| //===- Type.cpp - Implement the Type class --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Type class for the IR library. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Type.h" |
| #include "LLVMContextImpl.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/TypeSize.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/TargetParser/RISCVTargetParser.h" |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Type Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { |
| switch (IDNumber) { |
| case VoidTyID : return getVoidTy(C); |
| case HalfTyID : return getHalfTy(C); |
| case BFloatTyID : return getBFloatTy(C); |
| case FloatTyID : return getFloatTy(C); |
| case DoubleTyID : return getDoubleTy(C); |
| case X86_FP80TyID : return getX86_FP80Ty(C); |
| case FP128TyID : return getFP128Ty(C); |
| case PPC_FP128TyID : return getPPC_FP128Ty(C); |
| case LabelTyID : return getLabelTy(C); |
| case MetadataTyID : return getMetadataTy(C); |
| case X86_AMXTyID : return getX86_AMXTy(C); |
| case TokenTyID : return getTokenTy(C); |
| default: |
| return nullptr; |
| } |
| } |
| |
| bool Type::isIntegerTy(unsigned Bitwidth) const { |
| return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; |
| } |
| |
| bool Type::isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const { |
| if (const auto *ATy = dyn_cast<ArrayType>(this)) |
| return ATy->getElementType()->isScalableTy(Visited); |
| if (const auto *STy = dyn_cast<StructType>(this)) |
| return STy->isScalableTy(Visited); |
| return getTypeID() == ScalableVectorTyID || isScalableTargetExtTy(); |
| } |
| |
| bool Type::isScalableTy() const { |
| SmallPtrSet<const Type *, 4> Visited; |
| return isScalableTy(Visited); |
| } |
| |
| bool Type::containsNonGlobalTargetExtType( |
| SmallPtrSetImpl<const Type *> &Visited) const { |
| if (const auto *ATy = dyn_cast<ArrayType>(this)) |
| return ATy->getElementType()->containsNonGlobalTargetExtType(Visited); |
| if (const auto *STy = dyn_cast<StructType>(this)) |
| return STy->containsNonGlobalTargetExtType(Visited); |
| if (auto *TT = dyn_cast<TargetExtType>(this)) |
| return !TT->hasProperty(TargetExtType::CanBeGlobal); |
| return false; |
| } |
| |
| bool Type::containsNonGlobalTargetExtType() const { |
| SmallPtrSet<const Type *, 4> Visited; |
| return containsNonGlobalTargetExtType(Visited); |
| } |
| |
| bool Type::containsNonLocalTargetExtType( |
| SmallPtrSetImpl<const Type *> &Visited) const { |
| if (const auto *ATy = dyn_cast<ArrayType>(this)) |
| return ATy->getElementType()->containsNonLocalTargetExtType(Visited); |
| if (const auto *STy = dyn_cast<StructType>(this)) |
| return STy->containsNonLocalTargetExtType(Visited); |
| if (auto *TT = dyn_cast<TargetExtType>(this)) |
| return !TT->hasProperty(TargetExtType::CanBeLocal); |
| return false; |
| } |
| |
| bool Type::containsNonLocalTargetExtType() const { |
| SmallPtrSet<const Type *, 4> Visited; |
| return containsNonLocalTargetExtType(Visited); |
| } |
| |
| const fltSemantics &Type::getFltSemantics() const { |
| switch (getTypeID()) { |
| case HalfTyID: return APFloat::IEEEhalf(); |
| case BFloatTyID: return APFloat::BFloat(); |
| case FloatTyID: return APFloat::IEEEsingle(); |
| case DoubleTyID: return APFloat::IEEEdouble(); |
| case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
| case FP128TyID: return APFloat::IEEEquad(); |
| case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
| default: llvm_unreachable("Invalid floating type"); |
| } |
| } |
| |
| bool Type::isIEEE() const { |
| return APFloat::getZero(getFltSemantics()).isIEEE(); |
| } |
| |
| bool Type::isScalableTargetExtTy() const { |
| if (auto *TT = dyn_cast<TargetExtType>(this)) |
| return isa<ScalableVectorType>(TT->getLayoutType()); |
| return false; |
| } |
| |
| Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
| Type *Ty; |
| if (&S == &APFloat::IEEEhalf()) |
| Ty = Type::getHalfTy(C); |
| else if (&S == &APFloat::BFloat()) |
| Ty = Type::getBFloatTy(C); |
| else if (&S == &APFloat::IEEEsingle()) |
| Ty = Type::getFloatTy(C); |
| else if (&S == &APFloat::IEEEdouble()) |
| Ty = Type::getDoubleTy(C); |
| else if (&S == &APFloat::x87DoubleExtended()) |
| Ty = Type::getX86_FP80Ty(C); |
| else if (&S == &APFloat::IEEEquad()) |
| Ty = Type::getFP128Ty(C); |
| else { |
| assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format"); |
| Ty = Type::getPPC_FP128Ty(C); |
