter.front().second; |
| }); |
| Candidates.resize(SameValuesCounter.size()); |
| transform(SameValuesCounter, Candidates.begin(), |
| [&](const auto &P) { return TrackedVals.at(P.first); }); |
| NumReducedVals = Candidates.size(); |
| // Have a reduction of the same element. |
| if (NumReducedVals == 1) { |
| Value *OrigV = TrackedToOrig.at(Candidates.front()); |
| unsigned Cnt = At(SameValuesCounter, OrigV); |
| Value *RedVal = |
| emitScaleForReusedOps(Candidates.front(), Builder, Cnt); |
| VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal); |
| VectorizedVals.try_emplace(OrigV, Cnt); |
| continue; |
| } |
| } |
| |
| unsigned MaxVecRegSize = V.getMaxVecRegSize(); |
| unsigned EltSize = V.getVectorElementSize(Candidates[0]); |
| const unsigned MaxElts = std::clamp<unsigned>( |
| llvm::bit_floor(MaxVecRegSize / EltSize), RedValsMaxNumber, |
| RegMaxNumber * RedValsMaxNumber); |
| |
| unsigned ReduxWidth = NumReducedVals; |
| if (!VectorizeNonPowerOf2 || !has_single_bit(ReduxWidth + 1)) |
| ReduxWidth = bit_floor(ReduxWidth); |
| ReduxWidth = std::min(ReduxWidth, MaxElts); |
| |
| unsigned Start = 0; |
| unsigned Pos = Start; |
| // Restarts vectorization attempt with lower vector factor. |
| unsigned PrevReduxWidth = ReduxWidth; |
| bool CheckForReusedReductionOpsLocal = false; |
| auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, |
| &CheckForReusedReductionOpsLocal, |
| &PrevReduxWidth, &V, |
| &IgnoreList](bool IgnoreVL = false) { |
| bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); |
| if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { |
| // Check if any of the reduction ops are gathered. If so, worth |
| // trying again with less number of reduction ops. |
| CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; |
| } |
| ++Pos; |
| if (Pos < NumReducedVals - ReduxWidth + 1) |
| return IsAnyRedOpGathered; |
| Pos = Start; |
| ReduxWidth = bit_ceil(ReduxWidth) / 2; |
| return IsAnyRedOpGathered; |
| }; |
| bool AnyVectorized = false; |
| while (Pos < NumReducedVals - ReduxWidth + 1 && |
| ReduxWidth >= ReductionLimit) { |
| // Dependency in tree of the reduction ops - drop this attempt, try |
| // later. |
| if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && |
| Start == 0) { |
| CheckForReusedReductionOps = true; |
| break; |
| } |
| PrevReduxWidth = ReduxWidth; |
| ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); |
| // Beeing analyzed already - skip. |
| if (V.areAnalyzedReductionVals(VL)) { |
| (void)AdjustReducedVals(/*IgnoreVL=*/true); |
| continue; |
| } |
| // Early exit if any of the reduction values were deleted during |
| // previous vectorization attempts. |
| if (any_of(VL, [&V](Value *RedVal) { |
| auto *RedValI = dyn_cast<Instruction>(RedVal); |
| if (!RedValI) |
| return false; |
| return V.isDeleted(RedValI); |
| })) |
| break; |
| V.buildTree(VL, IgnoreList); |
| if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { |
| if (!AdjustReducedVals()) |
| V.analyzedReductionVals(VL); |
| continue; |
| } |
| if (V.isLoadCombineReductionCandidate(RdxKind)) { |
| if (!AdjustReducedVals()) |
| V.analyzedReductionVals(VL); |
| continue; |
| } |
| V.reorderTopToBottom(); |
| // No need to reorder the root node at all. |
| V.reorderBottomToTop(/*IgnoreReorder=*/true); |
| // Keep extracted other reduction values, if they are used in the |
| // vectorization trees. |
| BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues; |
| // The reduction root is used as the insertion point for new |
| // instructions, so set it as externally used to prevent it from being |
| // deleted. |
| LocalExternallyUsedValues[ReductionRoot]; |
| for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { |
| if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) |
| continue; |
| for (Value *V : ReducedVals[Cnt]) |
| if (isa<Instruction>(V)) |
| LocalExternallyUsedValues[TrackedVals[V]]; |
| } |
| if (!IsSupportedHorRdxIdentityOp) { |
| // Number of uses of the candidates in the vector of values. |
| assert(SameValuesCounter.empty() && |
| "Reused values counter map is not empty"); |
| for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { |
| if (Cnt >= Pos && Cnt < Pos + ReduxWidth) |
| continue; |
| Value *V = Candidates[Cnt]; |
| Value *OrigV = TrackedToOrig.at(V); |
| ++SameValuesCounter.try_emplace(OrigV).first->second; |
| } |
| } |
| V.transformNodes(); |
| SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end()); |
| // Gather externally used values. |
| SmallPtrSet<Value *, 4> Visited; |
| for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { |
| if (Cnt >= Pos && Cnt < Pos + ReduxWidth) |
| continue; |
| Value *RdxVal = Candidates[Cnt]; |
| if (auto It = TrackedVals.find(RdxVal); It != TrackedVals.end()) |
| RdxVal = It->second; |
| if (!Visited.insert(RdxVal).second) |
| continue; |
| // Check if the scalar was vectorized as part of the vectorization |
| // tree but not the top node. |
| if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) { |
| LocalExternallyUsedValues[RdxVal]; |
| continue; |
| } |
| Value *OrigV = TrackedToOrig.at(RdxVal); |
| unsigned NumOps = |
| VectorizedVals.lookup(OrigV) + At(SameValuesCounter, OrigV); |
| if (NumOps != ReducedValsToOps.at(OrigV).size()) |
| LocalExternallyUsedValues[RdxVal]; |
| } |
| // Do not need the list of reused scalars in regular mode anymore. |
| if (!IsSupportedHorRdxIdentityOp) |
| SameValuesCounter.clear(); |
| for (Value *RdxVal : VL) |
| if (RequiredExtract.contains(RdxVal)) |
| LocalExternallyUsedValues[RdxVal]; |
| V.buildExternalUses(LocalExternallyUsedValues); |
| |
| V.computeMinimumValueSizes(); |
| |
| // Estimate cost. |
| InstructionCost TreeCost = V.getTreeCost(VL); |
| InstructionCost ReductionCost = |
| getReductionCost(TTI, VL, IsCmpSelMinMax, ReduxWidth, RdxFMF); |
| InstructionCost Cost = TreeCost + ReductionCost; |
| LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost |
| << " for reduction\n"); |
| if (!Cost.isValid()) |
| break; |
| if (Cost >= -SLPCostThreshold) { |
| V.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", |
| ReducedValsToOps.at(VL[0]).front()) |
| << "Vectorizing horizontal reduction is possible " |
| << "but not beneficial with cost " << ore::NV("Cost", Cost) |
| << " and threshold " |
| << ore::NV("Threshold", -SLPCostThreshold); |
| }); |
| if (!AdjustReducedVals()) |
| V.analyzedReductionVals(VL); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" |
| << Cost << ". (HorRdx)\n"); |
| V.getORE()->emit([&]() { |
| return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", |
| ReducedValsToOps.at(VL[0]).front()) |
| << "Vectorized horizontal reduction with cost " |
| << ore::NV("Cost", Cost) << " and with tree size " |
| << ore::NV("TreeSize", V.getTreeSize()); |
| }); |
| |
| Builder.setFastMathFlags(RdxFMF); |
| |
| // Emit a reduction. If the root is a select (min/max idiom), the insert |
| // point is the compare condition of that select. |
| Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); |
| Instruction *InsertPt = RdxRootInst; |
| if (IsCmpSelMinMax) |
| InsertPt = GetCmpForMinMaxReduction(RdxRootInst); |
| |
| // Vectorize a tree. |
| Value *VectorizedRoot = |
| V.vectorizeTree(LocalExternallyUsedValues, InsertPt); |
| // Update TrackedToOrig mapping, since the tracked values might be |
| // updated. |
| for (Value *RdxVal : Candidates) { |
| Value *OrigVal = TrackedToOrig.at(RdxVal); |
| Value *TransformedRdxVal = TrackedVals.at(OrigVal); |
| if (TransformedRdxVal != RdxVal) |
| TrackedToOrig.try_emplace(TransformedRdxVal, OrigVal); |
| } |
| |
| Builder.SetInsertPoint(InsertPt); |
| |
| // To prevent poison from leaking across what used to be sequential, |
| // safe, scalar boolean logic operations, the reduction operand must be |
| // frozen. |
| if ((isBoolLogicOp(RdxRootInst) || |
| (AnyBoolLogicOp && VL.size() != TrackedVals.size())) && |
| !isGuaranteedNotToBePoison(VectorizedRoot)) |
| VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); |
| |
| // Emit code to correctly handle reused reduced values, if required. |
| if (OptReusedScalars && !SameScaleFactor) { |
| VectorizedRoot = emitReusedOps(VectorizedRoot, Builder, V, |
| SameValuesCounter, TrackedToOrig); |
| } |
| |
| Value *ReducedSubTree; |
| Type *ScalarTy = VL.front()->getType(); |
| if (isa<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| unsigned ScalarTyNumElements = getNumElements(ScalarTy); |
| ReducedSubTree = PoisonValue::get(FixedVectorType::get( |
| VectorizedRoot->getType()->getScalarType(), ScalarTyNumElements)); |
| for (unsigned I : seq<unsigned>(ScalarTyNumElements)) { |