| } |
| return Ty; |
| } |
| |
| bool Type::isRISCVVectorTupleTy() const { |
| if (!isTargetExtTy()) |
| return false; |
| |
| return cast<TargetExtType>(this)->getName() == "riscv.vector.tuple"; |
| } |
| |
| bool Type::canLosslesslyBitCastTo(Type *Ty) const { |
| // Identity cast means no change so return true |
| if (this == Ty) |
| return true; |
| |
| // They are not convertible unless they are at least first class types |
| if (!this->isFirstClassType() || !Ty->isFirstClassType()) |
| return false; |
| |
| // Vector -> Vector conversions are always lossless if the two vector types |
| // have the same size, otherwise not. |
| if (isa<VectorType>(this) && isa<VectorType>(Ty)) |
| return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits(); |
| |
| // 8192-bit fixed width vector types can be losslessly converted to x86amx. |
| if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) && |
| getPrimitiveSizeInBits().getFixedValue() == 8192) |
| return true; |
| if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) && |
| Ty->getPrimitiveSizeInBits().getFixedValue() == 8192) |
| return true; |
| |
| // Conservatively assume we can't losslessly convert between pointers with |
| // different address spaces. |
| return false; |
| } |
| |
| bool Type::isEmptyTy() const { |
| if (auto *ATy = dyn_cast<ArrayType>(this)) { |
| unsigned NumElements = ATy->getNumElements(); |
| return NumElements == 0 || ATy->getElementType()->isEmptyTy(); |
| } |
| |
| if (auto *STy = dyn_cast<StructType>(this)) { |
| unsigned NumElements = STy->getNumElements(); |
| for (unsigned i = 0; i < NumElements; ++i) |
| if (!STy->getElementType(i)->isEmptyTy()) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| TypeSize Type::getPrimitiveSizeInBits() const { |
| switch (getTypeID()) { |
| case Type::HalfTyID: |
| return TypeSize::getFixed(16); |
| case Type::BFloatTyID: |
| return TypeSize::getFixed(16); |
| case Type::FloatTyID: |
| return TypeSize::getFixed(32); |
| case Type::DoubleTyID: |
| return TypeSize::getFixed(64); |
| case Type::X86_FP80TyID: |
| return TypeSize::getFixed(80); |
| case Type::FP128TyID: |
| return TypeSize::getFixed(128); |
| case Type::PPC_FP128TyID: |
| return TypeSize::getFixed(128); |
| case Type::X86_AMXTyID: |
| return TypeSize::getFixed(8192); |
| case Type::IntegerTyID: |
| return TypeSize::getFixed(cast<IntegerType>(this)->getBitWidth()); |
| case Type::FixedVectorTyID: |
| case Type::ScalableVectorTyID: { |
| const VectorType *VTy = cast<VectorType>(this); |
| ElementCount EC = VTy->getElementCount(); |
| TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits(); |
| assert(!ETS.isScalable() && "Vector type should have fixed-width elements"); |
| return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()}; |
| } |
| default: |
| return TypeSize::getFixed(0); |
| } |
| } |
| |
| unsigned Type::getScalarSizeInBits() const { |
| // It is safe to assume that the scalar types have a fixed size. |
| return getScalarType()->getPrimitiveSizeInBits().getFixedValue(); |
| } |
| |
| int Type::getFPMantissaWidth() const { |
| if (auto *VTy = dyn_cast<VectorType>(this)) |
| return VTy->getElementType()->getFPMantissaWidth(); |
| assert(isFloatingPointTy() && "Not a floating point type!"); |
| if (getTypeID() == HalfTyID) return 11; |
| if (getTypeID() == BFloatTyID) return 8; |
| if (getTypeID() == FloatTyID) return 24; |
| if (getTypeID() == DoubleTyID) return 53; |
| if (getTypeID() == X86_FP80TyID) return 64; |
| if (getTypeID() == FP128TyID) return 113; |
| assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); |
| return -1; |
| } |
| |
| bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const { |
| if (auto *ATy = dyn_cast<ArrayType>(this)) |
| return ATy->getElementType()->isSized(Visited); |
| |
| if (auto *VTy = dyn_cast<VectorType>(this)) |
| return VTy->getElementType()->isSized(Visited); |
| |
| if (auto *TTy = dyn_cast<TargetExtType>(this)) |
| return TTy->getLayoutType()->isSized(Visited); |
| |
| return cast<StructType>(this)->isSized(Visited); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Primitive 'Type' data |
| //===----------------------------------------------------------------------===// |
| |
| Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } |
| Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } |
| Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } |
| Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; } |
| Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } |
| Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } |
| Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } |
| Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } |
| Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } |
| Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } |
| Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } |
| Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; } |
| |
| IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } |
| IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } |
| IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } |
| IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } |
| IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } |
| IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } |
| |
| IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { |
| return IntegerType::get(C, N); |
| } |
| |
| Type *Type::getWasm_ExternrefTy(LLVMContext &C) { |
| // opaque pointer in addrspace(10) |
| static PointerType *Ty = PointerType::get(C, 10); |
| return Ty; |
| } |
| |
| Type *Type::getWasm_FuncrefTy(LLVMContext &C) { |
| // opaque pointer in addrspace(20) |
| static PointerType *Ty = PointerType::get(C, 20); |
| return Ty; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // IntegerType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { |
| assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); |
| assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); |
| |
| // Check for the built-in integer types |
| switch (NumBits) { |
| case 1: return cast<IntegerType>(Type::getInt1Ty(C)); |
| case 8: return cast<IntegerType>(Type::getInt8Ty(C)); |
| case 16: return cast<IntegerType>(Type::getInt16Ty(C)); |
| case 32: return cast<IntegerType>(Type::getInt32Ty(C)); |
| case 64: return cast<IntegerType>(Type::getInt64Ty(C)); |
| case 128: return cast<IntegerType>(Type::getInt128Ty(C)); |
| default: |
| break; |
| } |
| |
| IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; |
| |
| if (!Entry) |
| Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits); |
| |
| return Entry; |
| } |
| |
| APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); } |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, |
| bool IsVarArgs) |
| : Type(Result->getContext(), FunctionTyID) { |
| Type **SubTys = reinterpret_cast<Type**>(this+1); |
| assert(isValidReturnType(Result) && "invalid return type for function"); |
| setSubclassData(IsVarArgs); |
| |
| SubTys[0] = Result; |
| |
| for (unsigned i = 0, e = Params.size(); i != e; ++i) { |
| assert(isValidArgumentType(Params[i]) && |
| "Not a valid type for function argument!"); |
| SubTys[i+1] = Params[i]; |
| } |
| |
| ContainedTys = SubTys; |
| NumContainedTys = Params.size() + 1; // + 1 for result type |
| } |
| |
| // This is the factory function for the FunctionType class. |
| FunctionType *FunctionType::get(Type *ReturnType, |
| ArrayRef<Type*> Params, bool isVarArg) { |
| LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; |
| const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); |
| FunctionType *FT; |
| // Since we only want to allocate a fresh function type in case none is found |
| // and we don't want to perform two lookups (one for checking if existent and |
| // one for inserting the newly allocated one), here we instead lookup based on |
| // Key and update the reference to the function type in-place to a newly |
| // allocated one if not found. |
| auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key); |
| if (Insertion.second) { |
| // The function type was not found. Allocate one and update FunctionTypes |
| // in-place. |
| FT = (FunctionType *)pImpl->Alloc.Allocate( |
| sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), |
| alignof(FunctionType)); |
| new (FT) FunctionType(ReturnType, Params, isVarArg); |
| *Insertion.first = FT; |
| } else { |
| // The function type was found. Just return it. |
| FT = *Insertion.first; |
| } |
| return FT; |
| } |
| |
| FunctionType *FunctionType::get(Type *Result, bool isVarArg) { |
| return get(Result, {}, isVarArg); |
| } |
| |
| bool FunctionType::isValidReturnType(Type *RetTy) { |
| return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && |
| !RetTy->isMetadataTy(); |
| } |
| |
| bool FunctionType::isValidArgumentType(Type *ArgTy) { |
| return ArgTy->isFirstClassType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StructType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // Primitive Constructors. |
| |
| StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, |
| bool isPacked) { |
| LLVMContextImpl *pImpl = Context.pImpl; |
| const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); |
| |
| StructType *ST; |
| // Since we only want to allocate a fresh struct type in case none is found |
| // and we don't want to perform two lookups (one for checking if existent and |
| // one for inserting the newly allocated one), here we instead lookup based on |
| // Key and update the reference to the struct type in-place to a newly |
| // allocated one if not found. |
| auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key); |
| if (Insertion.second) { |
| // The struct type was not found. Allocate one and update AnonStructTypes |
| // in-place. |
| ST = new (Context.pImpl->Alloc) StructType(Context); |
| ST->setSubclassData(SCDB_IsLiteral); // Literal struct. |
| ST->setBody(ETypes, isPacked); |
| *Insertion.first = ST; |
| } else { |
| // The struct type was found. Just return it. |
| ST = *Insertion.first; |
| } |
| |
| return ST; |
| } |
| |
| bool StructType::isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const { |
| if ((getSubclassData() & SCDB_ContainsScalableVector) != 0) |
| return true; |
| |
| if ((getSubclassData() & SCDB_NotContainsScalableVector) != 0) |
| return false; |
| |
| if (!Visited.insert(this).second) |
| return false; |
| |
| for (Type *Ty : elements()) { |
| if (Ty->isScalableTy(Visited)) { |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_ContainsScalableVector); |
| return true; |
| } |
| } |
| |
| // For structures that are opaque, return false but do not set the |
| // SCDB_NotContainsScalableVector flag since it may gain scalable vector type |
| // when it becomes non-opaque. |
| if (!isOpaque()) |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_NotContainsScalableVector); |
| return false; |
| } |
| |
| bool StructType::containsNonGlobalTargetExtType( |
| SmallPtrSetImpl<const Type *> &Visited) const { |
| if ((getSubclassData() & SCDB_ContainsNonGlobalTargetExtType) != 0) |
| return true; |
| |
| if ((getSubclassData() & SCDB_NotContainsNonGlobalTargetExtType) != 0) |
| return false; |
| |
| if (!Visited.insert(this).second) |
| return false; |
| |
| for (Type *Ty : elements()) { |
| if (Ty->containsNonGlobalTargetExtType(Visited)) { |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_ContainsNonGlobalTargetExtType); |
| return true; |
| } |
| } |
| |
| // For structures that are opaque, return false but do not set the |
| // SCDB_NotContainsNonGlobalTargetExtType flag since it may gain non-global |
| // target extension types when it becomes non-opaque. |
| if (!isOpaque()) |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_NotContainsNonGlobalTargetExtType); |
| return false; |
| } |
| |
| bool StructType::containsNonLocalTargetExtType( |
| SmallPtrSetImpl<const Type *> &Visited) const { |
| if ((getSubclassData() & SCDB_ContainsNonLocalTargetExtType) != 0) |
| return true; |
| |
| if ((getSubclassData() & SCDB_NotContainsNonLocalTargetExtType) != 0) |
| return false; |
| |
| if (!Visited.insert(this).second) |
| return false; |
| |
| for (Type *Ty : elements()) { |
| if (Ty->containsNonLocalTargetExtType(Visited)) { |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_ContainsNonLocalTargetExtType); |
| return true; |
| } |
| } |
| |
| // For structures that are opaque, return false but do not set the |
| // SCDB_NotContainsNonLocalTargetExtType flag since it may gain non-local |
| // target extension types when it becomes non-opaque. |
| if (!isOpaque()) |
| const_cast<StructType *>(this)->setSubclassData( |
| getSubclassData() | SCDB_NotContainsNonLocalTargetExtType); |
| return false; |
| } |
| |
| bool StructType::containsHomogeneousScalableVectorTypes() const { |
| if (getNumElements() <= 0 || !isa<ScalableVectorType>(elements().front())) |
| return false; |
| return containsHomogeneousTypes(); |
| } |
| |
| bool StructType::containsHomogeneousTypes() const { |
| ArrayRef<Type *> ElementTys = elements(); |
| return !ElementTys.empty() && all_equal(ElementTys); |
| } |
| |
| void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { |
| cantFail(setBodyOrError(Elements, isPacked)); |
| } |
| |
| Error StructType::setBodyOrError(ArrayRef<Type *> Elements, bool isPacked) { |
| assert(isOpaque() && "Struct body already set!"); |
| |
| if (auto E = checkBody(Elements)) |
| return E; |
| |
| setSubclassData(getSubclassData() | SCDB_HasBody); |
| if (isPacked) |
| setSubclassData(getSubclassData() | SCDB_Packed); |
| |
| NumContainedTys = Elements.size(); |
| ContainedTys = Elements.empty() |
| ? nullptr |
| : Elements.copy(getContext().pImpl->Alloc).data(); |
| |
| return Error::success(); |
| } |
| |
| Error StructType::checkBody(ArrayRef<Type *> Elements) { |
| SmallSetVector<Type *, 4> Worklist(Elements.begin(), Elements.end()); |
| for (unsigned I = 0; I < Worklist.size(); ++I) { |
| Type *Ty = Worklist[I]; |
| if (Ty == this) |
| return createStringError(Twine("identified structure type '") + |
| getName() + "' is recursive"); |
| Worklist.insert_range(Ty->subtypes()); |
| } |
| return Error::success(); |
| } |
| |
| void StructType::setName(StringRef Name) { |
| if (Name == getName()) return; |
| |
| StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; |
| |
| using EntryTy = StringMap<StructType *>::MapEntryTy; |
| |
| // If this struct already had a name, remove its symbol table entry. Don't |
| // delete the data yet because it may be part of the new name. |
| if (SymbolTableEntry) |
| SymbolTable.remove((EntryTy *)SymbolTableEntry); |
| |
| // If this is just removing the name, we're done. |
| if (Name.empty()) { |
| if (SymbolTableEntry) { |
| // Delete the old string data. |
| ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); |
| SymbolTableEntry = nullptr; |
| } |
| return; |
| } |
| |
| // Look up the entry for the name. |
| auto IterBool = |
| getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); |
| |
| // While we have a name collision, try a random rename. |
| if (!IterBool.second) { |
| SmallString<64> TempStr(Name); |
| TempStr.push_back('.'); |
| raw_svector_ostream TmpStream(TempStr); |
| unsigned NameSize = Name.size(); |
| |
| do { |
| TempStr.resize(NameSize + 1); |
| TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; |
| |
| IterBool = getContext().pImpl->NamedStructTypes.insert( |
| std::make_pair(TmpStream.str(), this)); |
| } while (!IterBool.second); |
| } |
| |
| // Delete the old string data. |
| if (SymbolTableEntry) |
| ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); |
| SymbolTableEntry = &*IterBool.first; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // StructType Helper functions. |
| |
| StructType *StructType::create(LLVMContext &Context, StringRef Name) { |
| StructType *ST = new (Context.pImpl->Alloc) StructType(Context); |
| if (!Name.empty()) |
| ST->setName(Name); |
| return ST; |
| } |
| |
| StructType *StructType::get(LLVMContext &Context, bool isPacked) { |
| return get(Context, {}, isPacked); |
| } |
| |
| StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, |
| StringRef Name, bool isPacked) { |
| StructType *ST = create(Context, Name); |
| ST->setBody(Elements, isPacked); |
| return ST; |
| } |
| |
| StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { |
| return create(Context, Elements, StringRef()); |
| } |
| |
| StructType *StructType::create(LLVMContext &Context) { |
| return create(Context, StringRef()); |
| } |
| |
| StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, |
| bool isPacked) { |
| assert(!Elements.empty() && |
| "This method may not be invoked with an empty list"); |
| return create(Elements[0]->getContext(), Elements, Name, isPacked); |
| } |
| |
| StructType *StructType::create(ArrayRef<Type*> Elements) { |
| assert(!Elements.empty() && |
| "This method may not be invoked with an empty list"); |
| return create(Elements[0]->getContext(), Elements, StringRef()); |
| } |
| |
| bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const { |
| if ((getSubclassData() & SCDB_IsSized) != 0) |
| return true; |
| if (isOpaque()) |
| return false; |
| |
| if (Visited && !Visited->insert(const_cast<StructType*>(this)).second) |
| return false; |
| |
| // Okay, our struct is sized if all of the elements are, but if one of the |
| // elements is opaque, the struct isn't sized *yet*, but may become sized in |
| // the future, so just bail out without caching. |
| // The ONLY special case inside a struct that is considered sized is when the |