| // Do reduction for each lane. |
| // e.g., do reduce add for |
| // VL[0] = <4 x Ty> <a, b, c, d> |
| // VL[1] = <4 x Ty> <e, f, g, h> |
| // Lane[0] = <2 x Ty> <a, e> |
| // Lane[1] = <2 x Ty> <b, f> |
| // Lane[2] = <2 x Ty> <c, g> |
| // Lane[3] = <2 x Ty> <d, h> |
| // result[0] = reduce add Lane[0] |
| // result[1] = reduce add Lane[1] |
| // result[2] = reduce add Lane[2] |
| // result[3] = reduce add Lane[3] |
| SmallVector<int, 16> Mask = |
| createStrideMask(I, ScalarTyNumElements, VL.size()); |
| Value *Lane = Builder.CreateShuffleVector(VectorizedRoot, Mask); |
| ReducedSubTree = Builder.CreateInsertElement( |
| ReducedSubTree, emitReduction(Lane, Builder, TTI), I); |
| } |
| } else { |
| ReducedSubTree = emitReduction(VectorizedRoot, Builder, TTI); |
| } |
| if (ReducedSubTree->getType() != VL.front()->getType()) { |
| assert(ReducedSubTree->getType() != VL.front()->getType() && |
| "Expected different reduction type."); |
| ReducedSubTree = |
| Builder.CreateIntCast(ReducedSubTree, VL.front()->getType(), |
| V.isSignedMinBitwidthRootNode()); |
| } |
| |
| // Improved analysis for add/fadd/xor reductions with same scale factor |
| // for all operands of reductions. We can emit scalar ops for them |
| // instead. |
| if (OptReusedScalars && SameScaleFactor) |
| ReducedSubTree = emitScaleForReusedOps( |
| ReducedSubTree, Builder, SameValuesCounter.front().second); |
| |
| VectorizedTree = GetNewVectorizedTree(VectorizedTree, ReducedSubTree); |
| // Count vectorized reduced values to exclude them from final reduction. |
| for (Value *RdxVal : VL) { |
| Value *OrigV = TrackedToOrig.at(RdxVal); |
| if (IsSupportedHorRdxIdentityOp) { |
| VectorizedVals.try_emplace(OrigV, At(SameValuesCounter, OrigV)); |
| continue; |
| } |
| ++VectorizedVals.try_emplace(OrigV).first->getSecond(); |
| if (!V.isVectorized(RdxVal)) |
| RequiredExtract.insert(RdxVal); |
| } |
| Pos += ReduxWidth; |
| Start = Pos; |
| ReduxWidth = llvm::bit_floor(NumReducedVals - Pos); |
| AnyVectorized = true; |
| } |
| if (OptReusedScalars && !AnyVectorized) { |
| for (const std::pair<Value *, unsigned> &P : SameValuesCounter) { |
| Value *RdxVal = TrackedVals.at(P.first); |
| Value *RedVal = emitScaleForReusedOps(RdxVal, Builder, P.second); |
| VectorizedTree = GetNewVectorizedTree(VectorizedTree, RedVal); |
| VectorizedVals.try_emplace(P.first, P.second); |
| } |
| continue; |
| } |
| } |
| if (VectorizedTree) { |
| // Reorder operands of bool logical op in the natural order to avoid |
| // possible problem with poison propagation. If not possible to reorder |
| // (both operands are originally RHS), emit an extra freeze instruction |
| // for the LHS operand. |
| // I.e., if we have original code like this: |
| // RedOp1 = select i1 ?, i1 LHS, i1 false |
| // RedOp2 = select i1 RHS, i1 ?, i1 false |
| |
| // Then, we swap LHS/RHS to create a new op that matches the poison |
| // semantics of the original code. |
| |
| // If we have original code like this and both values could be poison: |
| // RedOp1 = select i1 ?, i1 LHS, i1 false |
| // RedOp2 = select i1 ?, i1 RHS, i1 false |
| |
| // Then, we must freeze LHS in the new op. |
| auto FixBoolLogicalOps = [&, VectorizedTree](Value *&LHS, Value *&RHS, |
| Instruction *RedOp1, |
| Instruction *RedOp2, |
| bool InitStep) { |
| if (!AnyBoolLogicOp) |
| return; |
| if (isBoolLogicOp(RedOp1) && |
| ((!InitStep && LHS == VectorizedTree) || |
| getRdxOperand(RedOp1, 0) == LHS || isGuaranteedNotToBePoison(LHS))) |
| return; |
| if (isBoolLogicOp(RedOp2) && ((!InitStep && RHS == VectorizedTree) || |
| getRdxOperand(RedOp2, 0) == RHS || |
| isGuaranteedNotToBePoison(RHS))) { |
| std::swap(LHS, RHS); |
| return; |
| } |
| if (LHS != VectorizedTree) |
| LHS = Builder.CreateFreeze(LHS); |
| }; |
| // Finish the reduction. |
| // Need to add extra arguments and not vectorized possible reduction |
| // values. |
| // Try to avoid dependencies between the scalar remainders after |
| // reductions. |
| auto FinalGen = |
| [&](ArrayRef<std::pair<Instruction *, Value *>> InstVals, |
| bool InitStep) { |
| unsigned Sz = InstVals.size(); |
| SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + |
| Sz % 2); |
| for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { |
| Instruction *RedOp = InstVals[I + 1].first; |
| Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); |
| Value *RdxVal1 = InstVals[I].second; |
| Value *StableRdxVal1 = RdxVal1; |
| auto It1 = TrackedVals.find(RdxVal1); |
| if (It1 != TrackedVals.end()) |
| StableRdxVal1 = It1->second; |
| Value *RdxVal2 = InstVals[I + 1].second; |
| Value *StableRdxVal2 = RdxVal2; |
| auto It2 = TrackedVals.find(RdxVal2); |
| if (It2 != TrackedVals.end()) |
| StableRdxVal2 = It2->second; |
| // To prevent poison from leaking across what used to be |
| // sequential, safe, scalar boolean logic operations, the |
| // reduction operand must be frozen. |
| FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first, |
| RedOp, InitStep); |
| Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, |
| StableRdxVal2, "op.rdx", ReductionOps); |
| ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); |
| } |
| if (Sz % 2 == 1) |
| ExtraReds[Sz / 2] = InstVals.back(); |
| return ExtraReds; |
| }; |
| SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; |
| ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot), |
| VectorizedTree); |
| SmallPtrSet<Value *, 8> Visited; |
| for (ArrayRef<Value *> Candidates : ReducedVals) { |
| for (Value *RdxVal : Candidates) { |
| if (!Visited.insert(RdxVal).second) |
| continue; |
| unsigned NumOps = VectorizedVals.lookup(RdxVal); |
| for (Instruction *RedOp : |
| ArrayRef(ReducedValsToOps.at(RdxVal)).drop_back(NumOps)) |
| ExtraReductions.emplace_back(RedOp, RdxVal); |
| } |
| } |
| // Iterate through all not-vectorized reduction values/extra arguments. |
| bool InitStep = true; |
| while (ExtraReductions.size() > 1) { |
| SmallVector<std::pair<Instruction *, Value *>> NewReds = |
| FinalGen(ExtraReductions, InitStep); |
| ExtraReductions.swap(NewReds); |
| InitStep = false; |
| } |
| VectorizedTree = ExtraReductions.front().second; |
| |
| ReductionRoot->replaceAllUsesWith(VectorizedTree); |
| |
| // The original scalar reduction is expected to have no remaining |
| // uses outside the reduction tree itself. Assert that we got this |
| // correct, replace internal uses with undef, and mark for eventual |
| // deletion. |
| #ifndef NDEBUG |
| SmallSet<Value *, 4> IgnoreSet; |
| for (ArrayRef<Value *> RdxOps : ReductionOps) |
| IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); |
| #endif |
| for (ArrayRef<Value *> RdxOps : ReductionOps) { |
| for (Value *Ignore : RdxOps) { |
| if (!Ignore) |
| continue; |
| #ifndef NDEBUG |
| for (auto *U : Ignore->users()) { |
| assert(IgnoreSet.count(U) && |
| "All users must be either in the reduction ops list."); |
| } |
| #endif |
| if (!Ignore->use_empty()) { |
| Value *P = PoisonValue::get(Ignore->getType()); |
| Ignore->replaceAllUsesWith(P); |
| } |
| } |
| V.removeInstructionsAndOperands(RdxOps); |
| } |
| } else if (!CheckForReusedReductionOps) { |
| for (ReductionOpsType &RdxOps : ReductionOps) |
| for (Value *RdxOp : RdxOps) |
| V.analyzedReductionRoot(cast<Instruction>(RdxOp)); |
| } |
| return VectorizedTree; |
| } |
| |
| private: |
| /// Calculate the cost of a reduction. |
| InstructionCost getReductionCost(TargetTransformInfo *TTI, |
| ArrayRef<Value *> ReducedVals, |
| bool IsCmpSelMinMax, unsigned ReduxWidth, |
| FastMathFlags FMF) { |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| Type *ScalarTy = ReducedVals.front()->getType(); |
| FixedVectorType *VectorTy = getWidenedType(ScalarTy, ReduxWidth); |
| InstructionCost VectorCost = 0, ScalarCost; |
| // If all of the reduced values are constant, the vector cost is 0, since |
| // the reduction value can be calculated at the compile time. |
| bool AllConsts = allConstant(ReducedVals); |
| auto EvaluateScalarCost = [&](function_ref<InstructionCost()> GenCostFn) { |
| InstructionCost Cost = 0; |
| // Scalar cost is repeated for N-1 elements. |
| int Cnt = ReducedVals.size(); |
| for (Value *RdxVal : ReducedVals) { |
| if (Cnt == 1) |
| break; |
| --Cnt; |
| if (RdxVal->hasNUsesOrMore(IsCmpSelMinMax ? 3 : 2)) { |
| Cost += GenCostFn(); |
| continue; |
| } |
| InstructionCost ScalarCost = 0; |
| for (User *U : RdxVal->users()) { |
| auto *RdxOp = cast<Instruction>(U); |
| if (hasRequiredNumberOfUses(IsCmpSelMinMax, RdxOp)) { |
| ScalarCost += TTI->getInstructionCost(RdxOp, CostKind); |
| continue; |
| } |
| ScalarCost = InstructionCost::getInvalid(); |
| break; |
| } |
| if (ScalarCost.isValid()) |
| Cost += ScalarCost; |
| else |
| Cost += GenCostFn(); |
| } |
| return Cost; |
| }; |
| switch (RdxKind) { |
| case RecurKind::Add: |
| case RecurKind::Mul: |
| case RecurKind::Or: |
| case RecurKind::And: |
| case RecurKind::Xor: |
| case RecurKind::FAdd: |
| case RecurKind::FMul: { |
| unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); |
| if (!AllConsts) { |
| if (auto *VecTy = dyn_cast<FixedVectorType>(ScalarTy)) { |
| assert(SLPReVec && "FixedVectorType is not expected."); |
| unsigned ScalarTyNumElements = VecTy->getNumElements(); |
| for (unsigned I : seq<unsigned>(ReducedVals.size())) { |
| VectorCost += TTI->getShuffleCost( |
| TTI::SK_PermuteSingleSrc, VectorTy, |
| createStrideMask(I, ScalarTyNumElements, ReducedVals.size())); |
| VectorCost += TTI->getArithmeticReductionCost(RdxOpcode, VecTy, FMF, |
| CostKind); |
| } |
| VectorCost += TTI->getScalarizationOverhead( |
| VecTy, APInt::getAllOnes(ScalarTyNumElements), /*Insert*/ true, |
| /*Extract*/ false, TTI::TCK_RecipThroughput); |
| } else { |
| VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, |
| CostKind); |
| } |
| } |
| ScalarCost = EvaluateScalarCost([&]() { |
| return TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); |
| }); |
| break; |
| } |
| case RecurKind::FMax: |
| case RecurKind::FMin: |
| case RecurKind::FMaximum: |
| case RecurKind::FMinimum: |
| case RecurKind::SMax: |
| case RecurKind::SMin: |
| case RecurKind::UMax: |
| case RecurKind::UMin: { |
| Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RdxKind); |
| if (!AllConsts) |
| VectorCost = TTI->getMinMaxReductionCost(Id, VectorTy, FMF, CostKind); |
| ScalarCost = EvaluateScalarCost([&]() { |
| IntrinsicCostAttributes ICA(Id, ScalarTy, {ScalarTy, ScalarTy}, FMF); |
| return TTI->getIntrinsicInstrCost(ICA, CostKind); |
| }); |
| break; |
| } |
| default: |
| llvm_unreachable("Expected arithmetic or min/max reduction operation"); |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost |
| << " for reduction of " << shortBundleName(ReducedVals) |
| << " (It is a splitting reduction)\n"); |
| return VectorCost - ScalarCost; |
| } |
| |
| /// Emit a horizontal reduction of the vectorized value. |
| Value *emitReduction(Value *VectorizedValue, IRBuilderBase &Builder, |
| const TargetTransformInfo *TTI) { |
| assert(VectorizedValue && "Need to have a vectorized tree node"); |
| assert(RdxKind != RecurKind::FMulAdd && |
| "A call to the llvm.fmuladd intrinsic is not handled yet"); |
| |
| ++NumVectorInstructions; |
| return createSimpleReduction(Builder, VectorizedValue, RdxKind); |
| } |
| |
| /// Emits optimized code for unique scalar value reused \p Cnt times. |
| Value *emitScaleForReusedOps(Value *VectorizedValue, IRBuilderBase &Builder, |
| unsigned Cnt) { |
| assert(IsSupportedHorRdxIdentityOp && |
| "The optimization of matched scalar identity horizontal reductions " |
| "must be supported."); |
| if (Cnt == 1) |
| return VectorizedValue; |
| switch (RdxKind) { |
| case RecurKind::Add: { |
| // res = mul vv, n |
| Value *Scale = ConstantInt::get(VectorizedValue->getType(), Cnt); |
| LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Cnt << "of " |
| << VectorizedValue << ". (HorRdx)\n"); |
| return Builder.CreateMul(VectorizedValue, Scale); |
| } |
| case RecurKind::Xor: { |
| // res = n % 2 ? 0 : vv |
| LLVM_DEBUG(dbgs() << "SLP: Xor " << Cnt << "of " << VectorizedValue |
| << ". (HorRdx)\n"); |
| if (Cnt % 2 == 0) |
| return Constant::getNullValue(VectorizedValue->getType()); |
| return VectorizedValue; |
| } |
| case RecurKind::FAdd: { |
| // res = fmul v, n |
| Value *Scale = ConstantFP::get(VectorizedValue->getType(), Cnt); |
| LLVM_DEBUG(dbgs() << "SLP: FAdd (to-fmul) " << Cnt << "of " |
| << VectorizedValue << ". (HorRdx)\n"); |
| return Builder.CreateFMul(VectorizedValue, Scale); |
| } |
| case RecurKind::And: |
| case RecurKind::Or: |
| case RecurKind::SMax: |
| case RecurKind::SMin: |
| case RecurKind::UMax: |
| case RecurKind::UMin: |
| case RecurKind::FMax: |
| case RecurKind::FMin: |
| case RecurKind::FMaximum: |
| case RecurKind::FMinimum: |
| // res = vv |
| return VectorizedValue; |
| case RecurKind::Mul: |
| case RecurKind::FMul: |
| case RecurKind::FMulAdd: |
| case RecurKind::IAnyOf: |
| case RecurKind::FAnyOf: |
| case RecurKind::None: |
| llvm_unreachable("Unexpected reduction kind for repeated scalar."); |
| } |
| return nullptr; |
| } |
| |
| /// Emits actual operation for the scalar identity values, found during |
| /// horizontal reduction analysis. |
| Value * |
| emitReusedOps(Value *VectorizedValue, IRBuilderBase &Builder, BoUpSLP &R, |
| const SmallMapVector<Value *, unsigned, 16> &SameValuesCounter, |
| const DenseMap<Value *, Value *> &TrackedToOrig) { |
| assert(IsSupportedHorRdxIdentityOp && |
| "The optimization of matched scalar identity horizontal reductions " |
| "must be supported."); |
| ArrayRef<Value *> VL = R.getRootNodeScalars(); |
| auto *VTy = cast<FixedVectorType>(VectorizedValue->getType()); |
| if (VTy->getElementType() != VL.front()->getType()) { |
| VectorizedValue = Builder.CreateIntCast( |
| VectorizedValue, |
| getWidenedType(VL.front()->getType(), VTy->getNumElements()), |
| R.isSignedMinBitwidthRootNode()); |
| } |
| switch (RdxKind) { |
| case RecurKind::Add: { |
| // root = mul prev_root, <1, 1, n, 1> |
| SmallVector<Constant *> Vals; |
| for (Value *V : VL) { |
| unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.at(V)); |
| Vals.push_back(ConstantInt::get(V->getType(), Cnt, /*IsSigned=*/false)); |
| } |
| auto *Scale = ConstantVector::get(Vals); |
| LLVM_DEBUG(dbgs() << "SLP: Add (to-mul) " << Scale << "of " |
| << VectorizedValue << ". (HorRdx)\n"); |
| return Builder.CreateMul(VectorizedValue, Scale); |
| } |
| case RecurKind::And: |
| case RecurKind::Or: |
| // No need for multiple or/and(s). |
| LLVM_DEBUG(dbgs() << "SLP: And/or of same " << VectorizedValue |
| << ". (HorRdx)\n"); |
| return VectorizedValue; |
| case RecurKind::SMax: |
| case RecurKind::SMin: |
| case RecurKind::UMax: |
| case RecurKind::UMin: |
| case RecurKind::FMax: |
| case RecurKind::FMin: |
| case RecurKind::FMaximum: |
| case RecurKind::FMinimum: |
| // No need for multiple min/max(s) of the same value. |
| LLVM_DEBUG(dbgs() << "SLP: Max/min of same " << VectorizedValue |
| << ". (HorRdx)\n"); |
| return VectorizedValue; |
| case RecurKind::Xor: { |
| // Replace values with even number of repeats with 0, since |
| // x xor x = 0. |
| // root = shuffle prev_root, zeroinitalizer, <0, 1, 2, vf, 4, vf, 5, 6, |
| // 7>, if elements 4th and 6th elements have even number of repeats. |
| SmallVector<int> Mask( |
| cast<FixedVectorType>(VectorizedValue->getType())->getNumElements(), |
| PoisonMaskElem); |
| std::iota(Mask.begin(), Mask.end(), 0); |
| bool NeedShuffle = false; |
| for (unsigned I = 0, VF = VL.size(); I < VF; ++I) { |
| Value *V = VL[I]; |
| unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.at(V)); |
| if (Cnt % 2 == 0) { |
| Mask[I] = VF; |
| NeedShuffle = true; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "SLP: Xor <"; for (int I |
| : Mask) dbgs() |
| << I << " "; |
| dbgs() << "> of " << VectorizedValue << ". (HorRdx)\n"); |
| if (NeedShuffle) |
| VectorizedValue = Builder.CreateShuffleVector( |
| VectorizedValue, |
| ConstantVector::getNullValue(VectorizedValue->getType()), Mask); |
| return VectorizedValue; |
| } |
| case RecurKind::FAdd: { |
| // root = fmul prev_root, <1.0, 1.0, n.0, 1.0> |
| SmallVector<Constant *> Vals; |
| for (Value *V : VL) { |
| unsigned Cnt = SameValuesCounter.lookup(TrackedToOrig.at(V)); |
| Vals.push_back(ConstantFP::get(V->getType(), Cnt)); |
| } |
| auto *Scale = ConstantVector::get(Vals); |
| return Builder.CreateFMul(VectorizedValue, Scale); |
| } |
| case RecurKind::Mul: |
| case RecurKind::FMul: |
| case RecurKind::FMulAdd: |
| case RecurKind::IAnyOf: |
| case RecurKind::FAnyOf: |
| case RecurKind::None: |
| llvm_unreachable("Unexpected reduction kind for reused scalars."); |
| } |
| return nullptr; |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Gets recurrence kind from the specified value. |
| static RecurKind getRdxKind(Value *V) { |
| return HorizontalReduction::getRdxKind(V); |
| } |
| static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) { |
| if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) |
| return cast<FixedVectorType>(IE->getType())->getNumElements(); |
| |
| unsigned AggregateSize = 1; |
| auto *IV = cast<InsertValueInst>(InsertInst); |
| Type *CurrentType = IV->getType(); |
| do { |
| if (auto *ST = dyn_cast<StructType>(CurrentType)) { |