| // elements are homogeneous of a scalable vector type. |
| if (containsHomogeneousScalableVectorTypes()) { |
| const_cast<StructType *>(this)->setSubclassData(getSubclassData() | |
| SCDB_IsSized); |
| return true; |
| } |
| for (Type *Ty : elements()) { |
| // If the struct contains a scalable vector type, don't consider it sized. |
| // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY |
| // special case right now is a structure of homogenous scalable vector |
| // types and is handled by the if-statement before this for-loop. |
| if (Ty->isScalableTy()) |
| return false; |
| if (!Ty->isSized(Visited)) |
| return false; |
| } |
| |
| // Here we cheat a bit and cast away const-ness. The goal is to memoize when |
| // we find a sized type, as types can only move from opaque to sized, not the |
| // other way. |
| const_cast<StructType*>(this)->setSubclassData( |
| getSubclassData() | SCDB_IsSized); |
| return true; |
| } |
| |
| StringRef StructType::getName() const { |
| assert(!isLiteral() && "Literal structs never have names"); |
| if (!SymbolTableEntry) return StringRef(); |
| |
| return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); |
| } |
| |
| bool StructType::isValidElementType(Type *ElemTy) { |
| return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && |
| !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && |
| !ElemTy->isTokenTy(); |
| } |
| |
| bool StructType::isLayoutIdentical(StructType *Other) const { |
| if (this == Other) return true; |
| |
| if (isPacked() != Other->isPacked()) |
| return false; |
| |
| return elements() == Other->elements(); |
| } |
| |
| Type *StructType::getTypeAtIndex(const Value *V) const { |
| unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); |
| assert(indexValid(Idx) && "Invalid structure index!"); |
| return getElementType(Idx); |
| } |
| |
| bool StructType::indexValid(const Value *V) const { |
| // Structure indexes require (vectors of) 32-bit integer constants. In the |
| // vector case all of the indices must be equal. |
| if (!V->getType()->isIntOrIntVectorTy(32)) |
| return false; |
| if (isa<ScalableVectorType>(V->getType())) |
| return false; |
| const Constant *C = dyn_cast<Constant>(V); |
| if (C && V->getType()->isVectorTy()) |
| C = C->getSplatValue(); |
| const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); |
| return CU && CU->getZExtValue() < getNumElements(); |
| } |
| |
| StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) { |
| return C.pImpl->NamedStructTypes.lookup(Name); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ArrayType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ArrayType::ArrayType(Type *ElType, uint64_t NumEl) |
| : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType), |
| NumElements(NumEl) { |
| ContainedTys = &ContainedType; |
| NumContainedTys = 1; |
| } |
| |
| ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { |
| assert(isValidElementType(ElementType) && "Invalid type for array element!"); |
| |
| LLVMContextImpl *pImpl = ElementType->getContext().pImpl; |
| ArrayType *&Entry = |
| pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; |
| |
| if (!Entry) |
| Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements); |
| return Entry; |
| } |
| |
| bool ArrayType::isValidElementType(Type *ElemTy) { |
| return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && |
| !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && |
| !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // VectorType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID) |
| : Type(ElType->getContext(), TID), ContainedType(ElType), |
| ElementQuantity(EQ) { |
| ContainedTys = &ContainedType; |
| NumContainedTys = 1; |
| } |
| |
| VectorType *VectorType::get(Type *ElementType, ElementCount EC) { |
| if (EC.isScalable()) |
| return ScalableVectorType::get(ElementType, EC.getKnownMinValue()); |
| else |
| return FixedVectorType::get(ElementType, EC.getKnownMinValue()); |
| } |
| |
| bool VectorType::isValidElementType(Type *ElemTy) { |
| return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || |
| ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FixedVectorType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) { |
| assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0"); |
| assert(isValidElementType(ElementType) && "Element type of a VectorType must " |