| for (auto *Elt : ST->elements()) |
| if (Elt != ST->getElementType(0)) // check homogeneity |
| return std::nullopt; |
| AggregateSize *= ST->getNumElements(); |
| CurrentType = ST->getElementType(0); |
| } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { |
| AggregateSize *= AT->getNumElements(); |
| CurrentType = AT->getElementType(); |
| } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { |
| AggregateSize *= VT->getNumElements(); |
| return AggregateSize; |
| } else if (CurrentType->isSingleValueType()) { |
| return AggregateSize; |
| } else { |
| return std::nullopt; |
| } |
| } while (true); |
| } |
| |
| static void findBuildAggregate_rec(Instruction *LastInsertInst, |
| TargetTransformInfo *TTI, |
| SmallVectorImpl<Value *> &BuildVectorOpds, |
| SmallVectorImpl<Value *> &InsertElts, |
| unsigned OperandOffset) { |
| do { |
| Value *InsertedOperand = LastInsertInst->getOperand(1); |
| std::optional<unsigned> OperandIndex = |
| getElementIndex(LastInsertInst, OperandOffset); |
| if (!OperandIndex) |
| return; |
| if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) { |
| findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, |
| BuildVectorOpds, InsertElts, *OperandIndex); |
| |
| } else { |
| BuildVectorOpds[*OperandIndex] = InsertedOperand; |
| InsertElts[*OperandIndex] = LastInsertInst; |
| } |
| LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); |
| } while (LastInsertInst != nullptr && |
| isa<InsertValueInst, InsertElementInst>(LastInsertInst) && |
| LastInsertInst->hasOneUse()); |
| } |
| |
| /// Recognize construction of vectors like |
| /// %ra = insertelement <4 x float> poison, float %s0, i32 0 |
| /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 |
| /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 |
| /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 |
| /// starting from the last insertelement or insertvalue instruction. |
| /// |
| /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, |
| /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. |
| /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. |
| /// |
| /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. |
| /// |
| /// \return true if it matches. |
| static bool findBuildAggregate(Instruction *LastInsertInst, |
| TargetTransformInfo *TTI, |
| SmallVectorImpl<Value *> &BuildVectorOpds, |
| SmallVectorImpl<Value *> &InsertElts) { |
| |
| assert((isa<InsertElementInst>(LastInsertInst) || |
| isa<InsertValueInst>(LastInsertInst)) && |
| "Expected insertelement or insertvalue instruction!"); |
| |
| assert((BuildVectorOpds.empty() && InsertElts.empty()) && |
| "Expected empty result vectors!"); |
| |
| std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); |
| if (!AggregateSize) |
| return false; |
| BuildVectorOpds.resize(*AggregateSize); |
| InsertElts.resize(*AggregateSize); |
| |
| findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); |
| llvm::erase(BuildVectorOpds, nullptr); |
| llvm::erase(InsertElts, nullptr); |
| if (BuildVectorOpds.size() >= 2) |
| return true; |
| |
| return false; |
| } |
| |
| /// Try and get a reduction instruction from a phi node. |
| /// |
| /// Given a phi node \p P in a block \p ParentBB, consider possible reductions |
| /// if they come from either \p ParentBB or a containing loop latch. |
| /// |
| /// \returns A candidate reduction value if possible, or \code nullptr \endcode |
| /// if not possible. |
| static Instruction *getReductionInstr(const DominatorTree *DT, PHINode *P, |
| BasicBlock *ParentBB, LoopInfo *LI) { |
| // There are situations where the reduction value is not dominated by the |
| // reduction phi. Vectorizing such cases has been reported to cause |
| // miscompiles. See PR25787. |
| auto DominatedReduxValue = [&](Value *R) { |
| return isa<Instruction>(R) && |
| DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); |
| }; |
| |
| Instruction *Rdx = nullptr; |
| |
| // Return the incoming value if it comes from the same BB as the phi node. |
| if (P->getIncomingBlock(0) == ParentBB) { |
| Rdx = dyn_cast<Instruction>(P->getIncomingValue(0)); |
| } else if (P->getIncomingBlock(1) == ParentBB) { |
| Rdx = dyn_cast<Instruction>(P->getIncomingValue(1)); |
| } |
| |
| if (Rdx && DominatedReduxValue(Rdx)) |
| return Rdx; |
| |
| // Otherwise, check whether we have a loop latch to look at. |
| Loop *BBL = LI->getLoopFor(ParentBB); |
| if (!BBL) |
| return nullptr; |
| BasicBlock *BBLatch = BBL->getLoopLatch(); |
| if (!BBLatch) |
| return nullptr; |
| |
| // There is a loop latch, return the incoming value if it comes from |
| // that. This reduction pattern occasionally turns up. |
| if (P->getIncomingBlock(0) == BBLatch) { |
| Rdx = dyn_cast<Instruction>(P->getIncomingValue(0)); |
| } else if (P->getIncomingBlock(1) == BBLatch) { |
| Rdx = dyn_cast<Instruction>(P->getIncomingValue(1)); |
| } |
| |
| if (Rdx && DominatedReduxValue(Rdx)) |
| return Rdx; |
| |
| return nullptr; |
| } |
| |
| static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { |
| if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) |
| return true; |
| if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) |
| return true; |
| return false; |
| } |
| |
| /// We could have an initial reduction that is not an add. |
| /// r *= v1 + v2 + v3 + v4 |
| /// In such a case start looking for a tree rooted in the first '+'. |
| /// \Returns the new root if found, which may be nullptr if not an instruction. |
| static Instruction *tryGetSecondaryReductionRoot(PHINode *Phi, |
| Instruction *Root) { |
| assert((isa<BinaryOperator>(Root) || isa<SelectInst>(Root) || |
| isa<IntrinsicInst>(Root)) && |
| "Expected binop, select, or intrinsic for reduction matching"); |
| Value *LHS = |
| Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root)); |
| Value *RHS = |
| Root->getOperand(HorizontalReduction::getFirstOperandIndex(Root) + 1); |
| if (LHS == Phi) |
| return dyn_cast<Instruction>(RHS); |
| if (RHS == Phi) |
| return dyn_cast<Instruction>(LHS); |
| return nullptr; |
| } |
| |
| /// \p Returns the first operand of \p I that does not match \p Phi. If |
| /// operand is not an instruction it returns nullptr. |
| static Instruction *getNonPhiOperand(Instruction *I, PHINode *Phi) { |
| Value *Op0 = nullptr; |
| Value *Op1 = nullptr; |
| if (!matchRdxBop(I, Op0, Op1)) |
| return nullptr; |
| return dyn_cast<Instruction>(Op0 == Phi ? Op1 : Op0); |
| } |
| |
| /// \Returns true if \p I is a candidate instruction for reduction vectorization. |
| static bool isReductionCandidate(Instruction *I) { |
| bool IsSelect = match(I, m_Select(m_Value(), m_Value(), m_Value())); |
| Value *B0 = nullptr, *B1 = nullptr; |
| bool IsBinop = matchRdxBop(I, B0, B1); |
| return IsBinop || IsSelect; |
| } |
| |
| bool SLPVectorizerPass::vectorizeHorReduction( |
| PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI, |
| SmallVectorImpl<WeakTrackingVH> &PostponedInsts) { |
| if (!ShouldVectorizeHor) |
| return false; |
| bool TryOperandsAsNewSeeds = P && isa<BinaryOperator>(Root); |
| |
| if (Root->getParent() != BB || isa<PHINode>(Root)) |
| return false; |
| |
| // If we can find a secondary reduction root, use that instead. |
| auto SelectRoot = [&]() { |
| if (TryOperandsAsNewSeeds && isReductionCandidate(Root) && |
| HorizontalReduction::getRdxKind(Root) != RecurKind::None) |
| if (Instruction *NewRoot = tryGetSecondaryReductionRoot(P, Root)) |
| return NewRoot; |
| return Root; |
| }; |
| |
| // Start analysis starting from Root instruction. If horizontal reduction is |
| // found, try to vectorize it. If it is not a horizontal reduction or |
| // vectorization is not possible or not effective, and currently analyzed |
| // instruction is a binary operation, try to vectorize the operands, using |
| // pre-order DFS traversal order. If the operands were not vectorized, repeat |
| // the same procedure considering each operand as a possible root of the |
| // horizontal reduction. |
| // Interrupt the process if the Root instruction itself was vectorized or all |
| // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. |
| // If a horizintal reduction was not matched or vectorized we collect |
| // instructions for possible later attempts for vectorization. |
| std::queue<std::pair<Instruction *, unsigned>> Stack; |
| Stack.emplace(SelectRoot(), 0); |
| SmallPtrSet<Value *, 8> VisitedInstrs; |
| bool Res = false; |
| auto &&TryToReduce = [this, TTI, &R](Instruction *Inst) -> Value * { |
| if (R.isAnalyzedReductionRoot(Inst)) |
| return nullptr; |
| if (!isReductionCandidate(Inst)) |
| return nullptr; |
| HorizontalReduction HorRdx; |
| if (!HorRdx.matchAssociativeReduction(R, Inst, *SE, *DL, *TLI)) |
| return nullptr; |
| return HorRdx.tryToReduce(R, *DL, TTI, *TLI); |
| }; |
| auto TryAppendToPostponedInsts = [&](Instruction *FutureSeed) { |
| if (TryOperandsAsNewSeeds && FutureSeed == Root) { |
| FutureSeed = getNonPhiOperand(Root, P); |
| if (!FutureSeed) |
| return false; |
| } |
| // Do not collect CmpInst or InsertElementInst/InsertValueInst as their |
| // analysis is done separately. |
| if (!isa<CmpInst, InsertElementInst, InsertValueInst>(FutureSeed)) |
| PostponedInsts.push_back(FutureSeed); |
| return true; |
| }; |
| |
| while (!Stack.empty()) { |
| Instruction *Inst; |
| unsigned Level; |
| std::tie(Inst, Level) = Stack.front(); |
| Stack.pop(); |
| // Do not try to analyze instruction that has already been vectorized. |
| // This may happen when we vectorize instruction operands on a previous |
| // iteration while stack was populated before that happened. |
| if (R.isDeleted(Inst)) |
| continue; |
| if (Value *VectorizedV = TryToReduce(Inst)) { |
| Res = true; |
| if (auto *I = dyn_cast<Instruction>(VectorizedV)) { |
| // Try to find another reduction. |
| Stack.emplace(I, Level); |
| continue; |
| } |
| if (R.isDeleted(Inst)) |
| continue; |
| } else { |
| // We could not vectorize `Inst` so try to use it as a future seed. |
| if (!TryAppendToPostponedInsts(Inst)) { |
| assert(Stack.empty() && "Expected empty stack"); |
| break; |
| } |
| } |
| |
| // Try to vectorize operands. |
| // Continue analysis for the instruction from the same basic block only to |
| // save compile time. |
| if (++Level < RecursionMaxDepth) |
| for (auto *Op : Inst->operand_values()) |
| if (VisitedInstrs.insert(Op).second) |
| if (auto *I = dyn_cast<Instruction>(Op)) |
| // Do not try to vectorize CmpInst operands, this is done |
| // separately. |
| if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && |
| !R.isDeleted(I) && I->getParent() == BB) |
| Stack.emplace(I, Level); |
| } |
| return Res; |
| } |
| |
| bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Instruction *Root, |
| BasicBlock *BB, BoUpSLP &R, |
| TargetTransformInfo *TTI) { |
| SmallVector<WeakTrackingVH> PostponedInsts; |
| bool Res = vectorizeHorReduction(P, Root, BB, R, TTI, PostponedInsts); |
| Res |= tryToVectorize(PostponedInsts, R); |
| return Res; |
| } |
| |
| bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts, |
| BoUpSLP &R) { |
| bool Res = false; |
| for (Value *V : Insts) |
| if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst)) |
| Res |= tryToVectorize(Inst, R); |
| return Res; |
| } |
| |
| bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, |
| BasicBlock *BB, BoUpSLP &R, |
| bool MaxVFOnly) { |
| if (!R.canMapToVector(IVI->getType())) |
| return false; |
| |
| SmallVector<Value *, 16> BuildVectorOpds; |
| SmallVector<Value *, 16> BuildVectorInsts; |
| if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) |
| return false; |
| |
| if (MaxVFOnly && BuildVectorOpds.size() == 2) { |
| R.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "NotPossible", IVI) |
| << "Cannot SLP vectorize list: only 2 elements of buildvalue, " |
| "trying reduction first."; |
| }); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); |
| // Aggregate value is unlikely to be processed in vector register. |
| return tryToVectorizeList(BuildVectorOpds, R, MaxVFOnly); |
| } |
| |
| bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, |
| BasicBlock *BB, BoUpSLP &R, |
| bool MaxVFOnly) { |
| SmallVector<Value *, 16> BuildVectorInsts; |
| SmallVector<Value *, 16> BuildVectorOpds; |
| SmallVector<int> Mask; |
| if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || |
| (llvm::all_of(BuildVectorOpds, IsaPred<ExtractElementInst, UndefValue>) && |
| isFixedVectorShuffle(BuildVectorOpds, Mask))) |
| return false; |
| |
| if (MaxVFOnly && BuildVectorInsts.size() == 2) { |
| R.getORE()->emit([&]() { |
| return OptimizationRemarkMissed(SV_NAME, "NotPossible", IEI) |
| << "Cannot SLP vectorize list: only 2 elements of buildvector, " |
| "trying reduction first."; |
| }); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); |
| return tryToVectorizeList(BuildVectorInsts, R, MaxVFOnly); |
| } |
| |
| template <typename T> |
| static bool tryToVectorizeSequence( |
| SmallVectorImpl<T *> &Incoming, function_ref<bool(T *, T *)> Comparator, |
| function_ref<bool(T *, T *)> AreCompatible, |
| function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, |
| bool MaxVFOnly, BoUpSLP &R) { |
| bool Changed = false; |
| // Sort by type, parent, operands. |
| stable_sort(Incoming, Comparator); |
| |
| // Try to vectorize elements base on their type. |
| SmallVector<T *> Candidates; |
| SmallVector<T *> VL; |
| for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E; |
| VL.clear()) { |
| // Look for the next elements with the same type, parent and operand |
| // kinds. |
| auto *I = dyn_cast<Instruction>(*IncIt); |
| if (!I || R.isDeleted(I)) { |
| ++IncIt; |
| continue; |
| } |
| auto *SameTypeIt = IncIt; |
| while (SameTypeIt != E && (!isa<Instruction>(*SameTypeIt) || |
| R.isDeleted(cast<Instruction>(*SameTypeIt)) || |
| AreCompatible(*SameTypeIt, *IncIt))) { |
| auto *I = dyn_cast<Instruction>(*SameTypeIt); |
| ++SameTypeIt; |
| if (I && !R.isDeleted(I)) |
| VL.push_back(cast<T>(I)); |
| } |
| |
| // Try to vectorize them. |
| unsigned NumElts = VL.size(); |
| LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" |
| << NumElts << ")\n"); |
| // The vectorization is a 3-state attempt: |
| // 1. Try to vectorize instructions with the same/alternate opcodes with the |
| // size of maximal register at first. |
| // 2. Try to vectorize remaining instructions with the same type, if |
| // possible. This may result in the better vectorization results rather than |
| // if we try just to vectorize instructions with the same/alternate opcodes. |
| // 3. Final attempt to try to vectorize all instructions with the |
| // same/alternate ops only, this may result in some extra final |
| // vectorization. |
| if (NumElts > 1 && TryToVectorizeHelper(ArrayRef(VL), MaxVFOnly)) { |
| // Success start over because instructions might have been changed. |
| Changed = true; |
| VL.swap(Candidates); |
| Candidates.clear(); |
| for (T *V : VL) { |
| if (auto *I = dyn_cast<Instruction>(V); I && !R.isDeleted(I)) |
| Candidates.push_back(V); |
| } |
| } else { |
| /// \Returns the minimum number of elements that we will attempt to |
| /// vectorize. |
| auto GetMinNumElements = [&R](Value *V) { |
| unsigned EltSize = R.getVectorElementSize(V); |
| return std::max(2U, R.getMaxVecRegSize() / EltSize); |
| }; |
| if (NumElts < GetMinNumElements(*IncIt) && |
| (Candidates.empty() || |
| Candidates.front()->getType() == (*IncIt)->getType())) { |
| for (T *V : VL) { |
| if (auto *I = dyn_cast<Instruction>(V); I && !R.isDeleted(I)) |
| Candidates.push_back(V); |
| } |
| } |
| } |
| // Final attempt to vectorize instructions with the same types. |
| if (Candidates.size() > 1 && |
| (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { |
| if (TryToVectorizeHelper(Candidates, /*MaxVFOnly=*/false)) { |
| // Success start over because instructions might have been changed. |
| Changed = true; |
| } else if (MaxVFOnly) { |
| // Try to vectorize using small vectors. |
| SmallVector<T *> VL; |
| for (auto *It = Candidates.begin(), *End = Candidates.end(); It != End; |
| VL.clear()) { |
| auto *I = dyn_cast<Instruction>(*It); |
| if (!I || R.isDeleted(I)) { |
| ++It; |
| continue; |
| } |
| auto *SameTypeIt = It; |
| while (SameTypeIt != End && |
| (!isa<Instruction>(*SameTypeIt) || |
| R.isDeleted(cast<Instruction>(*SameTypeIt)) || |
| AreCompatible(*SameTypeIt, *It))) { |
| auto *I = dyn_cast<Instruction>(*SameTypeIt); |
| ++SameTypeIt; |
| if (I && !R.isDeleted(I)) |
| VL.push_back(cast<T>(I)); |
| } |
| unsigned NumElts = VL.size(); |
| if (NumElts > 1 && TryToVectorizeHelper(ArrayRef(VL), |
| /*MaxVFOnly=*/false)) |
| Changed = true; |
| It = SameTypeIt; |
| } |
| } |
| Candidates.clear(); |
| } |
| |
| // Start over at the next instruction of a different type (or the end). |
| IncIt = SameTypeIt; |
| } |
| return Changed; |
| } |
| |
| /// Compare two cmp instructions. If IsCompatibility is true, function returns |
| /// true if 2 cmps have same/swapped predicates and mos compatible corresponding |
| /// operands. If IsCompatibility is false, function implements strict weak |
| /// ordering relation between two cmp instructions, returning true if the first |
| /// instruction is "less" than the second, i.e. its predicate is less than the |