| "be an integer, floating point, or " |
| "pointer type."); |
| |
| auto EC = ElementCount::getFixed(NumElts); |
| |
| LLVMContextImpl *pImpl = ElementType->getContext().pImpl; |
| VectorType *&Entry = ElementType->getContext() |
| .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; |
| |
| if (!Entry) |
| Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts); |
| return cast<FixedVectorType>(Entry); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ScalableVectorType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| ScalableVectorType *ScalableVectorType::get(Type *ElementType, |
| unsigned MinNumElts) { |
| assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0"); |
| assert(isValidElementType(ElementType) && "Element type of a VectorType must " |
| "be an integer, floating point, or " |
| "pointer type."); |
| |
| auto EC = ElementCount::getScalable(MinNumElts); |
| |
| LLVMContextImpl *pImpl = ElementType->getContext().pImpl; |
| VectorType *&Entry = ElementType->getContext() |
| .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; |
| |
| if (!Entry) |
| Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts); |
| return cast<ScalableVectorType>(Entry); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PointerType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { |
| assert(EltTy && "Can't get a pointer to <null> type!"); |
| assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); |
| |
| // Automatically convert typed pointers to opaque pointers. |
| return get(EltTy->getContext(), AddressSpace); |
| } |
| |
| PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) { |
| LLVMContextImpl *CImpl = C.pImpl; |
| |
| // Since AddressSpace #0 is the common case, we special case it. |
| PointerType *&Entry = AddressSpace == 0 ? CImpl->AS0PointerType |
| : CImpl->PointerTypes[AddressSpace]; |
| |
| if (!Entry) |
| Entry = new (CImpl->Alloc) PointerType(C, AddressSpace); |
| return Entry; |
| } |
| |
| PointerType::PointerType(LLVMContext &C, unsigned AddrSpace) |
| : Type(C, PointerTyID) { |
| setSubclassData(AddrSpace); |
| } |
| |
| PointerType *Type::getPointerTo(unsigned AddrSpace) const { |
| return PointerType::get(getContext(), AddrSpace); |
| } |
| |
| bool PointerType::isValidElementType(Type *ElemTy) { |
| return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && |
| !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() && |
| !ElemTy->isX86_AMXTy(); |
| } |
| |
| bool PointerType::isLoadableOrStorableType(Type *ElemTy) { |
| return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetExtType Implementation |
| //===----------------------------------------------------------------------===// |
| |
| TargetExtType::TargetExtType(LLVMContext &C, StringRef Name, |
| ArrayRef<Type *> Types, ArrayRef<unsigned> Ints) |
| : Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(Name)) { |
| NumContainedTys = Types.size(); |
| |
| // Parameter storage immediately follows the class in allocation. |
| Type **Params = reinterpret_cast<Type **>(this + 1); |
| ContainedTys = Params; |
| for (Type *T : Types) |
| *Params++ = T; |
| |
| setSubclassData(Ints.size()); |
| unsigned *IntParamSpace = reinterpret_cast<unsigned *>(Params); |
| IntParams = IntParamSpace; |
| for (unsigned IntParam : Ints) |
| *IntParamSpace++ = IntParam; |
| } |
| |
| TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name, |
| ArrayRef<Type *> Types, |
| ArrayRef<unsigned> Ints) { |
| return cantFail(getOrError(C, Name, Types, Ints)); |
| } |
| |
| Expected<TargetExtType *> TargetExtType::getOrError(LLVMContext &C, |
| StringRef Name, |
| ArrayRef<Type *> Types, |
| ArrayRef<unsigned> Ints) { |
| const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints); |
| TargetExtType *TT; |
| // Since we only want to allocate a fresh target type in case none is found |
| // and we don't want to perform two lookups (one for checking if existent and |
| // one for inserting the newly allocated one), here we instead lookup based on |
| // Key and update the reference to the target type in-place to a newly |
| // allocated one if not found. |
| auto [Iter, Inserted] = C.pImpl->TargetExtTypes.insert_as(nullptr, Key); |
| if (Inserted) { |
| // The target type was not found. Allocate one and update TargetExtTypes |
| // in-place. |
| TT = (TargetExtType *)C.pImpl->Alloc.Allocate( |