| /// predicate of the second or the operands IDs are less than the operands IDs |
| /// of the second cmp instruction. |
| template <bool IsCompatibility> |
| static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI, |
| const DominatorTree &DT) { |
| assert(isValidElementType(V->getType()) && |
| isValidElementType(V2->getType()) && |
| "Expected valid element types only."); |
| if (V == V2) |
| return IsCompatibility; |
| auto *CI1 = cast<CmpInst>(V); |
| auto *CI2 = cast<CmpInst>(V2); |
| if (CI1->getOperand(0)->getType()->getTypeID() < |
| CI2->getOperand(0)->getType()->getTypeID()) |
| return !IsCompatibility; |
| if (CI1->getOperand(0)->getType()->getTypeID() > |
| CI2->getOperand(0)->getType()->getTypeID()) |
| return false; |
| if (CI1->getOperand(0)->getType()->getScalarSizeInBits() < |
| CI2->getOperand(0)->getType()->getScalarSizeInBits()) |
| return !IsCompatibility; |
| if (CI1->getOperand(0)->getType()->getScalarSizeInBits() > |
| CI2->getOperand(0)->getType()->getScalarSizeInBits()) |
| return false; |
| CmpInst::Predicate Pred1 = CI1->getPredicate(); |
| CmpInst::Predicate Pred2 = CI2->getPredicate(); |
| CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); |
| CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); |
| CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); |
| CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); |
| if (BasePred1 < BasePred2) |
| return !IsCompatibility; |
| if (BasePred1 > BasePred2) |
| return false; |
| // Compare operands. |
| bool CI1Preds = Pred1 == BasePred1; |
| bool CI2Preds = Pred2 == BasePred1; |
| for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { |
| auto *Op1 = CI1->getOperand(CI1Preds ? I : E - I - 1); |
| auto *Op2 = CI2->getOperand(CI2Preds ? I : E - I - 1); |
| if (Op1 == Op2) |
| continue; |
| if (Op1->getValueID() < Op2->getValueID()) |
| return !IsCompatibility; |
| if (Op1->getValueID() > Op2->getValueID()) |
| return false; |
| if (auto *I1 = dyn_cast<Instruction>(Op1)) |
| if (auto *I2 = dyn_cast<Instruction>(Op2)) { |
| if (IsCompatibility) { |
| if (I1->getParent() != I2->getParent()) |
| return false; |
| } else { |
| // Try to compare nodes with same parent. |
| DomTreeNodeBase<BasicBlock> *NodeI1 = DT.getNode(I1->getParent()); |
| DomTreeNodeBase<BasicBlock> *NodeI2 = DT.getNode(I2->getParent()); |
| if (!NodeI1) |
| return NodeI2 != nullptr; |
| if (!NodeI2) |
| return false; |
| assert((NodeI1 == NodeI2) == |
| (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeI1 != NodeI2) |
| return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); |
| } |
| InstructionsState S = getSameOpcode({I1, I2}, TLI); |
| if (S.getOpcode() && (IsCompatibility || !S.isAltShuffle())) |
| continue; |
| if (IsCompatibility) |
| return false; |
| if (I1->getOpcode() != I2->getOpcode()) |
| return I1->getOpcode() < I2->getOpcode(); |
| } |
| } |
| return IsCompatibility; |
| } |
| |
| template <typename ItT> |
| bool SLPVectorizerPass::vectorizeCmpInsts(iterator_range<ItT> CmpInsts, |
| BasicBlock *BB, BoUpSLP &R) { |
| bool Changed = false; |
| // Try to find reductions first. |
| for (CmpInst *I : CmpInsts) { |
| if (R.isDeleted(I)) |
| continue; |
| for (Value *Op : I->operands()) |
| if (auto *RootOp = dyn_cast<Instruction>(Op)) |
| Changed |= vectorizeRootInstruction(nullptr, RootOp, BB, R, TTI); |
| } |
| // Try to vectorize operands as vector bundles. |
| for (CmpInst *I : CmpInsts) { |
| if (R.isDeleted(I)) |
| continue; |
| Changed |= tryToVectorize(I, R); |
| } |
| // Try to vectorize list of compares. |
| // Sort by type, compare predicate, etc. |
| auto CompareSorter = [&](Value *V, Value *V2) { |
| if (V == V2) |
| return false; |
| return compareCmp<false>(V, V2, *TLI, *DT); |
| }; |
| |
| auto AreCompatibleCompares = [&](Value *V1, Value *V2) { |
| if (V1 == V2) |
| return true; |
| return compareCmp<true>(V1, V2, *TLI, *DT); |
| }; |
| |
| SmallVector<Value *> Vals; |
| for (Instruction *V : CmpInsts) |
| if (!R.isDeleted(V) && isValidElementType(getValueType(V))) |
| Vals.push_back(V); |
| if (Vals.size() <= 1) |
| return Changed; |
| Changed |= tryToVectorizeSequence<Value>( |
| Vals, CompareSorter, AreCompatibleCompares, |
| [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) { |
| // Exclude possible reductions from other blocks. |
| bool ArePossiblyReducedInOtherBlock = any_of(Candidates, [](Value *V) { |
| return any_of(V->users(), [V](User *U) { |
| auto *Select = dyn_cast<SelectInst>(U); |
| return Select && |
| Select->getParent() != cast<Instruction>(V)->getParent(); |
| }); |
| }); |
| if (ArePossiblyReducedInOtherBlock) |
| return false; |
| return tryToVectorizeList(Candidates, R, MaxVFOnly); |
| }, |
| /*MaxVFOnly=*/true, R); |
| return Changed; |
| } |
| |
| bool SLPVectorizerPass::vectorizeInserts(InstSetVector &Instructions, |
| BasicBlock *BB, BoUpSLP &R) { |
| assert(all_of(Instructions, IsaPred<InsertElementInst, InsertValueInst>) && |
| "This function only accepts Insert instructions"); |
| bool OpsChanged = false; |
| SmallVector<WeakTrackingVH> PostponedInsts; |
| for (auto *I : reverse(Instructions)) { |
| // pass1 - try to match and vectorize a buildvector sequence for MaxVF only. |
| if (R.isDeleted(I) || isa<CmpInst>(I)) |
| continue; |
| if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { |
| OpsChanged |= |
| vectorizeInsertValueInst(LastInsertValue, BB, R, /*MaxVFOnly=*/true); |
| } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { |
| OpsChanged |= |
| vectorizeInsertElementInst(LastInsertElem, BB, R, /*MaxVFOnly=*/true); |
| } |
| // pass2 - try to vectorize reductions only |
| if (R.isDeleted(I)) |
| continue; |
| OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts); |
| if (R.isDeleted(I) || isa<CmpInst>(I)) |
| continue; |
| // pass3 - try to match and vectorize a buildvector sequence. |
| if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { |
| OpsChanged |= |
| vectorizeInsertValueInst(LastInsertValue, BB, R, /*MaxVFOnly=*/false); |
| } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { |
| OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R, |
| /*MaxVFOnly=*/false); |
| } |
| } |
| // Now try to vectorize postponed instructions. |
| OpsChanged |= tryToVectorize(PostponedInsts, R); |
| |
| Instructions.clear(); |
| return OpsChanged; |
| } |
| |
| bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { |
| bool Changed = false; |
| SmallVector<Value *, 4> Incoming; |
| SmallPtrSet<Value *, 16> VisitedInstrs; |
| // Maps phi nodes to the non-phi nodes found in the use tree for each phi |
| // node. Allows better to identify the chains that can be vectorized in the |
| // better way. |
| DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; |
| auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { |
| assert(isValidElementType(V1->getType()) && |
| isValidElementType(V2->getType()) && |
| "Expected vectorizable types only."); |
| // It is fine to compare type IDs here, since we expect only vectorizable |
| // types, like ints, floats and pointers, we don't care about other type. |
| if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) |
| return true; |
| if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) |
| return false; |
| if (V1->getType()->getScalarSizeInBits() < |
| V2->getType()->getScalarSizeInBits()) |
| return true; |
| if (V1->getType()->getScalarSizeInBits() > |
| V2->getType()->getScalarSizeInBits()) |
| return false; |
| ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; |
| ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; |
| if (Opcodes1.size() < Opcodes2.size()) |
| return true; |
| if (Opcodes1.size() > Opcodes2.size()) |
| return false; |
| for (int I = 0, E = Opcodes1.size(); I < E; ++I) { |
| { |
| // Instructions come first. |
| auto *I1 = dyn_cast<Instruction>(Opcodes1[I]); |
| auto *I2 = dyn_cast<Instruction>(Opcodes2[I]); |
| if (I1 && I2) { |
| DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); |
| DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); |
| if (!NodeI1) |
| return NodeI2 != nullptr; |
| if (!NodeI2) |
| return false; |
| assert((NodeI1 == NodeI2) == |
| (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeI1 != NodeI2) |
| return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); |
| InstructionsState S = getSameOpcode({I1, I2}, *TLI); |
| if (S.getOpcode() && !S.isAltShuffle()) |
| continue; |
| return I1->getOpcode() < I2->getOpcode(); |
| } |
| if (I1) |
| return true; |
| if (I2) |
| return false; |
| } |
| { |
| // Non-undef constants come next. |
| bool C1 = isa<Constant>(Opcodes1[I]) && !isa<UndefValue>(Opcodes1[I]); |
| bool C2 = isa<Constant>(Opcodes2[I]) && !isa<UndefValue>(Opcodes2[I]); |
| if (C1 && C2) |
| continue; |
| if (C1) |
| return true; |
| if (C2) |
| return false; |
| } |
| bool U1 = isa<UndefValue>(Opcodes1[I]); |
| bool U2 = isa<UndefValue>(Opcodes2[I]); |
| { |
| // Non-constant non-instructions come next. |
| if (!U1 && !U2) { |
| auto ValID1 = Opcodes1[I]->getValueID(); |
| auto ValID2 = Opcodes2[I]->getValueID(); |
| if (ValID1 == ValID2) |
| continue; |
| if (ValID1 < ValID2) |
| return true; |
| if (ValID1 > ValID2) |
| return false; |
| } |
| if (!U1) |
| return true; |
| if (!U2) |
| return false; |
| } |
| // Undefs come last. |
| assert(U1 && U2 && "The only thing left should be undef & undef."); |
| } |
| return false; |
| }; |
| auto AreCompatiblePHIs = [&PHIToOpcodes, this, &R](Value *V1, Value *V2) { |
| if (V1 == V2) |
| return true; |
| if (V1->getType() != V2->getType()) |
| return false; |
| ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; |
| ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; |
| if (Opcodes1.size() != Opcodes2.size()) |
| return false; |
| for (int I = 0, E = Opcodes1.size(); I < E; ++I) { |
| // Undefs are compatible with any other value. |
| if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) |
| continue; |
| if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) |
| if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { |
| if (R.isDeleted(I1) || R.isDeleted(I2)) |
| return false; |
| if (I1->getParent() != I2->getParent()) |
| return false; |
| InstructionsState S = getSameOpcode({I1, I2}, *TLI); |
| if (S.getOpcode()) |
| continue; |
| return false; |
| } |
| if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) |
| continue; |
| if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) |
| return false; |
| } |
| return true; |
| }; |
| |
| bool HaveVectorizedPhiNodes = false; |
| do { |
| // Collect the incoming values from the PHIs. |
| Incoming.clear(); |
| for (Instruction &I : *BB) { |
| auto *P = dyn_cast<PHINode>(&I); |
| if (!P || P->getNumIncomingValues() > MaxPHINumOperands) |
| break; |
| |
| // No need to analyze deleted, vectorized and non-vectorizable |
| // instructions. |
| if (!VisitedInstrs.count(P) && !R.isDeleted(P) && |
| isValidElementType(P->getType())) |
| Incoming.push_back(P); |
| } |
| |
| if (Incoming.size() <= 1) |
| break; |
| |
| // Find the corresponding non-phi nodes for better matching when trying to |
| // build the tree. |
| for (Value *V : Incoming) { |
| SmallVectorImpl<Value *> &Opcodes = |
| PHIToOpcodes.try_emplace(V).first->getSecond(); |
| if (!Opcodes.empty()) |
| continue; |
| SmallVector<Value *, 4> Nodes(1, V); |
| SmallPtrSet<Value *, 4> Visited; |
| while (!Nodes.empty()) { |
| auto *PHI = cast<PHINode>(Nodes.pop_back_val()); |
| if (!Visited.insert(PHI).second) |
| continue; |
| for (Value *V : PHI->incoming_values()) { |
| if (auto *PHI1 = dyn_cast<PHINode>((V))) { |
| Nodes.push_back(PHI1); |
| continue; |
| } |
| Opcodes.emplace_back(V); |
| } |
| } |
| } |
| |
| HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( |
| Incoming, PHICompare, AreCompatiblePHIs, |
| [this, &R](ArrayRef<Value *> Candidates, bool MaxVFOnly) { |
| return tryToVectorizeList(Candidates, R, MaxVFOnly); |
| }, |
| /*MaxVFOnly=*/true, R); |
| Changed |= HaveVectorizedPhiNodes; |
| if (HaveVectorizedPhiNodes && any_of(PHIToOpcodes, [&](const auto &P) { |
| auto *PHI = dyn_cast<PHINode>(P.first); |
| return !PHI || R.isDeleted(PHI); |
| })) |
| PHIToOpcodes.clear(); |
| VisitedInstrs.insert(Incoming.begin(), Incoming.end()); |
| } while (HaveVectorizedPhiNodes); |
| |
| VisitedInstrs.clear(); |
| |
| InstSetVector PostProcessInserts; |
| SmallSetVector<CmpInst *, 8> PostProcessCmps; |
| // Vectorizes Inserts in `PostProcessInserts` and if `VecctorizeCmps` is true |
| // also vectorizes `PostProcessCmps`. |
| auto VectorizeInsertsAndCmps = [&](bool VectorizeCmps) { |
| bool Changed = vectorizeInserts(PostProcessInserts, BB, R); |
| if (VectorizeCmps) { |
| Changed |= vectorizeCmpInsts(reverse(PostProcessCmps), BB, R); |
| PostProcessCmps.clear(); |
| } |
| PostProcessInserts.clear(); |
| return Changed; |
| }; |
| // Returns true if `I` is in `PostProcessInserts` or `PostProcessCmps`. |
| auto IsInPostProcessInstrs = [&](Instruction *I) { |
| if (auto *Cmp = dyn_cast<CmpInst>(I)) |
| return PostProcessCmps.contains(Cmp); |
| return isa<InsertElementInst, InsertValueInst>(I) && |
| PostProcessInserts.contains(I); |
| }; |
| // Returns true if `I` is an instruction without users, like terminator, or |
| // function call with ignored return value, store. Ignore unused instructions |
| // (basing on instruction type, except for CallInst and InvokeInst). |
| auto HasNoUsers = [](Instruction *I) { |
| return I->use_empty() && |
| (I->getType()->isVoidTy() || isa<CallInst, InvokeInst>(I)); |
| }; |
| for (BasicBlock::iterator It = BB->begin(), E = BB->end(); It != E; ++It) { |
| // Skip instructions with scalable type. The num of elements is unknown at |
| // compile-time for scalable type. |
| if (isa<ScalableVectorType>(It->getType())) |
| continue; |
| |
| // Skip instructions marked for the deletion. |
| if (R.isDeleted(&*It)) |
| continue; |
| // We may go through BB multiple times so skip the one we have checked. |
| if (!VisitedInstrs.insert(&*It).second) { |
| if (HasNoUsers(&*It) && |
| VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator())) { |
| // We would like to start over since some instructions are deleted |
| // and the iterator may become invalid value. |
| Changed = true; |
| It = BB->begin(); |
| E = BB->end(); |
| } |
| continue; |
| } |
| |
| if (isa<DbgInfoIntrinsic>(It)) |
| continue; |
| |
| // Try to vectorize reductions that use PHINodes. |
| if (PHINode *P = dyn_cast<PHINode>(It)) { |
| // Check that the PHI is a reduction PHI. |
| if (P->getNumIncomingValues() == 2) { |
| // Try to match and vectorize a horizontal reduction. |
| Instruction *Root = getReductionInstr(DT, P, BB, LI); |
| if (Root && vectorizeRootInstruction(P, Root, BB, R, TTI)) { |
| Changed = true; |
| It = BB->begin(); |
| E = BB->end(); |
| continue; |
| } |
| } |
| // Try to vectorize the incoming values of the PHI, to catch reductions |
| // that feed into PHIs. |
| for (unsigned I : seq<unsigned>(P->getNumIncomingValues())) { |
| // Skip if the incoming block is the current BB for now. Also, bypass |
| // unreachable IR for efficiency and to avoid crashing. |
| // TODO: Collect the skipped incoming values and try to vectorize them |
| // after processing BB. |
| if (BB == P->getIncomingBlock(I) || |
| !DT->isReachableFromEntry(P->getIncomingBlock(I))) |
| continue; |
| |
| // Postponed instructions should not be vectorized here, delay their |
| // vectorization. |
| if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I)); |
| PI && !IsInPostProcessInstrs(PI)) { |
| bool Res = vectorizeRootInstruction(nullptr, PI, |
| P->getIncomingBlock(I), R, TTI); |
| Changed |= Res; |
| if (Res && R.isDeleted(P)) { |
| It = BB->begin(); |
| E = BB->end(); |
| break; |
| } |
| } |
| } |
| continue; |
| } |
| |
| if (HasNoUsers(&*It)) { |
| bool OpsChanged = false; |
| auto *SI = dyn_cast<StoreInst>(It); |
| bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI; |
| if (SI) { |
| auto *I = Stores.find(getUnderlyingObject(SI->getPointerOperand())); |
| // Try to vectorize chain in store, if this is the only store to the |
| // address in the block. |
| // TODO: This is just a temporarily solution to save compile time. Need |
| // to investigate if we can safely turn on slp-vectorize-hor-store |
| // instead to allow lookup for reduction chains in all non-vectorized |
| // stores (need to check side effects and compile time). |
| TryToVectorizeRoot |= (I == Stores.end() || I->second.size() == 1) && |
| SI->getValueOperand()->hasOneUse(); |
| } |
| if (TryToVectorizeRoot) { |
| for (auto *V : It->operand_values()) { |
| // Postponed instructions should not be vectorized here, delay their |
| // vectorization. |
| if (auto *VI = dyn_cast<Instruction>(V); |
| VI && !IsInPostProcessInstrs(VI)) |
| // Try to match and vectorize a horizontal reduction. |
| OpsChanged |= vectorizeRootInstruction(nullptr, VI, BB, R, TTI); |
| } |
| } |
| // Start vectorization of post-process list of instructions from the |
| // top-tree instructions to try to vectorize as many instructions as |
| // possible. |
| OpsChanged |= |
| VectorizeInsertsAndCmps(/*VectorizeCmps=*/It->isTerminator()); |
| if (OpsChanged) { |
| // We would like to start over since some instructions are deleted |