| sizeof(TargetExtType) + sizeof(Type *) * Types.size() + |
| sizeof(unsigned) * Ints.size(), |
| alignof(TargetExtType)); |
| new (TT) TargetExtType(C, Name, Types, Ints); |
| *Iter = TT; |
| return checkParams(TT); |
| } |
| |
| // The target type was found. Just return it. |
| return *Iter; |
| } |
| |
| Expected<TargetExtType *> TargetExtType::checkParams(TargetExtType *TTy) { |
| // Opaque types in the AArch64 name space. |
| if (TTy->Name == "aarch64.svcount" && |
| (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 0)) |
| return createStringError( |
| "target extension type aarch64.svcount should have no parameters"); |
| |
| // Opaque types in the RISC-V name space. |
| if (TTy->Name == "riscv.vector.tuple" && |
| (TTy->getNumTypeParameters() != 1 || TTy->getNumIntParameters() != 1)) |
| return createStringError( |
| "target extension type riscv.vector.tuple should have one " |
| "type parameter and one integer parameter"); |
| |
| // Opaque types in the AMDGPU name space. |
| if (TTy->Name == "amdgcn.named.barrier" && |
| (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 1)) { |
| return createStringError("target extension type amdgcn.named.barrier " |
| "should have no type parameters " |
| "and one integer parameter"); |
| } |
| |
| return TTy; |
| } |
| |
| namespace { |
| struct TargetTypeInfo { |
| Type *LayoutType; |
| uint64_t Properties; |
| |
| template <typename... ArgTys> |
| TargetTypeInfo(Type *LayoutType, ArgTys... Properties) |
| : LayoutType(LayoutType), Properties((0 | ... | Properties)) {} |
| }; |
| } // anonymous namespace |
| |
| static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) { |
| LLVMContext &C = Ty->getContext(); |
| StringRef Name = Ty->getName(); |
| if (Name == "spirv.Image") |
| return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal, |
| TargetExtType::CanBeLocal); |
| if (Name == "spirv.Type") { |
| assert(Ty->getNumIntParameters() == 3 && |
| "Wrong number of parameters for spirv.Type"); |
| |
| auto Size = Ty->getIntParameter(1); |
| auto Alignment = Ty->getIntParameter(2); |
| |
| llvm::Type *LayoutType = nullptr; |
| if (Size > 0 && Alignment > 0) { |
| LayoutType = |
| ArrayType::get(Type::getIntNTy(C, Alignment), Size * 8 / Alignment); |
| } else { |
| // LLVM expects variables that can be allocated to have an alignment and |
| // size. Default to using a 32-bit int as the layout type if none are |
| // present. |
| LayoutType = Type::getInt32Ty(C); |
| } |
| |
| return TargetTypeInfo(LayoutType, TargetExtType::CanBeGlobal, |
| TargetExtType::CanBeLocal); |
| } |
| if (Name == "spirv.IntegralConstant" || Name == "spirv.Literal") |
| return TargetTypeInfo(Type::getVoidTy(C)); |
| if (Name.starts_with("spirv.")) |
| return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::HasZeroInit, |
| TargetExtType::CanBeGlobal, |
| TargetExtType::CanBeLocal); |
| |
| // Opaque types in the AArch64 name space. |
| if (Name == "aarch64.svcount") |
| return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C), 16), |
| TargetExtType::HasZeroInit, |
| TargetExtType::CanBeLocal); |
| |
| // RISC-V vector tuple type. The layout is represented as the type that needs |
| // the same number of vector registers(VREGS) as this tuple type, represented |
| // as <vscale x (RVVBitsPerBlock * VREGS / 8) x i8>. |
| if (Name == "riscv.vector.tuple") { |
| unsigned TotalNumElts = |
| std::max(cast<ScalableVectorType>(Ty->getTypeParameter(0)) |
| ->getMinNumElements(), |
| RISCV::RVVBytesPerBlock) * |
| Ty->getIntParameter(0); |
| return TargetTypeInfo( |
| ScalableVectorType::get(Type::getInt8Ty(C), TotalNumElts), |
| TargetExtType::CanBeLocal, TargetExtType::HasZeroInit); |
| } |
| |
| // DirectX resources |
| if (Name.starts_with("dx.")) |
| return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal, |
| TargetExtType::CanBeLocal); |
| |
| // Opaque types in the AMDGPU name space. |
| if (Name == "amdgcn.named.barrier") { |
| return TargetTypeInfo(FixedVectorType::get(Type::getInt32Ty(C), 4), |
| TargetExtType::CanBeGlobal); |
| } |
| |
| return TargetTypeInfo(Type::getVoidTy(C)); |
| } |
| |
| Type *TargetExtType::getLayoutType() const { |
| return getTargetTypeInfo(this).LayoutType; |
| } |
| |
| bool TargetExtType::hasProperty(Property Prop) const { |
| uint64_t Properties = getTargetTypeInfo(this).Properties; |
| return (Properties & Prop) == Prop; |
| } |