| // and the iterator may become invalid value. |
| Changed = true; |
| It = BB->begin(); |
| E = BB->end(); |
| continue; |
| } |
| } |
| |
| if (isa<InsertElementInst, InsertValueInst>(It)) |
| PostProcessInserts.insert(&*It); |
| else if (isa<CmpInst>(It)) |
| PostProcessCmps.insert(cast<CmpInst>(&*It)); |
| } |
| |
| return Changed; |
| } |
| |
| bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { |
| auto Changed = false; |
| for (auto &Entry : GEPs) { |
| // If the getelementptr list has fewer than two elements, there's nothing |
| // to do. |
| if (Entry.second.size() < 2) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " |
| << Entry.second.size() << ".\n"); |
| |
| // Process the GEP list in chunks suitable for the target's supported |
| // vector size. If a vector register can't hold 1 element, we are done. We |
| // are trying to vectorize the index computations, so the maximum number of |
| // elements is based on the size of the index expression, rather than the |
| // size of the GEP itself (the target's pointer size). |
| auto *It = find_if(Entry.second, [&](GetElementPtrInst *GEP) { |
| return !R.isDeleted(GEP); |
| }); |
| if (It == Entry.second.end()) |
| continue; |
| unsigned MaxVecRegSize = R.getMaxVecRegSize(); |
| unsigned EltSize = R.getVectorElementSize(*(*It)->idx_begin()); |
| if (MaxVecRegSize < EltSize) |
| continue; |
| |
| unsigned MaxElts = MaxVecRegSize / EltSize; |
| for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { |
| auto Len = std::min<unsigned>(BE - BI, MaxElts); |
| ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); |
| |
| // Initialize a set a candidate getelementptrs. Note that we use a |
| // SetVector here to preserve program order. If the index computations |
| // are vectorizable and begin with loads, we want to minimize the chance |
| // of having to reorder them later. |
| SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); |
| |
| // Some of the candidates may have already been vectorized after we |
| // initially collected them or their index is optimized to constant value. |
| // If so, they are marked as deleted, so remove them from the set of |
| // candidates. |
| Candidates.remove_if([&R](Value *I) { |
| return R.isDeleted(cast<Instruction>(I)) || |
| isa<Constant>(cast<GetElementPtrInst>(I)->idx_begin()->get()); |
| }); |
| |
| // Remove from the set of candidates all pairs of getelementptrs with |
| // constant differences. Such getelementptrs are likely not good |
| // candidates for vectorization in a bottom-up phase since one can be |
| // computed from the other. We also ensure all candidate getelementptr |
| // indices are unique. |
| for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { |
| auto *GEPI = GEPList[I]; |
| if (!Candidates.count(GEPI)) |
| continue; |
| const SCEV *SCEVI = SE->getSCEV(GEPList[I]); |
| for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { |
| auto *GEPJ = GEPList[J]; |
| const SCEV *SCEVJ = SE->getSCEV(GEPList[J]); |
| if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { |
| Candidates.remove(GEPI); |
| Candidates.remove(GEPJ); |
| } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { |
| Candidates.remove(GEPJ); |
| } |
| } |
| } |
| |
| // We break out of the above computation as soon as we know there are |
| // fewer than two candidates remaining. |
| if (Candidates.size() < 2) |
| continue; |
| |
| // Add the single, non-constant index of each candidate to the bundle. We |
| // ensured the indices met these constraints when we originally collected |
| // the getelementptrs. |
| SmallVector<Value *, 16> Bundle(Candidates.size()); |
| auto BundleIndex = 0u; |
| for (auto *V : Candidates) { |
| auto *GEP = cast<GetElementPtrInst>(V); |
| auto *GEPIdx = GEP->idx_begin()->get(); |
| assert(GEP->getNumIndices() == 1 && !isa<Constant>(GEPIdx)); |
| Bundle[BundleIndex++] = GEPIdx; |
| } |
| |
| // Try and vectorize the indices. We are currently only interested in |
| // gather-like cases of the form: |
| // |
| // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... |
| // |
| // where the loads of "a", the loads of "b", and the subtractions can be |
| // performed in parallel. It's likely that detecting this pattern in a |
| // bottom-up phase will be simpler and less costly than building a |
| // full-blown top-down phase beginning at the consecutive loads. |
| Changed |= tryToVectorizeList(Bundle, R); |
| } |
| } |
| return Changed; |
| } |
| |
| bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { |
| bool Changed = false; |
| // Sort by type, base pointers and values operand. Value operands must be |
| // compatible (have the same opcode, same parent), otherwise it is |
| // definitely not profitable to try to vectorize them. |
| auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { |
| if (V->getValueOperand()->getType()->getTypeID() < |
| V2->getValueOperand()->getType()->getTypeID()) |
| return true; |
| if (V->getValueOperand()->getType()->getTypeID() > |
| V2->getValueOperand()->getType()->getTypeID()) |
| return false; |
| if (V->getPointerOperandType()->getTypeID() < |
| V2->getPointerOperandType()->getTypeID()) |
| return true; |
| if (V->getPointerOperandType()->getTypeID() > |
| V2->getPointerOperandType()->getTypeID()) |
| return false; |
| if (V->getValueOperand()->getType()->getScalarSizeInBits() < |
| V2->getValueOperand()->getType()->getScalarSizeInBits()) |
| return true; |
| if (V->getValueOperand()->getType()->getScalarSizeInBits() > |
| V2->getValueOperand()->getType()->getScalarSizeInBits()) |
| return false; |
| // UndefValues are compatible with all other values. |
| if (isa<UndefValue>(V->getValueOperand()) || |
| isa<UndefValue>(V2->getValueOperand())) |
| return false; |
| if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) |
| if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { |
| DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = |
| DT->getNode(I1->getParent()); |
| DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = |
| DT->getNode(I2->getParent()); |
| assert(NodeI1 && "Should only process reachable instructions"); |
| assert(NodeI2 && "Should only process reachable instructions"); |
| assert((NodeI1 == NodeI2) == |
| (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeI1 != NodeI2) |
| return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); |
| InstructionsState S = getSameOpcode({I1, I2}, *TLI); |
| if (S.getOpcode()) |
| return false; |
| return I1->getOpcode() < I2->getOpcode(); |
| } |
| if (isa<Constant>(V->getValueOperand()) && |
| isa<Constant>(V2->getValueOperand())) |
| return false; |
| return V->getValueOperand()->getValueID() < |
| V2->getValueOperand()->getValueID(); |
| }; |
| |
| auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) { |
| if (V1 == V2) |
| return true; |
| if (V1->getValueOperand()->getType() != V2->getValueOperand()->getType()) |
| return false; |
| if (V1->getPointerOperandType() != V2->getPointerOperandType()) |
| return false; |
| // Undefs are compatible with any other value. |
| if (isa<UndefValue>(V1->getValueOperand()) || |
| isa<UndefValue>(V2->getValueOperand())) |
| return true; |
| if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) |
| if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { |
| if (I1->getParent() != I2->getParent()) |
| return false; |
| InstructionsState S = getSameOpcode({I1, I2}, *TLI); |
| return S.getOpcode() > 0; |
| } |
| if (isa<Constant>(V1->getValueOperand()) && |
| isa<Constant>(V2->getValueOperand())) |
| return true; |
| return V1->getValueOperand()->getValueID() == |
| V2->getValueOperand()->getValueID(); |
| }; |
| |
| // Attempt to sort and vectorize each of the store-groups. |
| DenseSet<std::tuple<Value *, Value *, Value *, Value *, unsigned>> Attempted; |
| for (auto &Pair : Stores) { |
| if (Pair.second.size() < 2) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " |
| << Pair.second.size() << ".\n"); |
| |
| if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) |
| continue; |
| |
| // Reverse stores to do bottom-to-top analysis. This is important if the |
| // values are stores to the same addresses several times, in this case need |
| // to follow the stores order (reversed to meet the memory dependecies). |
| SmallVector<StoreInst *> ReversedStores(Pair.second.rbegin(), |
| Pair.second.rend()); |
| Changed |= tryToVectorizeSequence<StoreInst>( |
| ReversedStores, StoreSorter, AreCompatibleStores, |
| [&](ArrayRef<StoreInst *> Candidates, bool) { |
| return vectorizeStores(Candidates, R, Attempted); |
| }, |
| /*MaxVFOnly=*/false, R); |
| } |
| return Changed; |
| } |